Support creating empty output when there are no input objects.
[binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
39
40 namespace gold
41 {
42
43 // Class Object.
44
45 // Set the target based on fields in the ELF file header.
46
47 void
48 Object::set_target(int machine, int size, bool big_endian, int osabi,
49 int abiversion)
50 {
51 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
52 if (target == NULL)
53 gold_fatal(_("%s: unsupported ELF machine number %d"),
54 this->name().c_str(), machine);
55 this->target_ = target;
56 }
57
58 // Report an error for this object file. This is used by the
59 // elfcpp::Elf_file interface, and also called by the Object code
60 // itself.
61
62 void
63 Object::error(const char* format, ...) const
64 {
65 va_list args;
66 va_start(args, format);
67 char* buf = NULL;
68 if (vasprintf(&buf, format, args) < 0)
69 gold_nomem();
70 va_end(args);
71 gold_error(_("%s: %s"), this->name().c_str(), buf);
72 free(buf);
73 }
74
75 // Return a view of the contents of a section.
76
77 const unsigned char*
78 Object::section_contents(unsigned int shndx, section_size_type* plen,
79 bool cache)
80 {
81 Location loc(this->do_section_contents(shndx));
82 *plen = convert_to_section_size_type(loc.data_size);
83 return this->get_view(loc.file_offset, *plen, cache);
84 }
85
86 // Read the section data into SD. This is code common to Sized_relobj
87 // and Sized_dynobj, so we put it into Object.
88
89 template<int size, bool big_endian>
90 void
91 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
92 Read_symbols_data* sd)
93 {
94 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
95
96 // Read the section headers.
97 const off_t shoff = elf_file->shoff();
98 const unsigned int shnum = this->shnum();
99 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, true);
100
101 // Read the section names.
102 const unsigned char* pshdrs = sd->section_headers->data();
103 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
104 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
105
106 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
107 this->error(_("section name section has wrong type: %u"),
108 static_cast<unsigned int>(shdrnames.get_sh_type()));
109
110 sd->section_names_size =
111 convert_to_section_size_type(shdrnames.get_sh_size());
112 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
113 sd->section_names_size, false);
114 }
115
116 // If NAME is the name of a special .gnu.warning section, arrange for
117 // the warning to be issued. SHNDX is the section index. Return
118 // whether it is a warning section.
119
120 bool
121 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
122 Symbol_table* symtab)
123 {
124 const char warn_prefix[] = ".gnu.warning.";
125 const int warn_prefix_len = sizeof warn_prefix - 1;
126 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
127 {
128 // Read the section contents to get the warning text. It would
129 // be nicer if we only did this if we have to actually issue a
130 // warning. Unfortunately, warnings are issued as we relocate
131 // sections. That means that we can not lock the object then,
132 // as we might try to issue the same warning multiple times
133 // simultaneously.
134 section_size_type len;
135 const unsigned char* contents = this->section_contents(shndx, &len,
136 false);
137 std::string warning(reinterpret_cast<const char*>(contents), len);
138 symtab->add_warning(name + warn_prefix_len, this, warning);
139 return true;
140 }
141 return false;
142 }
143
144 // Class Sized_relobj.
145
146 template<int size, bool big_endian>
147 Sized_relobj<size, big_endian>::Sized_relobj(
148 const std::string& name,
149 Input_file* input_file,
150 off_t offset,
151 const elfcpp::Ehdr<size, big_endian>& ehdr)
152 : Relobj(name, input_file, offset),
153 elf_file_(this, ehdr),
154 symtab_shndx_(-1U),
155 local_symbol_count_(0),
156 output_local_symbol_count_(0),
157 output_local_dynsym_count_(0),
158 symbols_(),
159 local_symbol_offset_(0),
160 local_dynsym_offset_(0),
161 local_values_(),
162 local_got_offsets_(),
163 has_eh_frame_(false)
164 {
165 }
166
167 template<int size, bool big_endian>
168 Sized_relobj<size, big_endian>::~Sized_relobj()
169 {
170 }
171
172 // Set up an object file based on the file header. This sets up the
173 // target and reads the section information.
174
175 template<int size, bool big_endian>
176 void
177 Sized_relobj<size, big_endian>::setup(
178 const elfcpp::Ehdr<size, big_endian>& ehdr)
179 {
180 this->set_target(ehdr.get_e_machine(), size, big_endian,
181 ehdr.get_e_ident()[elfcpp::EI_OSABI],
182 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
183
184 const unsigned int shnum = this->elf_file_.shnum();
185 this->set_shnum(shnum);
186 }
187
188 // Find the SHT_SYMTAB section, given the section headers. The ELF
189 // standard says that maybe in the future there can be more than one
190 // SHT_SYMTAB section. Until somebody figures out how that could
191 // work, we assume there is only one.
192
193 template<int size, bool big_endian>
194 void
195 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
196 {
197 const unsigned int shnum = this->shnum();
198 this->symtab_shndx_ = 0;
199 if (shnum > 0)
200 {
201 // Look through the sections in reverse order, since gas tends
202 // to put the symbol table at the end.
203 const unsigned char* p = pshdrs + shnum * This::shdr_size;
204 unsigned int i = shnum;
205 while (i > 0)
206 {
207 --i;
208 p -= This::shdr_size;
209 typename This::Shdr shdr(p);
210 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
211 {
212 this->symtab_shndx_ = i;
213 break;
214 }
215 }
216 }
217 }
218
219 // Return whether SHDR has the right type and flags to be a GNU
220 // .eh_frame section.
221
222 template<int size, bool big_endian>
223 bool
224 Sized_relobj<size, big_endian>::check_eh_frame_flags(
225 const elfcpp::Shdr<size, big_endian>* shdr) const
226 {
227 return (shdr->get_sh_size() > 0
228 && shdr->get_sh_type() == elfcpp::SHT_PROGBITS
229 && shdr->get_sh_flags() == elfcpp::SHF_ALLOC);
230 }
231
232 // Return whether there is a GNU .eh_frame section, given the section
233 // headers and the section names.
