* object.cc (Xindex::initialize_symtab_xindex): New function.
[binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Xindex.
44
45 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
46 // section and read it in. SYMTAB_SHNDX is the index of the symbol
47 // table we care about.
48
49 template<int size, bool big_endian>
50 void
51 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
52 {
53 if (!this->symtab_xindex_.empty())
54 return;
55
56 gold_assert(symtab_shndx != 0);
57
58 // Look through the sections in reverse order, on the theory that it
59 // is more likely to be near the end than the beginning.
60 unsigned int i = object->shnum();
61 while (i > 0)
62 {
63 --i;
64 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
65 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
66 {
67 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
68 return;
69 }
70 }
71
72 object->error(_("missing SHT_SYMTAB_SHNDX section"));
73 }
74
75 // Read in the symtab_xindex_ array, given the section index of the
76 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
77 // section headers.
78
79 template<int size, bool big_endian>
80 void
81 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
82 const unsigned char* pshdrs)
83 {
84 section_size_type bytecount;
85 const unsigned char* contents;
86 if (pshdrs == NULL)
87 contents = object->section_contents(xindex_shndx, &bytecount, false);
88 else
89 {
90 const unsigned char* p = (pshdrs
91 + (xindex_shndx
92 * elfcpp::Elf_sizes<size>::shdr_size));
93 typename elfcpp::Shdr<size, big_endian> shdr(p);
94 bytecount = convert_to_section_size_type(shdr.get_sh_size());
95 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
96 }
97
98 gold_assert(this->symtab_xindex_.empty());
99 this->symtab_xindex_.reserve(bytecount / 4);
100 for (section_size_type i = 0; i < bytecount; i += 4)
101 {
102 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
103 // We preadjust the section indexes we save.
104 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
105 }
106 }
107
108 // Symbol symndx has a section of SHN_XINDEX; return the real section
109 // index.
110
111 unsigned int
112 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
113 {
114 if (symndx >= this->symtab_xindex_.size())
115 {
116 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
117 symndx);
118 return elfcpp::SHN_UNDEF;
119 }
120 unsigned int shndx = this->symtab_xindex_[symndx];
121 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
122 {
123 object->error(_("extended index for symbol %u out of range: %u"),
124 symndx, shndx);
125 return elfcpp::SHN_UNDEF;
126 }
127 return shndx;
128 }
129
130 // Class Object.
131
132 // Set the target based on fields in the ELF file header.
133
134 void
135 Object::set_target(int machine, int size, bool big_endian, int osabi,
136 int abiversion)
137 {
138 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
139 if (target == NULL)
140 gold_fatal(_("%s: unsupported ELF machine number %d"),
141 this->name().c_str(), machine);
142 this->target_ = target;
143 }
144
145 // Report an error for this object file. This is used by the
146 // elfcpp::Elf_file interface, and also called by the Object code
147 // itself.
148
149 void
150 Object::error(const char* format, ...) const
151 {
152 va_list args;
153 va_start(args, format);
154 char* buf = NULL;
155 if (vasprintf(&buf, format, args) < 0)
156 gold_nomem();
157 va_end(args);
158 gold_error(_("%s: %s"), this->name().c_str(), buf);
159 free(buf);
160 }
161
162 // Return a view of the contents of a section.
163
164 const unsigned char*
165 Object::section_contents(unsigned int shndx, section_size_type* plen,
166 bool cache)
167 {
168 Location loc(this->do_section_contents(shndx));
169 *plen = convert_to_section_size_type(loc.data_size);
170 return this->get_view(loc.file_offset, *plen, true, cache);
171 }
172
173 // Read the section data into SD. This is code common to Sized_relobj
174 // and Sized_dynobj, so we put it into Object.
175
176 template<int size, bool big_endian>
177 void
178 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
179 Read_symbols_data* sd)
180 {
181 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
182
183 // Read the section headers.
184 const off_t shoff = elf_file->shoff();
185 const unsigned int shnum = this->shnum();
186 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
187 true, true);
188
189 // Read the section names.
190 const unsigned char* pshdrs = sd->section_headers->data();
191 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
192 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
193
194 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
195 this->error(_("section name section has wrong type: %u"),
196 static_cast<unsigned int>(shdrnames.get_sh_type()));
197
198 sd->section_names_size =
199 convert_to_section_size_type(shdrnames.get_sh_size());
200 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
201 sd->section_names_size, false,
202 false);
203 }
204
205 // If NAME is the name of a special .gnu.warning section, arrange for
206 // the warning to be issued. SHNDX is the section index. Return
207 // whether it is a warning section.
208
209 bool
210 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
211 Symbol_table* symtab)
212 {
213 const char warn_prefix[] = ".gnu.warning.";
214 const int warn_prefix_len = sizeof warn_prefix - 1;
215 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
216 {
217 // Read the section contents to get the warning text. It would
218 // be nicer if we only did this if we have to actually issue a
219 // warning. Unfortunately, warnings are issued as we relocate
220 // sections. That means that we can not lock the object then,
221 // as we might try to issue the same warning multiple times
222 // simultaneously.
223 section_size_type len;
224 const unsigned char* contents = this->section_contents(shndx, &len,
225 false);
226 std::string warning(reinterpret_cast<const char*>(contents), len);
227 symtab->add_warning(name + warn_prefix_len, this, warning);
228 return true;
229 }
230 return false;
231 }
232
233 // Class Sized_relobj.
234
235 template<int size, bool big_endian>
236 Sized_relobj<size, big_endian>::Sized_relobj(
237 const std::string& name,
238 Input_file* input_file,
239 off_t offset,
240 const elfcpp::Ehdr<size, big_endian>& ehdr)
241 : Relobj(name, input_file, offset),
242 elf_file_(this, ehdr),
243 symtab_shndx_(-1U),
244 local_symbol_count_(0),
245 output_local_symbol_count_(0),
246 output_local_dynsym_count_(0),
247 symbols_(),
248 local_symbol_offset_(0),
249 local_dynsym_offset_(0),
250 local_values_(),
251 local_got_offsets_(),
252 has_eh_frame_(false)
253 {
254 }
255
256 template<int size, bool big_endian>
257 Sized_relobj<size, big_endian>::~Sized_relobj()
258 {
259 }
260
261 // Set up an object file based on the file header. This sets up the
262 // target and reads the section information.
