Set the default DLL chracteristics to 0 for Cygwin based targets.
[binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 if (len <= 0)
131 return 0;
132
133 #ifdef HAVE_POSIX_FALLOCATE
134 if (parameters->options().posix_fallocate())
135 {
136 int err = ::posix_fallocate(o, offset, len);
137 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
138 return err;
139 }
140 #endif // defined(HAVE_POSIX_FALLOCATE)
141
142 #ifdef HAVE_FALLOCATE
143 {
144 errno = 0;
145 int err = ::fallocate(o, 0, offset, len);
146 if (err < 0 && errno != EINVAL && errno != ENOSYS && errno != EOPNOTSUPP)
147 return errno;
148 }
149 #endif // defined(HAVE_FALLOCATE)
150
151 errno = 0;
152 if (::ftruncate(o, offset + len) < 0)
153 return errno;
154 return 0;
155 }
156
157 // Output_data variables.
158
159 bool Output_data::allocated_sizes_are_fixed;
160
161 // Output_data methods.
162
163 Output_data::~Output_data()
164 {
165 }
166
167 // Return the default alignment for the target size.
168
169 uint64_t
170 Output_data::default_alignment()
171 {
172 return Output_data::default_alignment_for_size(
173 parameters->target().get_size());
174 }
175
176 // Return the default alignment for a size--32 or 64.
177
178 uint64_t
179 Output_data::default_alignment_for_size(int size)
180 {
181 if (size == 32)
182 return 4;
183 else if (size == 64)
184 return 8;
185 else
186 gold_unreachable();
187 }
188
189 // Output_section_header methods. This currently assumes that the
190 // segment and section lists are complete at construction time.
191
192 Output_section_headers::Output_section_headers(
193 const Layout* layout,
194 const Layout::Segment_list* segment_list,
195 const Layout::Section_list* section_list,
196 const Layout::Section_list* unattached_section_list,
197 const Stringpool* secnamepool,
198 const Output_section* shstrtab_section)
199 : layout_(layout),
200 segment_list_(segment_list),
201 section_list_(section_list),
202 unattached_section_list_(unattached_section_list),
203 secnamepool_(secnamepool),
204 shstrtab_section_(shstrtab_section)
205 {
206 }
207
208 // Compute the current data size.
209
210 off_t
211 Output_section_headers::do_size() const
212 {
213 // Count all the sections. Start with 1 for the null section.
214 off_t count = 1;
215 if (!parameters->options().relocatable())
216 {
217 for (Layout::Segment_list::const_iterator p =
218 this->segment_list_->begin();
219 p != this->segment_list_->end();
220 ++p)
221 if ((*p)->type() == elfcpp::PT_LOAD)
222 count += (*p)->output_section_count();
223 }
224 else
225 {
226 for (Layout::Section_list::const_iterator p =
227 this->section_list_->begin();
228 p != this->section_list_->end();
229 ++p)
230 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
231 ++count;
232 }
233 count += this->unattached_section_list_->size();
234
235 const int size = parameters->target().get_size();
236 int shdr_size;
237 if (size == 32)
238 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
239 else if (size == 64)
240 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
241 else
242 gold_unreachable();
243
244 return count * shdr_size;
245 }
246
247 // Write out the section headers.
248
249 void
250 Output_section_headers::do_write(Output_file* of)
251 {
252 switch (parameters->size_and_endianness())
253 {
254 #ifdef HAVE_TARGET_32_LITTLE
255 case Parameters::TARGET_32_LITTLE:
256 this->do_sized_write<32, false>(of);
257 break;
258 #endif
259 #ifdef HAVE_TARGET_32_BIG
260 case Parameters::TARGET_32_BIG:
261 this->do_sized_write<32, true>(of);
262 break;
263 #endif
264 #ifdef HAVE_TARGET_64_LITTLE
265 case Parameters::TARGET_64_LITTLE:
266 this->do_sized_write<64, false>(of);
267 break;
268 #endif
269 #ifdef HAVE_TARGET_64_BIG
270 case Parameters::TARGET_64_BIG:
271 this->do_sized_write<64, true>(of);
272 break;
273 #endif
274 default:
275 gold_unreachable();
276 }
277 }
278
279 template<int size, bool big_endian>
280 void
281 Output_section_headers::do_sized_write(Output_file* of)
282 {
283 off_t all_shdrs_size = this->data_size();
284 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
285
286 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
287 unsigned char* v = view;
288
289 {
290 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
291 oshdr.put_sh_name(0);
292 oshdr.put_sh_type(elfcpp::SHT_NULL);
293 oshdr.put_sh_flags(0);
294 oshdr.put_sh_addr(0);
295 oshdr.put_sh_offset(0);
296
297 size_t section_count = (this->data_size()
298 / elfcpp::Elf_sizes<size>::shdr_size);
299 if (section_count < elfcpp::SHN_LORESERVE)
300 oshdr.put_sh_size(0);
301 else
302 oshdr.put_sh_size(section_count);
303
304 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
305 if (shstrndx < elfcpp::SHN_LORESERVE)
306 oshdr.put_sh_link(0);
307 else
308 oshdr.put_sh_link(shstrndx);
309
310 size_t segment_count = this->segment_list_->size();
311 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
312
313 oshdr.put_sh_addralign(0);
314 oshdr.put_sh_entsize(0);
315 }
316
317 v += shdr_size;
318
319 unsigned int shndx = 1;
320 if (!parameters->options().relocatable())
321 {
322 for (Layout::Segment_list::const_iterator p =
323 this->segment_list_->begin();
324 p != this->segment_list_->end();
325 ++p)
326 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
327 this->secnamepool_,
328 v,
329 &shndx);
330 }
331 else
332 {
333 for (Layout::Section_list::const_iterator p =
334 this->section_list_->begin();
335 p != this->section_list_->end();
336 ++p)
337 {
338 // We do unallocated sections below, except that group
339 // sections have to come first.
340 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
341 && (*p)->type() != elfcpp::SHT_GROUP)
342 continue;
343 gold_assert(shndx == (*p)->out_shndx());
344 elfcpp::Shdr_write<size, big_endian> oshdr(v);
345 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
346 v += shdr_size;
347 ++shndx;
348 }
349 }
350
351 for (Layout::Section_list::const_iterator p =
352 this->unattached_section_list_->begin();
353 p != this->unattached_section_list_->end();
354 ++p)
355 {
356 // For a relocatable link, we did unallocated group sections
357 // above, since they have to come first.
358 if ((*p)->type() == elfcpp::SHT_GROUP
359 && parameters->options().relocatable())
360 continue;
361 gold_assert(shndx == (*p)->out_shndx());
362 elfcpp::Shdr_write<size, big_endian> oshdr(v);
363 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
364 v += shdr_size;
365 ++shndx;
366 }
367
368 of->write_output_view(this->offset(), all_shdrs_size, view);
369 }
370
371 // Output_segment_header methods.
372
373 Output_segment_headers::Output_segment_headers(
374 const Layout::Segment_list& segment_list)
375 : segment_list_(segment_list)
376 {
377 this->set_current_data_size_for_child(this->do_size());
378 }
379
380 void
381 Output_segment_headers::do_write(Output_file* of)
382 {
383 switch (parameters->size_and_endianness())
384 {
385 #ifdef HAVE_TARGET_32_LITTLE
386 case Parameters::TARGET_32_LITTLE:
387 this->do_sized_write<32, false>(of);
388 break;
389 #endif
390 #ifdef HAVE_TARGET_32_BIG
391 case Parameters::TARGET_32_BIG:
392 this->do_sized_write<32, true>(of);
393 break;
394 #endif
395 #ifdef HAVE_TARGET_64_LITTLE
396 case Parameters::TARGET_64_LITTLE:
397 this->do_sized_write<64, false>(of);
398 break;
399 #endif
400 #ifdef HAVE_TARGET_64_BIG
401 case Parameters::TARGET_64_BIG:
402 this->do_sized_write<64, true>(of);
403 break;
404 #endif
405 default:
406 gold_unreachable();
407 }
408 }
409
410 template<int size, bool big_endian>
411 void
412 Output_segment_headers::do_sized_write(Output_file* of)
413 {
414 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
415 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
416 gold_assert(all_phdrs_size == this->data_size());
417 unsigned char* view = of->get_output_view(this->offset(),
418 all_phdrs_size);
419 unsigned char* v = view;
420 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
421 p != this->segment_list_.end();
422 ++p)
423 {
424 elfcpp::Phdr_write<size, big_endian> ophdr(v);
425 (*p)->write_header(&ophdr);
426 v += phdr_size;
427 }
428
429 gold_assert(v - view == all_phdrs_size);
430
431 of->write_output_view(this->offset(), all_phdrs_size, view);
432 }
433
434 off_t
435 Output_segment_headers::do_size() const
436 {
437 const int size = parameters->target().get_size();
438 int phdr_size;
439 if (size == 32)
440 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
441 else if (size == 64)
442 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
443 else
444 gold_unreachable();
445
446 return this->segment_list_.size() * phdr_size;
447 }
448
449 // Output_file_header methods.
450
451 Output_file_header::Output_file_header(Target* target,
452 const Symbol_table* symtab,
453 const Output_segment_headers* osh)
454 : target_(target),
455 symtab_(symtab),
456 segment_header_(osh),
457 section_header_(NULL),
458 shstrtab_(NULL)
459 {
460 this->set_data_size(this->do_size());
461 }
462
463 // Set the section table information for a file header.
464
465 void
466 Output_file_header::set_section_info(const Output_section_headers* shdrs,
467 const Output_section* shstrtab)
468 {
469 this->section_header_ = shdrs;
470 this->shstrtab_ = shstrtab;
471 }
472
473 // Write out the file header.
474
475 void
476 Output_file_header::do_write(Output_file* of)
477 {
478 gold_assert(this->offset() == 0);
479
480 switch (parameters->size_and_endianness())
481 {
482 #ifdef HAVE_TARGET_32_LITTLE
483 case Parameters::TARGET_32_LITTLE:
484 this->do_sized_write<32, false>(of);
485 break;
486 #endif
487 #ifdef HAVE_TARGET_32_BIG
488 case Parameters::TARGET_32_BIG:
489 this->do_sized_write<32, true>(of);
490 break;
491 #endif
492 #ifdef HAVE_TARGET_64_LITTLE
493 case Parameters::TARGET_64_LITTLE:
494 this->do_sized_write<64, false>(of);
495 break;
496 #endif
497 #ifdef HAVE_TARGET_64_BIG
498 case Parameters::TARGET_64_BIG:
499 this->do_sized_write<64, true>(of);
500 break;
501 #endif
502 default:
503 gold_unreachable();
504 }
505 }
506
507 // Write out the file header with appropriate size and endianness.
508
509 template<int size, bool big_endian>
510 void
511 Output_file_header::do_sized_write(Output_file* of)
512 {
513 gold_assert(this->offset() == 0);
514
515 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
516 unsigned char* view = of->get_output_view(0, ehdr_size);
517 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
518
519 unsigned char e_ident[elfcpp::EI_NIDENT];
520 memset(e_ident, 0, elfcpp::EI_NIDENT);
521 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
522 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
523 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
524 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
525 if (size == 32)
526 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
527 else if (size == 64)
528 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
529 else
530 gold_unreachable();
531 e_ident[elfcpp::EI_DATA] = (big_endian
532 ? elfcpp::ELFDATA2MSB
533 : elfcpp::ELFDATA2LSB);
534 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
535 oehdr.put_e_ident(e_ident);
536
537 elfcpp::ET e_type;
538 if (parameters->options().relocatable())
539 e_type = elfcpp::ET_REL;
540 else if (parameters->options().output_is_position_independent())
541 e_type = elfcpp::ET_DYN;
542 else
543 e_type = elfcpp::ET_EXEC;
544 oehdr.put_e_type(e_type);
545
546 oehdr.put_e_machine(this->target_->machine_code());
547 oehdr.put_e_version(elfcpp::EV_CURRENT);
548
549 oehdr.put_e_entry(this->entry<size>());
550
551 if (this->segment_header_ == NULL)
552 oehdr.put_e_phoff(0);
553 else
554 oehdr.put_e_phoff(this->segment_header_->offset());
555
556 oehdr.put_e_shoff(this->section_header_->offset());
557 oehdr.put_e_flags(this->target_->processor_specific_flags());
558 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
559
560 if (this->segment_header_ == NULL)
561 {
562 oehdr.put_e_phentsize(0);
563 oehdr.put_e_phnum(0);
564 }
565 else
566 {
567 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
568 size_t phnum = (this->segment_header_->data_size()
569 / elfcpp::Elf_sizes<size>::phdr_size);
570 if (phnum > elfcpp::PN_XNUM)
571 phnum = elfcpp::PN_XNUM;
572 oehdr.put_e_phnum(phnum);
573 }
574
575 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
576 size_t section_count = (this->section_header_->data_size()
577 / elfcpp::Elf_sizes<size>::shdr_size);
578
579 if (section_count < elfcpp::SHN_LORESERVE)
580 oehdr.put_e_shnum(this->section_header_->data_size()
581 / elfcpp::Elf_sizes<size>::shdr_size);
582 else
583 oehdr.put_e_shnum(0);
584
585 unsigned int shstrndx = this->shstrtab_->out_shndx();
586 if (shstrndx < elfcpp::SHN_LORESERVE)
587 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
588 else
589 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
590
591 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
592 // the e_ident field.
593 this->target_->adjust_elf_header(view, ehdr_size);
594
595 of->write_output_view(0, ehdr_size, view);
596 }
597
598 // Return the value to use for the entry address.
599
600 template<int size>
601 typename elfcpp::Elf_types<size>::Elf_Addr
602 Output_file_header::entry()
603 {
604 const bool should_issue_warning = (parameters->options().entry() != NULL
605 && !parameters->options().relocatable()
606 && !parameters->options().shared());
607 const char* entry = parameters->entry();
608 Symbol* sym = this->symtab_->lookup(entry);
609
610 typename Sized_symbol<size>::Value_type v;
611 if (sym != NULL)
612 {
613 Sized_symbol<size>* ssym;
614 ssym = this->symtab_->get_sized_symbol<size>(sym);
615 if (!ssym->is_defined() && should_issue_warning)
616 gold_warning("entry symbol '%s' exists but is not defined", entry);
617 v = ssym->value();
618 }
619 else
620 {
621 // We couldn't find the entry symbol. See if we can parse it as
622 // a number. This supports, e.g., -e 0x1000.
