Snapshot. Includes first cut at output relocation sections.
[binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 #include "gold.h"
4
5 #include <cerrno>
6 #include <cstring>
7 #include <cassert>
8 #include <cstdarg>
9
10 #include "target-select.h"
11 #include "layout.h"
12 #include "output.h"
13 #include "symtab.h"
14 #include "object.h"
15 #include "dynobj.h"
16
17 namespace gold
18 {
19
20 // Class Object.
21
22 // Set the target based on fields in the ELF file header.
23
24 void
25 Object::set_target(int machine, int size, bool big_endian, int osabi,
26 int abiversion)
27 {
28 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
29 if (target == NULL)
30 {
31 fprintf(stderr, _("%s: %s: unsupported ELF machine number %d\n"),
32 program_name, this->name().c_str(), machine);
33 gold_exit(false);
34 }
35 this->target_ = target;
36 }
37
38 // Report an error for the elfcpp::Elf_file interface.
39
40 void
41 Object::error(const char* format, ...)
42 {
43 va_list args;
44
45 fprintf(stderr, "%s: %s: ", program_name, this->name().c_str());
46 va_start(args, format);
47 vfprintf(stderr, format, args);
48 va_end(args);
49 putc('\n', stderr);
50
51 gold_exit(false);
52 }
53
54 // Return a view of the contents of a section.
55
56 const unsigned char*
57 Object::section_contents(unsigned int shndx, off_t* plen)
58 {
59 Location loc(this->do_section_contents(shndx));
60 *plen = loc.data_size;
61 return this->get_view(loc.file_offset, loc.data_size);
62 }
63
64 // Read the section data into SD. This is code common to Sized_relobj
65 // and Sized_dynobj, so we put it into Object.
66
67 template<int size, bool big_endian>
68 void
69 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
70 Read_symbols_data* sd)
71 {
72 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
73
74 // Read the section headers.
75 const off_t shoff = elf_file->shoff();
76 const unsigned int shnum = this->shnum();
77 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size);
78
79 // Read the section names.
80 const unsigned char* pshdrs = sd->section_headers->data();
81 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
82 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
83
84 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
85 {
86 fprintf(stderr,
87 _("%s: %s: section name section has wrong type: %u\n"),
88 program_name, this->name().c_str(),
89 static_cast<unsigned int>(shdrnames.get_sh_type()));
90 gold_exit(false);
91 }
92
93 sd->section_names_size = shdrnames.get_sh_size();
94 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
95 sd->section_names_size);
96 }
97
98 // If NAME is the name of a special .gnu.warning section, arrange for
99 // the warning to be issued. SHNDX is the section index. Return
100 // whether it is a warning section.
101
102 bool
103 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
104 Symbol_table* symtab)
105 {
106 const char warn_prefix[] = ".gnu.warning.";
107 const int warn_prefix_len = sizeof warn_prefix - 1;
108 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
109 {
110 symtab->add_warning(name + warn_prefix_len, this, shndx);
111 return true;
112 }
113 return false;
114 }
115
116 // Class Sized_relobj.
117
118 template<int size, bool big_endian>
119 Sized_relobj<size, big_endian>::Sized_relobj(
120 const std::string& name,
121 Input_file* input_file,
122 off_t offset,
123 const elfcpp::Ehdr<size, big_endian>& ehdr)
124 : Relobj(name, input_file, offset),
125 elf_file_(this, ehdr),
126 symtab_shndx_(-1U),
127 local_symbol_count_(0),
128 output_local_symbol_count_(0),
129 symbols_(NULL),
130 local_symbol_offset_(0),
131 local_values_(),
132 local_indexes_()
133 {
134 }
135
136 template<int size, bool big_endian>
137 Sized_relobj<size, big_endian>::~Sized_relobj()
138 {
139 }
140
141 // Set up an object file based on the file header. This sets up the
142 // target and reads the section information.