263
264 template<int size, bool big_endian>
265 void
266 Sized_relobj<size, big_endian>::setup(
267 const elfcpp::Ehdr<size, big_endian>& ehdr)
268 {
269 this->set_target(ehdr.get_e_machine(), size, big_endian,
270 ehdr.get_e_ident()[elfcpp::EI_OSABI],
271 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
272
273 const unsigned int shnum = this->elf_file_.shnum();
274 this->set_shnum(shnum);
275 }
276
277 // Find the SHT_SYMTAB section, given the section headers. The ELF
278 // standard says that maybe in the future there can be more than one
279 // SHT_SYMTAB section. Until somebody figures out how that could
280 // work, we assume there is only one.
281
282 template<int size, bool big_endian>
283 void
284 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
285 {
286 const unsigned int shnum = this->shnum();
287 this->symtab_shndx_ = 0;
288 if (shnum > 0)
289 {
290 // Look through the sections in reverse order, since gas tends
291 // to put the symbol table at the end.
292 const unsigned char* p = pshdrs + shnum * This::shdr_size;
293 unsigned int i = shnum;
294 unsigned int xindex_shndx = 0;
295 unsigned int xindex_link = 0;
296 while (i > 0)
297 {
298 --i;
299 p -= This::shdr_size;
300 typename This::Shdr shdr(p);
301 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
302 {
303 this->symtab_shndx_ = i;
304 if (xindex_shndx > 0 && xindex_link == i)
305 {
306 Xindex* xindex =
307 new Xindex(this->elf_file_.large_shndx_offset());
308 xindex->read_symtab_xindex<size, big_endian>(this,
309 xindex_shndx,
310 pshdrs);
311 this->set_xindex(xindex);
312 }
313 break;
314 }
315
316 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
317 // one. This will work if it follows the SHT_SYMTAB
318 // section.
319 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
320 {
321 xindex_shndx = i;
322 xindex_link = this->adjust_shndx(shdr.get_sh_link());
323 }
324 }
325 }
326 }
327
328 // Return the Xindex structure to use for object with lots of
329 // sections.
330
331 template<int size, bool big_endian>
332 Xindex*
333 Sized_relobj<size, big_endian>::do_initialize_xindex()
334 {
335 gold_assert(this->symtab_shndx_ != -1U);
336 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
337 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
338 return xindex;
339 }
340
341 // Return whether SHDR has the right type and flags to be a GNU
342 // .eh_frame section.
343
344 template<int size, bool big_endian>
345 bool
346 Sized_relobj<size, big_endian>::check_eh_frame_flags(
347 const elfcpp::Shdr<size, big_endian>* shdr) const
348 {
349 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
350 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
351 }
352
353 // Return whether there is a GNU .eh_frame section, given the section
354 // headers and the section names.
355
356 template<int size, bool big_endian>
357 bool
358 Sized_relobj<size, big_endian>::find_eh_frame(
359 const unsigned char* pshdrs,
360 const char* names,
361 section_size_type names_size) const
362 {
363 const unsigned int shnum = this->shnum();
364 const unsigned char* p = pshdrs + This::shdr_size;
365 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
366 {
367 typename This::Shdr shdr(p);
368 if (this->check_eh_frame_flags(&shdr))
369 {
370 if (shdr.get_sh_name() >= names_size)
371 {
372 this->error(_("bad section name offset for section %u: %lu"),
373 i, static_cast<unsigned long>(shdr.get_sh_name()));
374 continue;
375 }
376
377 const char* name = names + shdr.get_sh_name();
378 if (strcmp(name, ".eh_frame") == 0)
379 return true;
380 }
381 }
382 return false;
383 }
384
385 // Read the sections and symbols from an object file.
386
387 template<int size, bool big_endian>
388 void
389 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
390 {
391 this->read_section_data(&this->elf_file_, sd);
392
393 const unsigned char* const pshdrs = sd->section_headers->data();
394
395 this->find_symtab(pshdrs);
396
397 const unsigned char* namesu = sd->section_names->data();
398 const char* names = reinterpret_cast<const char*>(namesu);
399 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
400 {
401 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
402 this->has_eh_frame_ = true;
403 }
404
405 sd->symbols = NULL;
406 sd->symbols_size = 0;
407 sd->external_symbols_offset = 0;
408 sd->symbol_names = NULL;
409 sd->symbol_names_size = 0;
410
411 if (this->symtab_shndx_ == 0)
412 {
413 // No symbol table. Weird but legal.
414 return;
415 }
416
417 // Get the symbol table section header.
418 typename This::Shdr symtabshdr(pshdrs
419 + this->symtab_shndx_ * This::shdr_size);
420 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
421
422 // If this object has a .eh_frame section, we need all the symbols.
423 // Otherwise we only need the external symbols. While it would be
424 // simpler to just always read all the symbols, I've seen object
425 // files with well over 2000 local symbols, which for a 64-bit
426 // object file format is over 5 pages that we don't need to read
427 // now.
428
429 const int sym_size = This::sym_size;
430 const unsigned int loccount = symtabshdr.get_sh_info();
431 this->local_symbol_count_ = loccount;
432 this->local_values_.resize(loccount);
433 section_offset_type locsize = loccount * sym_size;
434 off_t dataoff = symtabshdr.get_sh_offset();
435 section_size_type datasize =
436 convert_to_section_size_type(symtabshdr.get_sh_size());
437 off_t extoff = dataoff + locsize;
438 section_size_type extsize = datasize - locsize;
439
440 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
441 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
442
443 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
444
445 // Read the section header for the symbol names.
446 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
447 if (strtab_shndx >= this->shnum())
448 {
449 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
450 return;
451 }
452 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
453 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
454 {
455 this->error(_("symbol table name section has wrong type: %u"),
456 static_cast<unsigned int>(strtabshdr.get_sh_type()));
457 return;
458 }
459
460 // Read the symbol names.
461 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
462 strtabshdr.get_sh_size(),
463 false, true);
464
465 sd->symbols = fvsymtab;
466 sd->symbols_size = readsize;
467 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
468 sd->symbol_names = fvstrtab;
469 sd->symbol_names_size =
470 convert_to_section_size_type(strtabshdr.get_sh_size());
471 }
472
473 // Return the section index of symbol SYM. Set *VALUE to its value in
474 // the object file. Set *IS_ORDINARY if this is an ordinary section
475 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
476 // Note that for a symbol which is not defined in this object file,
477 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
478 // the final value of the symbol in the link.
479
480 template<int size, bool big_endian>
481 unsigned int
482 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
483 Address* value,
484 bool* is_ordinary)
485 {
486 section_size_type symbols_size;
487 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
488 &symbols_size,
489 false);
490
491 const size_t count = symbols_size / This::sym_size;
492 gold_assert(sym < count);
493
494 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
495 *value = elfsym.get_st_value();
496
497 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
498 }
499
500 // Return whether to include a section group in the link. LAYOUT is
501 // used to keep track of which section groups we have already seen.
