From Craig Silverstein: Support -o -.
[binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cerrno>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32 #include "libiberty.h" // for unlink_if_ordinary()
33
34 #include "parameters.h"
35 #include "object.h"
36 #include "symtab.h"
37 #include "reloc.h"
38 #include "merge.h"
39 #include "output.h"
40
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42 #ifndef MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
44 #endif
45
46 namespace gold
47 {
48
49 // Output_data variables.
50
51 bool Output_data::allocated_sizes_are_fixed;
52
53 // Output_data methods.
54
55 Output_data::~Output_data()
56 {
57 }
58
59 // Return the default alignment for the target size.
60
61 uint64_t
62 Output_data::default_alignment()
63 {
64 return Output_data::default_alignment_for_size(parameters->get_size());
65 }
66
67 // Return the default alignment for a size--32 or 64.
68
69 uint64_t
70 Output_data::default_alignment_for_size(int size)
71 {
72 if (size == 32)
73 return 4;
74 else if (size == 64)
75 return 8;
76 else
77 gold_unreachable();
78 }
79
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
82
83 Output_section_headers::Output_section_headers(
84 const Layout* layout,
85 const Layout::Segment_list* segment_list,
86 const Layout::Section_list* unattached_section_list,
87 const Stringpool* secnamepool)
88 : layout_(layout),
89 segment_list_(segment_list),
90 unattached_section_list_(unattached_section_list),
91 secnamepool_(secnamepool)
92 {
93 // Count all the sections. Start with 1 for the null section.
94 off_t count = 1;
95 for (Layout::Segment_list::const_iterator p = segment_list->begin();
96 p != segment_list->end();
97 ++p)
98 if ((*p)->type() == elfcpp::PT_LOAD)
99 count += (*p)->output_section_count();
100 count += unattached_section_list->size();
101
102 const int size = parameters->get_size();
103 int shdr_size;
104 if (size == 32)
105 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
106 else if (size == 64)
107 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
108 else
109 gold_unreachable();
110
111 this->set_data_size(count * shdr_size);
112 }
113
114 // Write out the section headers.
115
116 void
117 Output_section_headers::do_write(Output_file* of)
118 {
119 if (parameters->get_size() == 32)
120 {
121 if (parameters->is_big_endian())
122 {
123 #ifdef HAVE_TARGET_32_BIG
124 this->do_sized_write<32, true>(of);
125 #else
126 gold_unreachable();
127 #endif
128 }
129 else
130 {
131 #ifdef HAVE_TARGET_32_LITTLE
132 this->do_sized_write<32, false>(of);
133 #else
134 gold_unreachable();
135 #endif
136 }
137 }
138 else if (parameters->get_size() == 64)
139 {
140 if (parameters->is_big_endian())
141 {
142 #ifdef HAVE_TARGET_64_BIG
143 this->do_sized_write<64, true>(of);
144 #else
145 gold_unreachable();
146 #endif
147 }
148 else
149 {
150 #ifdef HAVE_TARGET_64_LITTLE
151 this->do_sized_write<64, false>(of);
152 #else
153 gold_unreachable();
154 #endif
155 }
156 }
157 else
158 gold_unreachable();
159 }
160
161 template<int size, bool big_endian>
162 void
163 Output_section_headers::do_sized_write(Output_file* of)
164 {
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
187 unsigned shndx = 1;
188 for (Layout::Segment_list::const_iterator p = this->segment_list_->begin();
189 p != this->segment_list_->end();
190 ++p)
191 v = (*p)->write_section_headers SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
192 this->layout_, this->secnamepool_, v, &shndx
193 SELECT_SIZE_ENDIAN(size, big_endian));
194 for (Layout::Section_list::const_iterator p =
195 this->unattached_section_list_->begin();
196 p != this->unattached_section_list_->end();
197 ++p)
198 {
199 gold_assert(shndx == (*p)->out_shndx());
200 elfcpp::Shdr_write<size, big_endian> oshdr(v);
201 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
202 v += shdr_size;
203 ++shndx;
204 }
205
206 of->write_output_view(this->offset(), all_shdrs_size, view);
207 }
208
209 // Output_segment_header methods.
210
211 Output_segment_headers::Output_segment_headers(
212 const Layout::Segment_list& segment_list)
213 : segment_list_(segment_list)
214 {
215 const int size = parameters->get_size();
216 int phdr_size;
217 if (size == 32)
218 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
219 else if (size == 64)
220 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
221 else
222 gold_unreachable();
223
224 this->set_data_size(segment_list.size() * phdr_size);
225 }
226
227 void
228 Output_segment_headers::do_write(Output_file* of)
229 {
230 if (parameters->get_size() == 32)
231 {
232 if (parameters->is_big_endian())
233 {
234 #ifdef HAVE_TARGET_32_BIG
235 this->do_sized_write<32, true>(of);
236 #else
237 gold_unreachable();
238 #endif
239 }
240 else
241 {
242 #ifdef HAVE_TARGET_32_LITTLE
243 this->do_sized_write<32, false>(of);
244 #else
245 gold_unreachable();
246 #endif
247 }
248 }
249 else if (parameters->get_size() == 64)
250 {
251 if (parameters->is_big_endian())
252 {
253 #ifdef HAVE_TARGET_64_BIG
254 this->do_sized_write<64, true>(of);
255 #else
256 gold_unreachable();
257 #endif
258 }
259 else
260 {
261 #ifdef HAVE_TARGET_64_LITTLE
262 this->do_sized_write<64, false>(of);
263 #else
264 gold_unreachable();
265 #endif
266 }
267 }
268 else
269 gold_unreachable();
270 }
271
272 template<int size, bool big_endian>
273 void
274 Output_segment_headers::do_sized_write(Output_file* of)
275 {
276 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
277 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
278 unsigned char* view = of->get_output_view(this->offset(),
279 all_phdrs_size);
280 unsigned char* v = view;
281 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
282 p != this->segment_list_.end();
283 ++p)
284 {
285 elfcpp::Phdr_write<size, big_endian> ophdr(v);
286 (*p)->write_header(&ophdr);
287 v += phdr_size;
288 }
289
290 of->write_output_view(this->offset(), all_phdrs_size, view);
291 }
292
293 // Output_file_header methods.
294
295 Output_file_header::Output_file_header(const Target* target,
296 const Symbol_table* symtab,
297 const Output_segment_headers* osh)
298 : target_(target),
299 symtab_(symtab),
300 segment_header_(osh),
301 section_header_(NULL),
302 shstrtab_(NULL)
303 {
304 const int size = parameters->get_size();
305 int ehdr_size;
306 if (size == 32)
307 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
308 else if (size == 64)
309 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
310 else
311 gold_unreachable();
312
313 this->set_data_size(ehdr_size);
314 }
315
316 // Set the section table information for a file header.
317
318 void
319 Output_file_header::set_section_info(const Output_section_headers* shdrs,
320 const Output_section* shstrtab)
321 {
322 this->section_header_ = shdrs;
323 this->shstrtab_ = shstrtab;
324 }
325
326 // Write out the file header.
327
328 void
329 Output_file_header::do_write(Output_file* of)
330 {
331 gold_assert(this->offset() == 0);
332
333 if (parameters->get_size() == 32)
334 {
335 if (parameters->is_big_endian())
336 {
337 #ifdef HAVE_TARGET_32_BIG
338 this->do_sized_write<32, true>(of);
339 #else
340 gold_unreachable();
341 #endif
342 }
343 else
344 {
345 #ifdef HAVE_TARGET_32_LITTLE
346 this->do_sized_write<32, false>(of);
347 #else
348 gold_unreachable();
349 #endif
350 }
351 }
352 else if (parameters->get_size() == 64)
353 {
354 if (parameters->is_big_endian())
355 {
356 #ifdef HAVE_TARGET_64_BIG
357 this->do_sized_write<64, true>(of);
358 #else
359 gold_unreachable();
360 #endif
361 }
362 else
363 {
364 #ifdef HAVE_TARGET_64_LITTLE
365 this->do_sized_write<64, false>(of);
366 #else
367 gold_unreachable();
368 #endif
369 }
370 }
371 else
372 gold_unreachable();
373 }
374
375 // Write out the file header with appropriate size and endianess.