623 char* endptr;
624 v = strtoull(entry, &endptr, 0);
625 if (*endptr != '\0')
626 {
627 if (should_issue_warning)
628 gold_warning("cannot find entry symbol '%s'", entry);
629 v = 0;
630 }
631 }
632
633 return v;
634 }
635
636 // Compute the current data size.
637
638 off_t
639 Output_file_header::do_size() const
640 {
641 const int size = parameters->target().get_size();
642 if (size == 32)
643 return elfcpp::Elf_sizes<32>::ehdr_size;
644 else if (size == 64)
645 return elfcpp::Elf_sizes<64>::ehdr_size;
646 else
647 gold_unreachable();
648 }
649
650 // Output_data_const methods.
651
652 void
653 Output_data_const::do_write(Output_file* of)
654 {
655 of->write(this->offset(), this->data_.data(), this->data_.size());
656 }
657
658 // Output_data_const_buffer methods.
659
660 void
661 Output_data_const_buffer::do_write(Output_file* of)
662 {
663 of->write(this->offset(), this->p_, this->data_size());
664 }
665
666 // Output_section_data methods.
667
668 // Record the output section, and set the entry size and such.
669
670 void
671 Output_section_data::set_output_section(Output_section* os)
672 {
673 gold_assert(this->output_section_ == NULL);
674 this->output_section_ = os;
675 this->do_adjust_output_section(os);
676 }
677
678 // Return the section index of the output section.
679
680 unsigned int
681 Output_section_data::do_out_shndx() const
682 {
683 gold_assert(this->output_section_ != NULL);
684 return this->output_section_->out_shndx();
685 }
686
687 // Set the alignment, which means we may need to update the alignment
688 // of the output section.
689
690 void
691 Output_section_data::set_addralign(uint64_t addralign)
692 {
693 this->addralign_ = addralign;
694 if (this->output_section_ != NULL
695 && this->output_section_->addralign() < addralign)
696 this->output_section_->set_addralign(addralign);
697 }
698
699 // Output_data_strtab methods.
700
701 // Set the final data size.
702
703 void
704 Output_data_strtab::set_final_data_size()
705 {
706 this->strtab_->set_string_offsets();
707 this->set_data_size(this->strtab_->get_strtab_size());
708 }
709
710 // Write out a string table.
711
712 void
713 Output_data_strtab::do_write(Output_file* of)
714 {
715 this->strtab_->write(of, this->offset());
716 }
717
718 // Output_reloc methods.
719
720 // A reloc against a global symbol.
721
722 template<bool dynamic, int size, bool big_endian>
723 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Symbol* gsym,
725 unsigned int type,
726 Output_data* od,
727 Address address,
728 bool is_relative,
729 bool is_symbolless,
730 bool use_plt_offset)
731 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
732 is_relative_(is_relative), is_symbolless_(is_symbolless),
733 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
734 {
735 // this->type_ is a bitfield; make sure TYPE fits.
736 gold_assert(this->type_ == type);
737 this->u1_.gsym = gsym;
738 this->u2_.od = od;
739 if (dynamic)
740 this->set_needs_dynsym_index();
741 }
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Symbol* gsym,
746 unsigned int type,
747 Sized_relobj<size, big_endian>* relobj,
748 unsigned int shndx,
749 Address address,
750 bool is_relative,
751 bool is_symbolless,
752 bool use_plt_offset)
753 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
754 is_relative_(is_relative), is_symbolless_(is_symbolless),
755 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
756 {
757 gold_assert(shndx != INVALID_CODE);
758 // this->type_ is a bitfield; make sure TYPE fits.
759 gold_assert(this->type_ == type);
760 this->u1_.gsym = gsym;
761 this->u2_.relobj = relobj;
762 if (dynamic)
763 this->set_needs_dynsym_index();
764 }
765
766 // A reloc against a local symbol.
767
768 template<bool dynamic, int size, bool big_endian>
769 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
770 Sized_relobj<size, big_endian>* relobj,
771 unsigned int local_sym_index,
772 unsigned int type,
773 Output_data* od,
774 Address address,
775 bool is_relative,
776 bool is_symbolless,
777 bool is_section_symbol,
778 bool use_plt_offset)
779 : address_(address), local_sym_index_(local_sym_index), type_(type),
780 is_relative_(is_relative), is_symbolless_(is_symbolless),
781 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
782 shndx_(INVALID_CODE)
783 {
784 gold_assert(local_sym_index != GSYM_CODE
785 && local_sym_index != INVALID_CODE);
786 // this->type_ is a bitfield; make sure TYPE fits.
787 gold_assert(this->type_ == type);
788 this->u1_.relobj = relobj;
789 this->u2_.od = od;
790 if (dynamic)
791 this->set_needs_dynsym_index();
792 }
793
794 template<bool dynamic, int size, bool big_endian>
795 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796 Sized_relobj<size, big_endian>* relobj,
797 unsigned int local_sym_index,
798 unsigned int type,
799 unsigned int shndx,
800 Address address,
801 bool is_relative,
802 bool is_symbolless,
803 bool is_section_symbol,
804 bool use_plt_offset)
805 : address_(address), local_sym_index_(local_sym_index), type_(type),
806 is_relative_(is_relative), is_symbolless_(is_symbolless),
807 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
808 shndx_(shndx)
809 {
810 gold_assert(local_sym_index != GSYM_CODE
811 && local_sym_index != INVALID_CODE);
812 gold_assert(shndx != INVALID_CODE);
813 // this->type_ is a bitfield; make sure TYPE fits.
814 gold_assert(this->type_ == type);
815 this->u1_.relobj = relobj;
816 this->u2_.relobj = relobj;
817 if (dynamic)
818 this->set_needs_dynsym_index();
819 }
820
821 // A reloc against the STT_SECTION symbol of an output section.
822
823 template<bool dynamic, int size, bool big_endian>
824 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
825 Output_section* os,
826 unsigned int type,
827 Output_data* od,
828 Address address,
829 bool is_relative)
830 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
831 is_relative_(is_relative), is_symbolless_(is_relative),
832 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
833 {
834 // this->type_ is a bitfield; make sure TYPE fits.
835 gold_assert(this->type_ == type);
836 this->u1_.os = os;
837 this->u2_.od = od;
838 if (dynamic)
839 this->set_needs_dynsym_index();
840 else
841 os->set_needs_symtab_index();
842 }
843
844 template<bool dynamic, int size, bool big_endian>
845 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
846 Output_section* os,
847 unsigned int type,
848 Sized_relobj<size, big_endian>* relobj,
849 unsigned int shndx,
850 Address address,
851 bool is_relative)
852 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
853 is_relative_(is_relative), is_symbolless_(is_relative),
854 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
855 {
856 gold_assert(shndx != INVALID_CODE);
857 // this->type_ is a bitfield; make sure TYPE fits.
858 gold_assert(this->type_ == type);
859 this->u1_.os = os;
860 this->u2_.relobj = relobj;
861 if (dynamic)
862 this->set_needs_dynsym_index();
863 else
864 os->set_needs_symtab_index();
865 }
866
867 // An absolute or relative relocation.
868
869 template<bool dynamic, int size, bool big_endian>
870 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
871 unsigned int type,
872 Output_data* od,
873 Address address,
874 bool is_relative)
875 : address_(address), local_sym_index_(0), type_(type),
876 is_relative_(is_relative), is_symbolless_(false),
877 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
878 {
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_ == type);
881 this->u1_.relobj = NULL;
882 this->u2_.od = od;
883 }
884
885 template<bool dynamic, int size, bool big_endian>
886 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
887 unsigned int type,
888 Sized_relobj<size, big_endian>* relobj,
889 unsigned int shndx,
890 Address address,
891 bool is_relative)
892 : address_(address), local_sym_index_(0), type_(type),
893 is_relative_(is_relative), is_symbolless_(false),
894 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
895 {
896 gold_assert(shndx != INVALID_CODE);
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_ == type);
899 this->u1_.relobj = NULL;
900 this->u2_.relobj = relobj;
901 }
902
903 // A target specific relocation.
904
905 template<bool dynamic, int size, bool big_endian>
906 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
907 unsigned int type,
908 void* arg,
909 Output_data* od,
910 Address address)
911 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
912 is_relative_(false), is_symbolless_(false),
913 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
914 {
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_ == type);
917 this->u1_.arg = arg;
918 this->u2_.od = od;
919 }
920
921 template<bool dynamic, int size, bool big_endian>
922 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
923 unsigned int type,
924 void* arg,
925 Sized_relobj<size, big_endian>* relobj,
926 unsigned int shndx,
927 Address address)
928 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
929 is_relative_(false), is_symbolless_(false),
930 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
931 {
932 gold_assert(shndx != INVALID_CODE);
933 // this->type_ is a bitfield; make sure TYPE fits.
934 gold_assert(this->type_ == type);
935 this->u1_.arg = arg;
936 this->u2_.relobj = relobj;
937 }
938
939 // Record that we need a dynamic symbol index for this relocation.
940
941 template<bool dynamic, int size, bool big_endian>
942 void
943 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
944 set_needs_dynsym_index()
945 {
946 if (this->is_symbolless_)
947 return;
948 switch (this->local_sym_index_)
949 {
950 case INVALID_CODE:
951 gold_unreachable();
952
953 case GSYM_CODE:
954 this->u1_.gsym->set_needs_dynsym_entry();
955 break;
956
957 case SECTION_CODE:
958 this->u1_.os->set_needs_dynsym_index();
959 break;
960
961 case TARGET_CODE:
962 // The target must take care of this if necessary.
963 break;
964
965 case 0:
966 break;
967
968 default:
969 {
970 const unsigned int lsi = this->local_sym_index_;
971 Sized_relobj_file<size, big_endian>* relobj =
972 this->u1_.relobj->sized_relobj();
973 gold_assert(relobj != NULL);
974 if (!this->is_section_symbol_)
975 relobj->set_needs_output_dynsym_entry(lsi);
976 else
977 relobj->output_section(lsi)->set_needs_dynsym_index();
978 }
979 break;
980 }
981 }
982
983 // Get the symbol index of a relocation.
984
985 template<bool dynamic, int size, bool big_endian>
986 unsigned int
987 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
988 const
989 {
990 unsigned int index;
991 if (this->is_symbolless_)
992 return 0;
993 switch (this->local_sym_index_)
994 {
995 case INVALID_CODE:
996 gold_unreachable();
997
998 case GSYM_CODE:
999 if (this->u1_.gsym == NULL)
1000 index = 0;
1001 else if (dynamic)
1002 index = this->u1_.gsym->dynsym_index();
1003 else
1004 index = this->u1_.gsym->symtab_index();
1005 break;
1006
1007 case SECTION_CODE:
1008 if (dynamic)
1009 index = this->u1_.os->dynsym_index();
1010 else
1011 index = this->u1_.os->symtab_index();
1012 break;
1013
1014 case TARGET_CODE:
1015 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1016 this->type_);
1017 break;
1018
1019 case 0:
1020 // Relocations without symbols use a symbol index of 0.
1021 index = 0;
1022 break;
1023
1024 default:
1025 {
1026 const unsigned int lsi = this->local_sym_index_;
1027 Sized_relobj_file<size, big_endian>* relobj =
1028 this->u1_.relobj->sized_relobj();
1029 gold_assert(relobj != NULL);
1030 if (!this->is_section_symbol_)
1031 {
1032 if (dynamic)
1033 index = relobj->dynsym_index(lsi);
1034 else
1035 index = relobj->symtab_index(lsi);
1036 }
1037 else
1038 {
1039 Output_section* os = relobj->output_section(lsi);
1040 gold_assert(os != NULL);
1041 if (dynamic)
1042 index = os->dynsym_index();
1043 else
1044 index = os->symtab_index();
1045 }
1046 }
1047 break;
1048 }
1049 gold_assert(index != -1U);
1050 return index;
1051 }
1052
1053 // For a local section symbol, get the address of the offset ADDEND
1054 // within the input section.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 typename elfcpp::Elf_types<size>::Elf_Addr
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 local_section_offset(Addend addend) const
1060 {
1061 gold_assert(this->local_sym_index_ != GSYM_CODE
1062 && this->local_sym_index_ != SECTION_CODE
1063 && this->local_sym_index_ != TARGET_CODE
1064 && this->local_sym_index_ != INVALID_CODE
1065 && this->local_sym_index_ != 0
1066 && this->is_section_symbol_);
1067 const unsigned int lsi = this->local_sym_index_;
1068 Output_section* os = this->u1_.relobj->output_section(lsi);
1069 gold_assert(os != NULL);
1070 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1071 if (offset != invalid_address)
1072 return offset + addend;
1073 // This is a merge section.
1074 Sized_relobj_file<size, big_endian>* relobj =
1075 this->u1_.relobj->sized_relobj();
1076 gold_assert(relobj != NULL);
1077 offset = os->output_address(relobj, lsi, addend);
1078 gold_assert(offset != invalid_address);
1079 return offset;
1080 }
1081
1082 // Get the output address of a relocation.
1083
1084 template<bool dynamic, int size, bool big_endian>
1085 typename elfcpp::Elf_types<size>::Elf_Addr
1086 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1087 {
1088 Address address = this->address_;
1089 if (this->shndx_ != INVALID_CODE)
1090 {
1091 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1092 gold_assert(os != NULL);
1093 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1094 if (off != invalid_address)
1095 address += os->address() + off;
1096 else
1097 {
1098 Sized_relobj_file<size, big_endian>* relobj =
1099 this->u2_.relobj->sized_relobj();
1100 gold_assert(relobj != NULL);
1101 address = os->output_address(relobj, this->shndx_, address);
1102 gold_assert(address != invalid_address);
1103 }
1104 }
1105 else if (this->u2_.od != NULL)
1106 address += this->u2_.od->address();
1107 return address;
1108 }
1109
1110 // Write out the offset and info fields of a Rel or Rela relocation
1111 // entry.
1112
1113 template<bool dynamic, int size, bool big_endian>
1114 template<typename Write_rel>
1115 void
1116 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1117 Write_rel* wr) const
1118 {
1119 wr->put_r_offset(this->get_address());
1120 unsigned int sym_index = this->get_symbol_index();
1121 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1122 }
1123
1124 // Write out a Rel relocation.
1125
1126 template<bool dynamic, int size, bool big_endian>
1127 void
1128 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1129 unsigned char* pov) const
1130 {
1131 elfcpp::Rel_write<size, big_endian> orel(pov);
1132 this->write_rel(&orel);
1133 }
1134
1135 // Get the value of the symbol referred to by a Rel relocation.