502 // INDEX is the index of the section group and SHDR is the section
503 // header. If we do not want to include this group, we set bits in
504 // OMIT for each section which should be discarded.
505
506 template<int size, bool big_endian>
507 bool
508 Sized_relobj<size, big_endian>::include_section_group(
509 Symbol_table* symtab,
510 Layout* layout,
511 unsigned int index,
512 const char* name,
513 const elfcpp::Shdr<size, big_endian>& shdr,
514 std::vector<bool>* omit)
515 {
516 // Read the section contents.
517 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
518 shdr.get_sh_size(), true, false);
519 const elfcpp::Elf_Word* pword =
520 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
521
522 // The first word contains flags. We only care about COMDAT section
523 // groups. Other section groups are always included in the link
524 // just like ordinary sections.
525 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
526
527 // Look up the group signature, which is the name of a symbol. This
528 // is a lot of effort to go to to read a string. Why didn't they
529 // just have the group signature point into the string table, rather
530 // than indirect through a symbol?
531
532 // Get the appropriate symbol table header (this will normally be
533 // the single SHT_SYMTAB section, but in principle it need not be).
534 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
535 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
536
537 // Read the symbol table entry.
538 unsigned int symndx = shdr.get_sh_info();
539 if (symndx >= symshdr.get_sh_size() / This::sym_size)
540 {
541 this->error(_("section group %u info %u out of range"),
542 index, symndx);
543 return false;
544 }
545 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
546 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
547 false);
548 elfcpp::Sym<size, big_endian> sym(psym);
549
550 // Read the symbol table names.
551 section_size_type symnamelen;
552 const unsigned char* psymnamesu;
553 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
554 &symnamelen, true);
555 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
556
557 // Get the section group signature.
558 if (sym.get_st_name() >= symnamelen)
559 {
560 this->error(_("symbol %u name offset %u out of range"),
561 symndx, sym.get_st_name());
562 return false;
563 }
564
565 const char* signature = psymnames + sym.get_st_name();
566
567 // It seems that some versions of gas will create a section group
568 // associated with a section symbol, and then fail to give a name to
569 // the section symbol. In such a case, use the name of the section.
570 std::string secname;
571 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
572 {
573 bool is_ordinary;
574 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
575 sym.get_st_shndx(),
576 &is_ordinary);
577 if (!is_ordinary || sym_shndx >= this->shnum())
578 {
579 this->error(_("symbol %u invalid section index %u"),
580 symndx, sym_shndx);
581 return false;
582 }
583 secname = this->section_name(sym_shndx);
584 signature = secname.c_str();
585 }
586
587 // Record this section group, and see whether we've already seen one
588 // with the same signature.
589
590 if ((flags & elfcpp::GRP_COMDAT) == 0
591 || layout->add_comdat(signature, true))
592 {
593 if (parameters->options().relocatable())
594 layout->layout_group(symtab, this, index, name, signature, shdr,
595 pword);
596 return true;
597 }
598
599 // This is a duplicate. We want to discard the sections in this
600 // group.
601 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
602 for (size_t i = 1; i < count; ++i)
603 {
604 elfcpp::Elf_Word secnum =
605 elfcpp::Swap<32, big_endian>::readval(pword + i);
606 if (secnum >= this->shnum())
607 {
608 this->error(_("section %u in section group %u out of range"),
609 secnum, index);
610 continue;
611 }
612 (*omit)[secnum] = true;
613 }
614
615 return false;
616 }
617
618 // Whether to include a linkonce section in the link. NAME is the
619 // name of the section and SHDR is the section header.
620
621 // Linkonce sections are a GNU extension implemented in the original
622 // GNU linker before section groups were defined. The semantics are
623 // that we only include one linkonce section with a given name. The
624 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
625 // where T is the type of section and SYMNAME is the name of a symbol.
626 // In an attempt to make linkonce sections interact well with section
627 // groups, we try to identify SYMNAME and use it like a section group
628 // signature. We want to block section groups with that signature,
629 // but not other linkonce sections with that signature. We also use
630 // the full name of the linkonce section as a normal section group
631 // signature.
632
633 template<int size, bool big_endian>
634 bool
635 Sized_relobj<size, big_endian>::include_linkonce_section(
636 Layout* layout,
637 const char* name,
638 const elfcpp::Shdr<size, big_endian>&)
639 {
640 // In general the symbol name we want will be the string following
641 // the last '.'. However, we have to handle the case of
642 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
643 // some versions of gcc. So we use a heuristic: if the name starts
644 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
645 // we look for the last '.'. We can't always simply skip
646 // ".gnu.linkonce.X", because we have to deal with cases like
647 // ".gnu.linkonce.d.rel.ro.local".
648 const char* const linkonce_t = ".gnu.linkonce.t.";
649 const char* symname;
650 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
651 symname = name + strlen(linkonce_t);
652 else
653 symname = strrchr(name, '.') + 1;
654 bool include1 = layout->add_comdat(symname, false);
655 bool include2 = layout->add_comdat(name, true);
656 return include1 && include2;
657 }
658
659 // Lay out the input sections. We walk through the sections and check
660 // whether they should be included in the link. If they should, we
661 // pass them to the Layout object, which will return an output section
662 // and an offset.
663
664 template<int size, bool big_endian>
665 void
666 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
667 Layout* layout,
668 Read_symbols_data* sd)
669 {
670 const unsigned int shnum = this->shnum();
671 if (shnum == 0)
672 return;
673
674 // Get the section headers.
675 const unsigned char* pshdrs = sd->section_headers->data();
676
677 // Get the section names.
678 const unsigned char* pnamesu = sd->section_names->data();
679 const char* pnames = reinterpret_cast<const char*>(pnamesu);
680
681 // For each section, record the index of the reloc section if any.
682 // Use 0 to mean that there is no reloc section, -1U to mean that
683 // there is more than one.
684 std::vector<unsigned int> reloc_shndx(shnum, 0);
685 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
686 // Skip the first, dummy, section.