376
377 template<int size, bool big_endian>
378 void
379 Output_file_header::do_sized_write(Output_file* of)
380 {
381 gold_assert(this->offset() == 0);
382
383 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
384 unsigned char* view = of->get_output_view(0, ehdr_size);
385 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
386
387 unsigned char e_ident[elfcpp::EI_NIDENT];
388 memset(e_ident, 0, elfcpp::EI_NIDENT);
389 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
390 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
391 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
392 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
393 if (size == 32)
394 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
395 else if (size == 64)
396 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
397 else
398 gold_unreachable();
399 e_ident[elfcpp::EI_DATA] = (big_endian
400 ? elfcpp::ELFDATA2MSB
401 : elfcpp::ELFDATA2LSB);
402 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
403 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
404 oehdr.put_e_ident(e_ident);
405
406 elfcpp::ET e_type;
407 if (parameters->output_is_object())
408 e_type = elfcpp::ET_REL;
409 else if (parameters->output_is_shared())
410 e_type = elfcpp::ET_DYN;
411 else
412 e_type = elfcpp::ET_EXEC;
413 oehdr.put_e_type(e_type);
414
415 oehdr.put_e_machine(this->target_->machine_code());
416 oehdr.put_e_version(elfcpp::EV_CURRENT);
417
418 // FIXME: Need to support -e, and target specific entry symbol.
419 Symbol* sym = this->symtab_->lookup("_start");
420 typename Sized_symbol<size>::Value_type v;
421 if (sym == NULL)
422 v = 0;
423 else
424 {
425 Sized_symbol<size>* ssym;
426 ssym = this->symtab_->get_sized_symbol SELECT_SIZE_NAME(size) (
427 sym SELECT_SIZE(size));
428 v = ssym->value();
429 }
430 oehdr.put_e_entry(v);
431
432 oehdr.put_e_phoff(this->segment_header_->offset());
433 oehdr.put_e_shoff(this->section_header_->offset());
434
435 // FIXME: The target needs to set the flags.
436 oehdr.put_e_flags(0);
437
438 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
439 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
440 oehdr.put_e_phnum(this->segment_header_->data_size()
441 / elfcpp::Elf_sizes<size>::phdr_size);
442 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
443 oehdr.put_e_shnum(this->section_header_->data_size()
444 / elfcpp::Elf_sizes<size>::shdr_size);
445 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
446
447 of->write_output_view(0, ehdr_size, view);
448 }
449
450 // Output_data_const methods.
451
452 void
453 Output_data_const::do_write(Output_file* of)
454 {
455 of->write(this->offset(), this->data_.data(), this->data_.size());
456 }
457
458 // Output_data_const_buffer methods.
459
460 void
461 Output_data_const_buffer::do_write(Output_file* of)
462 {
463 of->write(this->offset(), this->p_, this->data_size());
464 }
465
466 // Output_section_data methods.
467
468 // Record the output section, and set the entry size and such.
469
470 void
471 Output_section_data::set_output_section(Output_section* os)
472 {
473 gold_assert(this->output_section_ == NULL);
474 this->output_section_ = os;
475 this->do_adjust_output_section(os);
476 }
477
478 // Return the section index of the output section.
479
480 unsigned int
481 Output_section_data::do_out_shndx() const
482 {
483 gold_assert(this->output_section_ != NULL);
484 return this->output_section_->out_shndx();
485 }
486
487 // Output_data_strtab methods.
488
489 // Set the final data size.
490
491 void
492 Output_data_strtab::set_final_data_size()
493 {
494 this->strtab_->set_string_offsets();
495 this->set_data_size(this->strtab_->get_strtab_size());
496 }
497
498 // Write out a string table.
499
500 void
501 Output_data_strtab::do_write(Output_file* of)
502 {
503 this->strtab_->write(of, this->offset());
504 }
505
506 // Output_reloc methods.
507
508 // Get the symbol index of a relocation.
509
510 template<bool dynamic, int size, bool big_endian>
511 unsigned int
512 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
513 const
514 {
515 unsigned int index;
516 switch (this->local_sym_index_)
517 {
518 case INVALID_CODE:
519 gold_unreachable();
520
521 case GSYM_CODE:
522 if (this->u1_.gsym == NULL)
523 index = 0;
524 else if (dynamic)
525 index = this->u1_.gsym->dynsym_index();
526 else
527 index = this->u1_.gsym->symtab_index();
528 break;
529
530 case SECTION_CODE:
531 if (dynamic)
532 index = this->u1_.os->dynsym_index();
533 else
534 index = this->u1_.os->symtab_index();
535 break;
536
537 case 0:
538 // Relocations without symbols use a symbol index of 0.
539 index = 0;
540 break;
541
542 default:
543 if (dynamic)
544 {
545 // FIXME: It seems that some targets may need to generate
546 // dynamic relocations against local symbols for some
547 // reasons. This will have to be addressed at some point.
548 gold_unreachable();
549 }
550 else
551 index = this->u1_.relobj->symtab_index(this->local_sym_index_);
552 break;
553 }
554 gold_assert(index != -1U);
555 return index;
556 }
557
558 // Write out the offset and info fields of a Rel or Rela relocation
559 // entry.
560
561 template<bool dynamic, int size, bool big_endian>
562 template<typename Write_rel>
563 void
564 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
565 Write_rel* wr) const
566 {
567 Address address = this->address_;
568 if (this->shndx_ != INVALID_CODE)
569 {
570 off_t off;
571 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
572 &off);
573 gold_assert(os != NULL);
574 if (off != -1)
575 address += os->address() + off;
576 else
577 {
578 address = os->output_address(this->u2_.relobj, this->shndx_,
579 address);
580 gold_assert(address != -1U);
581 }
582 }
583 else if (this->u2_.od != NULL)
584 address += this->u2_.od->address();
585 wr->put_r_offset(address);
586 wr->put_r_info(elfcpp::elf_r_info<size>(this->get_symbol_index(),
587 this->type_));
588 }
589
590 // Write out a Rel relocation.
591
592 template<bool dynamic, int size, bool big_endian>
593 void
594 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
595 unsigned char* pov) const
596 {
597 elfcpp::Rel_write<size, big_endian> orel(pov);
598 this->write_rel(&orel);
599 }
600
601 // Write out a Rela relocation.
602
603 template<bool dynamic, int size, bool big_endian>
604 void
605 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
606 unsigned char* pov) const
607 {
608 elfcpp::Rela_write<size, big_endian> orel(pov);
609 this->rel_.write_rel(&orel);
610 orel.put_r_addend(this->addend_);
611 }
612
613 // Output_data_reloc_base methods.
614
615 // Adjust the output section.
616
617 template<int sh_type, bool dynamic, int size, bool big_endian>
618 void
619 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
620 ::do_adjust_output_section(Output_section* os)
621 {
622 if (sh_type == elfcpp::SHT_REL)
623 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
624 else if (sh_type == elfcpp::SHT_RELA)
625 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
626 else
627 gold_unreachable();
628 if (dynamic)
629 os->set_should_link_to_dynsym();
630 else
631 os->set_should_link_to_symtab();
632 }
633
634 // Write out relocation data.
635
636 template<int sh_type, bool dynamic, int size, bool big_endian>
637 void
638 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
639 Output_file* of)
640 {
641 const off_t off = this->offset();
642 const off_t oview_size = this->data_size();
643 unsigned char* const oview = of->get_output_view(off, oview_size);
644
645 unsigned char* pov = oview;
646 for (typename Relocs::const_iterator p = this->relocs_.begin();
647 p != this->relocs_.end();
648 ++p)
649 {
650 p->write(pov);
651 pov += reloc_size;
652 }
653
654 gold_assert(pov - oview == oview_size);
655
656 of->write_output_view(off, oview_size, oview);
657
658 // We no longer need the relocation entries.