143
144 template<int size, bool big_endian>
145 void
146 Sized_relobj<size, big_endian>::setup(
147 const elfcpp::Ehdr<size, big_endian>& ehdr)
148 {
149 this->set_target(ehdr.get_e_machine(), size, big_endian,
150 ehdr.get_e_ident()[elfcpp::EI_OSABI],
151 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
152
153 const unsigned int shnum = this->elf_file_.shnum();
154 this->set_shnum(shnum);
155 }
156
157 // Find the SHT_SYMTAB section, given the section headers. The ELF
158 // standard says that maybe in the future there can be more than one
159 // SHT_SYMTAB section. Until somebody figures out how that could
160 // work, we assume there is only one.
161
162 template<int size, bool big_endian>
163 void
164 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
165 {
166 const unsigned int shnum = this->shnum();
167 this->symtab_shndx_ = 0;
168 if (shnum > 0)
169 {
170 // Look through the sections in reverse order, since gas tends
171 // to put the symbol table at the end.
172 const unsigned char* p = pshdrs + shnum * This::shdr_size;
173 unsigned int i = shnum;
174 while (i > 0)
175 {
176 --i;
177 p -= This::shdr_size;
178 typename This::Shdr shdr(p);
179 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
180 {
181 this->symtab_shndx_ = i;
182 break;
183 }
184 }
185 }
186 }
187
188 // Read the sections and symbols from an object file.
189
190 template<int size, bool big_endian>
191 void
192 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
193 {
194 this->read_section_data(&this->elf_file_, sd);
195
196 const unsigned char* const pshdrs = sd->section_headers->data();
197
198 this->find_symtab(pshdrs);
199
200 if (this->symtab_shndx_ == 0)
201 {
202 // No symbol table. Weird but legal.
203 sd->symbols = NULL;
204 sd->symbols_size = 0;
205 sd->symbol_names = NULL;
206 sd->symbol_names_size = 0;
207 return;
208 }
209
210 // Get the symbol table section header.
211 typename This::Shdr symtabshdr(pshdrs
212 + this->symtab_shndx_ * This::shdr_size);
213 assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
214
215 // We only need the external symbols.
216 const int sym_size = This::sym_size;
217 const unsigned int loccount = symtabshdr.get_sh_info();
218 this->local_symbol_count_ = loccount;
219 off_t locsize = loccount * sym_size;
220 off_t extoff = symtabshdr.get_sh_offset() + locsize;
221 off_t extsize = symtabshdr.get_sh_size() - locsize;
222
223 // Read the symbol table.
224 File_view* fvsymtab = this->get_lasting_view(extoff, extsize);
225
226 // Read the section header for the symbol names.
227 unsigned int strtab_shndx = symtabshdr.get_sh_link();
228 if (strtab_shndx >= this->shnum())
229 {
230 fprintf(stderr, _("%s: %s: invalid symbol table name index: %u\n"),
231 program_name, this->name().c_str(), strtab_shndx);
232 gold_exit(false);
233 }
234 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
235 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
236 {
237 fprintf(stderr,
238 _("%s: %s: symbol table name section has wrong type: %u\n"),
239 program_name, this->name().c_str(),
240 static_cast<unsigned int>(strtabshdr.get_sh_type()));
241 gold_exit(false);
242 }
243
244 // Read the symbol names.
245 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
246 strtabshdr.get_sh_size());
247
248 sd->symbols = fvsymtab;
249 sd->symbols_size = extsize;
250 sd->symbol_names = fvstrtab;
251 sd->symbol_names_size = strtabshdr.get_sh_size();
252 }
253
254 // Return whether to include a section group in the link. LAYOUT is
255 // used to keep track of which section groups we have already seen.
256 // INDEX is the index of the section group and SHDR is the section
257 // header. If we do not want to include this group, we set bits in
258 // OMIT for each section which should be discarded.
259
260 template<int size, bool big_endian>
261 bool
262 Sized_relobj<size, big_endian>::include_section_group(
263 Layout* layout,
264 unsigned int index,
265 const elfcpp::Shdr<size, big_endian>& shdr,
266 std::vector<bool>* omit)
267 {
268 // Read the section contents.
269 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
270 shdr.get_sh_size());
271 const elfcpp::Elf_Word* pword =
272 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
273
274 // The first word contains flags. We only care about COMDAT section
275 // groups. Other section groups are always included in the link
276 // just like ordinary sections.
