From Cary Coutant: only check for a linkonce section if the SHF_GROUP
[binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 #include "gold.h"
4
5 #include <cerrno>
6 #include <cstring>
7 #include <cstdarg>
8
9 #include "target-select.h"
10 #include "layout.h"
11 #include "output.h"
12 #include "symtab.h"
13 #include "object.h"
14 #include "dynobj.h"
15
16 namespace gold
17 {
18
19 // Class Object.
20
21 // Set the target based on fields in the ELF file header.
22
23 void
24 Object::set_target(int machine, int size, bool big_endian, int osabi,
25 int abiversion)
26 {
27 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
28 if (target == NULL)
29 {
30 fprintf(stderr, _("%s: %s: unsupported ELF machine number %d\n"),
31 program_name, this->name().c_str(), machine);
32 gold_exit(false);
33 }
34 this->target_ = target;
35 }
36
37 // Report an error for the elfcpp::Elf_file interface.
38
39 void
40 Object::error(const char* format, ...)
41 {
42 va_list args;
43
44 fprintf(stderr, "%s: %s: ", program_name, this->name().c_str());
45 va_start(args, format);
46 vfprintf(stderr, format, args);
47 va_end(args);
48 putc('\n', stderr);
49
50 gold_exit(false);
51 }
52
53 // Return a view of the contents of a section.
54
55 const unsigned char*
56 Object::section_contents(unsigned int shndx, off_t* plen)
57 {
58 Location loc(this->do_section_contents(shndx));
59 *plen = loc.data_size;
60 return this->get_view(loc.file_offset, loc.data_size);
61 }
62
63 // Read the section data into SD. This is code common to Sized_relobj
64 // and Sized_dynobj, so we put it into Object.
65
66 template<int size, bool big_endian>
67 void
68 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
69 Read_symbols_data* sd)
70 {
71 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
72
73 // Read the section headers.
74 const off_t shoff = elf_file->shoff();
75 const unsigned int shnum = this->shnum();
76 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size);
77
78 // Read the section names.
79 const unsigned char* pshdrs = sd->section_headers->data();
80 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
81 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
82
83 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
84 {
85 fprintf(stderr,
86 _("%s: %s: section name section has wrong type: %u\n"),
87 program_name, this->name().c_str(),
88 static_cast<unsigned int>(shdrnames.get_sh_type()));
89 gold_exit(false);
90 }
91
92 sd->section_names_size = shdrnames.get_sh_size();
93 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
94 sd->section_names_size);
95 }
96
97 // If NAME is the name of a special .gnu.warning section, arrange for
98 // the warning to be issued. SHNDX is the section index. Return
99 // whether it is a warning section.
100
101 bool
102 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
103 Symbol_table* symtab)
104 {
105 const char warn_prefix[] = ".gnu.warning.";
106 const int warn_prefix_len = sizeof warn_prefix - 1;
107 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
108 {
109 symtab->add_warning(name + warn_prefix_len, this, shndx);
110 return true;
111 }
112 return false;
113 }
114
115 // Class Sized_relobj.
116
117 template<int size, bool big_endian>
118 Sized_relobj<size, big_endian>::Sized_relobj(
119 const std::string& name,
120 Input_file* input_file,
121 off_t offset,
122 const elfcpp::Ehdr<size, big_endian>& ehdr)
123 : Relobj(name, input_file, offset),
124 elf_file_(this, ehdr),
125 symtab_shndx_(-1U),
126 local_symbol_count_(0),
127 output_local_symbol_count_(0),
128 symbols_(NULL),
129 local_symbol_offset_(0),
130 local_values_()
131 {
132 }
133
134 template<int size, bool big_endian>
135 Sized_relobj<size, big_endian>::~Sized_relobj()
136 {
137 }
138
139 // Set up an object file based on the file header. This sets up the
140 // target and reads the section information.