659 this->relocs_.clear();
660 }
661
662 // Output_data_got::Got_entry methods.
663
664 // Write out the entry.
665
666 template<int size, bool big_endian>
667 void
668 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
669 {
670 Valtype val = 0;
671
672 switch (this->local_sym_index_)
673 {
674 case GSYM_CODE:
675 {
676 Symbol* gsym = this->u_.gsym;
677
678 // If the symbol is resolved locally, we need to write out its
679 // value. Otherwise we just write zero. The target code is
680 // responsible for creating a relocation entry to fill in the
681 // value at runtime. For non-preemptible symbols in a shared
682 // library, the target will need to record whether or not the
683 // value should be written (e.g., it may use a RELATIVE
684 // relocation type).
685 if (gsym->final_value_is_known() || gsym->needs_value_in_got())
686 {
687 Sized_symbol<size>* sgsym;
688 // This cast is a bit ugly. We don't want to put a
689 // virtual method in Symbol, because we want Symbol to be
690 // as small as possible.
691 sgsym = static_cast<Sized_symbol<size>*>(gsym);
692 val = sgsym->value();
693 }
694 }
695 break;
696
697 case CONSTANT_CODE:
698 val = this->u_.constant;
699 break;
700
701 default:
702 val = this->u_.object->local_symbol_value(this->local_sym_index_);
703 break;
704 }
705
706 elfcpp::Swap<size, big_endian>::writeval(pov, val);
707 }
708
709 // Output_data_got methods.
710
711 // Add an entry for a global symbol to the GOT. This returns true if
712 // this is a new GOT entry, false if the symbol already had a GOT
713 // entry.
714
715 template<int size, bool big_endian>
716 bool
717 Output_data_got<size, big_endian>::add_global(Symbol* gsym)
718 {
719 if (gsym->has_got_offset())
720 return false;
721
722 this->entries_.push_back(Got_entry(gsym));
723 this->set_got_size();
724 gsym->set_got_offset(this->last_got_offset());
725 return true;
726 }
727
728 // Add an entry for a local symbol to the GOT. This returns true if
729 // this is a new GOT entry, false if the symbol already has a GOT
730 // entry.
731
732 template<int size, bool big_endian>
733 bool
734 Output_data_got<size, big_endian>::add_local(
735 Sized_relobj<size, big_endian>* object,
736 unsigned int symndx)
737 {
738 if (object->local_has_got_offset(symndx))
739 return false;
740
741 this->entries_.push_back(Got_entry(object, symndx));
742 this->set_got_size();
743 object->set_local_got_offset(symndx, this->last_got_offset());
744 return true;
745 }
746
747 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
748 // In a pair of entries, the first value in the pair will be used for the
749 // module index, and the second value will be used for the dtv-relative
750 // offset. This returns true if this is a new GOT entry, false if the symbol
751 // already has a GOT entry.
752
753 template<int size, bool big_endian>
754 bool
755 Output_data_got<size, big_endian>::add_global_tls(Symbol* gsym,
756 bool need_pair)
757 {
758 if (gsym->has_tls_got_offset(need_pair))
759 return false;
760
761 this->entries_.push_back(Got_entry(gsym));
762 gsym->set_tls_got_offset(this->last_got_offset(), need_pair);
763 if (need_pair)
764 this->entries_.push_back(Got_entry(gsym));
765 this->set_got_size();
766 return true;
767 }
768
769 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
770 // In a pair of entries, the first value in the pair will be used for the
771 // module index, and the second value will be used for the dtv-relative
772 // offset. This returns true if this is a new GOT entry, false if the symbol
773 // already has a GOT entry.
774
775 template<int size, bool big_endian>
776 bool
777 Output_data_got<size, big_endian>::add_local_tls(
778 Sized_relobj<size, big_endian>* object,
779 unsigned int symndx,
780 bool need_pair)
781 {
782 if (object->local_has_tls_got_offset(symndx, need_pair))
783 return false;
784
785 this->entries_.push_back(Got_entry(object, symndx));
786 object->set_local_tls_got_offset(symndx, this->last_got_offset(), need_pair);
787 if (need_pair)
788 this->entries_.push_back(Got_entry(object, symndx));
789 this->set_got_size();
790 return true;
791 }
792
793 // Write out the GOT.
794
795 template<int size, bool big_endian>
796 void
797 Output_data_got<size, big_endian>::do_write(Output_file* of)
798 {
799 const int add = size / 8;
800
801 const off_t off = this->offset();
802 const off_t oview_size = this->data_size();
803 unsigned char* const oview = of->get_output_view(off, oview_size);
804
805 unsigned char* pov = oview;
806 for (typename Got_entries::const_iterator p = this->entries_.begin();
807 p != this->entries_.end();
808 ++p)
809 {
810 p->write(pov);
811 pov += add;
812 }
813
814 gold_assert(pov - oview == oview_size);
815
816 of->write_output_view(off, oview_size, oview);
817
818 // We no longer need the GOT entries.
819 this->entries_.clear();
820 }
821
822 // Output_data_dynamic::Dynamic_entry methods.
823
824 // Write out the entry.
825
826 template<int size, bool big_endian>
827 void
828 Output_data_dynamic::Dynamic_entry::write(
829 unsigned char* pov,
830 const Stringpool* pool
831 ACCEPT_SIZE_ENDIAN) const
832 {
833 typename elfcpp::Elf_types<size>::Elf_WXword val;
834 switch (this->classification_)
835 {
836 case DYNAMIC_NUMBER:
837 val = this->u_.val;
838 break;
839
840 case DYNAMIC_SECTION_ADDRESS:
841 val = this->u_.od->address();
842 break;
843
844 case DYNAMIC_SECTION_SIZE:
845 val = this->u_.od->data_size();
846 break;
847
848 case DYNAMIC_SYMBOL:
849 {
850 const Sized_symbol<size>* s =
851 static_cast<const Sized_symbol<size>*>(this->u_.sym);
852 val = s->value();
853 }
854 break;
855
856 case DYNAMIC_STRING:
857 val = pool->get_offset(this->u_.str);
858 break;
859
860 default:
861 gold_unreachable();
862 }
863
864 elfcpp::Dyn_write<size, big_endian> dw(pov);
865 dw.put_d_tag(this->tag_);
866 dw.put_d_val(val);
867 }
868
869 // Output_data_dynamic methods.
870
871 // Adjust the output section to set the entry size.
872
873 void
874 Output_data_dynamic::do_adjust_output_section(Output_section* os)
875 {
876 if (parameters->get_size() == 32)
877 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
878 else if (parameters->get_size() == 64)
879 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
880 else
881 gold_unreachable();
882 }
883
884 // Set the final data size.
885
886 void
887 Output_data_dynamic::set_final_data_size()
888 {
889 // Add the terminating entry.
890 this->add_constant(elfcpp::DT_NULL, 0);
891
892 int dyn_size;
893 if (parameters->get_size() == 32)
894 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
895 else if (parameters->get_size() == 64)
896 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
897 else
898 gold_unreachable();
899 this->set_data_size(this->entries_.size() * dyn_size);
900 }
901
902 // Write out the dynamic entries.