1136
1137 template<bool dynamic, int size, bool big_endian>
1138 typename elfcpp::Elf_types<size>::Elf_Addr
1139 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1140 Addend addend) const
1141 {
1142 if (this->local_sym_index_ == GSYM_CODE)
1143 {
1144 const Sized_symbol<size>* sym;
1145 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1146 if (this->use_plt_offset_ && sym->has_plt_offset())
1147 return parameters->target().plt_address_for_global(sym);
1148 else
1149 return sym->value() + addend;
1150 }
1151 if (this->local_sym_index_ == SECTION_CODE)
1152 {
1153 gold_assert(!this->use_plt_offset_);
1154 return this->u1_.os->address() + addend;
1155 }
1156 gold_assert(this->local_sym_index_ != TARGET_CODE
1157 && this->local_sym_index_ != INVALID_CODE
1158 && this->local_sym_index_ != 0
1159 && !this->is_section_symbol_);
1160 const unsigned int lsi = this->local_sym_index_;
1161 Sized_relobj_file<size, big_endian>* relobj =
1162 this->u1_.relobj->sized_relobj();
1163 gold_assert(relobj != NULL);
1164 if (this->use_plt_offset_)
1165 return parameters->target().plt_address_for_local(relobj, lsi);
1166 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1167 return symval->value(relobj, addend);
1168 }
1169
1170 // Reloc comparison. This function sorts the dynamic relocs for the
1171 // benefit of the dynamic linker. First we sort all relative relocs
1172 // to the front. Among relative relocs, we sort by output address.
1173 // Among non-relative relocs, we sort by symbol index, then by output
1174 // address.
1175
1176 template<bool dynamic, int size, bool big_endian>
1177 int
1178 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1179 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1180 const
1181 {
1182 if (this->is_relative_)
1183 {
1184 if (!r2.is_relative_)
1185 return -1;
1186 // Otherwise sort by reloc address below.
1187 }
1188 else if (r2.is_relative_)
1189 return 1;
1190 else
1191 {
1192 unsigned int sym1 = this->get_symbol_index();
1193 unsigned int sym2 = r2.get_symbol_index();
1194 if (sym1 < sym2)
1195 return -1;
1196 else if (sym1 > sym2)
1197 return 1;
1198 // Otherwise sort by reloc address.
1199 }
1200
1201 section_offset_type addr1 = this->get_address();
1202 section_offset_type addr2 = r2.get_address();
1203 if (addr1 < addr2)
1204 return -1;
1205 else if (addr1 > addr2)
1206 return 1;
1207
1208 // Final tie breaker, in order to generate the same output on any
1209 // host: reloc type.
1210 unsigned int type1 = this->type_;
1211 unsigned int type2 = r2.type_;
1212 if (type1 < type2)
1213 return -1;
1214 else if (type1 > type2)
1215 return 1;
1216
1217 // These relocs appear to be exactly the same.
1218 return 0;
1219 }
1220
1221 // Write out a Rela relocation.
1222
1223 template<bool dynamic, int size, bool big_endian>
1224 void
1225 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1226 unsigned char* pov) const
1227 {
1228 elfcpp::Rela_write<size, big_endian> orel(pov);
1229 this->rel_.write_rel(&orel);
1230 Addend addend = this->addend_;
1231 if (this->rel_.is_target_specific())
1232 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1233 this->rel_.type(), addend);
1234 else if (this->rel_.is_symbolless())
1235 addend = this->rel_.symbol_value(addend);
1236 else if (this->rel_.is_local_section_symbol())
1237 addend = this->rel_.local_section_offset(addend);
1238 orel.put_r_addend(addend);
1239 }
1240
1241 // Output_data_reloc_base methods.
1242
1243 // Adjust the output section.
1244
1245 template<int sh_type, bool dynamic, int size, bool big_endian>
1246 void
1247 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1248 ::do_adjust_output_section(Output_section* os)
1249 {
1250 if (sh_type == elfcpp::SHT_REL)
1251 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1252 else if (sh_type == elfcpp::SHT_RELA)
1253 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1254 else
1255 gold_unreachable();
1256
1257 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1258 // static link. The backends will generate a dynamic reloc section
1259 // to hold this. In that case we don't want to link to the dynsym
1260 // section, because there isn't one.
1261 if (!dynamic)
1262 os->set_should_link_to_symtab();
1263 else if (parameters->doing_static_link())
1264 ;
1265 else
1266 os->set_should_link_to_dynsym();
1267 }
1268
1269 // Standard relocation writer, which just calls Output_reloc::write().
1270
1271 template<int sh_type, bool dynamic, int size, bool big_endian>
1272 struct Output_reloc_writer
1273 {
1274 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1275 typedef std::vector<Output_reloc_type> Relocs;
1276
1277 static void
1278 write(typename Relocs::const_iterator p, unsigned char* pov)
1279 { p->write(pov); }
1280 };
1281
1282 // Write out relocation data.
1283
1284 template<int sh_type, bool dynamic, int size, bool big_endian>
1285 void
1286 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1287 Output_file* of)
1288 {
1289 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1290 this->do_write_generic<Writer>(of);
1291 }
1292
1293 // Class Output_relocatable_relocs.
1294
1295 template<int sh_type, int size, bool big_endian>
1296 void
1297 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1298 {
1299 this->set_data_size(this->rr_->output_reloc_count()
1300 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1301 }
1302
1303 // class Output_data_group.
1304
1305 template<int size, bool big_endian>
1306 Output_data_group<size, big_endian>::Output_data_group(
1307 Sized_relobj_file<size, big_endian>* relobj,
1308 section_size_type entry_count,
1309 elfcpp::Elf_Word flags,
1310 std::vector<unsigned int>* input_shndxes)
1311 : Output_section_data(entry_count * 4, 4, false),
1312 relobj_(relobj),
1313 flags_(flags)
1314 {
1315 this->input_shndxes_.swap(*input_shndxes);
1316 }
1317
1318 // Write out the section group, which means translating the section
1319 // indexes to apply to the output file.
1320
1321 template<int size, bool big_endian>
1322 void
1323 Output_data_group<size, big_endian>::do_write(Output_file* of)
1324 {
1325 const off_t off = this->offset();
1326 const section_size_type oview_size =
1327 convert_to_section_size_type(this->data_size());
1328 unsigned char* const oview = of->get_output_view(off, oview_size);
1329
1330 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1331 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1332 ++contents;
1333
1334 for (std::vector<unsigned int>::const_iterator p =
1335 this->input_shndxes_.begin();
1336 p != this->input_shndxes_.end();
1337 ++p, ++contents)
1338 {
1339 Output_section* os = this->relobj_->output_section(*p);
1340
1341 unsigned int output_shndx;
1342 if (os != NULL)
1343 output_shndx = os->out_shndx();
1344 else
1345 {
1346 this->relobj_->error(_("section group retained but "
1347 "group element discarded"));
1348 output_shndx = 0;
1349 }
1350
1351 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1352 }
1353
1354 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1355 gold_assert(wrote == oview_size);
1356
1357 of->write_output_view(off, oview_size, oview);
1358
1359 // We no longer need this information.
1360 this->input_shndxes_.clear();
1361 }
1362
1363 // Output_data_got::Got_entry methods.
1364
1365 // Write out the entry.
1366
1367 template<int got_size, bool big_endian>
1368 void
1369 Output_data_got<got_size, big_endian>::Got_entry::write(
1370 Output_data_got_base* got,
1371 unsigned int got_indx,
1372 unsigned char* pov) const
1373 {
1374 Valtype val = 0;
1375
1376 switch (this->local_sym_index_)
1377 {
1378 case GSYM_CODE:
1379 {
1380 // If the symbol is resolved locally, we need to write out the
1381 // link-time value, which will be relocated dynamically by a
1382 // RELATIVE relocation.
1383 Symbol* gsym = this->u_.gsym;
1384 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1385 val = parameters->target().plt_address_for_global(gsym);
1386 else
1387 {
1388 switch (parameters->size_and_endianness())
1389 {
1390 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1391 case Parameters::TARGET_32_LITTLE:
1392 case Parameters::TARGET_32_BIG:
1393 {
1394 // This cast is ugly. We don't want to put a
1395 // virtual method in Symbol, because we want Symbol
1396 // to be as small as possible.
1397 Sized_symbol<32>::Value_type v;
1398 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1399 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1400 }
1401 break;
1402 #endif
1403 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1404 case Parameters::TARGET_64_LITTLE:
1405 case Parameters::TARGET_64_BIG:
1406 {
1407 Sized_symbol<64>::Value_type v;
1408 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1409 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1410 }
1411 break;
1412 #endif
1413 default:
1414 gold_unreachable();
1415 }
1416 // If this is a GOT entry for a known value global symbol,
1417 // then the value should include the addend. If the value
1418 // is not known leave the value as zero; The GOT entry
1419 // will be set by a dynamic relocation.
1420 if (this->addend_ && gsym->final_value_is_known())
1421 val += this->addend_;
1422 if (this->use_plt_or_tls_offset_
1423 && gsym->type() == elfcpp::STT_TLS)
1424 val += parameters->target().tls_offset_for_global(gsym,
1425 got, got_indx,
1426 this->addend_);
1427 }
1428 }
1429 break;
1430
1431 case CONSTANT_CODE:
1432 val = this->u_.constant;
1433 break;
1434
1435 case RESERVED_CODE:
1436 // If we're doing an incremental update, don't touch this GOT entry.
1437 if (parameters->incremental_update())
1438 return;
1439 val = this->u_.constant;
1440 break;
1441
1442 default:
1443 {
1444 const Relobj* object = this->u_.object;
1445 const unsigned int lsi = this->local_sym_index_;
1446 bool is_tls = object->local_is_tls(lsi);
1447 if (this->use_plt_or_tls_offset_ && !is_tls)
1448 val = parameters->target().plt_address_for_local(object, lsi);
1449 else
1450 {
1451 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1452 val = convert_types<Valtype, uint64_t>(lval);
1453 if (this->use_plt_or_tls_offset_ && is_tls)
1454 val += parameters->target().tls_offset_for_local(object, lsi,
1455 got, got_indx,
1456 this->addend_);
1457 }
1458 }
1459 break;
1460 }
1461
1462 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1463 }
1464
1465 // Output_data_got methods.
1466
1467 // Add an entry for a global symbol to the GOT. This returns true if
1468 // this is a new GOT entry, false if the symbol already had a GOT
1469 // entry.
1470
1471 template<int got_size, bool big_endian>
1472 bool
1473 Output_data_got<got_size, big_endian>::add_global(Symbol* gsym,
1474 unsigned int got_type,
1475 uint64_t addend)
1476 {
1477 if (gsym->has_got_offset(got_type, addend))
1478 return false;
1479
1480 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false, addend));
1481 gsym->set_got_offset(got_type, got_offset, addend);
1482 return true;
1483 }
1484
1485 // Like add_global, but use the PLT offset.
1486
1487 template<int got_size, bool big_endian>
1488 bool
1489 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1490 unsigned int got_type,
1491 uint64_t addend)
1492 {
1493 if (gsym->has_got_offset(got_type, addend))
1494 return false;
1495
1496 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true, addend));
1497 gsym->set_got_offset(got_type, got_offset, addend);
1498 return true;
1499 }
1500
1501 // Add an entry for a global symbol to the GOT, and add a dynamic
1502 // relocation of type R_TYPE for the GOT entry.
1503
1504 template<int got_size, bool big_endian>
1505 void
1506 Output_data_got<got_size, big_endian>::add_global_with_rel(
1507 Symbol* gsym,
1508 unsigned int got_type,
1509 Output_data_reloc_generic* rel_dyn,
1510 unsigned int r_type,
1511 uint64_t addend)
1512 {
1513 if (gsym->has_got_offset(got_type, addend))
1514 return;
1515
1516 unsigned int got_offset = this->add_got_entry(Got_entry());
1517 gsym->set_got_offset(got_type, got_offset, addend);
1518 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, addend);
1519 }
1520
1521 // Add a pair of entries for a global symbol to the GOT, and add
1522 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1523 // If R_TYPE_2 == 0, add the second entry with no relocation.
1524 template<int got_size, bool big_endian>
1525 void
1526 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1527 Symbol* gsym,
1528 unsigned int got_type,
1529 Output_data_reloc_generic* rel_dyn,
1530 unsigned int r_type_1,
1531 unsigned int r_type_2,
1532 uint64_t addend)
1533 {
1534 if (gsym->has_got_offset(got_type, addend))
1535 return;
1536
1537 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1538 gsym->set_got_offset(got_type, got_offset, addend);
1539 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, addend);
1540
1541 if (r_type_2 != 0)
1542 rel_dyn->add_global_generic(gsym, r_type_2, this,
1543 got_offset + got_size / 8, addend);
1544 }
1545
1546 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1547 // true if this is a new GOT entry, false if the symbol already has a GOT
1548 // entry.
1549
1550 template<int got_size, bool big_endian>
1551 bool
1552 Output_data_got<got_size, big_endian>::add_local(
1553 Relobj* object,
1554 unsigned int symndx,
1555 unsigned int got_type,
1556 uint64_t addend)
1557 {
1558 if (object->local_has_got_offset(symndx, got_type, addend))
1559 return false;
1560
1561 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1562 false, addend));
1563 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1564 return true;
1565 }
1566
1567 // Like add_local, but use the PLT offset.
1568
1569 template<int got_size, bool big_endian>
1570 bool
1571 Output_data_got<got_size, big_endian>::add_local_plt(
1572 Relobj* object,
1573 unsigned int symndx,
1574 unsigned int got_type,
1575 uint64_t addend)
1576 {
1577 if (object->local_has_got_offset(symndx, got_type, addend))
1578 return false;
1579
1580 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1581 true, addend));
1582 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1583 return true;
1584 }
1585
1586 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1587 // relocation of type R_TYPE for the GOT entry.
1588
1589 template<int got_size, bool big_endian>
1590 void
1591 Output_data_got<got_size, big_endian>::add_local_with_rel(
1592 Relobj* object,
1593 unsigned int symndx,
1594 unsigned int got_type,
1595 Output_data_reloc_generic* rel_dyn,
1596 unsigned int r_type,
1597 uint64_t addend)
1598 {
1599 if (object->local_has_got_offset(symndx, got_type, addend))
1600 return;
1601
1602 unsigned int got_offset = this->add_got_entry(Got_entry());
1603 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1604 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1605 addend);
1606 }
1607
1608 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1609 // a dynamic relocation of type R_TYPE using the section symbol of
1610 // the output section to which input section SHNDX maps, on the first.