141
142 template<int size, bool big_endian>
143 void
144 Sized_relobj<size, big_endian>::setup(
145 const elfcpp::Ehdr<size, big_endian>& ehdr)
146 {
147 this->set_target(ehdr.get_e_machine(), size, big_endian,
148 ehdr.get_e_ident()[elfcpp::EI_OSABI],
149 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
150
151 const unsigned int shnum = this->elf_file_.shnum();
152 this->set_shnum(shnum);
153 }
154
155 // Find the SHT_SYMTAB section, given the section headers. The ELF
156 // standard says that maybe in the future there can be more than one
157 // SHT_SYMTAB section. Until somebody figures out how that could
158 // work, we assume there is only one.
159
160 template<int size, bool big_endian>
161 void
162 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
163 {
164 const unsigned int shnum = this->shnum();
165 this->symtab_shndx_ = 0;
166 if (shnum > 0)
167 {
168 // Look through the sections in reverse order, since gas tends
169 // to put the symbol table at the end.
170 const unsigned char* p = pshdrs + shnum * This::shdr_size;
171 unsigned int i = shnum;
172 while (i > 0)
173 {
174 --i;
175 p -= This::shdr_size;
176 typename This::Shdr shdr(p);
177 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
178 {
179 this->symtab_shndx_ = i;
180 break;
181 }
182 }
183 }
184 }
185
186 // Read the sections and symbols from an object file.
187
188 template<int size, bool big_endian>
189 void
190 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
191 {
192 this->read_section_data(&this->elf_file_, sd);
193
194 const unsigned char* const pshdrs = sd->section_headers->data();
195
196 this->find_symtab(pshdrs);
197
198 if (this->symtab_shndx_ == 0)
199 {
200 // No symbol table. Weird but legal.
201 sd->symbols = NULL;
202 sd->symbols_size = 0;
203 sd->symbol_names = NULL;
204 sd->symbol_names_size = 0;
205 return;
206 }
207
208 // Get the symbol table section header.
209 typename This::Shdr symtabshdr(pshdrs
210 + this->symtab_shndx_ * This::shdr_size);
211 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
212
213 // We only need the external symbols.
214 const int sym_size = This::sym_size;
215 const unsigned int loccount = symtabshdr.get_sh_info();
216 this->local_symbol_count_ = loccount;
217 off_t locsize = loccount * sym_size;
218 off_t extoff = symtabshdr.get_sh_offset() + locsize;
219 off_t extsize = symtabshdr.get_sh_size() - locsize;
220
221 // Read the symbol table.
222 File_view* fvsymtab = this->get_lasting_view(extoff, extsize);
223
224 // Read the section header for the symbol names.
225 unsigned int strtab_shndx = symtabshdr.get_sh_link();
226 if (strtab_shndx >= this->shnum())
227 {
228 fprintf(stderr, _("%s: %s: invalid symbol table name index: %u\n"),
229 program_name, this->name().c_str(), strtab_shndx);
230 gold_exit(false);
231 }
232 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
233 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
234 {
235 fprintf(stderr,
236 _("%s: %s: symbol table name section has wrong type: %u\n"),
237 program_name, this->name().c_str(),
238 static_cast<unsigned int>(strtabshdr.get_sh_type()));
239 gold_exit(false);
240 }
241
242 // Read the symbol names.
243 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
244 strtabshdr.get_sh_size());
245
246 sd->symbols = fvsymtab;
247 sd->symbols_size = extsize;
248 sd->symbol_names = fvstrtab;
249 sd->symbol_names_size = strtabshdr.get_sh_size();
250 }
251
252 // Return whether to include a section group in the link. LAYOUT is
253 // used to keep track of which section groups we have already seen.
254 // INDEX is the index of the section group and SHDR is the section
255 // header. If we do not want to include this group, we set bits in
256 // OMIT for each section which should be discarded.
257
258 template<int size, bool big_endian>
259 bool
260 Sized_relobj<size, big_endian>::include_section_group(
261 Layout* layout,
262 unsigned int index,
263 const elfcpp::Shdr<size, big_endian>& shdr,
264 std::vector<bool>* omit)
265 {
266 // Read the section contents.