903
904 void
905 Output_data_dynamic::do_write(Output_file* of)
906 {
907 if (parameters->get_size() == 32)
908 {
909 if (parameters->is_big_endian())
910 {
911 #ifdef HAVE_TARGET_32_BIG
912 this->sized_write<32, true>(of);
913 #else
914 gold_unreachable();
915 #endif
916 }
917 else
918 {
919 #ifdef HAVE_TARGET_32_LITTLE
920 this->sized_write<32, false>(of);
921 #else
922 gold_unreachable();
923 #endif
924 }
925 }
926 else if (parameters->get_size() == 64)
927 {
928 if (parameters->is_big_endian())
929 {
930 #ifdef HAVE_TARGET_64_BIG
931 this->sized_write<64, true>(of);
932 #else
933 gold_unreachable();
934 #endif
935 }
936 else
937 {
938 #ifdef HAVE_TARGET_64_LITTLE
939 this->sized_write<64, false>(of);
940 #else
941 gold_unreachable();
942 #endif
943 }
944 }
945 else
946 gold_unreachable();
947 }
948
949 template<int size, bool big_endian>
950 void
951 Output_data_dynamic::sized_write(Output_file* of)
952 {
953 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
954
955 const off_t offset = this->offset();
956 const off_t oview_size = this->data_size();
957 unsigned char* const oview = of->get_output_view(offset, oview_size);
958
959 unsigned char* pov = oview;
960 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
961 p != this->entries_.end();
962 ++p)
963 {
964 p->write SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
965 pov, this->pool_ SELECT_SIZE_ENDIAN(size, big_endian));
966 pov += dyn_size;
967 }
968
969 gold_assert(pov - oview == oview_size);
970
971 of->write_output_view(offset, oview_size, oview);
972
973 // We no longer need the dynamic entries.
974 this->entries_.clear();
975 }
976
977 // Output_section::Input_section methods.
978
979 // Return the data size. For an input section we store the size here.
980 // For an Output_section_data, we have to ask it for the size.
981
982 off_t
983 Output_section::Input_section::data_size() const
984 {
985 if (this->is_input_section())
986 return this->u1_.data_size;
987 else
988 return this->u2_.posd->data_size();
989 }
990
991 // Set the address and file offset.
992
993 void
994 Output_section::Input_section::set_address_and_file_offset(
995 uint64_t address,
996 off_t file_offset,
997 off_t section_file_offset)
998 {
999 if (this->is_input_section())
1000 this->u2_.object->set_section_offset(this->shndx_,
1001 file_offset - section_file_offset);
1002 else
1003 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1004 }
1005
1006 // Finalize the data size.
1007
1008 void
1009 Output_section::Input_section::finalize_data_size()
1010 {
1011 if (!this->is_input_section())
1012 this->u2_.posd->finalize_data_size();
1013 }
1014
1015 // Try to turn an input offset into an output offset.
1016
1017 bool
1018 Output_section::Input_section::output_offset(const Relobj* object,
1019 unsigned int shndx,
1020 off_t offset,
1021 off_t *poutput) const
1022 {
1023 if (!this->is_input_section())
1024 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1025 else
1026 {
1027 if (this->shndx_ != shndx || this->u2_.object != object)
1028 return false;
1029 off_t output_offset;
1030 Output_section* os = object->output_section(shndx, &output_offset);
1031 gold_assert(os != NULL);
1032 gold_assert(output_offset != -1);
1033 *poutput = output_offset + offset;
1034 return true;
1035 }
1036 }
1037
1038 // Write out the data. We don't have to do anything for an input
1039 // section--they are handled via Object::relocate--but this is where
1040 // we write out the data for an Output_section_data.
1041
1042 void
1043 Output_section::Input_section::write(Output_file* of)
1044 {
1045 if (!this->is_input_section())
1046 this->u2_.posd->write(of);
1047 }
1048
1049 // Write the data to a buffer. As for write(), we don't have to do
1050 // anything for an input section.
1051
1052 void
1053 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1054 {
1055 if (!this->is_input_section())
1056 this->u2_.posd->write_to_buffer(buffer);
1057 }
1058
1059 // Output_section methods.
1060
1061 // Construct an Output_section. NAME will point into a Stringpool.
1062
1063 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1064 elfcpp::Elf_Xword flags)
1065 : name_(name),
1066 addralign_(0),
1067 entsize_(0),
1068 link_section_(NULL),
1069 link_(0),
1070 info_section_(NULL),
1071 info_(0),
1072 type_(type),
1073 flags_(flags),
1074 out_shndx_(-1U),
1075 symtab_index_(0),
1076 dynsym_index_(0),
1077 input_sections_(),
1078 first_input_offset_(0),
1079 fills_(),
1080 postprocessing_buffer_(NULL),
1081 needs_symtab_index_(false),
1082 needs_dynsym_index_(false),
1083 should_link_to_symtab_(false),
1084 should_link_to_dynsym_(false),
1085 after_input_sections_(false),
1086 requires_postprocessing_(false)
1087 {
1088 // An unallocated section has no address. Forcing this means that
1089 // we don't need special treatment for symbols defined in debug
1090 // sections.
1091 if ((flags & elfcpp::SHF_ALLOC) == 0)
1092 this->set_address(0);
1093 }
1094
1095 Output_section::~Output_section()
1096 {
1097 }
1098
1099 // Set the entry size.
1100
1101 void
1102 Output_section::set_entsize(uint64_t v)
1103 {
1104 if (this->entsize_ == 0)
1105 this->entsize_ = v;
1106 else
1107 gold_assert(this->entsize_ == v);
1108 }
1109
1110 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1111 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1112 // relocation section which applies to this section, or 0 if none, or
1113 // -1U if more than one. Return the offset of the input section
1114 // within the output section. Return -1 if the input section will
1115 // receive special handling. In the normal case we don't always keep
1116 // track of input sections for an Output_section. Instead, each
1117 // Object keeps track of the Output_section for each of its input
1118 // sections.
1119
1120 template<int size, bool big_endian>
1121 off_t
1122 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1123 unsigned int shndx,
1124 const char* secname,
1125 const elfcpp::Shdr<size, big_endian>& shdr,
1126 unsigned int reloc_shndx)
1127 {
1128 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1129 if ((addralign & (addralign - 1)) != 0)
1130 {
1131 object->error(_("invalid alignment %lu for section \"%s\""),
1132 static_cast<unsigned long>(addralign), secname);
1133 addralign = 1;
1134 }
1135
1136 if (addralign > this->addralign_)
1137 this->addralign_ = addralign;
1138
1139 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1140 uint64_t entsize = shdr.get_sh_entsize();
1141
1142 // .debug_str is a mergeable string section, but is not always so
1143 // marked by compilers. Mark manually here so we can optimize.
1144 if (strcmp(secname, ".debug_str") == 0)
1145 {
1146 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1147 entsize = 1;
1148 }
1149
1150 // If this is a SHF_MERGE section, we pass all the input sections to
1151 // a Output_data_merge. We don't try to handle relocations for such
1152 // a section.
1153 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1154 && reloc_shndx == 0)
1155 {
1156 if (this->add_merge_input_section(object, shndx, sh_flags,
1157 entsize, addralign))
1158 {
1159 // Tell the relocation routines that they need to call the
1160 // output_offset method to determine the final address.
1161 return -1;
1162 }
1163 }
1164
1165 off_t offset_in_section = this->current_data_size_for_child();
1166 off_t aligned_offset_in_section = align_address(offset_in_section,
1167 addralign);
1168
1169 if (aligned_offset_in_section > offset_in_section
1170 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1171 && object->target()->has_code_fill())
1172 {
1173 // We need to add some fill data. Using fill_list_ when
1174 // possible is an optimization, since we will often have fill
1175 // sections without input sections.
1176 off_t fill_len = aligned_offset_in_section - offset_in_section;
1177 if (this->input_sections_.empty())
1178 this->fills_.push_back(Fill(offset_in_section, fill_len));
1179 else
1180 {
1181 // FIXME: When relaxing, the size needs to adjust to
1182 // maintain a constant alignment.
1183 std::string fill_data(object->target()->code_fill(fill_len));
1184 Output_data_const* odc = new Output_data_const(fill_data, 1);
1185 this->input_sections_.push_back(Input_section(odc));
1186 }
1187 }
1188
1189 this->set_current_data_size_for_child(aligned_offset_in_section
1190 + shdr.get_sh_size());
1191
1192 // We need to keep track of this section if we are already keeping
1193 // track of sections, or if we are relaxing. FIXME: Add test for
1194 // relaxing.