234
235 template<int size, bool big_endian>
236 bool
237 Sized_relobj<size, big_endian>::find_eh_frame(
238 const unsigned char* pshdrs,
239 const char* names,
240 section_size_type names_size) const
241 {
242 const unsigned int shnum = this->shnum();
243 const unsigned char* p = pshdrs + This::shdr_size;
244 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
245 {
246 typename This::Shdr shdr(p);
247 if (this->check_eh_frame_flags(&shdr))
248 {
249 if (shdr.get_sh_name() >= names_size)
250 {
251 this->error(_("bad section name offset for section %u: %lu"),
252 i, static_cast<unsigned long>(shdr.get_sh_name()));
253 continue;
254 }
255
256 const char* name = names + shdr.get_sh_name();
257 if (strcmp(name, ".eh_frame") == 0)
258 return true;
259 }
260 }
261 return false;
262 }
263
264 // Read the sections and symbols from an object file.
265
266 template<int size, bool big_endian>
267 void
268 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
269 {
270 this->read_section_data(&this->elf_file_, sd);
271
272 const unsigned char* const pshdrs = sd->section_headers->data();
273
274 this->find_symtab(pshdrs);
275
276 const unsigned char* namesu = sd->section_names->data();
277 const char* names = reinterpret_cast<const char*>(namesu);
278 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
279 this->has_eh_frame_ = true;
280
281 sd->symbols = NULL;
282 sd->symbols_size = 0;
283 sd->external_symbols_offset = 0;
284 sd->symbol_names = NULL;
285 sd->symbol_names_size = 0;
286
287 if (this->symtab_shndx_ == 0)
288 {
289 // No symbol table. Weird but legal.
290 return;
291 }
292
293 // Get the symbol table section header.
294 typename This::Shdr symtabshdr(pshdrs
295 + this->symtab_shndx_ * This::shdr_size);
296 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
297
298 // If this object has a .eh_frame section, we need all the symbols.
299 // Otherwise we only need the external symbols. While it would be
300 // simpler to just always read all the symbols, I've seen object
301 // files with well over 2000 local symbols, which for a 64-bit
302 // object file format is over 5 pages that we don't need to read
303 // now.
304
305 const int sym_size = This::sym_size;
306 const unsigned int loccount = symtabshdr.get_sh_info();
307 this->local_symbol_count_ = loccount;
308 this->local_values_.resize(loccount);
309 section_offset_type locsize = loccount * sym_size;
310 off_t dataoff = symtabshdr.get_sh_offset();
311 section_size_type datasize =
312 convert_to_section_size_type(symtabshdr.get_sh_size());
313 off_t extoff = dataoff + locsize;
314 section_size_type extsize = datasize - locsize;
315
316 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
317 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
318
319 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, false);
320
321 // Read the section header for the symbol names.
322 unsigned int strtab_shndx = symtabshdr.get_sh_link();
323 if (strtab_shndx >= this->shnum())
324 {
325 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
326 return;
327 }
328 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
329 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
330 {
331 this->error(_("symbol table name section has wrong type: %u"),
332 static_cast<unsigned int>(strtabshdr.get_sh_type()));
333 return;
334 }
335
336 // Read the symbol names.
337 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
338 strtabshdr.get_sh_size(), true);
339
340 sd->symbols = fvsymtab;
341 sd->symbols_size = readsize;
342 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
343 sd->symbol_names = fvstrtab;
344 sd->symbol_names_size =
345 convert_to_section_size_type(strtabshdr.get_sh_size());
346 }
347
348 // Return the section index of symbol SYM. Set *VALUE to its value in
349 // the object file. Note that for a symbol which is not defined in
350 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
351 // it will not return the final value of the symbol in the link.
352
353 template<int size, bool big_endian>
354 unsigned int
355 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
356 Address* value)
357 {
358 section_size_type symbols_size;
359 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
360 &symbols_size,
361 false);
362
363 const size_t count = symbols_size / This::sym_size;
364 gold_assert(sym < count);
365
366 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
367 *value = elfsym.get_st_value();
368 // FIXME: Handle SHN_XINDEX.
369 return elfsym.get_st_shndx();
370 }
371
372 // Return whether to include a section group in the link. LAYOUT is
373 // used to keep track of which section groups we have already seen.
374 // INDEX is the index of the section group and SHDR is the section
375 // header. If we do not want to include this group, we set bits in
376 // OMIT for each section which should be discarded.
377
378 template<int size, bool big_endian>
379 bool
380 Sized_relobj<size, big_endian>::include_section_group(
381 Symbol_table* symtab,
382 Layout* layout,
383 unsigned int index,
384 const char* name,
385 const elfcpp::Shdr<size, big_endian>& shdr,
386 std::vector<bool>* omit)
387 {
388 // Read the section contents.
389 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
390 shdr.get_sh_size(), false);
391 const elfcpp::Elf_Word* pword =
392 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
393
394 // The first word contains flags. We only care about COMDAT section
395 // groups. Other section groups are always included in the link
396 // just like ordinary sections.
397 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
398
399 // Look up the group signature, which is the name of a symbol. This
400 // is a lot of effort to go to to read a string. Why didn't they
401 // just have the group signature point into the string table, rather
402 // than indirect through a symbol?
403
404 // Get the appropriate symbol table header (this will normally be
405 // the single SHT_SYMTAB section, but in principle it need not be).
406 const unsigned int link = shdr.get_sh_link();
407 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
408
409 // Read the symbol table entry.
410 if (shdr.get_sh_info() >= symshdr.get_sh_size() / This::sym_size)
411 {
412 this->error(_("section group %u info %u out of range"),
413 index, shdr.get_sh_info());
414 return false;
415 }
416 off_t symoff = symshdr.get_sh_offset() + shdr.get_sh_info() * This::sym_size;
417 const unsigned char* psym = this->get_view(symoff, This::sym_size, false);
418 elfcpp::Sym<size, big_endian> sym(psym);
419
420 // Read the symbol table names.