267 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
268 shdr.get_sh_size());
269 const elfcpp::Elf_Word* pword =
270 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
271
272 // The first word contains flags. We only care about COMDAT section
273 // groups. Other section groups are always included in the link
274 // just like ordinary sections.
275 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
276 if ((flags & elfcpp::GRP_COMDAT) == 0)
277 return true;
278
279 // Look up the group signature, which is the name of a symbol. This
280 // is a lot of effort to go to to read a string. Why didn't they
281 // just use the name of the SHT_GROUP section as the group
282 // signature?
283
284 // Get the appropriate symbol table header (this will normally be
285 // the single SHT_SYMTAB section, but in principle it need not be).
286 const unsigned int link = shdr.get_sh_link();
287 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
288
289 // Read the symbol table entry.
290 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
291 {
292 fprintf(stderr, _("%s: %s: section group %u info %u out of range\n"),
293 program_name, this->name().c_str(), index, shdr.get_sh_info());
294 gold_exit(false);
295 }
296 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
297 const unsigned char* psym = this->get_view(symoff, This::sym_size);
298 elfcpp::Sym<size, big_endian> sym(psym);
299
300 // Read the symbol table names.
301 off_t symnamelen;
302 const unsigned char* psymnamesu;
303 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen);
304 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
305
306 // Get the section group signature.
307 if (sym.get_st_name() >= symnamelen)
308 {
309 fprintf(stderr, _("%s: %s: symbol %u name offset %u out of range\n"),
310 program_name, this->name().c_str(), shdr.get_sh_info(),
311 sym.get_st_name());
312 gold_exit(false);
313 }
314
315 const char* signature = psymnames + sym.get_st_name();
316
317 // It seems that some versions of gas will create a section group
318 // associated with a section symbol, and then fail to give a name to
319 // the section symbol. In such a case, use the name of the section.
320 // FIXME.
321 std::string secname;
322 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
323 {
324 secname = this->section_name(sym.get_st_shndx());
325 signature = secname.c_str();
326 }
327
328 // Record this section group, and see whether we've already seen one
329 // with the same signature.
330 if (layout->add_comdat(signature, true))
331 return true;
332
333 // This is a duplicate. We want to discard the sections in this
334 // group.
335 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
336 for (size_t i = 1; i < count; ++i)
337 {
338 elfcpp::Elf_Word secnum =
339 elfcpp::Swap<32, big_endian>::readval(pword + i);
340 if (secnum >= this->shnum())
341 {
342 fprintf(stderr,
343 _("%s: %s: section %u in section group %u out of range"),
344 program_name, this->name().c_str(), secnum,
345 index);
346 gold_exit(false);
347 }
348 (*omit)[secnum] = true;
349 }
350
351 return false;
352 }
353
354 // Whether to include a linkonce section in the link. NAME is the
355 // name of the section and SHDR is the section header.
356
357 // Linkonce sections are a GNU extension implemented in the original
358 // GNU linker before section groups were defined. The semantics are
359 // that we only include one linkonce section with a given name. The
360 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
361 // where T is the type of section and SYMNAME is the name of a symbol.
362 // In an attempt to make linkonce sections interact well with section
363 // groups, we try to identify SYMNAME and use it like a section group
364 // signature. We want to block section groups with that signature,
365 // but not other linkonce sections with that signature. We also use
366 // the full name of the linkonce section as a normal section group
367 // signature.
368
369 template<int size, bool big_endian>
370 bool
371 Sized_relobj<size, big_endian>::include_linkonce_section(
372 Layout* layout,
373 const char* name,
374 const elfcpp::Shdr<size, big_endian>&)
375 {
376 const char* symname = strrchr(name, '.') + 1;
377 bool include1 = layout->add_comdat(symname, false);
378 bool include2 = layout->add_comdat(name, true);
379 return include1 && include2;
380 }
381
382 // Lay out the input sections. We walk through the sections and check
383 // whether they should be included in the link. If they should, we
384 // pass them to the Layout object, which will return an output section
385 // and an offset.