1611 // The first got entry will have a value of zero, the second the
1612 // value of the local symbol.
1613 template<int got_size, bool big_endian>
1614 void
1615 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1616 Relobj* object,
1617 unsigned int symndx,
1618 unsigned int shndx,
1619 unsigned int got_type,
1620 Output_data_reloc_generic* rel_dyn,
1621 unsigned int r_type,
1622 uint64_t addend)
1623 {
1624 if (object->local_has_got_offset(symndx, got_type, addend))
1625 return;
1626
1627 unsigned int got_offset =
1628 this->add_got_entry_pair(Got_entry(),
1629 Got_entry(object, symndx, false, addend));
1630 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1631 Output_section* os = object->output_section(shndx);
1632 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1633 }
1634
1635 // Add a pair of entries for a local symbol to the GOT, and add
1636 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1637 // The first got entry will have a value of zero, the second the
1638 // value of the local symbol offset by Target::tls_offset_for_local.
1639 template<int got_size, bool big_endian>
1640 void
1641 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1642 Relobj* object,
1643 unsigned int symndx,
1644 unsigned int got_type,
1645 Output_data_reloc_generic* rel_dyn,
1646 unsigned int r_type,
1647 uint64_t addend)
1648 {
1649 if (object->local_has_got_offset(symndx, got_type, addend))
1650 return;
1651
1652 unsigned int got_offset
1653 = this->add_got_entry_pair(Got_entry(),
1654 Got_entry(object, symndx, true, addend));
1655 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1656 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, addend);
1657 }
1658
1659 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1660
1661 template<int got_size, bool big_endian>
1662 void
1663 Output_data_got<got_size, big_endian>::reserve_local(
1664 unsigned int i,
1665 Relobj* object,
1666 unsigned int sym_index,
1667 unsigned int got_type,
1668 uint64_t addend)
1669 {
1670 this->do_reserve_slot(i);
1671 object->set_local_got_offset(sym_index, got_type, this->got_offset(i), addend);
1672 }
1673
1674 // Reserve a slot in the GOT for a global symbol.
1675
1676 template<int got_size, bool big_endian>
1677 void
1678 Output_data_got<got_size, big_endian>::reserve_global(
1679 unsigned int i,
1680 Symbol* gsym,
1681 unsigned int got_type,
1682 uint64_t addend)
1683 {
1684 this->do_reserve_slot(i);
1685 gsym->set_got_offset(got_type, this->got_offset(i), addend);
1686 }
1687
1688 // Write out the GOT.
1689
1690 template<int got_size, bool big_endian>
1691 void
1692 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1693 {
1694 const int add = got_size / 8;
1695
1696 const off_t off = this->offset();
1697 const off_t oview_size = this->data_size();
1698 unsigned char* const oview = of->get_output_view(off, oview_size);
1699
1700 unsigned char* pov = oview;
1701 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1702 {
1703 this->entries_[i].write(this, i, pov);
1704 pov += add;
1705 }
1706
1707 gold_assert(pov - oview == oview_size);
1708
1709 of->write_output_view(off, oview_size, oview);
1710
1711 // We no longer need the GOT entries.
1712 this->entries_.clear();
1713 }
1714
1715 // Create a new GOT entry and return its offset.
1716
1717 template<int got_size, bool big_endian>
1718 unsigned int
1719 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1720 {
1721 if (!this->is_data_size_valid())
1722 {
1723 this->entries_.push_back(got_entry);
1724 this->set_got_size();
1725 return this->last_got_offset();
1726 }
1727 else
1728 {
1729 // For an incremental update, find an available slot.
1730 off_t got_offset = this->free_list_.allocate(got_size / 8,
1731 got_size / 8, 0);
1732 if (got_offset == -1)
1733 gold_fallback(_("out of patch space (GOT);"
1734 " relink with --incremental-full"));
1735 unsigned int got_index = got_offset / (got_size / 8);
1736 gold_assert(got_index < this->entries_.size());
1737 this->entries_[got_index] = got_entry;
1738 return static_cast<unsigned int>(got_offset);
1739 }
1740 }
1741
1742 // Create a pair of new GOT entries and return the offset of the first.
1743
1744 template<int got_size, bool big_endian>
1745 unsigned int
1746 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1747 Got_entry got_entry_1,
1748 Got_entry got_entry_2)
1749 {
1750 if (!this->is_data_size_valid())
1751 {
1752 unsigned int got_offset;
1753 this->entries_.push_back(got_entry_1);
1754 got_offset = this->last_got_offset();
1755 this->entries_.push_back(got_entry_2);
1756 this->set_got_size();
1757 return got_offset;
1758 }
1759 else
1760 {
1761 // For an incremental update, find an available pair of slots.
1762 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1763 got_size / 8, 0);
1764 if (got_offset == -1)
1765 gold_fallback(_("out of patch space (GOT);"
1766 " relink with --incremental-full"));
1767 unsigned int got_index = got_offset / (got_size / 8);
1768 gold_assert(got_index < this->entries_.size());
1769 this->entries_[got_index] = got_entry_1;
1770 this->entries_[got_index + 1] = got_entry_2;
1771 return static_cast<unsigned int>(got_offset);
1772 }
1773 }
1774
1775 // Replace GOT entry I with a new value.
1776
1777 template<int got_size, bool big_endian>
1778 void
1779 Output_data_got<got_size, big_endian>::replace_got_entry(
1780 unsigned int i,
1781 Got_entry got_entry)
1782 {
1783 gold_assert(i < this->entries_.size());
1784 this->entries_[i] = got_entry;
1785 }
1786
1787 // Output_data_dynamic::Dynamic_entry methods.
1788
1789 // Write out the entry.
1790
1791 template<int size, bool big_endian>
1792 void
1793 Output_data_dynamic::Dynamic_entry::write(
1794 unsigned char* pov,
1795 const Stringpool* pool) const
1796 {
1797 typename elfcpp::Elf_types<size>::Elf_WXword val;
1798 switch (this->offset_)
1799 {
1800 case DYNAMIC_NUMBER:
1801 val = this->u_.val;
1802 break;
1803
1804 case DYNAMIC_SECTION_SIZE:
1805 val = this->u_.od->data_size();
1806 if (this->od2 != NULL)
1807 val += this->od2->data_size();
1808 break;
1809
1810 case DYNAMIC_SYMBOL:
1811 {
1812 const Sized_symbol<size>* s =
1813 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1814 val = s->value();
1815 }
1816 break;
1817
1818 case DYNAMIC_STRING:
1819 val = pool->get_offset(this->u_.str);
1820 break;
1821
1822 case DYNAMIC_CUSTOM:
1823 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1824 break;
1825
1826 default:
1827 val = this->u_.od->address() + this->offset_;
1828 break;
1829 }
1830
1831 elfcpp::Dyn_write<size, big_endian> dw(pov);
1832 dw.put_d_tag(this->tag_);
1833 dw.put_d_val(val);
1834 }
1835
1836 // Output_data_dynamic methods.
1837
1838 // Adjust the output section to set the entry size.
1839
1840 void
1841 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1842 {
1843 if (parameters->target().get_size() == 32)
1844 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1845 else if (parameters->target().get_size() == 64)
1846 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1847 else
1848 gold_unreachable();
1849 }
1850
1851 // Get a dynamic entry offset.
1852
1853 unsigned int
1854 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1855 {
1856 int dyn_size;
1857
1858 if (parameters->target().get_size() == 32)
1859 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1860 else if (parameters->target().get_size() == 64)
1861 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1862 else
1863 gold_unreachable();
1864
1865 for (size_t i = 0; i < entries_.size(); ++i)
1866 if (entries_[i].tag() == tag)
1867 return i * dyn_size;
1868
1869 return -1U;
1870 }
1871
1872 // Set the final data size.
1873
1874 void
1875 Output_data_dynamic::set_final_data_size()
1876 {
1877 // Add the terminating entry if it hasn't been added.
1878 // Because of relaxation, we can run this multiple times.
1879 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1880 {
1881 int extra = parameters->options().spare_dynamic_tags();
1882 for (int i = 0; i < extra; ++i)
1883 this->add_constant(elfcpp::DT_NULL, 0);
1884 this->add_constant(elfcpp::DT_NULL, 0);
1885 }
1886
1887 int dyn_size;
1888 if (parameters->target().get_size() == 32)
1889 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1890 else if (parameters->target().get_size() == 64)
1891 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1892 else
1893 gold_unreachable();
1894 this->set_data_size(this->entries_.size() * dyn_size);
1895 }
1896
1897 // Write out the dynamic entries.
1898
1899 void
1900 Output_data_dynamic::do_write(Output_file* of)
1901 {
1902 switch (parameters->size_and_endianness())
1903 {
1904 #ifdef HAVE_TARGET_32_LITTLE
1905 case Parameters::TARGET_32_LITTLE:
1906 this->sized_write<32, false>(of);
1907 break;
1908 #endif
1909 #ifdef HAVE_TARGET_32_BIG
1910 case Parameters::TARGET_32_BIG:
1911 this->sized_write<32, true>(of);
1912 break;
1913 #endif
1914 #ifdef HAVE_TARGET_64_LITTLE
1915 case Parameters::TARGET_64_LITTLE:
1916 this->sized_write<64, false>(of);
1917 break;
1918 #endif
1919 #ifdef HAVE_TARGET_64_BIG
1920 case Parameters::TARGET_64_BIG:
1921 this->sized_write<64, true>(of);
1922 break;
1923 #endif
1924 default:
1925 gold_unreachable();
1926 }
1927 }
1928
1929 template<int size, bool big_endian>
1930 void
1931 Output_data_dynamic::sized_write(Output_file* of)
1932 {
1933 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1934
1935 const off_t offset = this->offset();
1936 const off_t oview_size = this->data_size();
1937 unsigned char* const oview = of->get_output_view(offset, oview_size);
1938
1939 unsigned char* pov = oview;
1940 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1941 p != this->entries_.end();
1942 ++p)
1943 {
1944 p->write<size, big_endian>(pov, this->pool_);
1945 pov += dyn_size;
1946 }
1947
1948 gold_assert(pov - oview == oview_size);
1949
1950 of->write_output_view(offset, oview_size, oview);
1951
1952 // We no longer need the dynamic entries.
1953 this->entries_.clear();
1954 }
1955
1956 // Class Output_symtab_xindex.
1957
1958 void
1959 Output_symtab_xindex::do_write(Output_file* of)
1960 {
1961 const off_t offset = this->offset();
1962 const off_t oview_size = this->data_size();
1963 unsigned char* const oview = of->get_output_view(offset, oview_size);
1964
1965 memset(oview, 0, oview_size);
1966
1967 if (parameters->target().is_big_endian())
1968 this->endian_do_write<true>(oview);
1969 else
1970 this->endian_do_write<false>(oview);
1971
1972 of->write_output_view(offset, oview_size, oview);
1973
1974 // We no longer need the data.
1975 this->entries_.clear();
1976 }
1977
1978 template<bool big_endian>
1979 void
1980 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1981 {
1982 for (Xindex_entries::const_iterator p = this->entries_.begin();
1983 p != this->entries_.end();
1984 ++p)
1985 {
1986 unsigned int symndx = p->first;
1987 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1988 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1989 }
1990 }
1991
1992 // Output_fill_debug_info methods.
1993
1994 // Return the minimum size needed for a dummy compilation unit header.
1995
1996 size_t
1997 Output_fill_debug_info::do_minimum_hole_size() const
1998 {
1999 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2000 // address_size.
2001 const size_t len = 4 + 2 + 4 + 1;
2002 // For type units, add type_signature, type_offset.
2003 if (this->is_debug_types_)
2004 return len + 8 + 4;
2005 return len;
2006 }
2007
2008 // Write a dummy compilation unit header to fill a hole in the
2009 // .debug_info or .debug_types section.
2010
2011 void
2012 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2013 {
2014 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2015 static_cast<long>(off), static_cast<long>(len));
2016
2017 gold_assert(len >= this->do_minimum_hole_size());
2018
2019 unsigned char* const oview = of->get_output_view(off, len);
2020 unsigned char* pov = oview;
2021
2022 // Write header fields: unit_length, version, debug_abbrev_offset,
2023 // address_size.
2024 if (this->is_big_endian())
2025 {
2026 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2027 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2028 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2029 }
2030 else
2031 {
2032 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2033 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2034 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2035 }
2036 pov += 4 + 2 + 4;
2037 *pov++ = 4;
2038
2039 // For type units, the additional header fields -- type_signature,
2040 // type_offset -- can be filled with zeroes.
2041
2042 // Fill the remainder of the free space with zeroes. The first
2043 // zero should tell the consumer there are no DIEs to read in this
2044 // compilation unit.
2045 if (pov < oview + len)
2046 memset(pov, 0, oview + len - pov);
2047
2048 of->write_output_view(off, len, oview);
2049 }
2050
2051 // Output_fill_debug_line methods.
2052
2053 // Return the minimum size needed for a dummy line number program header.
2054
2055 size_t
2056 Output_fill_debug_line::do_minimum_hole_size() const
2057 {
2058 // Line number program header fields: unit_length, version, header_length,
2059 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2060 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2061 const size_t len = 4 + 2 + 4 + this->header_length;
2062 return len;
2063 }
2064
2065 // Write a dummy line number program header to fill a hole in the
2066 // .debug_line section.
2067
2068 void
2069 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2070 {
2071 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2072 static_cast<long>(off), static_cast<long>(len));
2073
2074 gold_assert(len >= this->do_minimum_hole_size());
2075
2076 unsigned char* const oview = of->get_output_view(off, len);
2077 unsigned char* pov = oview;
2078
2079 // Write header fields: unit_length, version, header_length,
2080 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2081 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2082 // We set the header_length field to cover the entire hole, so the
2083 // line number program is empty.