687 pshdrs += This::shdr_size;
688 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
689 {
690 typename This::Shdr shdr(pshdrs);
691
692 unsigned int sh_type = shdr.get_sh_type();
693 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
694 {
695 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
696 if (target_shndx == 0 || target_shndx >= shnum)
697 {
698 this->error(_("relocation section %u has bad info %u"),
699 i, target_shndx);
700 continue;
701 }
702
703 if (reloc_shndx[target_shndx] != 0)
704 reloc_shndx[target_shndx] = -1U;
705 else
706 {
707 reloc_shndx[target_shndx] = i;
708 reloc_type[target_shndx] = sh_type;
709 }
710 }
711 }
712
713 std::vector<Map_to_output>& map_sections(this->map_to_output());
714 map_sections.resize(shnum);
715
716 // If we are only linking for symbols, then there is nothing else to
717 // do here.
718 if (this->input_file()->just_symbols())
719 {
720 delete sd->section_headers;
721 sd->section_headers = NULL;
722 delete sd->section_names;
723 sd->section_names = NULL;
724 return;
725 }
726
727 // Whether we've seen a .note.GNU-stack section.
728 bool seen_gnu_stack = false;
729 // The flags of a .note.GNU-stack section.
730 uint64_t gnu_stack_flags = 0;
731
732 // Keep track of which sections to omit.
733 std::vector<bool> omit(shnum, false);
734
735 // Keep track of reloc sections when emitting relocations.
736 const bool relocatable = parameters->options().relocatable();
737 const bool emit_relocs = (relocatable
738 || parameters->options().emit_relocs());
739 std::vector<unsigned int> reloc_sections;
740
741 // Keep track of .eh_frame sections.
742 std::vector<unsigned int> eh_frame_sections;
743
744 // Skip the first, dummy, section.
745 pshdrs = sd->section_headers->data() + This::shdr_size;
746 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
747 {
748 typename This::Shdr shdr(pshdrs);
749
750 if (shdr.get_sh_name() >= sd->section_names_size)
751 {
752 this->error(_("bad section name offset for section %u: %lu"),
753 i, static_cast<unsigned long>(shdr.get_sh_name()));
754 return;
755 }
756
757 const char* name = pnames + shdr.get_sh_name();
758
759 if (this->handle_gnu_warning_section(name, i, symtab))
760 {
761 if (!relocatable)
762 omit[i] = true;
763 }
764
765 // The .note.GNU-stack section is special. It gives the
766 // protection flags that this object file requires for the stack
767 // in memory.
768 if (strcmp(name, ".note.GNU-stack") == 0)
769 {
770 seen_gnu_stack = true;
771 gnu_stack_flags |= shdr.get_sh_flags();
772 omit[i] = true;
773 }
774
775 bool discard = omit[i];
776 if (!discard)
777 {
778 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
779 {
780 if (!this->include_section_group(symtab, layout, i, name, shdr,
781 &omit))
782 discard = true;
783 }
784 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
785 && Layout::is_linkonce(name))
786 {
787 if (!this->include_linkonce_section(layout, name, shdr))
788 discard = true;
789 }
790 }
791
792 if (discard)
793 {
794 // Do not include this section in the link.
795 map_sections[i].output_section = NULL;
796 continue;
797 }
798
799 // When doing a relocatable link we are going to copy input
800 // reloc sections into the output. We only want to copy the
801 // ones associated with sections which are not being discarded.
802 // However, we don't know that yet for all sections. So save
803 // reloc sections and process them later.
804 if (emit_relocs
805 && (shdr.get_sh_type() == elfcpp::SHT_REL
806 || shdr.get_sh_type() == elfcpp::SHT_RELA))
807 {
808 reloc_sections.push_back(i);
809 continue;
810 }
811
812 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
813 continue;
814
815 // The .eh_frame section is special. It holds exception frame
816 // information that we need to read in order to generate the
817 // exception frame header. We process these after all the other
818 // sections so that the exception frame reader can reliably
819 // determine which sections are being discarded, and discard the
820 // corresponding information.
821 if (!relocatable
822 && strcmp(name, ".eh_frame") == 0
823 && this->check_eh_frame_flags(&shdr))
824 {
825 eh_frame_sections.push_back(i);
826 continue;
827 }
828
829 off_t offset;
830 Output_section* os = layout->layout(this, i, name, shdr,
831 reloc_shndx[i], reloc_type[i],
832 &offset);
833
834 map_sections[i].output_section = os;
835 map_sections[i].offset = offset;
836
837 // If this section requires special handling, and if there are
838 // relocs that apply to it, then we must do the special handling
839 // before we apply the relocs.
840 if (offset == -1 && reloc_shndx[i] != 0)
841 this->set_relocs_must_follow_section_writes();
842 }
843
844 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
845
846 // When doing a relocatable link handle the reloc sections at the
847 // end.
848 if (emit_relocs)
849 this->size_relocatable_relocs();
850 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
851 p != reloc_sections.end();
852 ++p)
853 {
854 unsigned int i = *p;
855 const unsigned char* pshdr;
856 pshdr = sd->section_headers->data() + i * This::shdr_size;
857 typename This::Shdr shdr(pshdr);
858
859 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
860 if (data_shndx >= shnum)
861 {
862 // We already warned about this above.
863 continue;
864 }
865
866 Output_section* data_section = map_sections[data_shndx].output_section;
867 if (data_section == NULL)
868 {
869 map_sections[i].output_section = NULL;
870 continue;
871 }
872
873 Relocatable_relocs* rr = new Relocatable_relocs();
874 this->set_relocatable_relocs(i, rr);
875
876 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
877 rr);
878 map_sections[i].output_section = os;
879 map_sections[i].offset = -1;
880 }
881
882 // Handle the .eh_frame sections at the end.
883 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
884 p != eh_frame_sections.end();
885 ++p)
886 {
887 gold_assert(this->has_eh_frame_);
888 gold_assert(sd->external_symbols_offset != 0);
889
890 unsigned int i = *p;
891 const unsigned char *pshdr;
892 pshdr = sd->section_headers->data() + i * This::shdr_size;
893 typename This::Shdr shdr(pshdr);
894
895 off_t offset;
896 Output_section* os = layout->layout_eh_frame(this,
897 sd->symbols->data(),
898 sd->symbols_size,
899 sd->symbol_names->data(),
900 sd->symbol_names_size,
901 i, shdr,
902 reloc_shndx[i],
903 reloc_type[i],
904 &offset);
905 map_sections[i].output_section = os;
906 map_sections[i].offset = offset;
907
908 // If this section requires special handling, and if there are
909 // relocs that apply to it, then we must do the special handling
910 // before we apply the relocs.
911 if (offset == -1 && reloc_shndx[i] != 0)
912 this->set_relocs_must_follow_section_writes();
913 }
914
915 delete sd->section_headers;
916 sd->section_headers = NULL;
917 delete sd->section_names;
918 sd->section_names = NULL;
919 }
920
921 // Add the symbols to the symbol table.