386
387 template<int size, bool big_endian>
388 void
389 Sized_relobj<size, big_endian>::do_layout(const General_options& options,
390 Symbol_table* symtab,
391 Layout* layout,
392 Read_symbols_data* sd)
393 {
394 const unsigned int shnum = this->shnum();
395 if (shnum == 0)
396 return;
397
398 // Get the section headers.
399 const unsigned char* pshdrs = sd->section_headers->data();
400
401 // Get the section names.
402 const unsigned char* pnamesu = sd->section_names->data();
403 const char* pnames = reinterpret_cast<const char*>(pnamesu);
404
405 std::vector<Map_to_output>& map_sections(this->map_to_output());
406 map_sections.resize(shnum);
407
408 // Keep track of which sections to omit.
409 std::vector<bool> omit(shnum, false);
410
411 // Skip the first, dummy, section.
412 pshdrs += This::shdr_size;
413 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
414 {
415 typename This::Shdr shdr(pshdrs);
416
417 if (shdr.get_sh_name() >= sd->section_names_size)
418 {
419 fprintf(stderr,
420 _("%s: %s: bad section name offset for section %u: %lu\n"),
421 program_name, this->name().c_str(), i,
422 static_cast<unsigned long>(shdr.get_sh_name()));
423 gold_exit(false);
424 }
425
426 const char* name = pnames + shdr.get_sh_name();
427
428 if (this->handle_gnu_warning_section(name, i, symtab))
429 {
430 if (!options.is_relocatable())
431 omit[i] = true;
432 }
433
434 bool discard = omit[i];
435 if (!discard)
436 {
437 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
438 {
439 if (!this->include_section_group(layout, i, shdr, &omit))
440 discard = true;
441 }
442 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
443 && Layout::is_linkonce(name))
444 {
445 if (!this->include_linkonce_section(layout, name, shdr))
446 discard = true;
447 }
448 }
449
450 if (discard)
451 {
452 // Do not include this section in the link.
453 map_sections[i].output_section = NULL;
454 continue;
455 }
456
457 off_t offset;
458 Output_section* os = layout->layout(this, i, name, shdr, &offset);
459
460 map_sections[i].output_section = os;
461 map_sections[i].offset = offset;
462 }
463
464 delete sd->section_headers;
465 sd->section_headers = NULL;
466 delete sd->section_names;
467 sd->section_names = NULL;
468 }
469
470 // Add the symbols to the symbol table.
471
472 template<int size, bool big_endian>
473 void
474 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
475 Read_symbols_data* sd)
476 {
477 if (sd->symbols == NULL)
478 {
479 gold_assert(sd->symbol_names == NULL);
480 return;
481 }
482
483 const int sym_size = This::sym_size;
484 size_t symcount = sd->symbols_size / sym_size;
485 if (symcount * sym_size != sd->symbols_size)
486 {
487 fprintf(stderr,
488 _("%s: %s: size of symbols is not multiple of symbol size\n"),
489 program_name, this->name().c_str());
490 gold_exit(false);
491 }
492
493 this->symbols_ = new Symbol*[symcount];
494
495 const char* sym_names =
496 reinterpret_cast<const char*>(sd->symbol_names->data());
497 symtab->add_from_relobj(this, sd->symbols->data(), symcount, sym_names,
498 sd->symbol_names_size, this->symbols_);
499
500 delete sd->symbols;
501 sd->symbols = NULL;
502 delete sd->symbol_names;
503 sd->symbol_names = NULL;
504 }
505
506 // Finalize the local symbols. Here we record the file offset at
507 // which they should be output, we add their names to *POOL, and we
508 // add their values to THIS->LOCAL_VALUES_. Return the symbol index.
509 // This function is always called from the main thread. The actual
510 // output of the local symbols will occur in a separate task.