1195 if (!this->input_sections_.empty())
1196 this->input_sections_.push_back(Input_section(object, shndx,
1197 shdr.get_sh_size(),
1198 addralign));
1199
1200 return aligned_offset_in_section;
1201 }
1202
1203 // Add arbitrary data to an output section.
1204
1205 void
1206 Output_section::add_output_section_data(Output_section_data* posd)
1207 {
1208 Input_section inp(posd);
1209 this->add_output_section_data(&inp);
1210 }
1211
1212 // Add arbitrary data to an output section by Input_section.
1213
1214 void
1215 Output_section::add_output_section_data(Input_section* inp)
1216 {
1217 if (this->input_sections_.empty())
1218 this->first_input_offset_ = this->current_data_size_for_child();
1219
1220 this->input_sections_.push_back(*inp);
1221
1222 uint64_t addralign = inp->addralign();
1223 if (addralign > this->addralign_)
1224 this->addralign_ = addralign;
1225
1226 inp->set_output_section(this);
1227 }
1228
1229 // Add a merge section to an output section.
1230
1231 void
1232 Output_section::add_output_merge_section(Output_section_data* posd,
1233 bool is_string, uint64_t entsize)
1234 {
1235 Input_section inp(posd, is_string, entsize);
1236 this->add_output_section_data(&inp);
1237 }
1238
1239 // Add an input section to a SHF_MERGE section.
1240
1241 bool
1242 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1243 uint64_t flags, uint64_t entsize,
1244 uint64_t addralign)
1245 {
1246 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1247
1248 // We only merge strings if the alignment is not more than the
1249 // character size. This could be handled, but it's unusual.
1250 if (is_string && addralign > entsize)
1251 return false;
1252
1253 Input_section_list::iterator p;
1254 for (p = this->input_sections_.begin();
1255 p != this->input_sections_.end();
1256 ++p)
1257 if (p->is_merge_section(is_string, entsize, addralign))
1258 {
1259 p->add_input_section(object, shndx);
1260 return true;
1261 }
1262
1263 // We handle the actual constant merging in Output_merge_data or
1264 // Output_merge_string_data.
1265 Output_section_data* posd;
1266 if (!is_string)
1267 posd = new Output_merge_data(entsize, addralign);
1268 else
1269 {
1270 switch (entsize)
1271 {
1272 case 1:
1273 posd = new Output_merge_string<char>(addralign);
1274 break;
1275 case 2:
1276 posd = new Output_merge_string<uint16_t>(addralign);
1277 break;
1278 case 4:
1279 posd = new Output_merge_string<uint32_t>(addralign);
1280 break;
1281 default:
1282 return false;
1283 }
1284 }
1285
1286 this->add_output_merge_section(posd, is_string, entsize);
1287 posd->add_input_section(object, shndx);
1288
1289 return true;
1290 }
1291
1292 // Given an address OFFSET relative to the start of input section
1293 // SHNDX in OBJECT, return whether this address is being included in
1294 // the final link. This should only be called if SHNDX in OBJECT has
1295 // a special mapping.
1296
1297 bool
1298 Output_section::is_input_address_mapped(const Relobj* object,
1299 unsigned int shndx,
1300 off_t offset) const
1301 {
1302 gold_assert(object->is_section_specially_mapped(shndx));
1303
1304 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1305 p != this->input_sections_.end();
1306 ++p)
1307 {
1308 off_t output_offset;
1309 if (p->output_offset(object, shndx, offset, &output_offset))
1310 return output_offset != -1;
1311 }
1312
1313 // By default we assume that the address is mapped. This should
1314 // only be called after we have passed all sections to Layout. At
1315 // that point we should know what we are discarding.
1316 return true;
1317 }
1318
1319 // Given an address OFFSET relative to the start of input section
1320 // SHNDX in object OBJECT, return the output offset relative to the
1321 // start of the section. This should only be called if SHNDX in
1322 // OBJECT has a special mapping.
1323
1324 off_t
1325 Output_section::output_offset(const Relobj* object, unsigned int shndx,
1326 off_t offset) const
1327 {
1328 gold_assert(object->is_section_specially_mapped(shndx));
1329 // This can only be called meaningfully when layout is complete.
1330 gold_assert(Output_data::is_layout_complete());
1331
1332 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1333 p != this->input_sections_.end();
1334 ++p)
1335 {
1336 off_t output_offset;
1337 if (p->output_offset(object, shndx, offset, &output_offset))
1338 return output_offset;
1339 }
1340 gold_unreachable();
1341 }
1342
1343 // Return the output virtual address of OFFSET relative to the start
1344 // of input section SHNDX in object OBJECT.
1345
1346 uint64_t
1347 Output_section::output_address(const Relobj* object, unsigned int shndx,
1348 off_t offset) const
1349 {
1350 gold_assert(object->is_section_specially_mapped(shndx));
1351 // This can only be called meaningfully when layout is complete.
1352 gold_assert(Output_data::is_layout_complete());
1353
1354 uint64_t addr = this->address() + this->first_input_offset_;
1355 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1356 p != this->input_sections_.end();
1357 ++p)
1358 {
1359 addr = align_address(addr, p->addralign());
1360 off_t output_offset;
1361 if (p->output_offset(object, shndx, offset, &output_offset))
1362 {
1363 if (output_offset == -1)
1364 return -1U;
1365 return addr + output_offset;
1366 }
1367 addr += p->data_size();
1368 }
1369
1370 // If we get here, it means that we don't know the mapping for this
1371 // input section. This might happen in principle if
1372 // add_input_section were called before add_output_section_data.
1373 // But it should never actually happen.
1374
1375 gold_unreachable();
1376 }
1377
1378 // Set the data size of an Output_section. This is where we handle
1379 // setting the addresses of any Output_section_data objects.
1380
1381 void
1382 Output_section::set_final_data_size()
1383 {
1384 if (this->input_sections_.empty())
1385 {
1386 this->set_data_size(this->current_data_size_for_child());
1387 return;
1388 }
1389
1390 uint64_t address = this->address();
1391 off_t startoff = this->offset();
1392 off_t off = startoff + this->first_input_offset_;
1393 for (Input_section_list::iterator p = this->input_sections_.begin();
1394 p != this->input_sections_.end();
1395 ++p)
1396 {
1397 off = align_address(off, p->addralign());
1398 p->set_address_and_file_offset(address + (off - startoff), off,
1399 startoff);
1400 off += p->data_size();
1401 }
1402
1403 this->set_data_size(off - startoff);
1404 }
1405
1406 // Write the section header to *OSHDR.
1407
1408 template<int size, bool big_endian>
1409 void
1410 Output_section::write_header(const Layout* layout,
1411 const Stringpool* secnamepool,
1412 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1413 {
1414 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1415 oshdr->put_sh_type(this->type_);
1416 oshdr->put_sh_flags(this->flags_);
1417 oshdr->put_sh_addr(this->address());
1418 oshdr->put_sh_offset(this->offset());
1419 oshdr->put_sh_size(this->data_size());
1420 if (this->link_section_ != NULL)
1421 oshdr->put_sh_link(this->link_section_->out_shndx());
1422 else if (this->should_link_to_symtab_)
1423 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
1424 else if (this->should_link_to_dynsym_)
1425 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
1426 else
1427 oshdr->put_sh_link(this->link_);
1428 if (this->info_section_ != NULL)
1429 oshdr->put_sh_info(this->info_section_->out_shndx());
1430 else
1431 oshdr->put_sh_info(this->info_);
1432 oshdr->put_sh_addralign(this->addralign_);
1433 oshdr->put_sh_entsize(this->entsize_);
1434 }
1435
1436 // Write out the data. For input sections the data is written out by
1437 // Object::relocate, but we have to handle Output_section_data objects
1438 // here.