2084 if (this->is_big_endian())
2085 {
2086 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2087 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2088 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2089 }
2090 else
2091 {
2092 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2093 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2094 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2095 }
2096 pov += 4 + 2 + 4;
2097 *pov++ = 1; // minimum_instruction_length
2098 *pov++ = 0; // default_is_stmt
2099 *pov++ = 0; // line_base
2100 *pov++ = 5; // line_range
2101 *pov++ = 13; // opcode_base
2102 *pov++ = 0; // standard_opcode_lengths[1]
2103 *pov++ = 1; // standard_opcode_lengths[2]
2104 *pov++ = 1; // standard_opcode_lengths[3]
2105 *pov++ = 1; // standard_opcode_lengths[4]
2106 *pov++ = 1; // standard_opcode_lengths[5]
2107 *pov++ = 0; // standard_opcode_lengths[6]
2108 *pov++ = 0; // standard_opcode_lengths[7]
2109 *pov++ = 0; // standard_opcode_lengths[8]
2110 *pov++ = 1; // standard_opcode_lengths[9]
2111 *pov++ = 0; // standard_opcode_lengths[10]
2112 *pov++ = 0; // standard_opcode_lengths[11]
2113 *pov++ = 1; // standard_opcode_lengths[12]
2114 *pov++ = 0; // include_directories (empty)
2115 *pov++ = 0; // filenames (empty)
2116
2117 // Some consumers don't check the header_length field, and simply
2118 // start reading the line number program immediately following the
2119 // header. For those consumers, we fill the remainder of the free
2120 // space with DW_LNS_set_basic_block opcodes. These are effectively
2121 // no-ops: the resulting line table program will not create any rows.
2122 if (pov < oview + len)
2123 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2124
2125 of->write_output_view(off, len, oview);
2126 }
2127
2128 // Output_section::Input_section methods.
2129
2130 // Return the current data size. For an input section we store the size here.
2131 // For an Output_section_data, we have to ask it for the size.
2132
2133 off_t
2134 Output_section::Input_section::current_data_size() const
2135 {
2136 if (this->is_input_section())
2137 return this->u1_.data_size;
2138 else
2139 {
2140 this->u2_.posd->pre_finalize_data_size();
2141 return this->u2_.posd->current_data_size();
2142 }
2143 }
2144
2145 // Return the data size. For an input section we store the size here.
2146 // For an Output_section_data, we have to ask it for the size.
2147
2148 off_t
2149 Output_section::Input_section::data_size() const
2150 {
2151 if (this->is_input_section())
2152 return this->u1_.data_size;
2153 else
2154 return this->u2_.posd->data_size();
2155 }
2156
2157 // Return the object for an input section.
2158
2159 Relobj*
2160 Output_section::Input_section::relobj() const
2161 {
2162 if (this->is_input_section())
2163 return this->u2_.object;
2164 else if (this->is_merge_section())
2165 {
2166 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2167 return this->u2_.pomb->first_relobj();
2168 }
2169 else if (this->is_relaxed_input_section())
2170 return this->u2_.poris->relobj();
2171 else
2172 gold_unreachable();
2173 }
2174
2175 // Return the input section index for an input section.
2176
2177 unsigned int
2178 Output_section::Input_section::shndx() const
2179 {
2180 if (this->is_input_section())
2181 return this->shndx_;
2182 else if (this->is_merge_section())
2183 {
2184 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2185 return this->u2_.pomb->first_shndx();
2186 }
2187 else if (this->is_relaxed_input_section())
2188 return this->u2_.poris->shndx();
2189 else
2190 gold_unreachable();
2191 }
2192
2193 // Set the address and file offset.
2194
2195 void
2196 Output_section::Input_section::set_address_and_file_offset(
2197 uint64_t address,
2198 off_t file_offset,
2199 off_t section_file_offset)
2200 {
2201 if (this->is_input_section())
2202 this->u2_.object->set_section_offset(this->shndx_,
2203 file_offset - section_file_offset);
2204 else
2205 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2206 }
2207
2208 // Reset the address and file offset.
2209
2210 void
2211 Output_section::Input_section::reset_address_and_file_offset()
2212 {
2213 if (!this->is_input_section())
2214 this->u2_.posd->reset_address_and_file_offset();
2215 }
2216
2217 // Finalize the data size.
2218
2219 void
2220 Output_section::Input_section::finalize_data_size()
2221 {
2222 if (!this->is_input_section())
2223 this->u2_.posd->finalize_data_size();
2224 }
2225
2226 // Try to turn an input offset into an output offset. We want to
2227 // return the output offset relative to the start of this
2228 // Input_section in the output section.
2229
2230 inline bool
2231 Output_section::Input_section::output_offset(
2232 const Relobj* object,
2233 unsigned int shndx,
2234 section_offset_type offset,
2235 section_offset_type* poutput) const
2236 {
2237 if (!this->is_input_section())
2238 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2239 else
2240 {
2241 if (this->shndx_ != shndx || this->u2_.object != object)
2242 return false;
2243 *poutput = offset;
2244 return true;
2245 }
2246 }
2247
2248 // Write out the data. We don't have to do anything for an input
2249 // section--they are handled via Object::relocate--but this is where
2250 // we write out the data for an Output_section_data.
2251
2252 void
2253 Output_section::Input_section::write(Output_file* of)
2254 {
2255 if (!this->is_input_section())
2256 this->u2_.posd->write(of);
2257 }
2258
2259 // Write the data to a buffer. As for write(), we don't have to do
2260 // anything for an input section.
2261
2262 void
2263 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2264 {
2265 if (!this->is_input_section())
2266 this->u2_.posd->write_to_buffer(buffer);
2267 }
2268
2269 // Print to a map file.
2270
2271 void
2272 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2273 {
2274 switch (this->shndx_)
2275 {
2276 case OUTPUT_SECTION_CODE:
2277 case MERGE_DATA_SECTION_CODE:
2278 case MERGE_STRING_SECTION_CODE:
2279 this->u2_.posd->print_to_mapfile(mapfile);
2280 break;
2281
2282 case RELAXED_INPUT_SECTION_CODE:
2283 {
2284 Output_relaxed_input_section* relaxed_section =
2285 this->relaxed_input_section();
2286 mapfile->print_input_section(relaxed_section->relobj(),
2287 relaxed_section->shndx());
2288 }
2289 break;
2290 default:
2291 mapfile->print_input_section(this->u2_.object, this->shndx_);
2292 break;
2293 }
2294 }
2295
2296 // Output_section methods.
2297
2298 // Construct an Output_section. NAME will point into a Stringpool.
2299
2300 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2301 elfcpp::Elf_Xword flags)
2302 : name_(name),
2303 addralign_(0),
2304 entsize_(0),
2305 load_address_(0),
2306 link_section_(NULL),
2307 link_(0),
2308 info_section_(NULL),
2309 info_symndx_(NULL),
2310 info_(0),
2311 type_(type),
2312 flags_(flags),
2313 order_(ORDER_INVALID),
2314 out_shndx_(-1U),
2315 symtab_index_(0),
2316 dynsym_index_(0),
2317 input_sections_(),
2318 first_input_offset_(0),
2319 fills_(),
2320 postprocessing_buffer_(NULL),
2321 needs_symtab_index_(false),
2322 needs_dynsym_index_(false),
2323 should_link_to_symtab_(false),
2324 should_link_to_dynsym_(false),
2325 after_input_sections_(false),
2326 requires_postprocessing_(false),
2327 found_in_sections_clause_(false),
2328 has_load_address_(false),
2329 info_uses_section_index_(false),
2330 input_section_order_specified_(false),
2331 may_sort_attached_input_sections_(false),
2332 must_sort_attached_input_sections_(false),
2333 attached_input_sections_are_sorted_(false),
2334 is_relro_(false),
2335 is_small_section_(false),
2336 is_large_section_(false),
2337 generate_code_fills_at_write_(false),
2338 is_entsize_zero_(false),
2339 section_offsets_need_adjustment_(false),
2340 is_noload_(false),
2341 always_keeps_input_sections_(false),
2342 has_fixed_layout_(false),
2343 is_patch_space_allowed_(false),
2344 is_unique_segment_(false),
2345 tls_offset_(0),
2346 extra_segment_flags_(0),
2347 segment_alignment_(0),
2348 checkpoint_(NULL),
2349 lookup_maps_(new Output_section_lookup_maps),
2350 free_list_(),
2351 free_space_fill_(NULL),
2352 patch_space_(0),
2353 reloc_section_(NULL)
2354 {
2355 // An unallocated section has no address. Forcing this means that
2356 // we don't need special treatment for symbols defined in debug
2357 // sections.
2358 if ((flags & elfcpp::SHF_ALLOC) == 0)
2359 this->set_address(0);
2360 }
2361
2362 Output_section::~Output_section()
2363 {
2364 delete this->checkpoint_;
2365 }
2366
2367 // Set the entry size.
2368
2369 void
2370 Output_section::set_entsize(uint64_t v)
2371 {
2372 if (this->is_entsize_zero_)
2373 ;
2374 else if (this->entsize_ == 0)
2375 this->entsize_ = v;
2376 else if (this->entsize_ != v)
2377 {
2378 this->entsize_ = 0;
2379 this->is_entsize_zero_ = 1;
2380 }
2381 }
2382
2383 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2384 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2385 // relocation section which applies to this section, or 0 if none, or
2386 // -1U if more than one. Return the offset of the input section
2387 // within the output section. Return -1 if the input section will
2388 // receive special handling. In the normal case we don't always keep
2389 // track of input sections for an Output_section. Instead, each
2390 // Object keeps track of the Output_section for each of its input
2391 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2392 // track of input sections here; this is used when SECTIONS appears in
2393 // a linker script.
2394
2395 template<int size, bool big_endian>
2396 off_t
2397 Output_section::add_input_section(Layout* layout,
2398 Sized_relobj_file<size, big_endian>* object,
2399 unsigned int shndx,
2400 const char* secname,
2401 const elfcpp::Shdr<size, big_endian>& shdr,
2402 unsigned int reloc_shndx,
2403 bool have_sections_script)
2404 {
2405 section_size_type input_section_size = shdr.get_sh_size();
2406 section_size_type uncompressed_size;
2407 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2408 if (object->section_is_compressed(shndx, &uncompressed_size,
2409 &addralign))
2410 input_section_size = uncompressed_size;
2411
2412 if ((addralign & (addralign - 1)) != 0)
2413 {
2414 object->error(_("invalid alignment %lu for section \"%s\""),
2415 static_cast<unsigned long>(addralign), secname);
2416 addralign = 1;
2417 }
2418
2419 if (addralign > this->addralign_)
2420 this->addralign_ = addralign;
2421
2422 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2423 uint64_t entsize = shdr.get_sh_entsize();
2424
2425 // .debug_str is a mergeable string section, but is not always so
2426 // marked by compilers. Mark manually here so we can optimize.
2427 if (strcmp(secname, ".debug_str") == 0)
2428 {
2429 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2430 entsize = 1;
2431 }
2432
2433 this->update_flags_for_input_section(sh_flags);
2434 this->set_entsize(entsize);
2435
2436 // If this is a SHF_MERGE section, we pass all the input sections to
2437 // a Output_data_merge. We don't try to handle relocations for such
2438 // a section. We don't try to handle empty merge sections--they
2439 // mess up the mappings, and are useless anyhow.
2440 // FIXME: Need to handle merge sections during incremental update.
2441 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2442 && reloc_shndx == 0
2443 && shdr.get_sh_size() > 0
2444 && !parameters->incremental())
2445 {
2446 // Keep information about merged input sections for rebuilding fast
2447 // lookup maps if we have sections-script or we do relaxation.
2448 bool keeps_input_sections = (this->always_keeps_input_sections_
2449 || have_sections_script
2450 || parameters->target().may_relax());
2451
2452 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2453 addralign, keeps_input_sections))
2454 {
2455 // Tell the relocation routines that they need to call the
2456 // output_offset method to determine the final address.
2457 return -1;
2458 }
2459 }
2460
2461 off_t offset_in_section;
2462
2463 if (this->has_fixed_layout())
2464 {
2465 // For incremental updates, find a chunk of unused space in the section.
2466 offset_in_section = this->free_list_.allocate(input_section_size,
2467 addralign, 0);
2468 if (offset_in_section == -1)
2469 gold_fallback(_("out of patch space in section %s; "
2470 "relink with --incremental-full"),
2471 this->name());
2472 return offset_in_section;
2473 }
2474
2475 offset_in_section = this->current_data_size_for_child();
2476 off_t aligned_offset_in_section = align_address(offset_in_section,
2477 addralign);
2478 this->set_current_data_size_for_child(aligned_offset_in_section
2479 + input_section_size);
2480
2481 // Determine if we want to delay code-fill generation until the output
2482 // section is written. When the target is relaxing, we want to delay fill
2483 // generating to avoid adjusting them during relaxation. Also, if we are
2484 // sorting input sections we must delay fill generation.
2485 if (!this->generate_code_fills_at_write_
2486 && !have_sections_script
2487 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2488 && parameters->target().has_code_fill()
2489 && (parameters->target().may_relax()
2490 || layout->is_section_ordering_specified()))
2491 {
2492 gold_assert(this->fills_.empty());
2493 this->generate_code_fills_at_write_ = true;
2494 }
2495
2496 if (aligned_offset_in_section > offset_in_section
2497 && !this->generate_code_fills_at_write_
2498 && !have_sections_script
2499 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2500 && parameters->target().has_code_fill())
2501 {
2502 // We need to add some fill data. Using fill_list_ when
2503 // possible is an optimization, since we will often have fill
2504 // sections without input sections.
2505 off_t fill_len = aligned_offset_in_section - offset_in_section;
2506 if (this->input_sections_.empty())
2507 this->fills_.push_back(Fill(offset_in_section, fill_len));
2508 else
2509 {
2510 std::string fill_data(parameters->target().code_fill(fill_len));
2511 Output_data_const* odc = new Output_data_const(fill_data, 1);
2512 this->input_sections_.push_back(Input_section(odc));
2513 }
2514 }
2515
2516 // We need to keep track of this section if we are already keeping
2517 // track of sections, or if we are relaxing. Also, if this is a
2518 // section which requires sorting, or which may require sorting in
2519 // the future, we keep track of the sections. If the
2520 // --section-ordering-file option is used to specify the order of
2521 // sections, we need to keep track of sections.
2522 if (this->always_keeps_input_sections_
2523 || have_sections_script
2524 || !this->input_sections_.empty()
2525 || this->may_sort_attached_input_sections()
2526 || this->must_sort_attached_input_sections()
2527 || parameters->options().user_set_Map()
2528 || parameters->target().may_relax()
2529 || layout->is_section_ordering_specified())
2530 {
2531 Input_section isecn(object, shndx, input_section_size, addralign);
2532 /* If section ordering is requested by specifying a ordering file,
2533 using --section-ordering-file, match the section name with
2534 a pattern. */
2535 if (parameters->options().section_ordering_file())
2536 {
2537 unsigned int section_order_index =
2538 layout->find_section_order_index(std::string(secname));
2539 if (section_order_index != 0)
2540 {
2541 isecn.set_section_order_index(section_order_index);
2542 this->set_input_section_order_specified();
2543 }
2544 }
2545 this->input_sections_.push_back(isecn);
2546 }
2547
2548 return aligned_offset_in_section;
2549 }
2550
2551 // Add arbitrary data to an output section.