511
512 template<int size, bool big_endian>
513 unsigned int
514 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
515 off_t off,
516 Stringpool* pool)
517 {
518 gold_assert(this->symtab_shndx_ != -1U);
519 if (this->symtab_shndx_ == 0)
520 {
521 // This object has no symbols. Weird but legal.
522 return index;
523 }
524
525 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
526
527 this->local_symbol_offset_ = off;
528
529 // Read the symbol table section header.
530 const unsigned int symtab_shndx = this->symtab_shndx_;
531 typename This::Shdr symtabshdr(this,
532 this->elf_file_.section_header(symtab_shndx));
533 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
534
535 // Read the local symbols.
536 const int sym_size = This::sym_size;
537 const unsigned int loccount = this->local_symbol_count_;
538 gold_assert(loccount == symtabshdr.get_sh_info());
539 off_t locsize = loccount * sym_size;
540 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
541 locsize);
542
543 this->local_values_.resize(loccount);
544
545 // Read the symbol names.
546 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
547 off_t strtab_size;
548 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
549 &strtab_size);
550 const char* pnames = reinterpret_cast<const char*>(pnamesu);
551
552 // Loop over the local symbols.
553
554 const std::vector<Map_to_output>& mo(this->map_to_output());
555 unsigned int shnum = this->shnum();
556 unsigned int count = 0;
557 // Skip the first, dummy, symbol.
558 psyms += sym_size;
559 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
560 {
561 elfcpp::Sym<size, big_endian> sym(psyms);
562
563 Symbol_value<size>& lv(this->local_values_[i]);
564
565 unsigned int shndx = sym.get_st_shndx();
566 lv.set_input_shndx(shndx);
567
568 if (shndx >= elfcpp::SHN_LORESERVE)
569 {
570 if (shndx == elfcpp::SHN_ABS)
571 lv.set_output_value(sym.get_st_value());
572 else
573 {
574 // FIXME: Handle SHN_XINDEX.
575 fprintf(stderr,
576 _("%s: %s: unknown section index %u "
577 "for local symbol %u\n"),
578 program_name, this->name().c_str(), shndx, i);
579 gold_exit(false);
580 }
581 }
582 else
583 {
584 if (shndx >= shnum)
585 {
586 fprintf(stderr,
587 _("%s: %s: local symbol %u section index %u "
588 "out of range\n"),
589 program_name, this->name().c_str(), i, shndx);
590 gold_exit(false);
591 }
592
593 Output_section* os = mo[shndx].output_section;
594
595 if (os == NULL)
596 {
597 lv.set_output_value(0);
598 lv.set_no_output_symtab_entry();
599 continue;
600 }
601
602 if (mo[shndx].offset == -1)
603 lv.set_input_value(sym.get_st_value());
604 else
605 lv.set_output_value(mo[shndx].output_section->address()
606 + mo[shndx].offset
607 + sym.get_st_value());
608 }
609
610 // Decide whether this symbol should go into the output file.
611
612 if (sym.get_st_type() == elfcpp::STT_SECTION)
613 {
614 lv.set_no_output_symtab_entry();
615 continue;
616 }
617
618 if (sym.get_st_name() >= strtab_size)
619 {
620 fprintf(stderr,
621 _("%s: %s: local symbol %u section name "
622 "out of range: %u >= %u\n"),
623 program_name, this->name().c_str(),
624 i, sym.get_st_name(),
625 static_cast<unsigned int>(strtab_size));
626 gold_exit(false);
627 }
628
629 const char* name = pnames + sym.get_st_name();
630 pool->add(name, NULL);
631 lv.set_output_symtab_index(index);
632 ++index;
633 ++count;
634 }
635
636 this->output_local_symbol_count_ = count;
637
638 return index;
639 }
640
641 // Return the value of a local symbol defined in input section SHNDX,
642 // with value VALUE, adding addend ADDEND. This handles SHF_MERGE
643 // sections.