277 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
278 if ((flags & elfcpp::GRP_COMDAT) == 0)
279 return true;
280
281 // Look up the group signature, which is the name of a symbol. This
282 // is a lot of effort to go to to read a string. Why didn't they
283 // just use the name of the SHT_GROUP section as the group
284 // signature?
285
286 // Get the appropriate symbol table header (this will normally be
287 // the single SHT_SYMTAB section, but in principle it need not be).
288 const unsigned int link = shdr.get_sh_link();
289 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
290
291 // Read the symbol table entry.
292 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
293 {
294 fprintf(stderr, _("%s: %s: section group %u info %u out of range\n"),
295 program_name, this->name().c_str(), index, shdr.get_sh_info());
296 gold_exit(false);
297 }
298 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
299 const unsigned char* psym = this->get_view(symoff, This::sym_size);
300 elfcpp::Sym<size, big_endian> sym(psym);
301
302 // Read the symbol table names.
303 off_t symnamelen;
304 const unsigned char* psymnamesu;
305 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen);
306 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
307
308 // Get the section group signature.
309 if (sym.get_st_name() >= symnamelen)
310 {
311 fprintf(stderr, _("%s: %s: symbol %u name offset %u out of range\n"),
312 program_name, this->name().c_str(), shdr.get_sh_info(),
313 sym.get_st_name());
314 gold_exit(false);
315 }
316
317 const char* signature = psymnames + sym.get_st_name();
318
319 // It seems that some versions of gas will create a section group
320 // associated with a section symbol, and then fail to give a name to
321 // the section symbol. In such a case, use the name of the section.
322 // FIXME.
323 std::string secname;
324 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
325 {
326 secname = this->section_name(sym.get_st_shndx());
327 signature = secname.c_str();
328 }
329
330 // Record this section group, and see whether we've already seen one
331 // with the same signature.
332 if (layout->add_comdat(signature, true))
333 return true;
334
335 // This is a duplicate. We want to discard the sections in this
336 // group.
337 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
338 for (size_t i = 1; i < count; ++i)
339 {
340 elfcpp::Elf_Word secnum =
341 elfcpp::Swap<32, big_endian>::readval(pword + i);
342 if (secnum >= this->shnum())
343 {
344 fprintf(stderr,
345 _("%s: %s: section %u in section group %u out of range"),
346 program_name, this->name().c_str(), secnum,
347 index);
348 gold_exit(false);
349 }
350 (*omit)[secnum] = true;
351 }
352
353 return false;
354 }
355
356 // Whether to include a linkonce section in the link. NAME is the
357 // name of the section and SHDR is the section header.
358
359 // Linkonce sections are a GNU extension implemented in the original
360 // GNU linker before section groups were defined. The semantics are
361 // that we only include one linkonce section with a given name. The
362 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
363 // where T is the type of section and SYMNAME is the name of a symbol.
364 // In an attempt to make linkonce sections interact well with section
365 // groups, we try to identify SYMNAME and use it like a section group
366 // signature. We want to block section groups with that signature,
367 // but not other linkonce sections with that signature. We also use
368 // the full name of the linkonce section as a normal section group
369 // signature.
370
371 template<int size, bool big_endian>
372 bool
373 Sized_relobj<size, big_endian>::include_linkonce_section(
374 Layout* layout,
375 const char* name,
376 const elfcpp::Shdr<size, big_endian>&)
377 {
378 const char* symname = strrchr(name, '.') + 1;
379 bool include1 = layout->add_comdat(symname, false);
380 bool include2 = layout->add_comdat(name, true);
381 return include1 && include2;
382 }
383
384 // Lay out the input sections. We walk through the sections and check
385 // whether they should be included in the link. If they should, we
386 // pass them to the Layout object, which will return an output section
387 // and an offset.
388
389 template<int size, bool big_endian>
390 void
391 Sized_relobj<size, big_endian>::do_layout(const General_options& options,
392 Symbol_table* symtab,
393 Layout* layout,
394 Read_symbols_data* sd)
395 {
396 const unsigned int shnum = this->shnum();
397 if (shnum == 0)
398 return;
399
400 // Get the section headers.