922
923 template<int size, bool big_endian>
924 void
925 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
926 Read_symbols_data* sd)
927 {
928 if (sd->symbols == NULL)
929 {
930 gold_assert(sd->symbol_names == NULL);
931 return;
932 }
933
934 const int sym_size = This::sym_size;
935 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
936 / sym_size);
937 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
938 {
939 this->error(_("size of symbols is not multiple of symbol size"));
940 return;
941 }
942
943 this->symbols_.resize(symcount);
944
945 const char* sym_names =
946 reinterpret_cast<const char*>(sd->symbol_names->data());
947 symtab->add_from_relobj(this,
948 sd->symbols->data() + sd->external_symbols_offset,
949 symcount,
950 (sd->external_symbols_offset == 0
951 ? this->local_symbol_count_
952 : 0),
953 sym_names, sd->symbol_names_size,
954 &this->symbols_);
955
956 delete sd->symbols;
957 sd->symbols = NULL;
958 delete sd->symbol_names;
959 sd->symbol_names = NULL;
960 }
961
962 // First pass over the local symbols. Here we add their names to
963 // *POOL and *DYNPOOL, and we store the symbol value in
964 // THIS->LOCAL_VALUES_. This function is always called from a
965 // singleton thread. This is followed by a call to
966 // finalize_local_symbols.
967
968 template<int size, bool big_endian>
969 void
970 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
971 Stringpool* dynpool)
972 {
973 gold_assert(this->symtab_shndx_ != -1U);
974 if (this->symtab_shndx_ == 0)
975 {
976 // This object has no symbols. Weird but legal.
977 return;
978 }
979
980 // Read the symbol table section header.
981 const unsigned int symtab_shndx = this->symtab_shndx_;
982 typename This::Shdr symtabshdr(this,
983 this->elf_file_.section_header(symtab_shndx));
984 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
985
986 // Read the local symbols.
987 const int sym_size = This::sym_size;
988 const unsigned int loccount = this->local_symbol_count_;
989 gold_assert(loccount == symtabshdr.get_sh_info());
990 off_t locsize = loccount * sym_size;
991 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
992 locsize, true, true);
993
994 // Read the symbol names.
995 const unsigned int strtab_shndx =
996 this->adjust_shndx(symtabshdr.get_sh_link());
997 section_size_type strtab_size;
998 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
999 &strtab_size,
1000 true);
1001 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1002
1003 // Loop over the local symbols.
1004
1005 const std::vector<Map_to_output>& mo(this->map_to_output());
1006 unsigned int shnum = this->shnum();
1007 unsigned int count = 0;
1008 unsigned int dyncount = 0;
1009 // Skip the first, dummy, symbol.
1010 psyms += sym_size;
1011 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1012 {
1013 elfcpp::Sym<size, big_endian> sym(psyms);
1014
1015 Symbol_value<size>& lv(this->local_values_[i]);
1016
1017 bool is_ordinary;
1018 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1019 &is_ordinary);
1020 lv.set_input_shndx(shndx, is_ordinary);
1021
1022 if (sym.get_st_type() == elfcpp::STT_SECTION)
1023 lv.set_is_section_symbol();
1024 else if (sym.get_st_type() == elfcpp::STT_TLS)
1025 lv.set_is_tls_symbol();
1026
1027 // Save the input symbol value for use in do_finalize_local_symbols().
1028 lv.set_input_value(sym.get_st_value());
1029
1030 // Decide whether this symbol should go into the output file.
1031
1032 if (shndx < shnum && mo[shndx].output_section == NULL)
1033 {
1034 lv.set_no_output_symtab_entry();
1035 gold_assert(!lv.needs_output_dynsym_entry());
1036 continue;
1037 }
1038
1039 if (sym.get_st_type() == elfcpp::STT_SECTION)
1040 {
1041 lv.set_no_output_symtab_entry();
1042 gold_assert(!lv.needs_output_dynsym_entry());
1043 continue;
1044 }
1045
1046 if (sym.get_st_name() >= strtab_size)
1047 {
1048 this->error(_("local symbol %u section name out of range: %u >= %u"),
1049 i, sym.get_st_name(),
1050 static_cast<unsigned int>(strtab_size));
1051 lv.set_no_output_symtab_entry();
1052 continue;
1053 }
1054
1055 // Add the symbol to the symbol table string pool.
1056 const char* name = pnames + sym.get_st_name();
1057 pool->add(name, true, NULL);
1058 ++count;
1059
1060 // If needed, add the symbol to the dynamic symbol table string pool.
1061 if (lv.needs_output_dynsym_entry())
1062 {
1063 dynpool->add(name, true, NULL);
1064 ++dyncount;
1065 }
1066 }
1067
1068 this->output_local_symbol_count_ = count;
1069 this->output_local_dynsym_count_ = dyncount;
1070 }
1071
1072 // Finalize the local symbols. Here we set the final value in
1073 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1074 // This function is always called from a singleton thread. The actual
1075 // output of the local symbols will occur in a separate task.
1076
1077 template<int size, bool big_endian>
1078 unsigned int
1079 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1080 off_t off)
1081 {
1082 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1083
1084 const unsigned int loccount = this->local_symbol_count_;
1085 this->local_symbol_offset_ = off;
1086
1087 const std::vector<Map_to_output>& mo(this->map_to_output());
1088 unsigned int shnum = this->shnum();
1089
1090 for (unsigned int i = 1; i < loccount; ++i)
1091 {
1092 Symbol_value<size>& lv(this->local_values_[i]);
1093
1094 bool is_ordinary;
1095 unsigned int shndx = lv.input_shndx(&is_ordinary);
1096
1097 // Set the output symbol value.
1098
1099 if (!is_ordinary)
1100 {
1101 if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1102 lv.set_output_value(lv.input_value());
1103 else
1104 {
1105 this->error(_("unknown section index %u for local symbol %u"),
1106 shndx, i);
1107 lv.set_output_value(0);
1108 }
1109 }
1110 else
1111 {
1112 if (shndx >= shnum)
1113 {
1114 this->error(_("local symbol %u section index %u out of range"),
1115 i, shndx);
1116 shndx = 0;
1117 }
1118
1119 Output_section* os = mo[shndx].output_section;
1120
1121 if (os == NULL)
1122 {
1123 lv.set_output_value(0);
1124 continue;
1125 }
1126 else if (mo[shndx].offset == -1)
1127 {
1128 // This is a SHF_MERGE section or one which otherwise
1129 // requires special handling. We get the output address
1130 // of the start of the merged section. If this is not a
1131 // section symbol, we can then determine the final
1132 // value. If it is a section symbol, we can not, as in
1133 // that case we have to consider the addend to determine
1134 // the value to use in a relocation.