644 template<int size, bool big_endian>
645 typename elfcpp::Elf_types<size>::Elf_Addr
646 Sized_relobj<size, big_endian>::local_value(unsigned int shndx,
647 Address value,
648 Address addend) const
649 {
650 const std::vector<Map_to_output>& mo(this->map_to_output());
651 Output_section* os = mo[shndx].output_section;
652 if (os == NULL)
653 return addend;
654 gold_assert(mo[shndx].offset == -1);
655 return os->output_address(this, shndx, value + addend);
656 }
657
658 // Write out the local symbols.
659
660 template<int size, bool big_endian>
661 void
662 Sized_relobj<size, big_endian>::write_local_symbols(Output_file* of,
663 const Stringpool* sympool)
664 {
665 gold_assert(this->symtab_shndx_ != -1U);
666 if (this->symtab_shndx_ == 0)
667 {
668 // This object has no symbols. Weird but legal.
669 return;
670 }
671
672 // Read the symbol table section header.
673 const unsigned int symtab_shndx = this->symtab_shndx_;
674 typename This::Shdr symtabshdr(this,
675 this->elf_file_.section_header(symtab_shndx));
676 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
677 const unsigned int loccount = this->local_symbol_count_;
678 gold_assert(loccount == symtabshdr.get_sh_info());
679
680 // Read the local symbols.
681 const int sym_size = This::sym_size;
682 off_t locsize = loccount * sym_size;
683 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
684 locsize);
685
686 // Read the symbol names.
687 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
688 off_t strtab_size;
689 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
690 &strtab_size);
691 const char* pnames = reinterpret_cast<const char*>(pnamesu);
692
693 // Get a view into the output file.
694 off_t output_size = this->output_local_symbol_count_ * sym_size;
695 unsigned char* oview = of->get_output_view(this->local_symbol_offset_,
696 output_size);
697
698 const std::vector<Map_to_output>& mo(this->map_to_output());
699
700 gold_assert(this->local_values_.size() == loccount);
701
702 unsigned char* ov = oview;
703 psyms += sym_size;
704 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
705 {
706 elfcpp::Sym<size, big_endian> isym(psyms);
707
708 if (!this->local_values_[i].needs_output_symtab_entry())
709 continue;
710
711 unsigned int st_shndx = isym.get_st_shndx();
712 if (st_shndx < elfcpp::SHN_LORESERVE)
713 {
714 gold_assert(st_shndx < mo.size());
715 if (mo[st_shndx].output_section == NULL)
716 continue;
717 st_shndx = mo[st_shndx].output_section->out_shndx();
718 }
719
720 elfcpp::Sym_write<size, big_endian> osym(ov);
721
722 gold_assert(isym.get_st_name() < strtab_size);
723 const char* name = pnames + isym.get_st_name();
724 osym.put_st_name(sympool->get_offset(name));
725 osym.put_st_value(this->local_values_[i].value(this, 0));
726 osym.put_st_size(isym.get_st_size());
727 osym.put_st_info(isym.get_st_info());
728 osym.put_st_other(isym.get_st_other());
729 osym.put_st_shndx(st_shndx);
730
731 ov += sym_size;
732 }
733
734 gold_assert(ov - oview == output_size);
735
736 of->write_output_view(this->local_symbol_offset_, output_size, oview);
737 }
738
739 // Input_objects methods.
740
741 // Add a regular relocatable object to the list. Return false if this
742 // object should be ignored.
743
744 bool
745 Input_objects::add_object(Object* obj)
746 {
747 if (!obj->is_dynamic())
748 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
749 else
750 {
751 // See if this is a duplicate SONAME.
752 Dynobj* dynobj = static_cast<Dynobj*>(obj);
753
754 std::pair<Unordered_set<std::string>::iterator, bool> ins =
755 this->sonames_.insert(dynobj->soname());
756 if (!ins.second)
757 {
758 // We have already seen a dynamic object with this soname.