2552
2553 void
2554 Output_section::add_output_section_data(Output_section_data* posd)
2555 {
2556 Input_section inp(posd);
2557 this->add_output_section_data(&inp);
2558
2559 if (posd->is_data_size_valid())
2560 {
2561 off_t offset_in_section;
2562 if (this->has_fixed_layout())
2563 {
2564 // For incremental updates, find a chunk of unused space.
2565 offset_in_section = this->free_list_.allocate(posd->data_size(),
2566 posd->addralign(), 0);
2567 if (offset_in_section == -1)
2568 gold_fallback(_("out of patch space in section %s; "
2569 "relink with --incremental-full"),
2570 this->name());
2571 // Finalize the address and offset now.
2572 uint64_t addr = this->address();
2573 off_t offset = this->offset();
2574 posd->set_address_and_file_offset(addr + offset_in_section,
2575 offset + offset_in_section);
2576 }
2577 else
2578 {
2579 offset_in_section = this->current_data_size_for_child();
2580 off_t aligned_offset_in_section = align_address(offset_in_section,
2581 posd->addralign());
2582 this->set_current_data_size_for_child(aligned_offset_in_section
2583 + posd->data_size());
2584 }
2585 }
2586 else if (this->has_fixed_layout())
2587 {
2588 // For incremental updates, arrange for the data to have a fixed layout.
2589 // This will mean that additions to the data must be allocated from
2590 // free space within the containing output section.
2591 uint64_t addr = this->address();
2592 posd->set_address(addr);
2593 posd->set_file_offset(0);
2594 // FIXME: This should eventually be unreachable.
2595 // gold_unreachable();
2596 }
2597 }
2598
2599 // Add a relaxed input section.
2600
2601 void
2602 Output_section::add_relaxed_input_section(Layout* layout,
2603 Output_relaxed_input_section* poris,
2604 const std::string& name)
2605 {
2606 Input_section inp(poris);
2607
2608 // If the --section-ordering-file option is used to specify the order of
2609 // sections, we need to keep track of sections.
2610 if (layout->is_section_ordering_specified())
2611 {
2612 unsigned int section_order_index =
2613 layout->find_section_order_index(name);
2614 if (section_order_index != 0)
2615 {
2616 inp.set_section_order_index(section_order_index);
2617 this->set_input_section_order_specified();
2618 }
2619 }
2620
2621 this->add_output_section_data(&inp);
2622 if (this->lookup_maps_->is_valid())
2623 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2624 poris->shndx(), poris);
2625
2626 // For a relaxed section, we use the current data size. Linker scripts
2627 // get all the input sections, including relaxed one from an output
2628 // section and add them back to the same output section to compute the
2629 // output section size. If we do not account for sizes of relaxed input
2630 // sections, an output section would be incorrectly sized.
2631 off_t offset_in_section = this->current_data_size_for_child();
2632 off_t aligned_offset_in_section = align_address(offset_in_section,
2633 poris->addralign());
2634 this->set_current_data_size_for_child(aligned_offset_in_section
2635 + poris->current_data_size());
2636 }
2637
2638 // Add arbitrary data to an output section by Input_section.
2639
2640 void
2641 Output_section::add_output_section_data(Input_section* inp)
2642 {
2643 if (this->input_sections_.empty())
2644 this->first_input_offset_ = this->current_data_size_for_child();
2645
2646 this->input_sections_.push_back(*inp);
2647
2648 uint64_t addralign = inp->addralign();
2649 if (addralign > this->addralign_)
2650 this->addralign_ = addralign;
2651
2652 inp->set_output_section(this);
2653 }
2654
2655 // Add a merge section to an output section.
2656
2657 void
2658 Output_section::add_output_merge_section(Output_section_data* posd,
2659 bool is_string, uint64_t entsize)
2660 {
2661 Input_section inp(posd, is_string, entsize);
2662 this->add_output_section_data(&inp);
2663 }
2664
2665 // Add an input section to a SHF_MERGE section.
2666
2667 bool
2668 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2669 uint64_t flags, uint64_t entsize,
2670 uint64_t addralign,
2671 bool keeps_input_sections)
2672 {
2673 // We cannot merge sections with entsize == 0.
2674 if (entsize == 0)
2675 return false;
2676
2677 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2678
2679 // We cannot restore merged input section states.
2680 gold_assert(this->checkpoint_ == NULL);
2681
2682 // Look up merge sections by required properties.
2683 // Currently, we only invalidate the lookup maps in script processing
2684 // and relaxation. We should not have done either when we reach here.
2685 // So we assume that the lookup maps are valid to simply code.
2686 gold_assert(this->lookup_maps_->is_valid());
2687 Merge_section_properties msp(is_string, entsize, addralign);
2688 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2689 bool is_new = false;
2690 if (pomb != NULL)
2691 {
2692 gold_assert(pomb->is_string() == is_string
2693 && pomb->entsize() == entsize
2694 && pomb->addralign() == addralign);
2695 }
2696 else
2697 {
2698 // Create a new Output_merge_data or Output_merge_string_data.
2699 if (!is_string)
2700 pomb = new Output_merge_data(entsize, addralign);
2701 else
2702 {
2703 switch (entsize)
2704 {
2705 case 1:
2706 pomb = new Output_merge_string<char>(addralign);
2707 break;
2708 case 2:
2709 pomb = new Output_merge_string<uint16_t>(addralign);
2710 break;
2711 case 4:
2712 pomb = new Output_merge_string<uint32_t>(addralign);
2713 break;
2714 default:
2715 return false;
2716 }
2717 }
2718 // If we need to do script processing or relaxation, we need to keep
2719 // the original input sections to rebuild the fast lookup maps.
2720 if (keeps_input_sections)
2721 pomb->set_keeps_input_sections();
2722 is_new = true;
2723 }
2724
2725 if (pomb->add_input_section(object, shndx))
2726 {
2727 // Add new merge section to this output section and link merge
2728 // section properties to new merge section in map.
2729 if (is_new)
2730 {
2731 this->add_output_merge_section(pomb, is_string, entsize);
2732 this->lookup_maps_->add_merge_section(msp, pomb);
2733 }
2734
2735 return true;
2736 }
2737 else
2738 {
2739 // If add_input_section failed, delete new merge section to avoid
2740 // exporting empty merge sections in Output_section::get_input_section.
2741 if (is_new)
2742 delete pomb;
2743 return false;
2744 }
2745 }
2746
2747 // Build a relaxation map to speed up relaxation of existing input sections.
2748 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2749
2750 void
2751 Output_section::build_relaxation_map(
2752 const Input_section_list& input_sections,
2753 size_t limit,
2754 Relaxation_map* relaxation_map) const
2755 {
2756 for (size_t i = 0; i < limit; ++i)
2757 {
2758 const Input_section& is(input_sections[i]);
2759 if (is.is_input_section() || is.is_relaxed_input_section())
2760 {
2761 Section_id sid(is.relobj(), is.shndx());
2762 (*relaxation_map)[sid] = i;
2763 }
2764 }
2765 }
2766
2767 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2768 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2769 // indices of INPUT_SECTIONS.
2770
2771 void
2772 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2773 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2774 const Relaxation_map& map,
2775 Input_section_list* input_sections)
2776 {
2777 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2778 {
2779 Output_relaxed_input_section* poris = relaxed_sections[i];
2780 Section_id sid(poris->relobj(), poris->shndx());
2781 Relaxation_map::const_iterator p = map.find(sid);
2782 gold_assert(p != map.end());
2783 gold_assert((*input_sections)[p->second].is_input_section());
2784
2785 // Remember section order index of original input section
2786 // if it is set. Copy it to the relaxed input section.
2787 unsigned int soi =
2788 (*input_sections)[p->second].section_order_index();
2789 (*input_sections)[p->second] = Input_section(poris);
2790 (*input_sections)[p->second].set_section_order_index(soi);
2791 }
2792 }
2793
2794 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2795 // is a vector of pointers to Output_relaxed_input_section or its derived
2796 // classes. The relaxed sections must correspond to existing input sections.
2797
2798 void
2799 Output_section::convert_input_sections_to_relaxed_sections(
2800 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2801 {
2802 gold_assert(parameters->target().may_relax());
2803
2804 // We want to make sure that restore_states does not undo the effect of
2805 // this. If there is no checkpoint active, just search the current
2806 // input section list and replace the sections there. If there is
2807 // a checkpoint, also replace the sections there.
2808
2809 // By default, we look at the whole list.
2810 size_t limit = this->input_sections_.size();
2811
2812 if (this->checkpoint_ != NULL)
2813 {
2814 // Replace input sections with relaxed input section in the saved
2815 // copy of the input section list.
2816 if (this->checkpoint_->input_sections_saved())
2817 {
2818 Relaxation_map map;
2819 this->build_relaxation_map(
2820 *(this->checkpoint_->input_sections()),
2821 this->checkpoint_->input_sections()->size(),
2822 &map);
2823 this->convert_input_sections_in_list_to_relaxed_sections(
2824 relaxed_sections,
2825 map,
2826 this->checkpoint_->input_sections());
2827 }
2828 else
2829 {
2830 // We have not copied the input section list yet. Instead, just
2831 // look at the portion that would be saved.
2832 limit = this->checkpoint_->input_sections_size();
2833 }
2834 }
2835
2836 // Convert input sections in input_section_list.
2837 Relaxation_map map;
2838 this->build_relaxation_map(this->input_sections_, limit, &map);
2839 this->convert_input_sections_in_list_to_relaxed_sections(
2840 relaxed_sections,
2841 map,
2842 &this->input_sections_);
2843
2844 // Update fast look-up map.
2845 if (this->lookup_maps_->is_valid())
2846 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2847 {
2848 Output_relaxed_input_section* poris = relaxed_sections[i];
2849 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2850 poris->shndx(), poris);
2851 }
2852 }
2853
2854 // Update the output section flags based on input section flags.
2855
2856 void
2857 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2858 {
2859 // If we created the section with SHF_ALLOC clear, we set the
2860 // address. If we are now setting the SHF_ALLOC flag, we need to
2861 // undo that.
2862 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2863 && (flags & elfcpp::SHF_ALLOC) != 0)
2864 this->mark_address_invalid();
2865
2866 this->flags_ |= (flags
2867 & (elfcpp::SHF_WRITE
2868 | elfcpp::SHF_ALLOC
2869 | elfcpp::SHF_EXECINSTR));
2870
2871 if ((flags & elfcpp::SHF_MERGE) == 0)
2872 this->flags_ &=~ elfcpp::SHF_MERGE;
2873 else
2874 {
2875 if (this->current_data_size_for_child() == 0)
2876 this->flags_ |= elfcpp::SHF_MERGE;
2877 }
2878
2879 if ((flags & elfcpp::SHF_STRINGS) == 0)
2880 this->flags_ &=~ elfcpp::SHF_STRINGS;
2881 else
2882 {
2883 if (this->current_data_size_for_child() == 0)
2884 this->flags_ |= elfcpp::SHF_STRINGS;
2885 }
2886 }
2887
2888 // Find the merge section into which an input section with index SHNDX in
2889 // OBJECT has been added. Return NULL if none found.
2890
2891 const Output_section_data*
2892 Output_section::find_merge_section(const Relobj* object,
2893 unsigned int shndx) const
2894 {
2895 return object->find_merge_section(shndx);
2896 }
2897
2898 // Build the lookup maps for relaxed sections. This needs
2899 // to be declared as a const method so that it is callable with a const
2900 // Output_section pointer. The method only updates states of the maps.
2901
2902 void
2903 Output_section::build_lookup_maps() const
2904 {
2905 this->lookup_maps_->clear();
2906 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2907 p != this->input_sections_.end();
2908 ++p)
2909 {
2910 if (p->is_relaxed_input_section())
2911 {
2912 Output_relaxed_input_section* poris = p->relaxed_input_section();
2913 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2914 poris->shndx(), poris);
2915 }
2916 }
2917 }
2918
2919 // Find an relaxed input section corresponding to an input section
2920 // in OBJECT with index SHNDX.
2921
2922 const Output_relaxed_input_section*
2923 Output_section::find_relaxed_input_section(const Relobj* object,
2924 unsigned int shndx) const
2925 {
2926 if (!this->lookup_maps_->is_valid())
2927 this->build_lookup_maps();
2928 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2929 }
2930
2931 // Given an address OFFSET relative to the start of input section
2932 // SHNDX in OBJECT, return whether this address is being included in
2933 // the final link. This should only be called if SHNDX in OBJECT has
2934 // a special mapping.
2935
2936 bool
2937 Output_section::is_input_address_mapped(const Relobj* object,
2938 unsigned int shndx,
2939 off_t offset) const
2940 {
2941 // Look at the Output_section_data_maps first.
2942 const Output_section_data* posd = this->find_merge_section(object, shndx);
2943 if (posd == NULL)
2944 posd = this->find_relaxed_input_section(object, shndx);
2945
2946 if (posd != NULL)
2947 {
2948 section_offset_type output_offset;
2949 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2950 // By default we assume that the address is mapped. See comment at the
2951 // end.
2952 if (!found)
2953 return true;
2954 return output_offset != -1;
2955 }
2956
2957 // Fall back to the slow look-up.
2958 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2959 p != this->input_sections_.end();
2960 ++p)
2961 {
2962 section_offset_type output_offset;
2963 if (p->output_offset(object, shndx, offset, &output_offset))
2964 return output_offset != -1;
2965 }
2966
2967 // By default we assume that the address is mapped. This should
2968 // only be called after we have passed all sections to Layout. At
2969 // that point we should know what we are discarding.
2970 return true;
2971 }
2972
2973 // Given an address OFFSET relative to the start of input section
2974 // SHNDX in object OBJECT, return the output offset relative to the
2975 // start of the input section in the output section. This should only
2976 // be called if SHNDX in OBJECT has a special mapping.
2977
2978 section_offset_type
2979 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2980 section_offset_type offset) const
2981 {
2982 // This can only be called meaningfully when we know the data size
2983 // of this.
2984 gold_assert(this->is_data_size_valid());
2985
2986 // Look at the Output_section_data_maps first.