421 section_size_type symnamelen;
422 const unsigned char* psymnamesu;
423 psymnamesu = this->section_contents(symshdr.get_sh_link(), &symnamelen,
424 true);
425 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
426
427 // Get the section group signature.
428 if (sym.get_st_name() >= symnamelen)
429 {
430 this->error(_("symbol %u name offset %u out of range"),
431 shdr.get_sh_info(), sym.get_st_name());
432 return false;
433 }
434
435 const char* signature = psymnames + sym.get_st_name();
436
437 // It seems that some versions of gas will create a section group
438 // associated with a section symbol, and then fail to give a name to
439 // the section symbol. In such a case, use the name of the section.
440 // FIXME.
441 std::string secname;
442 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
443 {
444 secname = this->section_name(sym.get_st_shndx());
445 signature = secname.c_str();
446 }
447
448 // Record this section group, and see whether we've already seen one
449 // with the same signature.
450
451 if ((flags & elfcpp::GRP_COMDAT) == 0
452 || layout->add_comdat(signature, true))
453 {
454 if (parameters->output_is_object())
455 layout->layout_group(symtab, this, index, name, signature, shdr,
456 pword);
457 return true;
458 }
459
460 // This is a duplicate. We want to discard the sections in this
461 // group.
462 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
463 for (size_t i = 1; i < count; ++i)
464 {
465 elfcpp::Elf_Word secnum =
466 elfcpp::Swap<32, big_endian>::readval(pword + i);
467 if (secnum >= this->shnum())
468 {
469 this->error(_("section %u in section group %u out of range"),
470 secnum, index);
471 continue;
472 }
473 (*omit)[secnum] = true;
474 }
475
476 return false;
477 }
478
479 // Whether to include a linkonce section in the link. NAME is the
480 // name of the section and SHDR is the section header.
481
482 // Linkonce sections are a GNU extension implemented in the original
483 // GNU linker before section groups were defined. The semantics are
484 // that we only include one linkonce section with a given name. The
485 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
486 // where T is the type of section and SYMNAME is the name of a symbol.
487 // In an attempt to make linkonce sections interact well with section
488 // groups, we try to identify SYMNAME and use it like a section group
489 // signature. We want to block section groups with that signature,
490 // but not other linkonce sections with that signature. We also use
491 // the full name of the linkonce section as a normal section group
492 // signature.
493
494 template<int size, bool big_endian>
495 bool
496 Sized_relobj<size, big_endian>::include_linkonce_section(
497 Layout* layout,
498 const char* name,
499 const elfcpp::Shdr<size, big_endian>&)
500 {
501 // In general the symbol name we want will be the string following
502 // the last '.'. However, we have to handle the case of
503 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
504 // some versions of gcc. So we use a heuristic: if the name starts
505 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
506 // we look for the last '.'. We can't always simply skip
507 // ".gnu.linkonce.X", because we have to deal with cases like
508 // ".gnu.linkonce.d.rel.ro.local".
509 const char* const linkonce_t = ".gnu.linkonce.t.";
510 const char* symname;
511 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
512 symname = name + strlen(linkonce_t);
513 else
514 symname = strrchr(name, '.') + 1;
515 bool include1 = layout->add_comdat(symname, false);
516 bool include2 = layout->add_comdat(name, true);
517 return include1 && include2;
518 }
519
520 // Lay out the input sections. We walk through the sections and check
521 // whether they should be included in the link. If they should, we
522 // pass them to the Layout object, which will return an output section
523 // and an offset.
524
525 template<int size, bool big_endian>
526 void
527 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
528 Layout* layout,
529 Read_symbols_data* sd)
530 {
531 const unsigned int shnum = this->shnum();
532 if (shnum == 0)
533 return;
534
535 // Get the section headers.
536 const unsigned char* pshdrs = sd->section_headers->data();
537
538 // Get the section names.
539 const unsigned char* pnamesu = sd->section_names->data();
540 const char* pnames = reinterpret_cast<const char*>(pnamesu);
541
542 // For each section, record the index of the reloc section if any.
543 // Use 0 to mean that there is no reloc section, -1U to mean that
544 // there is more than one.
545 std::vector<unsigned int> reloc_shndx(shnum, 0);
546 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
547 // Skip the first, dummy, section.
548 pshdrs += This::shdr_size;
549 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
550 {
551 typename This::Shdr shdr(pshdrs);
552
553 unsigned int sh_type = shdr.get_sh_type();
554 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
555 {
556 unsigned int target_shndx = shdr.get_sh_info();
557 if (target_shndx == 0 || target_shndx >= shnum)
558 {
559 this->error(_("relocation section %u has bad info %u"),
560 i, target_shndx);
561 continue;
562 }
563
564 if (reloc_shndx[target_shndx] != 0)
565 reloc_shndx[target_shndx] = -1U;
566 else
567 {
568 reloc_shndx[target_shndx] = i;
569 reloc_type[target_shndx] = sh_type;
570 }
571 }
572 }
573
574 std::vector<Map_to_output>& map_sections(this->map_to_output());
575 map_sections.resize(shnum);
576
577 // Whether we've seen a .note.GNU-stack section.
578 bool seen_gnu_stack = false;
579 // The flags of a .note.GNU-stack section.
580 uint64_t gnu_stack_flags = 0;
581
582 // Keep track of which sections to omit.
583 std::vector<bool> omit(shnum, false);
584
585 // Keep track of reloc sections when doing a relocatable link.
586 const bool output_is_object = parameters->output_is_object();
587 std::vector<unsigned int> reloc_sections;
588
589 // Keep track of .eh_frame sections.
590 std::vector<unsigned int> eh_frame_sections;
591
592 // Skip the first, dummy, section.