401 const unsigned char* pshdrs = sd->section_headers->data();
402
403 // Get the section names.
404 const unsigned char* pnamesu = sd->section_names->data();
405 const char* pnames = reinterpret_cast<const char*>(pnamesu);
406
407 std::vector<Map_to_output>& map_sections(this->map_to_output());
408 map_sections.resize(shnum);
409
410 // Keep track of which sections to omit.
411 std::vector<bool> omit(shnum, false);
412
413 // Skip the first, dummy, section.
414 pshdrs += This::shdr_size;
415 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
416 {
417 typename This::Shdr shdr(pshdrs);
418
419 if (shdr.get_sh_name() >= sd->section_names_size)
420 {
421 fprintf(stderr,
422 _("%s: %s: bad section name offset for section %u: %lu\n"),
423 program_name, this->name().c_str(), i,
424 static_cast<unsigned long>(shdr.get_sh_name()));
425 gold_exit(false);
426 }
427
428 const char* name = pnames + shdr.get_sh_name();
429
430 if (this->handle_gnu_warning_section(name, i, symtab))
431 {
432 if (!options.is_relocatable())
433 omit[i] = true;
434 }
435
436 bool discard = omit[i];
437 if (!discard)
438 {
439 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
440 {
441 if (!this->include_section_group(layout, i, shdr, &omit))
442 discard = true;
443 }
444 else if (Layout::is_linkonce(name))
445 {
446 if (!this->include_linkonce_section(layout, name, shdr))
447 discard = true;
448 }
449 }
450
451 if (discard)
452 {
453 // Do not include this section in the link.
454 map_sections[i].output_section = NULL;
455 continue;
456 }
457
458 off_t offset;
459 Output_section* os = layout->layout(this, i, name, shdr, &offset);
460
461 map_sections[i].output_section = os;
462 map_sections[i].offset = offset;
463 }
464
465 delete sd->section_headers;
466 sd->section_headers = NULL;
467 delete sd->section_names;
468 sd->section_names = NULL;
469 }
470
471 // Add the symbols to the symbol table.
472
473 template<int size, bool big_endian>
474 void
475 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
476 Read_symbols_data* sd)
477 {
478 if (sd->symbols == NULL)
479 {
480 assert(sd->symbol_names == NULL);
481 return;
482 }
483
484 const int sym_size = This::sym_size;
485 size_t symcount = sd->symbols_size / sym_size;
486 if (symcount * sym_size != sd->symbols_size)
487 {
488 fprintf(stderr,
489 _("%s: %s: size of symbols is not multiple of symbol size\n"),
490 program_name, this->name().c_str());
491 gold_exit(false);
492 }
493
494 this->symbols_ = new Symbol*[symcount];
495
496 const char* sym_names =
497 reinterpret_cast<const char*>(sd->symbol_names->data());
498 symtab->add_from_relobj(this, sd->symbols->data(), symcount, sym_names,
499 sd->symbol_names_size, this->symbols_);
500
501 delete sd->symbols;
502 sd->symbols = NULL;
503 delete sd->symbol_names;
504 sd->symbol_names = NULL;
505 }
506
507 // Finalize the local symbols. Here we record the file offset at
508 // which they should be output, we add their names to *POOL, and we
509 // add their values to THIS->LOCAL_VALUES_ and their indexes in the
510 // output symbol table to THIS->LOCAL_INDEXES_. Return the symbol
511 // index. This function is always called from the main thread. The
512 // actual output of the local symbols will occur in a separate task.
513
514 template<int size, bool big_endian>
515 unsigned int
516 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
517 off_t off,
518 Stringpool* pool)
519 {
520 assert(this->symtab_shndx_ != -1U);
521 if (this->symtab_shndx_ == 0)
522 {
523 // This object has no symbols. Weird but legal.
524 return index;
525 }
526
527 assert(off == static_cast<off_t>(align_address(off, size >> 3)));
528
529 this->local_symbol_offset_ = off;
530
531 // Read the symbol table section header.