1135 if (!lv.is_section_symbol())
1136 lv.set_output_value(os->output_address(this, shndx,
1137 lv.input_value()));
1138 else
1139 {
1140 section_offset_type start =
1141 os->starting_output_address(this, shndx);
1142 Merged_symbol_value<size>* msv =
1143 new Merged_symbol_value<size>(lv.input_value(), start);
1144 lv.set_merged_symbol_value(msv);
1145 }
1146 }
1147 else if (lv.is_tls_symbol())
1148 lv.set_output_value(os->tls_offset()
1149 + mo[shndx].offset
1150 + lv.input_value());
1151 else
1152 lv.set_output_value(os->address()
1153 + mo[shndx].offset
1154 + lv.input_value());
1155 }
1156
1157 if (lv.needs_output_symtab_entry())
1158 {
1159 lv.set_output_symtab_index(index);
1160 ++index;
1161 }
1162 }
1163 return index;
1164 }
1165
1166 // Set the output dynamic symbol table indexes for the local variables.
1167
1168 template<int size, bool big_endian>
1169 unsigned int
1170 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1171 {
1172 const unsigned int loccount = this->local_symbol_count_;
1173 for (unsigned int i = 1; i < loccount; ++i)
1174 {
1175 Symbol_value<size>& lv(this->local_values_[i]);
1176 if (lv.needs_output_dynsym_entry())
1177 {
1178 lv.set_output_dynsym_index(index);
1179 ++index;
1180 }
1181 }
1182 return index;
1183 }
1184
1185 // Set the offset where local dynamic symbol information will be stored.
1186 // Returns the count of local symbols contributed to the symbol table by
1187 // this object.
1188
1189 template<int size, bool big_endian>
1190 unsigned int
1191 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1192 {
1193 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1194 this->local_dynsym_offset_ = off;
1195 return this->output_local_dynsym_count_;
1196 }
1197
1198 // Write out the local symbols.
1199
1200 template<int size, bool big_endian>
1201 void
1202 Sized_relobj<size, big_endian>::write_local_symbols(
1203 Output_file* of,
1204 const Stringpool* sympool,
1205 const Stringpool* dynpool,
1206 Output_symtab_xindex* symtab_xindex,
1207 Output_symtab_xindex* dynsym_xindex)
1208 {
1209 if (parameters->options().strip_all()
1210 && this->output_local_dynsym_count_ == 0)
1211 return;
1212
1213 gold_assert(this->symtab_shndx_ != -1U);
1214 if (this->symtab_shndx_ == 0)
1215 {
1216 // This object has no symbols. Weird but legal.
1217 return;
1218 }
1219
1220 // Read the symbol table section header.
1221 const unsigned int symtab_shndx = this->symtab_shndx_;
1222 typename This::Shdr symtabshdr(this,
1223 this->elf_file_.section_header(symtab_shndx));
1224 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1225 const unsigned int loccount = this->local_symbol_count_;
1226 gold_assert(loccount == symtabshdr.get_sh_info());
1227
1228 // Read the local symbols.
1229 const int sym_size = This::sym_size;
1230 off_t locsize = loccount * sym_size;
1231 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1232 locsize, true, false);
1233
1234 // Read the symbol names.
1235 const unsigned int strtab_shndx =
1236 this->adjust_shndx(symtabshdr.get_sh_link());
1237 section_size_type strtab_size;
1238 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1239 &strtab_size,
1240 false);
1241 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1242
1243 // Get views into the output file for the portions of the symbol table
1244 // and the dynamic symbol table that we will be writing.
1245 off_t output_size = this->output_local_symbol_count_ * sym_size;
1246 unsigned char* oview = NULL;
1247 if (output_size > 0)
1248 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1249
1250 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1251 unsigned char* dyn_oview = NULL;
1252 if (dyn_output_size > 0)
1253 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1254 dyn_output_size);
1255
1256 const std::vector<Map_to_output>& mo(this->map_to_output());
1257
1258 gold_assert(this->local_values_.size() == loccount);
1259
1260 unsigned char* ov = oview;
1261 unsigned char* dyn_ov = dyn_oview;
1262 psyms += sym_size;
1263 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1264 {
1265 elfcpp::Sym<size, big_endian> isym(psyms);
1266
1267 Symbol_value<size>& lv(this->local_values_[i]);
1268
1269 bool is_ordinary;
1270 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1271 &is_ordinary);
1272 if (is_ordinary)
1273 {
1274 gold_assert(st_shndx < mo.size());
1275 if (mo[st_shndx].output_section == NULL)
1276 continue;
1277 st_shndx = mo[st_shndx].output_section->out_shndx();
1278 if (st_shndx >= elfcpp::SHN_LORESERVE)
1279 {
1280 if (lv.needs_output_symtab_entry())
1281 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1282 if (lv.needs_output_dynsym_entry())
1283 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1284 st_shndx = elfcpp::SHN_XINDEX;
1285 }
1286 }
1287
1288 // Write the symbol to the output symbol table.
1289 if (!parameters->options().strip_all()
1290 && lv.needs_output_symtab_entry())
1291 {
1292 elfcpp::Sym_write<size, big_endian> osym(ov);
1293
1294 gold_assert(isym.get_st_name() < strtab_size);
1295 const char* name = pnames + isym.get_st_name();
1296 osym.put_st_name(sympool->get_offset(name));
1297 osym.put_st_value(this->local_values_[i].value(this, 0));
1298 osym.put_st_size(isym.get_st_size());
1299 osym.put_st_info(isym.get_st_info());
1300 osym.put_st_other(isym.get_st_other());
1301 osym.put_st_shndx(st_shndx);
1302
1303 ov += sym_size;
1304 }
1305
1306 // Write the symbol to the output dynamic symbol table.