593 pshdrs = sd->section_headers->data() + This::shdr_size;
594 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
595 {
596 typename This::Shdr shdr(pshdrs);
597
598 if (shdr.get_sh_name() >= sd->section_names_size)
599 {
600 this->error(_("bad section name offset for section %u: %lu"),
601 i, static_cast<unsigned long>(shdr.get_sh_name()));
602 return;
603 }
604
605 const char* name = pnames + shdr.get_sh_name();
606
607 if (this->handle_gnu_warning_section(name, i, symtab))
608 {
609 if (!output_is_object)
610 omit[i] = true;
611 }
612
613 // The .note.GNU-stack section is special. It gives the
614 // protection flags that this object file requires for the stack
615 // in memory.
616 if (strcmp(name, ".note.GNU-stack") == 0)
617 {
618 seen_gnu_stack = true;
619 gnu_stack_flags |= shdr.get_sh_flags();
620 omit[i] = true;
621 }
622
623 bool discard = omit[i];
624 if (!discard)
625 {
626 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
627 {
628 if (!this->include_section_group(symtab, layout, i, name, shdr,
629 &omit))
630 discard = true;
631 }
632 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
633 && Layout::is_linkonce(name))
634 {
635 if (!this->include_linkonce_section(layout, name, shdr))
636 discard = true;
637 }
638 }
639
640 if (discard)
641 {
642 // Do not include this section in the link.
643 map_sections[i].output_section = NULL;
644 continue;
645 }
646
647 // When doing a relocatable link we are going to copy input
648 // reloc sections into the output. We only want to copy the
649 // ones associated with sections which are not being discarded.
650 // However, we don't know that yet for all sections. So save
651 // reloc sections and process them later.
652 if (output_is_object
653 && (shdr.get_sh_type() == elfcpp::SHT_REL
654 || shdr.get_sh_type() == elfcpp::SHT_RELA))
655 {
656 reloc_sections.push_back(i);
657 continue;
658 }
659
660 if (output_is_object && shdr.get_sh_type() == elfcpp::SHT_GROUP)
661 continue;
662
663 // The .eh_frame section is special. It holds exception frame
664 // information that we need to read in order to generate the
665 // exception frame header. We process these after all the other
666 // sections so that the exception frame reader can reliably
667 // determine which sections are being discarded, and discard the
668 // corresponding information.
669 if (!output_is_object
670 && strcmp(name, ".eh_frame") == 0
671 && this->check_eh_frame_flags(&shdr))
672 {
673 eh_frame_sections.push_back(i);
674 continue;
675 }
676
677 off_t offset;
678 Output_section* os = layout->layout(this, i, name, shdr,
679 reloc_shndx[i], reloc_type[i],
680 &offset);
681
682 map_sections[i].output_section = os;
683 map_sections[i].offset = offset;
684
685 // If this section requires special handling, and if there are
686 // relocs that apply to it, then we must do the special handling
687 // before we apply the relocs.
688 if (offset == -1 && reloc_shndx[i] != 0)
689 this->set_relocs_must_follow_section_writes();
690 }
691
692 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
693
694 // When doing a relocatable link handle the reloc sections at the
695 // end.
696 if (output_is_object)
697 this->size_relocatable_relocs();
698 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
699 p != reloc_sections.end();
700 ++p)
701 {
702 unsigned int i = *p;
703 const unsigned char* pshdr;
704 pshdr = sd->section_headers->data() + i * This::shdr_size;
705 typename This::Shdr shdr(pshdr);
706
707 unsigned int data_shndx = shdr.get_sh_info();
708 if (data_shndx >= shnum)
709 {
710 // We already warned about this above.
711 continue;
712 }
713
714 Output_section* data_section = map_sections[data_shndx].output_section;
715 if (data_section == NULL)
716 {
717 map_sections[i].output_section = NULL;
718 continue;
719 }
720
721 Relocatable_relocs* rr = new Relocatable_relocs();
722 this->set_relocatable_relocs(i, rr);
723
724 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
725 rr);
726 map_sections[i].output_section = os;
727 map_sections[i].offset = -1;
728 }
729
730 // Handle the .eh_frame sections at the end.
731 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
732 p != eh_frame_sections.end();
733 ++p)
734 {
735 gold_assert(this->has_eh_frame_);
736 gold_assert(sd->external_symbols_offset != 0);
737
738 unsigned int i = *p;
739 const unsigned char *pshdr;
740 pshdr = sd->section_headers->data() + i * This::shdr_size;
741 typename This::Shdr shdr(pshdr);
742
743 off_t offset;
744 Output_section* os = layout->layout_eh_frame(this,
745 sd->symbols->data(),
746 sd->symbols_size,
747 sd->symbol_names->data(),
748 sd->symbol_names_size,
749 i, shdr,
750 reloc_shndx[i],
751 reloc_type[i],
752 &offset);
753 map_sections[i].output_section = os;
754 map_sections[i].offset = offset;
755
756 // If this section requires special handling, and if there are
757 // relocs that apply to it, then we must do the special handling
758 // before we apply the relocs.
759 if (offset == -1 && reloc_shndx[i] != 0)
760 this->set_relocs_must_follow_section_writes();
761 }
762
763 delete sd->section_headers;
764 sd->section_headers = NULL;
765 delete sd->section_names;
766 sd->section_names = NULL;
767 }
768
769 // Add the symbols to the symbol table.
770
771 template<int size, bool big_endian>
772 void
773 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
774 Read_symbols_data* sd)
775 {
776 if (sd->symbols == NULL)
777 {
778 gold_assert(sd->symbol_names == NULL);
779 return;
780 }
781
782 const int sym_size = This::sym_size;
783 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
784 / sym_size);
785 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
786 {
787 this->error(_("size of symbols is not multiple of symbol size"));
788 return;
789 }
790
791 this->symbols_.resize(symcount);
792
793 const char* sym_names =
794 reinterpret_cast<const char*>(sd->symbol_names->data());
795 symtab->add_from_relobj(this,
796 sd->symbols->data() + sd->external_symbols_offset,
797 symcount, sym_names, sd->symbol_names_size,
798 &this->symbols_);
799
800 delete sd->symbols;
801 sd->symbols = NULL;
802 delete sd->symbol_names;
803 sd->symbol_names = NULL;
804 }
805
806 // First pass over the local symbols. Here we add their names to
807 // *POOL and *DYNPOOL, and we store the symbol value in
808 // THIS->LOCAL_VALUES_. This function is always called from a
809 // singleton thread. This is followed by a call to
810 // finalize_local_symbols.