1439
1440 void
1441 Output_section::do_write(Output_file* of)
1442 {
1443 gold_assert(!this->requires_postprocessing());
1444
1445 off_t output_section_file_offset = this->offset();
1446 for (Fill_list::iterator p = this->fills_.begin();
1447 p != this->fills_.end();
1448 ++p)
1449 {
1450 std::string fill_data(of->target()->code_fill(p->length()));
1451 of->write(output_section_file_offset + p->section_offset(),
1452 fill_data.data(), fill_data.size());
1453 }
1454
1455 for (Input_section_list::iterator p = this->input_sections_.begin();
1456 p != this->input_sections_.end();
1457 ++p)
1458 p->write(of);
1459 }
1460
1461 // If a section requires postprocessing, create the buffer to use.
1462
1463 void
1464 Output_section::create_postprocessing_buffer()
1465 {
1466 gold_assert(this->requires_postprocessing());
1467 gold_assert(this->postprocessing_buffer_ == NULL);
1468
1469 if (!this->input_sections_.empty())
1470 {
1471 off_t off = this->first_input_offset_;
1472 for (Input_section_list::iterator p = this->input_sections_.begin();
1473 p != this->input_sections_.end();
1474 ++p)
1475 {
1476 off = align_address(off, p->addralign());
1477 p->finalize_data_size();
1478 off += p->data_size();
1479 }
1480 this->set_current_data_size_for_child(off);
1481 }
1482
1483 off_t buffer_size = this->current_data_size_for_child();
1484 this->postprocessing_buffer_ = new unsigned char[buffer_size];
1485 }
1486
1487 // Write all the data of an Output_section into the postprocessing
1488 // buffer. This is used for sections which require postprocessing,
1489 // such as compression. Input sections are handled by
1490 // Object::Relocate.
1491
1492 void
1493 Output_section::write_to_postprocessing_buffer()
1494 {
1495 gold_assert(this->requires_postprocessing());
1496
1497 Target* target = parameters->target();
1498 unsigned char* buffer = this->postprocessing_buffer();
1499 for (Fill_list::iterator p = this->fills_.begin();
1500 p != this->fills_.end();
1501 ++p)
1502 {
1503 std::string fill_data(target->code_fill(p->length()));
1504 memcpy(buffer + p->section_offset(), fill_data.data(), fill_data.size());
1505 }
1506
1507 off_t off = this->first_input_offset_;
1508 for (Input_section_list::iterator p = this->input_sections_.begin();
1509 p != this->input_sections_.end();
1510 ++p)
1511 {
1512 off = align_address(off, p->addralign());
1513 p->write_to_buffer(buffer + off);
1514 off += p->data_size();
1515 }
1516 }
1517
1518 // Output segment methods.
1519
1520 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
1521 : output_data_(),
1522 output_bss_(),
1523 vaddr_(0),
1524 paddr_(0),
1525 memsz_(0),
1526 align_(0),
1527 offset_(0),
1528 filesz_(0),
1529 type_(type),
1530 flags_(flags),
1531 is_align_known_(false)
1532 {
1533 }
1534
1535 // Add an Output_section to an Output_segment.
1536
1537 void
1538 Output_segment::add_output_section(Output_section* os,
1539 elfcpp::Elf_Word seg_flags,
1540 bool front)
1541 {
1542 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1543 gold_assert(!this->is_align_known_);
1544
1545 // Update the segment flags.
1546 this->flags_ |= seg_flags;
1547
1548 Output_segment::Output_data_list* pdl;
1549 if (os->type() == elfcpp::SHT_NOBITS)
1550 pdl = &this->output_bss_;
1551 else
1552 pdl = &this->output_data_;
1553
1554 // So that PT_NOTE segments will work correctly, we need to ensure
1555 // that all SHT_NOTE sections are adjacent. This will normally
1556 // happen automatically, because all the SHT_NOTE input sections
1557 // will wind up in the same output section. However, it is possible
1558 // for multiple SHT_NOTE input sections to have different section
1559 // flags, and thus be in different output sections, but for the
1560 // different section flags to map into the same segment flags and
1561 // thus the same output segment.
1562
1563 // Note that while there may be many input sections in an output
1564 // section, there are normally only a few output sections in an
1565 // output segment. This loop is expected to be fast.
1566
1567 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
1568 {
1569 Output_segment::Output_data_list::iterator p = pdl->end();
1570 do
1571 {
1572 --p;
1573 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
1574 {
1575 // We don't worry about the FRONT parameter.
1576 ++p;
1577 pdl->insert(p, os);
1578 return;
1579 }
1580 }
1581 while (p != pdl->begin());
1582 }
1583
1584 // Similarly, so that PT_TLS segments will work, we need to group
1585 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
1586 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
1587 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
1588 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
1589 // and the PT_TLS segment -- we do this grouping only for the
1590 // PT_LOAD segment.
1591 if (this->type_ != elfcpp::PT_TLS
1592 && (os->flags() & elfcpp::SHF_TLS) != 0
1593 && !this->output_data_.empty())
1594 {
1595 pdl = &this->output_data_;
1596 bool nobits = os->type() == elfcpp::SHT_NOBITS;
1597 bool sawtls = false;
1598 Output_segment::Output_data_list::iterator p = pdl->end();
1599 do
1600 {
1601 --p;
1602 bool insert;
1603 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
1604 {
1605 sawtls = true;
1606 // Put a NOBITS section after the first TLS section.
1607 // But a PROGBITS section after the first TLS/PROGBITS
1608 // section.
1609 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
1610 }
1611 else
1612 {
1613 // If we've gone past the TLS sections, but we've seen a
1614 // TLS section, then we need to insert this section now.
1615 insert = sawtls;
1616 }
1617
1618 if (insert)
1619 {
1620 // We don't worry about the FRONT parameter.
1621 ++p;
1622 pdl->insert(p, os);
1623 return;
1624 }
1625 }
1626 while (p != pdl->begin());
1627
1628 // There are no TLS sections yet; put this one at the requested
1629 // location in the section list.
1630 }
1631
1632 if (front)
1633 pdl->push_front(os);
1634 else
1635 pdl->push_back(os);
1636 }
1637
1638 // Add an Output_data (which is not an Output_section) to the start of
1639 // a segment.
1640
1641 void
1642 Output_segment::add_initial_output_data(Output_data* od)
1643 {
1644 gold_assert(!this->is_align_known_);
1645 this->output_data_.push_front(od);
1646 }
1647
1648 // Return the maximum alignment of the Output_data in Output_segment.
1649 // Once we compute this, we prohibit new sections from being added.
1650
1651 uint64_t
1652 Output_segment::addralign()
1653 {
1654 if (!this->is_align_known_)
1655 {
1656 uint64_t addralign;
1657
1658 addralign = Output_segment::maximum_alignment(&this->output_data_);
1659 if (addralign > this->align_)
1660 this->align_ = addralign;
1661
1662 addralign = Output_segment::maximum_alignment(&this->output_bss_);
1663 if (addralign > this->align_)
1664 this->align_ = addralign;
1665
1666 this->is_align_known_ = true;
1667 }
1668
1669 return this->align_;
1670 }
1671
1672 // Return the maximum alignment of a list of Output_data.
1673
1674 uint64_t
1675 Output_segment::maximum_alignment(const Output_data_list* pdl)
1676 {
1677 uint64_t ret = 0;
1678 for (Output_data_list::const_iterator p = pdl->begin();
1679 p != pdl->end();
1680 ++p)
1681 {
1682 uint64_t addralign = (*p)->addralign();
1683 if (addralign > ret)
1684 ret = addralign;
1685 }
1686 return ret;
1687 }
1688
1689 // Return the number of dynamic relocs applied to this segment.
1690
1691 unsigned int
1692 Output_segment::dynamic_reloc_count() const
1693 {
1694 return (this->dynamic_reloc_count_list(&this->output_data_)
1695 + this->dynamic_reloc_count_list(&this->output_bss_));
1696 }
1697
1698 // Return the number of dynamic relocs applied to an Output_data_list.