1307 if (lv.needs_output_dynsym_entry())
1308 {
1309 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1310 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1311
1312 gold_assert(isym.get_st_name() < strtab_size);
1313 const char* name = pnames + isym.get_st_name();
1314 osym.put_st_name(dynpool->get_offset(name));
1315 osym.put_st_value(this->local_values_[i].value(this, 0));
1316 osym.put_st_size(isym.get_st_size());
1317 osym.put_st_info(isym.get_st_info());
1318 osym.put_st_other(isym.get_st_other());
1319 osym.put_st_shndx(st_shndx);
1320
1321 dyn_ov += sym_size;
1322 }
1323 }
1324
1325
1326 if (output_size > 0)
1327 {
1328 gold_assert(ov - oview == output_size);
1329 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1330 }
1331
1332 if (dyn_output_size > 0)
1333 {
1334 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1335 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1336 dyn_oview);
1337 }
1338 }
1339
1340 // Set *INFO to symbolic information about the offset OFFSET in the
1341 // section SHNDX. Return true if we found something, false if we
1342 // found nothing.
1343
1344 template<int size, bool big_endian>
1345 bool
1346 Sized_relobj<size, big_endian>::get_symbol_location_info(
1347 unsigned int shndx,
1348 off_t offset,
1349 Symbol_location_info* info)
1350 {
1351 if (this->symtab_shndx_ == 0)
1352 return false;
1353
1354 section_size_type symbols_size;
1355 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1356 &symbols_size,
1357 false);
1358
1359 unsigned int symbol_names_shndx =
1360 this->adjust_shndx(this->section_link(this->symtab_shndx_));
1361 section_size_type names_size;
1362 const unsigned char* symbol_names_u =
1363 this->section_contents(symbol_names_shndx, &names_size, false);
1364 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1365
1366 const int sym_size = This::sym_size;
1367 const size_t count = symbols_size / sym_size;
1368
1369 const unsigned char* p = symbols;
1370 for (size_t i = 0; i < count; ++i, p += sym_size)
1371 {
1372 elfcpp::Sym<size, big_endian> sym(p);
1373
1374 if (sym.get_st_type() == elfcpp::STT_FILE)
1375 {
1376 if (sym.get_st_name() >= names_size)
1377 info->source_file = "(invalid)";
1378 else
1379 info->source_file = symbol_names + sym.get_st_name();
1380 continue;
1381 }
1382
1383 bool is_ordinary;
1384 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1385 &is_ordinary);
1386 if (is_ordinary
1387 && st_shndx == shndx
1388 && static_cast<off_t>(sym.get_st_value()) <= offset
1389 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1390 > offset))
1391 {
1392 if (sym.get_st_name() > names_size)
1393 info->enclosing_symbol_name = "(invalid)";
1394 else
1395 {
1396 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1397 if (parameters->options().do_demangle())
1398 {
1399 char* demangled_name = cplus_demangle(
1400 info->enclosing_symbol_name.c_str(),
1401 DMGL_ANSI | DMGL_PARAMS);
1402 if (demangled_name != NULL)
1403 {
1404 info->enclosing_symbol_name.assign(demangled_name);
1405 free(demangled_name);
1406 }
1407 }
1408 }
1409 return true;
1410 }
1411 }
1412
1413 return false;
1414 }
1415
1416 // Input_objects methods.
1417
1418 // Add a regular relocatable object to the list. Return false if this
1419 // object should be ignored.
1420
1421 bool
1422 Input_objects::add_object(Object* obj)
1423 {
1424 // Set the global target from the first object file we recognize.
1425 Target* target = obj->target();
1426 if (!parameters->target_valid())
1427 set_parameters_target(target);
1428 else if (target != &parameters->target())
1429 {
1430 obj->error(_("incompatible target"));
1431 return false;
1432 }
1433
1434 // Print the filename if the -t/--trace option is selected.
1435 if (parameters->options().trace())
1436 gold_info("%s", obj->name().c_str());
1437
1438 if (!obj->is_dynamic())
1439 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1440 else
1441 {
1442 // See if this is a duplicate SONAME.
1443 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1444 const char* soname = dynobj->soname();
1445
1446 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1447 this->sonames_.insert(soname);
1448 if (!ins.second)
1449 {
1450 // We have already seen a dynamic object with this soname.
1451 return false;
1452 }
1453
1454 this->dynobj_list_.push_back(dynobj);
1455
1456 // If this is -lc, remember the directory in which we found it.
1457 // We use this when issuing warnings about undefined symbols: as
1458 // a heuristic, we don't warn about system libraries found in
1459 // the same directory as -lc.
1460 if (strncmp(soname, "libc.so", 7) == 0)
1461 {
1462 const char* object_name = dynobj->name().c_str();
1463 const char* base = lbasename(object_name);
1464 if (base != object_name)
1465 this->system_library_directory_.assign(object_name,
1466 base - 1 - object_name);
1467 }
1468 }
1469
1470 return true;
1471 }
1472
1473 // Return whether an object was found in the system library directory.
1474
1475 bool
1476 Input_objects::found_in_system_library_directory(const Object* object) const
1477 {
1478 return (!this->system_library_directory_.empty()
1479 && object->name().compare(0,
1480 this->system_library_directory_.size(),
1481 this->system_library_directory_) == 0);
1482 }
1483
1484 // For each dynamic object, record whether we've seen all of its
1485 // explicit dependencies.
1486
1487 void
1488 Input_objects::check_dynamic_dependencies() const
1489 {
1490 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1491 p != this->dynobj_list_.end();
1492 ++p)
1493 {
1494 const Dynobj::Needed& needed((*p)->needed());
1495 bool found_all = true;
1496 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1497 pneeded != needed.end();
1498 ++pneeded)
1499 {
1500 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1501 {
1502 found_all = false;
1503 break;
1504 }
1505 }
1506 (*p)->set_has_unknown_needed_entries(!found_all);
1507 }
1508 }
1509
1510 // Relocate_info methods.
1511
1512 // Return a string describing the location of a relocation. This is
1513 // only used in error messages.
1514
1515 template<int size, bool big_endian>
1516 std::string
1517 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1518 {
1519 // See if we can get line-number information from debugging sections.
1520 std::string filename;
1521 std::string file_and_lineno; // Better than filename-only, if available.
1522
1523 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1524 // This will be "" if we failed to parse the debug info for any reason.
1525 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1526
1527 std::string ret(this->object->name());
1528 ret += ':';
1529 Symbol_location_info info;
1530 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1531 {
1532 ret += " in function ";
1533 ret += info.enclosing_symbol_name;
1534 ret += ":";
1535 filename = info.source_file;
1536 }
1537
1538 if (!file_and_lineno.empty())
1539 ret += file_and_lineno;
1540 else
1541 {
1542 if (!filename.empty())
1543 ret += filename;
1544 ret += "(";
1545 ret += this->object->section_name(this->data_shndx);
1546 char buf[100];
1547 // Offsets into sections have to be positive.