532 const unsigned int symtab_shndx = this->symtab_shndx_;
533 typename This::Shdr symtabshdr(this,
534 this->elf_file_.section_header(symtab_shndx));
535 assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
536
537 // Read the local symbols.
538 const int sym_size = This::sym_size;
539 const unsigned int loccount = this->local_symbol_count_;
540 assert(loccount == symtabshdr.get_sh_info());
541 off_t locsize = loccount * sym_size;
542 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
543 locsize);
544
545 this->local_values_.resize(loccount);
546 this->local_indexes_.resize(loccount);
547
548 // Read the symbol names.
549 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
550 off_t strtab_size;
551 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
552 &strtab_size);
553 const char* pnames = reinterpret_cast<const char*>(pnamesu);
554
555 // Loop over the local symbols.
556
557 const std::vector<Map_to_output>& mo(this->map_to_output());
558 unsigned int shnum = this->shnum();
559 unsigned int count = 0;
560 // Skip the first, dummy, symbol.
561 psyms += sym_size;
562 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
563 {
564 elfcpp::Sym<size, big_endian> sym(psyms);
565
566 unsigned int shndx = sym.get_st_shndx();
567
568 if (shndx >= elfcpp::SHN_LORESERVE)
569 {
570 if (shndx == elfcpp::SHN_ABS)
571 this->local_values_[i] = sym.get_st_value();
572 else
573 {
574 // FIXME: Handle SHN_XINDEX.
575 fprintf(stderr,
576 _("%s: %s: unknown section index %u "
577 "for local symbol %u\n"),
578 program_name, this->name().c_str(), shndx, i);
579 gold_exit(false);
580 }
581 }
582 else
583 {
584 if (shndx >= shnum)
585 {
586 fprintf(stderr,
587 _("%s: %s: local symbol %u section index %u "
588 "out of range\n"),
589 program_name, this->name().c_str(), i, shndx);
590 gold_exit(false);
591 }
592
593 if (mo[shndx].output_section == NULL)
594 {
595 this->local_values_[i] = 0;
596 this->local_indexes_[i] = -1U;
597 continue;
598 }
599
600 this->local_values_[i] = (mo[shndx].output_section->address()
601 + mo[shndx].offset
602 + sym.get_st_value());
603 }
604
605 // Decide whether this symbol should go into the output file.
606
607 if (sym.get_st_type() == elfcpp::STT_SECTION)
608 {
609 this->local_indexes_[i] = -1U;
610 continue;
611 }
612
613 if (sym.get_st_name() >= strtab_size)
614 {
615 fprintf(stderr,
616 _("%s: %s: local symbol %u section name "
617 "out of range: %u >= %u\n"),
618 program_name, this->name().c_str(),
619 i, sym.get_st_name(),
620 static_cast<unsigned int>(strtab_size));
621 gold_exit(false);
622 }
623
624 const char* name = pnames + sym.get_st_name();
625 pool->add(name, NULL);
626 this->local_indexes_[i] = index;
627 ++index;
628 off += sym_size;
629 ++count;
630 }
631
632 this->output_local_symbol_count_ = count;
633
634 return index;
635 }
636
637 // Write out the local symbols.
638
639 template<int size, bool big_endian>
640 void
641 Sized_relobj<size, big_endian>::write_local_symbols(Output_file* of,
642 const Stringpool* sympool)
643 {
644 assert(this->symtab_shndx_ != -1U);
645 if (this->symtab_shndx_ == 0)
646 {
647 // This object has no symbols. Weird but legal.
648 return;
649 }
650
651 // Read the symbol table section header.
652 const unsigned int symtab_shndx = this->symtab_shndx_;
653 typename This::Shdr symtabshdr(this,
654 this->elf_file_.section_header(symtab_shndx));
655 assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
656 const unsigned int loccount = this->local_symbol_count_;
657 assert(loccount == symtabshdr.get_sh_info());
658
659 // Read the local symbols.
660 const int sym_size = This::sym_size;
661 off_t locsize = loccount * sym_size;
662 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
663 locsize);
664
665 // Read the symbol names.