811
812 template<int size, bool big_endian>
813 void
814 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
815 Stringpool* dynpool)
816 {
817 gold_assert(this->symtab_shndx_ != -1U);
818 if (this->symtab_shndx_ == 0)
819 {
820 // This object has no symbols. Weird but legal.
821 return;
822 }
823
824 // Read the symbol table section header.
825 const unsigned int symtab_shndx = this->symtab_shndx_;
826 typename This::Shdr symtabshdr(this,
827 this->elf_file_.section_header(symtab_shndx));
828 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
829
830 // Read the local symbols.
831 const int sym_size = This::sym_size;
832 const unsigned int loccount = this->local_symbol_count_;
833 gold_assert(loccount == symtabshdr.get_sh_info());
834 off_t locsize = loccount * sym_size;
835 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
836 locsize, true);
837
838 // Read the symbol names.
839 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
840 section_size_type strtab_size;
841 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
842 &strtab_size,
843 true);
844 const char* pnames = reinterpret_cast<const char*>(pnamesu);
845
846 // Loop over the local symbols.
847
848 const std::vector<Map_to_output>& mo(this->map_to_output());
849 unsigned int shnum = this->shnum();
850 unsigned int count = 0;
851 unsigned int dyncount = 0;
852 // Skip the first, dummy, symbol.
853 psyms += sym_size;
854 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
855 {
856 elfcpp::Sym<size, big_endian> sym(psyms);
857
858 Symbol_value<size>& lv(this->local_values_[i]);
859
860 unsigned int shndx = sym.get_st_shndx();
861 lv.set_input_shndx(shndx);
862
863 if (sym.get_st_type() == elfcpp::STT_SECTION)
864 lv.set_is_section_symbol();
865 else if (sym.get_st_type() == elfcpp::STT_TLS)
866 lv.set_is_tls_symbol();
867
868 // Save the input symbol value for use in do_finalize_local_symbols().
869 lv.set_input_value(sym.get_st_value());
870
871 // Decide whether this symbol should go into the output file.
872
873 if (shndx < shnum && mo[shndx].output_section == NULL)
874 {
875 lv.set_no_output_symtab_entry();
876 continue;
877 }
878
879 if (sym.get_st_type() == elfcpp::STT_SECTION)
880 {
881 lv.set_no_output_symtab_entry();
882 continue;
883 }
884
885 if (sym.get_st_name() >= strtab_size)
886 {
887 this->error(_("local symbol %u section name out of range: %u >= %u"),
888 i, sym.get_st_name(),
889 static_cast<unsigned int>(strtab_size));
890 lv.set_no_output_symtab_entry();
891 continue;
892 }
893
894 // Add the symbol to the symbol table string pool.
895 const char* name = pnames + sym.get_st_name();
896 pool->add(name, true, NULL);
897 ++count;
898
899 // If needed, add the symbol to the dynamic symbol table string pool.
900 if (lv.needs_output_dynsym_entry())
901 {
902 dynpool->add(name, true, NULL);
903 ++dyncount;
904 }
905 }
906
907 this->output_local_symbol_count_ = count;
908 this->output_local_dynsym_count_ = dyncount;
909 }
910
911 // Finalize the local symbols. Here we set the final value in
912 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
913 // This function is always called from a singleton thread. The actual
914 // output of the local symbols will occur in a separate task.
915
916 template<int size, bool big_endian>
917 unsigned int
918 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
919 off_t off)
920 {
921 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
922
923 const unsigned int loccount = this->local_symbol_count_;
924 this->local_symbol_offset_ = off;
925
926 const std::vector<Map_to_output>& mo(this->map_to_output());
927 unsigned int shnum = this->shnum();
928
929 for (unsigned int i = 1; i < loccount; ++i)
930 {
931 Symbol_value<size>& lv(this->local_values_[i]);
932
933 unsigned int shndx = lv.input_shndx();
934
935 // Set the output symbol value.
936
937 if (shndx >= elfcpp::SHN_LORESERVE)
938 {
939 if (shndx == elfcpp::SHN_ABS)
940 lv.set_output_value(lv.input_value());
941 else
942 {
943 // FIXME: Handle SHN_XINDEX.
944 this->error(_("unknown section index %u for local symbol %u"),
945 shndx, i);
946 lv.set_output_value(0);
947 }
948 }
949 else
950 {
951 if (shndx >= shnum)
952 {
953 this->error(_("local symbol %u section index %u out of range"),
954 i, shndx);
955 shndx = 0;
956 }
957
958 Output_section* os = mo[shndx].output_section;
959
960 if (os == NULL)
961 {
962 lv.set_output_value(0);
963 continue;
964 }
965 else if (mo[shndx].offset == -1)
966 {
967 // This is a SHF_MERGE section or one which otherwise
968 // requires special handling. We get the output address
969 // of the start of the merged section. If this is not a
970 // section symbol, we can then determine the final
971 // value. If it is a section symbol, we can not, as in
972 // that case we have to consider the addend to determine
973 // the value to use in a relocation.