759 return false;
760 }
761
762 this->dynobj_list_.push_back(dynobj);
763 }
764
765 Target* target = obj->target();
766 if (this->target_ == NULL)
767 this->target_ = target;
768 else if (this->target_ != target)
769 {
770 fprintf(stderr, "%s: %s: incompatible target\n",
771 program_name, obj->name().c_str());
772 gold_exit(false);
773 }
774
775 return true;
776 }
777
778 // Relocate_info methods.
779
780 // Return a string describing the location of a relocation. This is
781 // only used in error messages.
782
783 template<int size, bool big_endian>
784 std::string
785 Relocate_info<size, big_endian>::location(size_t relnum, off_t) const
786 {
787 std::string ret(this->object->name());
788 ret += ": reloc ";
789 char buf[100];
790 snprintf(buf, sizeof buf, "%zu", relnum);
791 ret += buf;
792 ret += " in reloc section ";
793 snprintf(buf, sizeof buf, "%u", this->reloc_shndx);
794 ret += buf;
795 ret += " (" + this->object->section_name(this->reloc_shndx);
796 ret += ") for section ";
797 snprintf(buf, sizeof buf, "%u", this->data_shndx);
798 ret += buf;
799 ret += " (" + this->object->section_name(this->data_shndx) + ")";
800 return ret;
801 }
802
803 } // End namespace gold.
804
805 namespace
806 {
807
808 using namespace gold;
809
810 // Read an ELF file with the header and return the appropriate
811 // instance of Object.
812
813 template<int size, bool big_endian>
814 Object*
815 make_elf_sized_object(const std::string& name, Input_file* input_file,
816 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
817 {
818 int et = ehdr.get_e_type();
819 if (et == elfcpp::ET_REL)
820 {
821 Sized_relobj<size, big_endian>* obj =
822 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
823 obj->setup(ehdr);
824 return obj;
825 }
826 else if (et == elfcpp::ET_DYN)
827 {
828 Sized_dynobj<size, big_endian>* obj =
829 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
830 obj->setup(ehdr);
831 return obj;
832 }
833 else
834 {
835 fprintf(stderr, _("%s: %s: unsupported ELF file type %d\n"),
836 program_name, name.c_str(), et);
837 gold_exit(false);
838 }
839 }
840
841 } // End anonymous namespace.
842
843 namespace gold
844 {
845
846 // Read an ELF file and return the appropriate instance of Object.
847
848 Object*
849 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
850 const unsigned char* p, off_t bytes)
851 {
852 if (bytes < elfcpp::EI_NIDENT)
853 {
854 fprintf(stderr, _("%s: %s: ELF file too short\n"),
855 program_name, name.c_str());
856 gold_exit(false);
857 }
858
859 int v = p[elfcpp::EI_VERSION];
860 if (v != elfcpp::EV_CURRENT)
861 {
862 if (v == elfcpp::EV_NONE)
863 fprintf(stderr, _("%s: %s: invalid ELF version 0\n"),
864 program_name, name.c_str());
865 else
866 fprintf(stderr, _("%s: %s: unsupported ELF version %d\n"),
867 program_name, name.c_str(), v);
868 gold_exit(false);
869 }
870
871 int c = p[elfcpp::EI_CLASS];
872 if (c == elfcpp::ELFCLASSNONE)
873 {
874 fprintf(stderr, _("%s: %s: invalid ELF class 0\n"),
875 program_name, name.c_str());
876 gold_exit(false);
877 }
878 else if (c != elfcpp::ELFCLASS32
879 && c != elfcpp::ELFCLASS64)
880 {
881 fprintf(stderr, _("%s: %s: unsupported ELF class %d\n"),
882 program_name, name.c_str(), c);
883 gold_exit(false);