666 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
667 off_t strtab_size;
668 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
669 &strtab_size);
670 const char* pnames = reinterpret_cast<const char*>(pnamesu);
671
672 // Get a view into the output file.
673 off_t output_size = this->output_local_symbol_count_ * sym_size;
674 unsigned char* oview = of->get_output_view(this->local_symbol_offset_,
675 output_size);
676
677 const std::vector<Map_to_output>& mo(this->map_to_output());
678
679 assert(this->local_values_.size() == loccount);
680 assert(this->local_indexes_.size() == loccount);
681
682 unsigned char* ov = oview;
683 psyms += sym_size;
684 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
685 {
686 elfcpp::Sym<size, big_endian> isym(psyms);
687
688 if (this->local_indexes_[i] == -1U)
689 continue;
690 assert(this->local_indexes_[i] != 0);
691
692 unsigned int st_shndx = isym.get_st_shndx();
693 if (st_shndx < elfcpp::SHN_LORESERVE)
694 {
695 assert(st_shndx < mo.size());
696 if (mo[st_shndx].output_section == NULL)
697 continue;
698 st_shndx = mo[st_shndx].output_section->out_shndx();
699 }
700
701 elfcpp::Sym_write<size, big_endian> osym(ov);
702
703 assert(isym.get_st_name() < strtab_size);
704 const char* name = pnames + isym.get_st_name();
705 osym.put_st_name(sympool->get_offset(name));
706 osym.put_st_value(this->local_values_[i]);
707 osym.put_st_size(isym.get_st_size());
708 osym.put_st_info(isym.get_st_info());
709 osym.put_st_other(isym.get_st_other());
710 osym.put_st_shndx(st_shndx);
711
712 ov += sym_size;
713 }
714
715 assert(ov - oview == output_size);
716
717 of->write_output_view(this->local_symbol_offset_, output_size, oview);
718 }
719
720 // Input_objects methods.
721
722 // Add a regular relocatable object to the list.
723
724 void
725 Input_objects::add_object(Object* obj)
726 {
727 if (obj->is_dynamic())
728 this->dynobj_list_.push_back(static_cast<Dynobj*>(obj));
729 else
730 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
731
732 Target* target = obj->target();
733 if (this->target_ == NULL)
734 this->target_ = target;
735 else if (this->target_ != target)
736 {
737 fprintf(stderr, "%s: %s: incompatible target\n",
738 program_name, obj->name().c_str());
739 gold_exit(false);
740 }
741 }
742
743 // Relocate_info methods.
744
745 // Return a string describing the location of a relocation. This is
746 // only used in error messages.
747
748 template<int size, bool big_endian>
749 std::string
750 Relocate_info<size, big_endian>::location(size_t relnum, off_t) const
751 {
752 std::string ret(this->object->name());
753 ret += ": reloc ";
754 char buf[100];
755 snprintf(buf, sizeof buf, "%zu", relnum);
756 ret += buf;
757 ret += " in reloc section ";
758 snprintf(buf, sizeof buf, "%u", this->reloc_shndx);
759 ret += buf;
760 ret += " (" + this->object->section_name(this->reloc_shndx);
761 ret += ") for section ";
762 snprintf(buf, sizeof buf, "%u", this->data_shndx);
763 ret += buf;
764 ret += " (" + this->object->section_name(this->data_shndx) + ")";
765 return ret;
766 }
767
768 } // End namespace gold.
769
770 namespace
771 {
772
773 using namespace gold;
774
775 // Read an ELF file with the header and return the appropriate
776 // instance of Object.
777
778 template<int size, bool big_endian>
779 Object*
780 make_elf_sized_object(const std::string& name, Input_file* input_file,
781 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
782 {
783 int et = ehdr.get_e_type();
784 if (et == elfcpp::ET_REL)
785 {
786 Sized_relobj<size, big_endian>* obj =
787 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
788 obj->setup(ehdr);
789 return obj;
790 }
791 else if (et == elfcpp::ET_DYN)
792 {
793 Sized_dynobj<size, big_endian>* obj =
794 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
795 obj->setup(ehdr);
796 return obj;
797 }
798 else
799 {
800 fprintf(stderr, _("%s: %s: unsupported ELF file type %d\n"),
801 program_name, name.c_str(), et);
802 gold_exit(false);
803 }
804 }
805
806 } // End anonymous namespace.