1699
1700 unsigned int
1701 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
1702 {
1703 unsigned int count = 0;
1704 for (Output_data_list::const_iterator p = pdl->begin();
1705 p != pdl->end();
1706 ++p)
1707 count += (*p)->dynamic_reloc_count();
1708 return count;
1709 }
1710
1711 // Set the section addresses for an Output_segment. ADDR is the
1712 // address and *POFF is the file offset. Set the section indexes
1713 // starting with *PSHNDX. Return the address of the immediately
1714 // following segment. Update *POFF and *PSHNDX.
1715
1716 uint64_t
1717 Output_segment::set_section_addresses(uint64_t addr, off_t* poff,
1718 unsigned int* pshndx)
1719 {
1720 gold_assert(this->type_ == elfcpp::PT_LOAD);
1721
1722 this->vaddr_ = addr;
1723 this->paddr_ = addr;
1724
1725 off_t orig_off = *poff;
1726 this->offset_ = orig_off;
1727
1728 *poff = align_address(*poff, this->addralign());
1729
1730 addr = this->set_section_list_addresses(&this->output_data_, addr, poff,
1731 pshndx);
1732 this->filesz_ = *poff - orig_off;
1733
1734 off_t off = *poff;
1735
1736 uint64_t ret = this->set_section_list_addresses(&this->output_bss_, addr,
1737 poff, pshndx);
1738 this->memsz_ = *poff - orig_off;
1739
1740 // Ignore the file offset adjustments made by the BSS Output_data
1741 // objects.
1742 *poff = off;
1743
1744 return ret;
1745 }
1746
1747 // Set the addresses and file offsets in a list of Output_data
1748 // structures.
1749
1750 uint64_t
1751 Output_segment::set_section_list_addresses(Output_data_list* pdl,
1752 uint64_t addr, off_t* poff,
1753 unsigned int* pshndx)
1754 {
1755 off_t startoff = *poff;
1756
1757 off_t off = startoff;
1758 for (Output_data_list::iterator p = pdl->begin();
1759 p != pdl->end();
1760 ++p)
1761 {
1762 off = align_address(off, (*p)->addralign());
1763 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
1764
1765 // Unless this is a PT_TLS segment, we want to ignore the size
1766 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
1767 // affect the size of a PT_LOAD segment.
1768 if (this->type_ == elfcpp::PT_TLS
1769 || !(*p)->is_section_flag_set(elfcpp::SHF_TLS)
1770 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
1771 off += (*p)->data_size();
1772
1773 if ((*p)->is_section())
1774 {
1775 (*p)->set_out_shndx(*pshndx);
1776 ++*pshndx;
1777 }
1778 }
1779
1780 *poff = off;
1781 return addr + (off - startoff);
1782 }
1783
1784 // For a non-PT_LOAD segment, set the offset from the sections, if
1785 // any.
1786
1787 void
1788 Output_segment::set_offset()
1789 {
1790 gold_assert(this->type_ != elfcpp::PT_LOAD);
1791
1792 if (this->output_data_.empty() && this->output_bss_.empty())
1793 {
1794 this->vaddr_ = 0;
1795 this->paddr_ = 0;
1796 this->memsz_ = 0;
1797 this->align_ = 0;
1798 this->offset_ = 0;
1799 this->filesz_ = 0;
1800 return;
1801 }
1802
1803 const Output_data* first;
1804 if (this->output_data_.empty())
1805 first = this->output_bss_.front();
1806 else
1807 first = this->output_data_.front();
1808 this->vaddr_ = first->address();
1809 this->paddr_ = this->vaddr_;
1810 this->offset_ = first->offset();
1811
1812 if (this->output_data_.empty())
1813 this->filesz_ = 0;
1814 else
1815 {
1816 const Output_data* last_data = this->output_data_.back();
1817 this->filesz_ = (last_data->address()
1818 + last_data->data_size()
1819 - this->vaddr_);
1820 }
1821
1822 const Output_data* last;
1823 if (this->output_bss_.empty())
1824 last = this->output_data_.back();
1825 else
1826 last = this->output_bss_.back();
1827 this->memsz_ = (last->address()
1828 + last->data_size()
1829 - this->vaddr_);
1830 }
1831
1832 // Return the number of Output_sections in an Output_segment.
1833
1834 unsigned int
1835 Output_segment::output_section_count() const
1836 {
1837 return (this->output_section_count_list(&this->output_data_)
1838 + this->output_section_count_list(&this->output_bss_));
1839 }
1840
1841 // Return the number of Output_sections in an Output_data_list.
1842
1843 unsigned int
1844 Output_segment::output_section_count_list(const Output_data_list* pdl) const
1845 {
1846 unsigned int count = 0;
1847 for (Output_data_list::const_iterator p = pdl->begin();
1848 p != pdl->end();
1849 ++p)
1850 {
1851 if ((*p)->is_section())
1852 ++count;
1853 }
1854 return count;
1855 }
1856
1857 // Write the segment data into *OPHDR.
1858
1859 template<int size, bool big_endian>
1860 void
1861 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
1862 {
1863 ophdr->put_p_type(this->type_);
1864 ophdr->put_p_offset(this->offset_);
1865 ophdr->put_p_vaddr(this->vaddr_);
1866 ophdr->put_p_paddr(this->paddr_);
1867 ophdr->put_p_filesz(this->filesz_);
1868 ophdr->put_p_memsz(this->memsz_);
1869 ophdr->put_p_flags(this->flags_);
1870 ophdr->put_p_align(this->addralign());
1871 }
1872
1873 // Write the section headers into V.
1874
1875 template<int size, bool big_endian>
1876 unsigned char*
1877 Output_segment::write_section_headers(const Layout* layout,
1878 const Stringpool* secnamepool,
1879 unsigned char* v,
1880 unsigned int *pshndx
1881 ACCEPT_SIZE_ENDIAN) const
1882 {
1883 // Every section that is attached to a segment must be attached to a
1884 // PT_LOAD segment, so we only write out section headers for PT_LOAD
1885 // segments.
1886 if (this->type_ != elfcpp::PT_LOAD)
1887 return v;
1888
1889 v = this->write_section_headers_list
1890 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1891 layout, secnamepool, &this->output_data_, v, pshndx
1892 SELECT_SIZE_ENDIAN(size, big_endian));
1893 v = this->write_section_headers_list
1894 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1895 layout, secnamepool, &this->output_bss_, v, pshndx
1896 SELECT_SIZE_ENDIAN(size, big_endian));
1897 return v;
1898 }
1899
1900 template<int size, bool big_endian>
1901 unsigned char*
1902 Output_segment::write_section_headers_list(const Layout* layout,
1903 const Stringpool* secnamepool,
1904 const Output_data_list* pdl,
1905 unsigned char* v,
1906 unsigned int* pshndx
1907 ACCEPT_SIZE_ENDIAN) const
1908 {
1909 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1910 for (Output_data_list::const_iterator p = pdl->begin();
1911 p != pdl->end();
1912 ++p)
1913 {
1914 if ((*p)->is_section())
1915 {
1916 const Output_section* ps = static_cast<const Output_section*>(*p);
1917 gold_assert(*pshndx == ps->out_shndx());
1918 elfcpp::Shdr_write<size, big_endian> oshdr(v);
1919 ps->write_header(layout, secnamepool, &oshdr);
1920 v += shdr_size;
1921 ++*pshndx;
1922 }
1923 }
1924 return v;
1925 }
1926
1927 // Output_file methods.
1928
1929 Output_file::Output_file(const General_options& options, Target* target)
1930 : options_(options),
1931 target_(target),
1932 name_(options.output_file_name()),
1933 o_(-1),
1934 file_size_(0),
1935 base_(NULL),
1936 map_is_anonymous_(false)
1937 {
1938 }
1939
1940 // Open the output file.
1941
1942 void
1943 Output_file::open(off_t file_size)
1944 {
1945 this->file_size_ = file_size;
1946
1947 // Unlink the file first; otherwise the open() may fail if the file
1948 // is busy (e.g. it's an executable that's currently being executed).