2987 const Output_section_data* posd = this->find_merge_section(object, shndx);
2988 if (posd == NULL)
2989 posd = this->find_relaxed_input_section(object, shndx);
2990 if (posd != NULL)
2991 {
2992 section_offset_type output_offset;
2993 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2994 gold_assert(found);
2995 return output_offset;
2996 }
2997
2998 // Fall back to the slow look-up.
2999 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3000 p != this->input_sections_.end();
3001 ++p)
3002 {
3003 section_offset_type output_offset;
3004 if (p->output_offset(object, shndx, offset, &output_offset))
3005 return output_offset;
3006 }
3007 gold_unreachable();
3008 }
3009
3010 // Return the output virtual address of OFFSET relative to the start
3011 // of input section SHNDX in object OBJECT.
3012
3013 uint64_t
3014 Output_section::output_address(const Relobj* object, unsigned int shndx,
3015 off_t offset) const
3016 {
3017 uint64_t addr = this->address() + this->first_input_offset_;
3018
3019 // Look at the Output_section_data_maps first.
3020 const Output_section_data* posd = this->find_merge_section(object, shndx);
3021 if (posd == NULL)
3022 posd = this->find_relaxed_input_section(object, shndx);
3023 if (posd != NULL && posd->is_address_valid())
3024 {
3025 section_offset_type output_offset;
3026 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3027 gold_assert(found);
3028 return posd->address() + output_offset;
3029 }
3030
3031 // Fall back to the slow look-up.
3032 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3033 p != this->input_sections_.end();
3034 ++p)
3035 {
3036 addr = align_address(addr, p->addralign());
3037 section_offset_type output_offset;
3038 if (p->output_offset(object, shndx, offset, &output_offset))
3039 {
3040 if (output_offset == -1)
3041 return -1ULL;
3042 return addr + output_offset;
3043 }
3044 addr += p->data_size();
3045 }
3046
3047 // If we get here, it means that we don't know the mapping for this
3048 // input section. This might happen in principle if
3049 // add_input_section were called before add_output_section_data.
3050 // But it should never actually happen.
3051
3052 gold_unreachable();
3053 }
3054
3055 // Find the output address of the start of the merged section for
3056 // input section SHNDX in object OBJECT.
3057
3058 bool
3059 Output_section::find_starting_output_address(const Relobj* object,
3060 unsigned int shndx,
3061 uint64_t* paddr) const
3062 {
3063 const Output_section_data* data = this->find_merge_section(object, shndx);
3064 if (data == NULL)
3065 return false;
3066
3067 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3068 // Looking up the merge section map does not always work as we sometimes
3069 // find a merge section without its address set.
3070 uint64_t addr = this->address() + this->first_input_offset_;
3071 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3072 p != this->input_sections_.end();
3073 ++p)
3074 {
3075 addr = align_address(addr, p->addralign());
3076
3077 // It would be nice if we could use the existing output_offset
3078 // method to get the output offset of input offset 0.
3079 // Unfortunately we don't know for sure that input offset 0 is
3080 // mapped at all.
3081 if (!p->is_input_section() && p->output_section_data() == data)
3082 {
3083 *paddr = addr;
3084 return true;
3085 }
3086
3087 addr += p->data_size();
3088 }
3089
3090 // We couldn't find a merge output section for this input section.
3091 return false;
3092 }
3093
3094 // Update the data size of an Output_section.
3095
3096 void
3097 Output_section::update_data_size()
3098 {
3099 if (this->input_sections_.empty())
3100 return;
3101
3102 if (this->must_sort_attached_input_sections()
3103 || this->input_section_order_specified())
3104 this->sort_attached_input_sections();
3105
3106 off_t off = this->first_input_offset_;
3107 for (Input_section_list::iterator p = this->input_sections_.begin();
3108 p != this->input_sections_.end();
3109 ++p)
3110 {
3111 off = align_address(off, p->addralign());
3112 off += p->current_data_size();
3113 }
3114
3115 this->set_current_data_size_for_child(off);
3116 }
3117
3118 // Set the data size of an Output_section. This is where we handle
3119 // setting the addresses of any Output_section_data objects.
3120
3121 void
3122 Output_section::set_final_data_size()
3123 {
3124 off_t data_size;
3125
3126 if (this->input_sections_.empty())
3127 data_size = this->current_data_size_for_child();
3128 else
3129 {
3130 if (this->must_sort_attached_input_sections()
3131 || this->input_section_order_specified())
3132 this->sort_attached_input_sections();
3133
3134 uint64_t address = this->address();
3135 off_t startoff = this->offset();
3136 off_t off = this->first_input_offset_;
3137 for (Input_section_list::iterator p = this->input_sections_.begin();
3138 p != this->input_sections_.end();
3139 ++p)
3140 {
3141 off = align_address(off, p->addralign());
3142 p->set_address_and_file_offset(address + off, startoff + off,
3143 startoff);
3144 off += p->data_size();
3145 }
3146 data_size = off;
3147 }
3148
3149 // For full incremental links, we want to allocate some patch space
3150 // in most sections for subsequent incremental updates.
3151 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3152 {
3153 double pct = parameters->options().incremental_patch();
3154 size_t extra = static_cast<size_t>(data_size * pct);
3155 if (this->free_space_fill_ != NULL
3156 && this->free_space_fill_->minimum_hole_size() > extra)
3157 extra = this->free_space_fill_->minimum_hole_size();
3158 off_t new_size = align_address(data_size + extra, this->addralign());
3159 this->patch_space_ = new_size - data_size;
3160 gold_debug(DEBUG_INCREMENTAL,
3161 "set_final_data_size: %08lx + %08lx: section %s",
3162 static_cast<long>(data_size),
3163 static_cast<long>(this->patch_space_),
3164 this->name());
3165 data_size = new_size;
3166 }
3167
3168 this->set_data_size(data_size);
3169 }
3170
3171 // Reset the address and file offset.
3172
3173 void
3174 Output_section::do_reset_address_and_file_offset()
3175 {
3176 // An unallocated section has no address. Forcing this means that
3177 // we don't need special treatment for symbols defined in debug
3178 // sections. We do the same in the constructor. This does not
3179 // apply to NOLOAD sections though.
3180 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3181 this->set_address(0);
3182
3183 for (Input_section_list::iterator p = this->input_sections_.begin();
3184 p != this->input_sections_.end();
3185 ++p)
3186 p->reset_address_and_file_offset();
3187
3188 // Remove any patch space that was added in set_final_data_size.
3189 if (this->patch_space_ > 0)
3190 {
3191 this->set_current_data_size_for_child(this->current_data_size_for_child()
3192 - this->patch_space_);
3193 this->patch_space_ = 0;
3194 }
3195 }
3196
3197 // Return true if address and file offset have the values after reset.
3198
3199 bool
3200 Output_section::do_address_and_file_offset_have_reset_values() const
3201 {
3202 if (this->is_offset_valid())
3203 return false;
3204
3205 // An unallocated section has address 0 after its construction or a reset.
3206 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3207 return this->is_address_valid() && this->address() == 0;
3208 else
3209 return !this->is_address_valid();
3210 }
3211
3212 // Set the TLS offset. Called only for SHT_TLS sections.
3213
3214 void
3215 Output_section::do_set_tls_offset(uint64_t tls_base)
3216 {
3217 this->tls_offset_ = this->address() - tls_base;
3218 }
3219
3220 // In a few cases we need to sort the input sections attached to an
3221 // output section. This is used to implement the type of constructor
3222 // priority ordering implemented by the GNU linker, in which the
3223 // priority becomes part of the section name and the sections are
3224 // sorted by name. We only do this for an output section if we see an
3225 // attached input section matching ".ctors.*", ".dtors.*",
3226 // ".init_array.*" or ".fini_array.*".
3227
3228 class Output_section::Input_section_sort_entry
3229 {
3230 public:
3231 Input_section_sort_entry()
3232 : input_section_(), index_(-1U), section_name_()
3233 { }
3234
3235 Input_section_sort_entry(const Input_section& input_section,
3236 unsigned int index,
3237 bool must_sort_attached_input_sections,
3238 const char* output_section_name)
3239 : input_section_(input_section), index_(index), section_name_()
3240 {
3241 if ((input_section.is_input_section()
3242 || input_section.is_relaxed_input_section())
3243 && must_sort_attached_input_sections)
3244 {
3245 // This is only called single-threaded from Layout::finalize,
3246 // so it is OK to lock. Unfortunately we have no way to pass
3247 // in a Task token.
3248 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3249 Object* obj = (input_section.is_input_section()
3250 ? input_section.relobj()
3251 : input_section.relaxed_input_section()->relobj());
3252 Task_lock_obj<Object> tl(dummy_task, obj);
3253
3254 // This is a slow operation, which should be cached in
3255 // Layout::layout if this becomes a speed problem.
3256 this->section_name_ = obj->section_name(input_section.shndx());
3257 }
3258 else if (input_section.is_output_section_data()
3259 && must_sort_attached_input_sections)
3260 {
3261 // For linker-generated sections, use the output section name.
3262 this->section_name_.assign(output_section_name);
3263 }
3264 }
3265
3266 // Return the Input_section.
3267 const Input_section&
3268 input_section() const
3269 {
3270 gold_assert(this->index_ != -1U);
3271 return this->input_section_;
3272 }
3273
3274 // The index of this entry in the original list. This is used to
3275 // make the sort stable.
3276 unsigned int
3277 index() const
3278 {
3279 gold_assert(this->index_ != -1U);
3280 return this->index_;
3281 }
3282
3283 // The section name.
3284 const std::string&
3285 section_name() const
3286 {
3287 return this->section_name_;
3288 }
3289
3290 // Return true if the section name has a priority. This is assumed
3291 // to be true if it has a dot after the initial dot.
3292 bool
3293 has_priority() const
3294 {
3295 return this->section_name_.find('.', 1) != std::string::npos;
3296 }
3297
3298 // Return the priority. Believe it or not, gcc encodes the priority
3299 // differently for .ctors/.dtors and .init_array/.fini_array
3300 // sections.
3301 unsigned int
3302 get_priority() const
3303 {
3304 bool is_ctors;
3305 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3306 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3307 is_ctors = true;
3308 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3309 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3310 is_ctors = false;
3311 else
3312 return 0;
3313 char* end;
3314 unsigned long prio = strtoul((this->section_name_.c_str()
3315 + (is_ctors ? 7 : 12)),
3316 &end, 10);
3317 if (*end != '\0')
3318 return 0;
3319 else if (is_ctors)
3320 return 65535 - prio;
3321 else
3322 return prio;
3323 }
3324
3325 // Return true if this an input file whose base name matches
3326 // FILE_NAME. The base name must have an extension of ".o", and
3327 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3328 // This is to match crtbegin.o as well as crtbeginS.o without
3329 // getting confused by other possibilities. Overall matching the
3330 // file name this way is a dreadful hack, but the GNU linker does it
3331 // in order to better support gcc, and we need to be compatible.
3332 bool
3333 match_file_name(const char* file_name) const
3334 {
3335 if (this->input_section_.is_output_section_data())
3336 return false;
3337 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3338 }
3339
3340 // Returns 1 if THIS should appear before S in section order, -1 if S
3341 // appears before THIS and 0 if they are not comparable.
3342 int
3343 compare_section_ordering(const Input_section_sort_entry& s) const
3344 {
3345 unsigned int this_secn_index = this->input_section_.section_order_index();
3346 unsigned int s_secn_index = s.input_section().section_order_index();
3347 if (this_secn_index > 0 && s_secn_index > 0)
3348 {
3349 if (this_secn_index < s_secn_index)
3350 return 1;
3351 else if (this_secn_index > s_secn_index)
3352 return -1;
3353 }
3354 return 0;
3355 }
3356
3357 private:
3358 // The Input_section we are sorting.
3359 Input_section input_section_;
3360 // The index of this Input_section in the original list.
3361 unsigned int index_;
3362 // The section name if there is one.
3363 std::string section_name_;
3364 };
3365
3366 // Return true if S1 should come before S2 in the output section.
3367
3368 bool
3369 Output_section::Input_section_sort_compare::operator()(
3370 const Output_section::Input_section_sort_entry& s1,
3371 const Output_section::Input_section_sort_entry& s2) const
3372 {
3373 // crtbegin.o must come first.
3374 bool s1_begin = s1.match_file_name("crtbegin");
3375 bool s2_begin = s2.match_file_name("crtbegin");
3376 if (s1_begin || s2_begin)
3377 {
3378 if (!s1_begin)
3379 return false;
3380 if (!s2_begin)
3381 return true;
3382 return s1.index() < s2.index();
3383 }
3384
3385 // crtend.o must come last.
3386 bool s1_end = s1.match_file_name("crtend");
3387 bool s2_end = s2.match_file_name("crtend");
3388 if (s1_end || s2_end)
3389 {
3390 if (!s1_end)
3391 return true;
3392 if (!s2_end)
3393 return false;
3394 return s1.index() < s2.index();
3395 }
3396
3397 // A section with a priority follows a section without a priority.
3398 bool s1_has_priority = s1.has_priority();
3399 bool s2_has_priority = s2.has_priority();
3400 if (s1_has_priority && !s2_has_priority)
3401 return false;
3402 if (!s1_has_priority && s2_has_priority)
3403 return true;
3404
3405 // Check if a section order exists for these sections through a section
3406 // ordering file. If sequence_num is 0, an order does not exist.
3407 int sequence_num = s1.compare_section_ordering(s2);
3408 if (sequence_num != 0)
3409 return sequence_num == 1;
3410
3411 // Otherwise we sort by name.
3412 int compare = s1.section_name().compare(s2.section_name());
3413 if (compare != 0)
3414 return compare < 0;
3415
3416 // Otherwise we keep the input order.
3417 return s1.index() < s2.index();
3418 }
3419
3420 // Return true if S1 should come before S2 in an .init_array or .fini_array
3421 // output section.
3422
3423 bool
3424 Output_section::Input_section_sort_init_fini_compare::operator()(
3425 const Output_section::Input_section_sort_entry& s1,
3426 const Output_section::Input_section_sort_entry& s2) const
3427 {
3428 // A section without a priority follows a section with a priority.
3429 // This is the reverse of .ctors and .dtors sections.
3430 bool s1_has_priority = s1.has_priority();
3431 bool s2_has_priority = s2.has_priority();
3432 if (s1_has_priority && !s2_has_priority)
3433 return true;
3434 if (!s1_has_priority && s2_has_priority)
3435 return false;
3436
3437 // .ctors and .dtors sections without priority come after
3438 // .init_array and .fini_array sections without priority.