974 if (!lv.is_section_symbol())
975 lv.set_output_value(os->output_address(this, shndx,
976 lv.input_value()));
977 else
978 {
979 section_offset_type start =
980 os->starting_output_address(this, shndx);
981 Merged_symbol_value<size>* msv =
982 new Merged_symbol_value<size>(lv.input_value(), start);
983 lv.set_merged_symbol_value(msv);
984 }
985 }
986 else if (lv.is_tls_symbol())
987 lv.set_output_value(os->tls_offset()
988 + mo[shndx].offset
989 + lv.input_value());
990 else
991 lv.set_output_value(os->address()
992 + mo[shndx].offset
993 + lv.input_value());
994 }
995
996 if (lv.needs_output_symtab_entry())
997 {
998 lv.set_output_symtab_index(index);
999 ++index;
1000 }
1001 }
1002 return index;
1003 }
1004
1005 // Set the output dynamic symbol table indexes for the local variables.
1006
1007 template<int size, bool big_endian>
1008 unsigned int
1009 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1010 {
1011 const unsigned int loccount = this->local_symbol_count_;
1012 for (unsigned int i = 1; i < loccount; ++i)
1013 {
1014 Symbol_value<size>& lv(this->local_values_[i]);
1015 if (lv.needs_output_dynsym_entry())
1016 {
1017 lv.set_output_dynsym_index(index);
1018 ++index;
1019 }
1020 }
1021 return index;
1022 }
1023
1024 // Set the offset where local dynamic symbol information will be stored.
1025 // Returns the count of local symbols contributed to the symbol table by
1026 // this object.
1027
1028 template<int size, bool big_endian>
1029 unsigned int
1030 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1031 {
1032 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1033 this->local_dynsym_offset_ = off;
1034 return this->output_local_dynsym_count_;
1035 }
1036
1037 // Return the value of the local symbol symndx.
1038 template<int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Sized_relobj<size, big_endian>::local_symbol_value(unsigned int symndx) const
1041 {
1042 gold_assert(symndx < this->local_symbol_count_);
1043 gold_assert(symndx < this->local_values_.size());
1044 const Symbol_value<size>& lv(this->local_values_[symndx]);
1045 return lv.value(this, 0);
1046 }
1047
1048 // Write out the local symbols.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Sized_relobj<size, big_endian>::write_local_symbols(
1053 Output_file* of,
1054 const Stringpool* sympool,
1055 const Stringpool* dynpool)
1056 {
1057 if (parameters->strip_all() && this->output_local_dynsym_count_ == 0)
1058 return;
1059
1060 gold_assert(this->symtab_shndx_ != -1U);
1061 if (this->symtab_shndx_ == 0)
1062 {
1063 // This object has no symbols. Weird but legal.
1064 return;
1065 }
1066
1067 // Read the symbol table section header.
1068 const unsigned int symtab_shndx = this->symtab_shndx_;
1069 typename This::Shdr symtabshdr(this,
1070 this->elf_file_.section_header(symtab_shndx));
1071 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1072 const unsigned int loccount = this->local_symbol_count_;
1073 gold_assert(loccount == symtabshdr.get_sh_info());
1074
1075 // Read the local symbols.
1076 const int sym_size = This::sym_size;
1077 off_t locsize = loccount * sym_size;
1078 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1079 locsize, false);
1080
1081 // Read the symbol names.
1082 const unsigned int strtab_shndx = symtabshdr.get_sh_link();
1083 section_size_type strtab_size;
1084 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1085 &strtab_size,
1086 false);
1087 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1088
1089 // Get views into the output file for the portions of the symbol table
1090 // and the dynamic symbol table that we will be writing.
1091 off_t output_size = this->output_local_symbol_count_ * sym_size;
1092 unsigned char* oview = NULL;
1093 if (output_size > 0)
1094 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1095
1096 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1097 unsigned char* dyn_oview = NULL;
1098 if (dyn_output_size > 0)
1099 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1100 dyn_output_size);
1101
1102 const std::vector<Map_to_output>& mo(this->map_to_output());
1103
1104 gold_assert(this->local_values_.size() == loccount);
1105
1106 unsigned char* ov = oview;
1107 unsigned char* dyn_ov = dyn_oview;
1108 psyms += sym_size;
1109 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1110 {
1111 elfcpp::Sym<size, big_endian> isym(psyms);
1112
1113 unsigned int st_shndx = isym.get_st_shndx();
1114 if (st_shndx < elfcpp::SHN_LORESERVE)
1115 {
1116 gold_assert(st_shndx < mo.size());
1117 if (mo[st_shndx].output_section == NULL)
1118 continue;
1119 st_shndx = mo[st_shndx].output_section->out_shndx();
1120 }
1121
1122 // Write the symbol to the output symbol table.
1123 if (!parameters->strip_all()
1124 && this->local_values_[i].needs_output_symtab_entry())
1125 {
1126 elfcpp::Sym_write<size, big_endian> osym(ov);
1127
1128 gold_assert(isym.get_st_name() < strtab_size);
1129 const char* name = pnames + isym.get_st_name();
1130 osym.put_st_name(sympool->get_offset(name));
1131 osym.put_st_value(this->local_values_[i].value(this, 0));
1132 osym.put_st_size(isym.get_st_size());
1133 osym.put_st_info(isym.get_st_info());
1134 osym.put_st_other(isym.get_st_other());
1135 osym.put_st_shndx(st_shndx);
1136
1137 ov += sym_size;
1138 }
1139
1140 // Write the symbol to the output dynamic symbol table.
1141 if (this->local_values_[i].needs_output_dynsym_entry())
1142 {
1143 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1144 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1145
1146 gold_assert(isym.get_st_name() < strtab_size);
1147 const char* name = pnames + isym.get_st_name();
1148 osym.put_st_name(dynpool->get_offset(name));
1149 osym.put_st_value(this->local_values_[i].value(this, 0));
1150 osym.put_st_size(isym.get_st_size());
1151 osym.put_st_info(isym.get_st_info());
1152 osym.put_st_other(isym.get_st_other());
1153 osym.put_st_shndx(st_shndx);
1154
1155 dyn_ov += sym_size;
1156 }
1157 }
1158
1159
1160 if (output_size > 0)
1161 {
1162 gold_assert(ov - oview == output_size);
1163 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1164 }
1165
1166 if (dyn_output_size > 0)
1167 {
1168 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1169 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1170 dyn_oview);
1171 }
1172 }
1173
1174 // Set *INFO to symbolic information about the offset OFFSET in the
1175 // section SHNDX. Return true if we found something, false if we
1176 // found nothing.