884 }
885
886 int d = p[elfcpp::EI_DATA];
887 if (d == elfcpp::ELFDATANONE)
888 {
889 fprintf(stderr, _("%s: %s: invalid ELF data encoding\n"),
890 program_name, name.c_str());
891 gold_exit(false);
892 }
893 else if (d != elfcpp::ELFDATA2LSB
894 && d != elfcpp::ELFDATA2MSB)
895 {
896 fprintf(stderr, _("%s: %s: unsupported ELF data encoding %d\n"),
897 program_name, name.c_str(), d);
898 gold_exit(false);
899 }
900
901 bool big_endian = d == elfcpp::ELFDATA2MSB;
902
903 if (c == elfcpp::ELFCLASS32)
904 {
905 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
906 {
907 fprintf(stderr, _("%s: %s: ELF file too short\n"),
908 program_name, name.c_str());
909 gold_exit(false);
910 }
911 if (big_endian)
912 {
913 #ifdef HAVE_TARGET_32_BIG
914 elfcpp::Ehdr<32, true> ehdr(p);
915 return make_elf_sized_object<32, true>(name, input_file,
916 offset, ehdr);
917 #else
918 fprintf(stderr,
919 _("%s: %s: not configured to support 32-bit big-endian object\n"),
920 program_name, name.c_str());
921 gold_exit(false);
922 #endif
923 }
924 else
925 {
926 #ifdef HAVE_TARGET_32_LITTLE
927 elfcpp::Ehdr<32, false> ehdr(p);
928 return make_elf_sized_object<32, false>(name, input_file,
929 offset, ehdr);
930 #else
931 fprintf(stderr,
932 _("%s: %s: not configured to support 32-bit little-endian object\n"),
933 program_name, name.c_str());
934 gold_exit(false);
935 #endif
936 }
937 }
938 else
939 {
940 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
941 {
942 fprintf(stderr, _("%s: %s: ELF file too short\n"),
943 program_name, name.c_str());
944 gold_exit(false);
945 }
946 if (big_endian)
947 {
948 #ifdef HAVE_TARGET_64_BIG
949 elfcpp::Ehdr<64, true> ehdr(p);
950 return make_elf_sized_object<64, true>(name, input_file,
951 offset, ehdr);
952 #else
953 fprintf(stderr,
954 _("%s: %s: not configured to support 64-bit big-endian object\n"),
955 program_name, name.c_str());
956 gold_exit(false);
957 #endif
958 }
959 else
960 {
961 #ifdef HAVE_TARGET_64_LITTLE
962 elfcpp::Ehdr<64, false> ehdr(p);
963 return make_elf_sized_object<64, false>(name, input_file,
964 offset, ehdr);
965 #else
966 fprintf(stderr,
967 _("%s: %s: not configured to support 64-bit little-endian object\n"),
968 program_name, name.c_str());
969 gold_exit(false);
970 #endif
971 }
972 }
973 }
974
975 // Instantiate the templates we need. We could use the configure
976 // script to restrict this to only the ones for implemented targets.
977
978 #ifdef HAVE_TARGET_32_LITTLE
979 template
980 class Sized_relobj<32, false>;
981 #endif
982
983 #ifdef HAVE_TARGET_32_BIG
984 template
985 class Sized_relobj<32, true>;
986 #endif
987
988 #ifdef HAVE_TARGET_64_LITTLE
989 template
990 class Sized_relobj<64, false>;
991 #endif
992
993 #ifdef HAVE_TARGET_64_BIG
994 template
995 class Sized_relobj<64, true>;
996 #endif
997
998 #ifdef HAVE_TARGET_32_LITTLE
999 template
1000 struct Relocate_info<32, false>;
1001 #endif
1002
1003 #ifdef HAVE_TARGET_32_BIG
1004 template
1005 struct Relocate_info<32, true>;
1006 #endif
1007
1008 #ifdef HAVE_TARGET_64_LITTLE
1009 template
1010 struct Relocate_info<64, false>;
1011 #endif
1012
1013 #ifdef HAVE_TARGET_64_BIG
1014 template
1015 struct Relocate_info<64, true>;
1016 #endif
1017
1018 } // End namespace gold.