807
808 namespace gold
809 {
810
811 // Read an ELF file and return the appropriate instance of Object.
812
813 Object*
814 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
815 const unsigned char* p, off_t bytes)
816 {
817 if (bytes < elfcpp::EI_NIDENT)
818 {
819 fprintf(stderr, _("%s: %s: ELF file too short\n"),
820 program_name, name.c_str());
821 gold_exit(false);
822 }
823
824 int v = p[elfcpp::EI_VERSION];
825 if (v != elfcpp::EV_CURRENT)
826 {
827 if (v == elfcpp::EV_NONE)
828 fprintf(stderr, _("%s: %s: invalid ELF version 0\n"),
829 program_name, name.c_str());
830 else
831 fprintf(stderr, _("%s: %s: unsupported ELF version %d\n"),
832 program_name, name.c_str(), v);
833 gold_exit(false);
834 }
835
836 int c = p[elfcpp::EI_CLASS];
837 if (c == elfcpp::ELFCLASSNONE)
838 {
839 fprintf(stderr, _("%s: %s: invalid ELF class 0\n"),
840 program_name, name.c_str());
841 gold_exit(false);
842 }
843 else if (c != elfcpp::ELFCLASS32
844 && c != elfcpp::ELFCLASS64)
845 {
846 fprintf(stderr, _("%s: %s: unsupported ELF class %d\n"),
847 program_name, name.c_str(), c);
848 gold_exit(false);
849 }
850
851 int d = p[elfcpp::EI_DATA];
852 if (d == elfcpp::ELFDATANONE)
853 {
854 fprintf(stderr, _("%s: %s: invalid ELF data encoding\n"),
855 program_name, name.c_str());
856 gold_exit(false);
857 }
858 else if (d != elfcpp::ELFDATA2LSB
859 && d != elfcpp::ELFDATA2MSB)
860 {
861 fprintf(stderr, _("%s: %s: unsupported ELF data encoding %d\n"),
862 program_name, name.c_str(), d);
863 gold_exit(false);
864 }
865
866 bool big_endian = d == elfcpp::ELFDATA2MSB;
867
868 if (c == elfcpp::ELFCLASS32)
869 {
870 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
871 {
872 fprintf(stderr, _("%s: %s: ELF file too short\n"),
873 program_name, name.c_str());
874 gold_exit(false);
875 }
876 if (big_endian)
877 {
878 elfcpp::Ehdr<32, true> ehdr(p);
879 return make_elf_sized_object<32, true>(name, input_file,
880 offset, ehdr);
881 }
882 else
883 {
884 elfcpp::Ehdr<32, false> ehdr(p);
885 return make_elf_sized_object<32, false>(name, input_file,
886 offset, ehdr);
887 }
888 }
889 else
890 {
891 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
892 {
893 fprintf(stderr, _("%s: %s: ELF file too short\n"),
894 program_name, name.c_str());
895 gold_exit(false);
896 }
897 if (big_endian)
898 {
899 elfcpp::Ehdr<64, true> ehdr(p);
900 return make_elf_sized_object<64, true>(name, input_file,
901 offset, ehdr);
902 }
903 else
904 {
905 elfcpp::Ehdr<64, false> ehdr(p);
906 return make_elf_sized_object<64, false>(name, input_file,
907 offset, ehdr);
908 }
909 }
910 }
911
912 // Instantiate the templates we need. We could use the configure
913 // script to restrict this to only the ones for implemented targets.
914
915 template
916 class Sized_relobj<32, false>;
917
918 template
919 class Sized_relobj<32, true>;
920
921 template
922 class Sized_relobj<64, false>;
923
924 template
925 class Sized_relobj<64, true>;
926
927 template
928 struct Relocate_info<32, false>;
929
930 template
931 struct Relocate_info<32, true>;
932
933 template
934 struct Relocate_info<64, false>;
935
936 template
937 struct Relocate_info<64, true>;
938
939 } // End namespace gold.