1177
1178 template<int size, bool big_endian>
1179 bool
1180 Sized_relobj<size, big_endian>::get_symbol_location_info(
1181 unsigned int shndx,
1182 off_t offset,
1183 Symbol_location_info* info)
1184 {
1185 if (this->symtab_shndx_ == 0)
1186 return false;
1187
1188 section_size_type symbols_size;
1189 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1190 &symbols_size,
1191 false);
1192
1193 unsigned int symbol_names_shndx = this->section_link(this->symtab_shndx_);
1194 section_size_type names_size;
1195 const unsigned char* symbol_names_u =
1196 this->section_contents(symbol_names_shndx, &names_size, false);
1197 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1198
1199 const int sym_size = This::sym_size;
1200 const size_t count = symbols_size / sym_size;
1201
1202 const unsigned char* p = symbols;
1203 for (size_t i = 0; i < count; ++i, p += sym_size)
1204 {
1205 elfcpp::Sym<size, big_endian> sym(p);
1206
1207 if (sym.get_st_type() == elfcpp::STT_FILE)
1208 {
1209 if (sym.get_st_name() >= names_size)
1210 info->source_file = "(invalid)";
1211 else
1212 info->source_file = symbol_names + sym.get_st_name();
1213 }
1214 else if (sym.get_st_shndx() == shndx
1215 && static_cast<off_t>(sym.get_st_value()) <= offset
1216 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1217 > offset))
1218 {
1219 if (sym.get_st_name() > names_size)
1220 info->enclosing_symbol_name = "(invalid)";
1221 else
1222 {
1223 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1224 if (parameters->demangle())
1225 {
1226 char* demangled_name = cplus_demangle(
1227 info->enclosing_symbol_name.c_str(),
1228 DMGL_ANSI | DMGL_PARAMS);
1229 if (demangled_name != NULL)
1230 {
1231 info->enclosing_symbol_name.assign(demangled_name);
1232 free(demangled_name);
1233 }
1234 }
1235 }
1236 return true;
1237 }
1238 }
1239
1240 return false;
1241 }
1242
1243 // Input_objects methods.
1244
1245 // Add a regular relocatable object to the list. Return false if this
1246 // object should be ignored.
1247
1248 bool
1249 Input_objects::add_object(Object* obj)
1250 {
1251 // Set the global target from the first object file we recognize.
1252 Target* target = obj->target();
1253 if (!parameters->is_target_valid())
1254 set_parameters_target(target);
1255 else if (target != parameters->target())
1256 {
1257 obj->error(_("incompatible target"));
1258 return false;
1259 }
1260
1261 if (!obj->is_dynamic())
1262 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1263 else
1264 {
1265 // See if this is a duplicate SONAME.
1266 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1267 const char* soname = dynobj->soname();
1268
1269 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1270 this->sonames_.insert(soname);
1271 if (!ins.second)
1272 {
1273 // We have already seen a dynamic object with this soname.
1274 return false;
1275 }
1276
1277 this->dynobj_list_.push_back(dynobj);
1278
1279 // If this is -lc, remember the directory in which we found it.
1280 // We use this when issuing warnings about undefined symbols: as
1281 // a heuristic, we don't warn about system libraries found in
1282 // the same directory as -lc.
1283 if (strncmp(soname, "libc.so", 7) == 0)
1284 {
1285 const char* object_name = dynobj->name().c_str();
1286 const char* base = lbasename(object_name);
1287 if (base != object_name)
1288 this->system_library_directory_.assign(object_name,
1289 base - 1 - object_name);
1290 }
1291 }
1292
1293 return true;
1294 }
1295
1296 // Return whether an object was found in the system library directory.
1297
1298 bool
1299 Input_objects::found_in_system_library_directory(const Object* object) const
1300 {
1301 return (!this->system_library_directory_.empty()
1302 && object->name().compare(0,
1303 this->system_library_directory_.size(),
1304 this->system_library_directory_) == 0);
1305 }
1306
1307 // For each dynamic object, record whether we've seen all of its
1308 // explicit dependencies.
1309
1310 void
1311 Input_objects::check_dynamic_dependencies() const
1312 {
1313 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1314 p != this->dynobj_list_.end();
1315 ++p)
1316 {
1317 const Dynobj::Needed& needed((*p)->needed());
1318 bool found_all = true;
1319 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1320 pneeded != needed.end();
1321 ++pneeded)
1322 {
1323 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1324 {
1325 found_all = false;
1326 break;
1327 }
1328 }
1329 (*p)->set_has_unknown_needed_entries(!found_all);
1330 }
1331 }
1332
1333 // Relocate_info methods.
1334
1335 // Return a string describing the location of a relocation. This is
1336 // only used in error messages.
1337
1338 template<int size, bool big_endian>
1339 std::string
1340 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1341 {
1342 // See if we can get line-number information from debugging sections.
1343 std::string filename;
1344 std::string file_and_lineno; // Better than filename-only, if available.
1345
1346 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1347 // This will be "" if we failed to parse the debug info for any reason.
1348 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1349
1350 std::string ret(this->object->name());
1351 ret += ':';
1352 Symbol_location_info info;
1353 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1354 {
1355 ret += " in function ";
1356 ret += info.enclosing_symbol_name;
1357 ret += ":";
1358 filename = info.source_file;
1359 }
1360
1361 if (!file_and_lineno.empty())
1362 ret += file_and_lineno;
1363 else
1364 {
1365 if (!filename.empty())
1366 ret += filename;
1367 ret += "(";
1368 ret += this->object->section_name(this->data_shndx);
1369 char buf[100];
1370 // Offsets into sections have to be positive.
1371 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1372 ret += buf;
1373 ret += ")";
1374 }
1375 return ret;
1376 }
1377
1378 } // End namespace gold.