1949 //
1950 // However, the linker may be part of a system where a zero-length
1951 // file is created for it to write to, with tight permissions (gcc
1952 // 2.95 did something like this). Unlinking the file would work
1953 // around those permission controls, so we only unlink if the file
1954 // has a non-zero size. We also unlink only regular files to avoid
1955 // trouble with directories/etc.
1956 //
1957 // If we fail, continue; this command is merely a best-effort attempt
1958 // to improve the odds for open().
1959
1960 // We let the name "-" mean "stdout"
1961 if (strcmp(this->name_, "-") == 0)
1962 this->o_ = STDOUT_FILENO;
1963 else
1964 {
1965 struct stat s;
1966 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
1967 unlink_if_ordinary(this->name_);
1968
1969 int mode = parameters->output_is_object() ? 0666 : 0777;
1970 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
1971 if (o < 0)
1972 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
1973 this->o_ = o;
1974 }
1975
1976 this->map();
1977 }
1978
1979 // Resize the output file.
1980
1981 void
1982 Output_file::resize(off_t file_size)
1983 {
1984 // If the mmap is mapping an anonymous memory buffer, this is easy:
1985 // just mremap to the new size. If it's mapping to a file, we want
1986 // to unmap to flush to the file, then remap after growing the file.
1987 if (this->map_is_anonymous_)
1988 {
1989 void* base = ::mremap(this->base_, this->file_size_, file_size,
1990 MREMAP_MAYMOVE);
1991 if (base == MAP_FAILED)
1992 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
1993 this->base_ = static_cast<unsigned char*>(base);
1994 this->file_size_ = file_size;
1995 }
1996 else
1997 {
1998 this->unmap();
1999 this->file_size_ = file_size;
2000 this->map();
2001 }
2002 }
2003
2004 // Map the file into memory.
2005
2006 void
2007 Output_file::map()
2008 {
2009 const int o = this->o_;
2010
2011 // If the output file is not a regular file, don't try to mmap it;
2012 // instead, we'll mmap a block of memory (an anonymous buffer), and
2013 // then later write the buffer to the file.
2014 void* base;
2015 struct stat statbuf;
2016 if (o == STDOUT_FILENO || o == STDERR_FILENO
2017 || ::fstat(o, &statbuf) != 0
2018 || !S_ISREG(statbuf.st_mode))
2019 {
2020 this->map_is_anonymous_ = true;
2021 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2022 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2023 }
2024 else
2025 {
2026 // Write out one byte to make the file the right size.
2027 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2028 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2029 char b = 0;
2030 if (::write(o, &b, 1) != 1)
2031 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2032
2033 // Map the file into memory.
2034 this->map_is_anonymous_ = false;
2035 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2036 MAP_SHARED, o, 0);
2037 }
2038 if (base == MAP_FAILED)
2039 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
2040 this->base_ = static_cast<unsigned char*>(base);
2041 }
2042
2043 // Unmap the file from memory.
2044
2045 void
2046 Output_file::unmap()
2047 {
2048 if (::munmap(this->base_, this->file_size_) < 0)
2049 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
2050 this->base_ = NULL;
2051 }
2052
2053 // Close the output file.
2054
2055 void
2056 Output_file::close()
2057 {
2058 // If the map isn't file-backed, we need to write it now.
2059 if (this->map_is_anonymous_)
2060 {
2061 size_t bytes_to_write = this->file_size_;
2062 while (bytes_to_write > 0)
2063 {
2064 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2065 if (bytes_written == 0)
2066 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2067 else if (bytes_written < 0)
2068 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2069 else
2070 bytes_to_write -= bytes_written;
2071 }
2072 }
2073 this->unmap();
2074
2075 // We don't close stdout or stderr
2076 if (this->o_ != STDOUT_FILENO && this->o_ != STDERR_FILENO)
2077 if (::close(this->o_) < 0)
2078 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
2079 this->o_ = -1;
2080 }
2081
2082 // Instantiate the templates we need. We could use the configure
2083 // script to restrict this to only the ones for implemented targets.
2084
2085 #ifdef HAVE_TARGET_32_LITTLE
2086 template
2087 off_t
2088 Output_section::add_input_section<32, false>(
2089 Sized_relobj<32, false>* object,
2090 unsigned int shndx,
2091 const char* secname,
2092 const elfcpp::Shdr<32, false>& shdr,
2093 unsigned int reloc_shndx);
2094 #endif
2095
2096 #ifdef HAVE_TARGET_32_BIG
2097 template
2098 off_t
2099 Output_section::add_input_section<32, true>(
2100 Sized_relobj<32, true>* object,
2101 unsigned int shndx,
2102 const char* secname,
2103 const elfcpp::Shdr<32, true>& shdr,
2104 unsigned int reloc_shndx);
2105 #endif
2106
2107 #ifdef HAVE_TARGET_64_LITTLE
2108 template
2109 off_t
2110 Output_section::add_input_section<64, false>(
2111 Sized_relobj<64, false>* object,
2112 unsigned int shndx,
2113 const char* secname,
2114 const elfcpp::Shdr<64, false>& shdr,
2115 unsigned int reloc_shndx);
2116 #endif
2117
2118 #ifdef HAVE_TARGET_64_BIG
2119 template
2120 off_t
2121 Output_section::add_input_section<64, true>(
2122 Sized_relobj<64, true>* object,
2123 unsigned int shndx,
2124 const char* secname,
2125 const elfcpp::Shdr<64, true>& shdr,
2126 unsigned int reloc_shndx);
2127 #endif
2128
2129 #ifdef HAVE_TARGET_32_LITTLE
2130 template
2131 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
2132 #endif
2133
2134 #ifdef HAVE_TARGET_32_BIG
2135 template
2136 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
2137 #endif
2138
2139 #ifdef HAVE_TARGET_64_LITTLE
2140 template
2141 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
2142 #endif
2143
2144 #ifdef HAVE_TARGET_64_BIG
2145 template
2146 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
2147 #endif
2148
2149 #ifdef HAVE_TARGET_32_LITTLE
2150 template
2151 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
2152 #endif
2153
2154 #ifdef HAVE_TARGET_32_BIG
2155 template
2156 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
2157 #endif
2158
2159 #ifdef HAVE_TARGET_64_LITTLE
2160 template
2161 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
2162 #endif
2163
2164 #ifdef HAVE_TARGET_64_BIG
2165 template
2166 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
2167 #endif
2168
2169 #ifdef HAVE_TARGET_32_LITTLE
2170 template
2171 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
2172 #endif
2173
2174 #ifdef HAVE_TARGET_32_BIG
2175 template
2176 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
2177 #endif
2178
2179 #ifdef HAVE_TARGET_64_LITTLE
2180 template
2181 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
2182 #endif
2183
2184 #ifdef HAVE_TARGET_64_BIG
2185 template
2186 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
2187 #endif
2188
2189 #ifdef HAVE_TARGET_32_LITTLE
2190 template
2191 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
2192 #endif
2193
2194 #ifdef HAVE_TARGET_32_BIG
2195 template
2196 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
2197 #endif
2198
2199 #ifdef HAVE_TARGET_64_LITTLE
2200 template
2201 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
2202 #endif
2203
2204 #ifdef HAVE_TARGET_64_BIG
2205 template
2206 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
2207 #endif
2208
2209 #ifdef HAVE_TARGET_32_LITTLE
2210 template
2211 class Output_data_got<32, false>;
2212 #endif
2213
2214 #ifdef HAVE_TARGET_32_BIG
2215 template
2216 class Output_data_got<32, true>;
2217 #endif
2218
2219 #ifdef HAVE_TARGET_64_LITTLE
2220 template
2221 class Output_data_got<64, false>;
2222 #endif
2223
2224 #ifdef HAVE_TARGET_64_BIG
2225 template
2226 class Output_data_got<64, true>;
2227 #endif
2228
2229 } // End namespace gold.