1548 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1549 ret += buf;
1550 ret += ")";
1551 }
1552 return ret;
1553 }
1554
1555 } // End namespace gold.
1556
1557 namespace
1558 {
1559
1560 using namespace gold;
1561
1562 // Read an ELF file with the header and return the appropriate
1563 // instance of Object.
1564
1565 template<int size, bool big_endian>
1566 Object*
1567 make_elf_sized_object(const std::string& name, Input_file* input_file,
1568 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1569 {
1570 int et = ehdr.get_e_type();
1571 if (et == elfcpp::ET_REL)
1572 {
1573 Sized_relobj<size, big_endian>* obj =
1574 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1575 obj->setup(ehdr);
1576 return obj;
1577 }
1578 else if (et == elfcpp::ET_DYN)
1579 {
1580 Sized_dynobj<size, big_endian>* obj =
1581 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1582 obj->setup(ehdr);
1583 return obj;
1584 }
1585 else
1586 {
1587 gold_error(_("%s: unsupported ELF file type %d"),
1588 name.c_str(), et);
1589 return NULL;
1590 }
1591 }
1592
1593 } // End anonymous namespace.
1594
1595 namespace gold
1596 {
1597
1598 // Read an ELF file and return the appropriate instance of Object.
1599
1600 Object*
1601 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1602 const unsigned char* p, section_offset_type bytes)
1603 {
1604 if (bytes < elfcpp::EI_NIDENT)
1605 {
1606 gold_error(_("%s: ELF file too short"), name.c_str());
1607 return NULL;
1608 }
1609
1610 int v = p[elfcpp::EI_VERSION];
1611 if (v != elfcpp::EV_CURRENT)
1612 {
1613 if (v == elfcpp::EV_NONE)
1614 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1615 else
1616 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1617 return NULL;
1618 }
1619
1620 int c = p[elfcpp::EI_CLASS];
1621 if (c == elfcpp::ELFCLASSNONE)
1622 {
1623 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1624 return NULL;
1625 }
1626 else if (c != elfcpp::ELFCLASS32
1627 && c != elfcpp::ELFCLASS64)
1628 {
1629 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1630 return NULL;
1631 }
1632
1633 int d = p[elfcpp::EI_DATA];
1634 if (d == elfcpp::ELFDATANONE)
1635 {
1636 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1637 return NULL;
1638 }
1639 else if (d != elfcpp::ELFDATA2LSB
1640 && d != elfcpp::ELFDATA2MSB)
1641 {
1642 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1643 return NULL;
1644 }
1645
1646 bool big_endian = d == elfcpp::ELFDATA2MSB;
1647
1648 if (c == elfcpp::ELFCLASS32)
1649 {
1650 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1651 {
1652 gold_error(_("%s: ELF file too short"), name.c_str());
1653 return NULL;
1654 }
1655 if (big_endian)
1656 {
1657 #ifdef HAVE_TARGET_32_BIG
1658 elfcpp::Ehdr<32, true> ehdr(p);
1659 return make_elf_sized_object<32, true>(name, input_file,
1660 offset, ehdr);
1661 #else
1662 gold_error(_("%s: not configured to support "
1663 "32-bit big-endian object"),
1664 name.c_str());
1665 return NULL;
1666 #endif
1667 }
1668 else
1669 {
1670 #ifdef HAVE_TARGET_32_LITTLE
1671 elfcpp::Ehdr<32, false> ehdr(p);
1672 return make_elf_sized_object<32, false>(name, input_file,
1673 offset, ehdr);
1674 #else
1675 gold_error(_("%s: not configured to support "
1676 "32-bit little-endian object"),
1677 name.c_str());
1678 return NULL;
1679 #endif
1680 }
1681 }
1682 else
1683 {
1684 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1685 {
1686 gold_error(_("%s: ELF file too short"), name.c_str());
1687 return NULL;
1688 }
1689 if (big_endian)
1690 {
1691 #ifdef HAVE_TARGET_64_BIG
1692 elfcpp::Ehdr<64, true> ehdr(p);
1693 return make_elf_sized_object<64, true>(name, input_file,
1694 offset, ehdr);
1695 #else
1696 gold_error(_("%s: not configured to support "
1697 "64-bit big-endian object"),
1698 name.c_str());
1699 return NULL;
1700 #endif
1701 }
1702 else
1703 {
1704 #ifdef HAVE_TARGET_64_LITTLE
1705 elfcpp::Ehdr<64, false> ehdr(p);
1706 return make_elf_sized_object<64, false>(name, input_file,
1707 offset, ehdr);
1708 #else
1709 gold_error(_("%s: not configured to support "
1710 "64-bit little-endian object"),
1711 name.c_str());
1712 return NULL;
1713 #endif
1714 }
1715 }
1716 }
1717
1718 // Instantiate the templates we need.
1719
1720 #ifdef HAVE_TARGET_32_LITTLE
1721 template
1722 void
1723 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1724 Read_symbols_data*);
1725 #endif
1726
1727 #ifdef HAVE_TARGET_32_BIG
1728 template
1729 void
1730 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1731 Read_symbols_data*);
1732 #endif
1733
1734 #ifdef HAVE_TARGET_64_LITTLE
1735 template
1736 void
1737 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1738 Read_symbols_data*);
1739 #endif
1740
1741 #ifdef HAVE_TARGET_64_BIG
1742 template
1743 void
1744 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1745 Read_symbols_data*);
1746 #endif
1747
1748 #ifdef HAVE_TARGET_32_LITTLE
1749 template
1750 class Sized_relobj<32, false>;
1751 #endif
1752
1753 #ifdef HAVE_TARGET_32_BIG
1754 template
1755 class Sized_relobj<32, true>;
1756 #endif
1757
1758 #ifdef HAVE_TARGET_64_LITTLE
1759 template
1760 class Sized_relobj<64, false>;
1761 #endif
1762
1763 #ifdef HAVE_TARGET_64_BIG
1764 template
1765 class Sized_relobj<64, true>;
1766 #endif
1767
1768 #ifdef HAVE_TARGET_32_LITTLE
1769 template
1770 struct Relocate_info<32, false>;
1771 #endif
1772
1773 #ifdef HAVE_TARGET_32_BIG
1774 template
1775 struct Relocate_info<32, true>;
1776 #endif
1777
1778 #ifdef HAVE_TARGET_64_LITTLE
1779 template
1780 struct Relocate_info<64, false>;
1781 #endif
1782
1783 #ifdef HAVE_TARGET_64_BIG
1784 template
1785 struct Relocate_info<64, true>;
1786 #endif
1787
1788 } // End namespace gold.