1379
1380 namespace
1381 {
1382
1383 using namespace gold;
1384
1385 // Read an ELF file with the header and return the appropriate
1386 // instance of Object.
1387
1388 template<int size, bool big_endian>
1389 Object*
1390 make_elf_sized_object(const std::string& name, Input_file* input_file,
1391 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1392 {
1393 int et = ehdr.get_e_type();
1394 if (et == elfcpp::ET_REL)
1395 {
1396 Sized_relobj<size, big_endian>* obj =
1397 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1398 obj->setup(ehdr);
1399 return obj;
1400 }
1401 else if (et == elfcpp::ET_DYN)
1402 {
1403 Sized_dynobj<size, big_endian>* obj =
1404 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1405 obj->setup(ehdr);
1406 return obj;
1407 }
1408 else
1409 {
1410 gold_error(_("%s: unsupported ELF file type %d"),
1411 name.c_str(), et);
1412 return NULL;
1413 }
1414 }
1415
1416 } // End anonymous namespace.
1417
1418 namespace gold
1419 {
1420
1421 // Read an ELF file and return the appropriate instance of Object.
1422
1423 Object*
1424 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1425 const unsigned char* p, section_offset_type bytes)
1426 {
1427 if (bytes < elfcpp::EI_NIDENT)
1428 {
1429 gold_error(_("%s: ELF file too short"), name.c_str());
1430 return NULL;
1431 }
1432
1433 int v = p[elfcpp::EI_VERSION];
1434 if (v != elfcpp::EV_CURRENT)
1435 {
1436 if (v == elfcpp::EV_NONE)
1437 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1438 else
1439 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1440 return NULL;
1441 }
1442
1443 int c = p[elfcpp::EI_CLASS];
1444 if (c == elfcpp::ELFCLASSNONE)
1445 {
1446 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1447 return NULL;
1448 }
1449 else if (c != elfcpp::ELFCLASS32
1450 && c != elfcpp::ELFCLASS64)
1451 {
1452 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1453 return NULL;
1454 }
1455
1456 int d = p[elfcpp::EI_DATA];
1457 if (d == elfcpp::ELFDATANONE)
1458 {
1459 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1460 return NULL;
1461 }
1462 else if (d != elfcpp::ELFDATA2LSB
1463 && d != elfcpp::ELFDATA2MSB)
1464 {
1465 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1466 return NULL;
1467 }
1468
1469 bool big_endian = d == elfcpp::ELFDATA2MSB;
1470
1471 if (c == elfcpp::ELFCLASS32)
1472 {
1473 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1474 {
1475 gold_error(_("%s: ELF file too short"), name.c_str());
1476 return NULL;
1477 }
1478 if (big_endian)
1479 {
1480 #ifdef HAVE_TARGET_32_BIG
1481 elfcpp::Ehdr<32, true> ehdr(p);
1482 return make_elf_sized_object<32, true>(name, input_file,
1483 offset, ehdr);
1484 #else
1485 gold_error(_("%s: not configured to support "
1486 "32-bit big-endian object"),
1487 name.c_str());
1488 return NULL;
1489 #endif
1490 }
1491 else
1492 {
1493 #ifdef HAVE_TARGET_32_LITTLE
1494 elfcpp::Ehdr<32, false> ehdr(p);
1495 return make_elf_sized_object<32, false>(name, input_file,
1496 offset, ehdr);
1497 #else
1498 gold_error(_("%s: not configured to support "
1499 "32-bit little-endian object"),
1500 name.c_str());
1501 return NULL;
1502 #endif
1503 }
1504 }
1505 else
1506 {
1507 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1508 {
1509 gold_error(_("%s: ELF file too short"), name.c_str());
1510 return NULL;
1511 }
1512 if (big_endian)
1513 {
1514 #ifdef HAVE_TARGET_64_BIG
1515 elfcpp::Ehdr<64, true> ehdr(p);
1516 return make_elf_sized_object<64, true>(name, input_file,
1517 offset, ehdr);
1518 #else
1519 gold_error(_("%s: not configured to support "
1520 "64-bit big-endian object"),
1521 name.c_str());
1522 return NULL;
1523 #endif
1524 }
1525 else
1526 {
1527 #ifdef HAVE_TARGET_64_LITTLE
1528 elfcpp::Ehdr<64, false> ehdr(p);
1529 return make_elf_sized_object<64, false>(name, input_file,
1530 offset, ehdr);
1531 #else
1532 gold_error(_("%s: not configured to support "
1533 "64-bit little-endian object"),
1534 name.c_str());
1535 return NULL;
1536 #endif
1537 }
1538 }
1539 }
1540
1541 // Instantiate the templates we need. We could use the configure
1542 // script to restrict this to only the ones for implemented targets.
1543
1544 #ifdef HAVE_TARGET_32_LITTLE
1545 template
1546 class Sized_relobj<32, false>;
1547 #endif
1548
1549 #ifdef HAVE_TARGET_32_BIG
1550 template
1551 class Sized_relobj<32, true>;
1552 #endif
1553
1554 #ifdef HAVE_TARGET_64_LITTLE
1555 template
1556 class Sized_relobj<64, false>;
1557 #endif
1558
1559 #ifdef HAVE_TARGET_64_BIG
1560 template
1561 class Sized_relobj<64, true>;
1562 #endif
1563
1564 #ifdef HAVE_TARGET_32_LITTLE
1565 template
1566 struct Relocate_info<32, false>;
1567 #endif
1568
1569 #ifdef HAVE_TARGET_32_BIG
1570 template
1571 struct Relocate_info<32, true>;
1572 #endif
1573
1574 #ifdef HAVE_TARGET_64_LITTLE
1575 template
1576 struct Relocate_info<64, false>;
1577 #endif
1578
1579 #ifdef HAVE_TARGET_64_BIG
1580 template
1581 struct Relocate_info<64, true>;
1582 #endif
1583
1584 } // End namespace gold.