3439 if (!s1_has_priority
3440 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3441 && s1.section_name() != s2.section_name())
3442 return false;
3443 if (!s2_has_priority
3444 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3445 && s2.section_name() != s1.section_name())
3446 return true;
3447
3448 // Sort by priority if we can.
3449 if (s1_has_priority)
3450 {
3451 unsigned int s1_prio = s1.get_priority();
3452 unsigned int s2_prio = s2.get_priority();
3453 if (s1_prio < s2_prio)
3454 return true;
3455 else if (s1_prio > s2_prio)
3456 return false;
3457 }
3458
3459 // Check if a section order exists for these sections through a section
3460 // ordering file. If sequence_num is 0, an order does not exist.
3461 int sequence_num = s1.compare_section_ordering(s2);
3462 if (sequence_num != 0)
3463 return sequence_num == 1;
3464
3465 // Otherwise we sort by name.
3466 int compare = s1.section_name().compare(s2.section_name());
3467 if (compare != 0)
3468 return compare < 0;
3469
3470 // Otherwise we keep the input order.
3471 return s1.index() < s2.index();
3472 }
3473
3474 // Return true if S1 should come before S2. Sections that do not match
3475 // any pattern in the section ordering file are placed ahead of the sections
3476 // that match some pattern.
3477
3478 bool
3479 Output_section::Input_section_sort_section_order_index_compare::operator()(
3480 const Output_section::Input_section_sort_entry& s1,
3481 const Output_section::Input_section_sort_entry& s2) const
3482 {
3483 unsigned int s1_secn_index = s1.input_section().section_order_index();
3484 unsigned int s2_secn_index = s2.input_section().section_order_index();
3485
3486 // Keep input order if section ordering cannot determine order.
3487 if (s1_secn_index == s2_secn_index)
3488 return s1.index() < s2.index();
3489
3490 return s1_secn_index < s2_secn_index;
3491 }
3492
3493 // Return true if S1 should come before S2. This is the sort comparison
3494 // function for .text to sort sections with prefixes
3495 // .text.{unlikely,exit,startup,hot} before other sections.
3496
3497 bool
3498 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3499 ::operator()(
3500 const Output_section::Input_section_sort_entry& s1,
3501 const Output_section::Input_section_sort_entry& s2) const
3502 {
3503 // Some input section names have special ordering requirements.
3504 const char *s1_section_name = s1.section_name().c_str();
3505 const char *s2_section_name = s2.section_name().c_str();
3506 int o1 = Layout::special_ordering_of_input_section(s1_section_name);
3507 int o2 = Layout::special_ordering_of_input_section(s2_section_name);
3508 if (o1 != o2)
3509 {
3510 if (o1 < 0)
3511 return false;
3512 else if (o2 < 0)
3513 return true;
3514 else
3515 return o1 < o2;
3516 }
3517 else if (is_prefix_of(".text.sorted", s1_section_name))
3518 return strcmp(s1_section_name, s2_section_name) <= 0;
3519
3520 // Keep input order otherwise.
3521 return s1.index() < s2.index();
3522 }
3523
3524 // Return true if S1 should come before S2. This is the sort comparison
3525 // function for sections to sort them by name.
3526
3527 bool
3528 Output_section::Input_section_sort_section_name_compare
3529 ::operator()(
3530 const Output_section::Input_section_sort_entry& s1,
3531 const Output_section::Input_section_sort_entry& s2) const
3532 {
3533 // We sort by name.
3534 int compare = s1.section_name().compare(s2.section_name());
3535 if (compare != 0)
3536 return compare < 0;
3537
3538 // Keep input order otherwise.
3539 return s1.index() < s2.index();
3540 }
3541
3542 // This updates the section order index of input sections according to the
3543 // the order specified in the mapping from Section id to order index.
3544
3545 void
3546 Output_section::update_section_layout(
3547 const Section_layout_order* order_map)
3548 {
3549 for (Input_section_list::iterator p = this->input_sections_.begin();
3550 p != this->input_sections_.end();
3551 ++p)
3552 {
3553 if (p->is_input_section()
3554 || p->is_relaxed_input_section())
3555 {
3556 Relobj* obj = (p->is_input_section()
3557 ? p->relobj()
3558 : p->relaxed_input_section()->relobj());
3559 unsigned int shndx = p->shndx();
3560 Section_layout_order::const_iterator it
3561 = order_map->find(Section_id(obj, shndx));
3562 if (it == order_map->end())
3563 continue;
3564 unsigned int section_order_index = it->second;
3565 if (section_order_index != 0)
3566 {
3567 p->set_section_order_index(section_order_index);
3568 this->set_input_section_order_specified();
3569 }
3570 }
3571 }
3572 }
3573
3574 // Sort the input sections attached to an output section.
3575
3576 void
3577 Output_section::sort_attached_input_sections()
3578 {
3579 if (this->attached_input_sections_are_sorted_)
3580 return;
3581
3582 if (this->checkpoint_ != NULL
3583 && !this->checkpoint_->input_sections_saved())
3584 this->checkpoint_->save_input_sections();
3585
3586 // The only thing we know about an input section is the object and
3587 // the section index. We need the section name. Recomputing this
3588 // is slow but this is an unusual case. If this becomes a speed
3589 // problem we can cache the names as required in Layout::layout.
3590
3591 // We start by building a larger vector holding a copy of each
3592 // Input_section, plus its current index in the list and its name.
3593 std::vector<Input_section_sort_entry> sort_list;
3594
3595 unsigned int i = 0;
3596 for (Input_section_list::iterator p = this->input_sections_.begin();
3597 p != this->input_sections_.end();
3598 ++p, ++i)
3599 sort_list.push_back(Input_section_sort_entry(*p, i,
3600 this->must_sort_attached_input_sections(),
3601 this->name()));
3602
3603 // Sort the input sections.
3604 if (this->must_sort_attached_input_sections())
3605 {
3606 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3607 || this->type() == elfcpp::SHT_INIT_ARRAY
3608 || this->type() == elfcpp::SHT_FINI_ARRAY)
3609 std::sort(sort_list.begin(), sort_list.end(),
3610 Input_section_sort_init_fini_compare());
3611 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3612 std::sort(sort_list.begin(), sort_list.end(),
3613 Input_section_sort_section_name_compare());
3614 else if (strcmp(this->name(), ".text") == 0)
3615 std::sort(sort_list.begin(), sort_list.end(),
3616 Input_section_sort_section_prefix_special_ordering_compare());
3617 else
3618 std::sort(sort_list.begin(), sort_list.end(),
3619 Input_section_sort_compare());
3620 }
3621 else
3622 {
3623 gold_assert(this->input_section_order_specified());
3624 std::sort(sort_list.begin(), sort_list.end(),
3625 Input_section_sort_section_order_index_compare());
3626 }
3627
3628 // Copy the sorted input sections back to our list.
3629 this->input_sections_.clear();
3630 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3631 p != sort_list.end();
3632 ++p)
3633 this->input_sections_.push_back(p->input_section());
3634 sort_list.clear();
3635
3636 // Remember that we sorted the input sections, since we might get
3637 // called again.
3638 this->attached_input_sections_are_sorted_ = true;
3639 }
3640
3641 // Write the section header to *OSHDR.
3642
3643 template<int size, bool big_endian>
3644 void
3645 Output_section::write_header(const Layout* layout,
3646 const Stringpool* secnamepool,
3647 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3648 {
3649 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3650 oshdr->put_sh_type(this->type_);
3651
3652 elfcpp::Elf_Xword flags = this->flags_;
3653 if (this->info_section_ != NULL && this->info_uses_section_index_)
3654 flags |= elfcpp::SHF_INFO_LINK;
3655 oshdr->put_sh_flags(flags);
3656
3657 oshdr->put_sh_addr(this->address());
3658 oshdr->put_sh_offset(this->offset());
3659 oshdr->put_sh_size(this->data_size());
3660 if (this->link_section_ != NULL)
3661 oshdr->put_sh_link(this->link_section_->out_shndx());
3662 else if (this->should_link_to_symtab_)
3663 oshdr->put_sh_link(layout->symtab_section_shndx());
3664 else if (this->should_link_to_dynsym_)
3665 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3666 else
3667 oshdr->put_sh_link(this->link_);
3668
3669 elfcpp::Elf_Word info;
3670 if (this->info_section_ != NULL)
3671 {
3672 if (this->info_uses_section_index_)
3673 info = this->info_section_->out_shndx();
3674 else
3675 info = this->info_section_->symtab_index();
3676 }
3677 else if (this->info_symndx_ != NULL)
3678 info = this->info_symndx_->symtab_index();
3679 else
3680 info = this->info_;
3681 oshdr->put_sh_info(info);
3682
3683 oshdr->put_sh_addralign(this->addralign_);
3684 oshdr->put_sh_entsize(this->entsize_);
3685 }
3686
3687 // Write out the data. For input sections the data is written out by
3688 // Object::relocate, but we have to handle Output_section_data objects
3689 // here.
3690
3691 void
3692 Output_section::do_write(Output_file* of)
3693 {
3694 gold_assert(!this->requires_postprocessing());
3695
3696 // If the target performs relaxation, we delay filler generation until now.
3697 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3698
3699 off_t output_section_file_offset = this->offset();
3700 for (Fill_list::iterator p = this->fills_.begin();
3701 p != this->fills_.end();
3702 ++p)
3703 {
3704 std::string fill_data(parameters->target().code_fill(p->length()));
3705 of->write(output_section_file_offset + p->section_offset(),
3706 fill_data.data(), fill_data.size());
3707 }
3708
3709 off_t off = this->offset() + this->first_input_offset_;
3710 for (Input_section_list::iterator p = this->input_sections_.begin();
3711 p != this->input_sections_.end();
3712 ++p)
3713 {
3714 off_t aligned_off = align_address(off, p->addralign());
3715 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3716 {
3717 size_t fill_len = aligned_off - off;
3718 std::string fill_data(parameters->target().code_fill(fill_len));
3719 of->write(off, fill_data.data(), fill_data.size());
3720 }
3721
3722 p->write(of);
3723 off = aligned_off + p->data_size();
3724 }
3725
3726 // For incremental links, fill in unused chunks in debug sections
3727 // with dummy compilation unit headers.
3728 if (this->free_space_fill_ != NULL)
3729 {
3730 for (Free_list::Const_iterator p = this->free_list_.begin();
3731 p != this->free_list_.end();
3732 ++p)
3733 {
3734 off_t off = p->start_;
3735 size_t len = p->end_ - off;
3736 this->free_space_fill_->write(of, this->offset() + off, len);
3737 }
3738 if (this->patch_space_ > 0)
3739 {
3740 off_t off = this->current_data_size_for_child() - this->patch_space_;
3741 this->free_space_fill_->write(of, this->offset() + off,
3742 this->patch_space_);
3743 }
3744 }
3745 }
3746
3747 // If a section requires postprocessing, create the buffer to use.
3748
3749 void
3750 Output_section::create_postprocessing_buffer()
3751 {
3752 gold_assert(this->requires_postprocessing());
3753
3754 if (this->postprocessing_buffer_ != NULL)
3755 return;
3756
3757 if (!this->input_sections_.empty())
3758 {
3759 off_t off = this->first_input_offset_;
3760 for (Input_section_list::iterator p = this->input_sections_.begin();
3761 p != this->input_sections_.end();
3762 ++p)
3763 {
3764 off = align_address(off, p->addralign());
3765 p->finalize_data_size();
3766 off += p->data_size();
3767 }
3768 this->set_current_data_size_for_child(off);
3769 }
3770
3771 off_t buffer_size = this->current_data_size_for_child();
3772 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3773 }
3774
3775 // Write all the data of an Output_section into the postprocessing
3776 // buffer. This is used for sections which require postprocessing,
3777 // such as compression. Input sections are handled by
3778 // Object::Relocate.
3779
3780 void
3781 Output_section::write_to_postprocessing_buffer()
3782 {
3783 gold_assert(this->requires_postprocessing());
3784
3785 // If the target performs relaxation, we delay filler generation until now.
3786 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3787
3788 unsigned char* buffer = this->postprocessing_buffer();
3789 for (Fill_list::iterator p = this->fills_.begin();
3790 p != this->fills_.end();
3791 ++p)
3792 {
3793 std::string fill_data(parameters->target().code_fill(p->length()));
3794 memcpy(buffer + p->section_offset(), fill_data.data(),
3795 fill_data.size());
3796 }
3797
3798 off_t off = this->first_input_offset_;
3799 for (Input_section_list::iterator p = this->input_sections_.begin();
3800 p != this->input_sections_.end();
3801 ++p)
3802 {
3803 off_t aligned_off = align_address(off, p->addralign());
3804 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3805 {
3806 size_t fill_len = aligned_off - off;
3807 std::string fill_data(parameters->target().code_fill(fill_len));
3808 memcpy(buffer + off, fill_data.data(), fill_data.size());
3809 }
3810
3811 p->write_to_buffer(buffer + aligned_off);
3812 off = aligned_off + p->data_size();
3813 }
3814 }
3815
3816 // Get the input sections for linker script processing. We leave
3817 // behind the Output_section_data entries. Note that this may be
3818 // slightly incorrect for merge sections. We will leave them behind,
3819 // but it is possible that the script says that they should follow
3820 // some other input sections, as in:
3821 // .rodata { *(.rodata) *(.rodata.cst*) }
3822 // For that matter, we don't handle this correctly:
3823 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3824 // With luck this will never matter.
3825
3826 uint64_t
3827 Output_section::get_input_sections(
3828 uint64_t address,
3829 const std::string& fill,
3830 std::list<Input_section>* input_sections)
3831 {
3832 if (this->checkpoint_ != NULL
3833 && !this->checkpoint_->input_sections_saved())
3834 this->checkpoint_->save_input_sections();
3835
3836 // Invalidate fast look-up maps.
3837 this->lookup_maps_->invalidate();
3838
3839 uint64_t orig_address = address;
3840
3841 address = align_address(address, this->addralign());
3842
3843 Input_section_list remaining;
3844 for (Input_section_list::iterator p = this->input_sections_.begin();
3845 p != this->input_sections_.end();
3846 ++p)
3847 {
3848 if (p->is_input_section()
3849 || p->is_relaxed_input_section()
3850 || p->is_merge_section())
3851 input_sections->push_back(*p);
3852 else
3853 {
3854 uint64_t aligned_address = align_address(address, p->addralign());
3855 if (aligned_address != address && !fill.empty())
3856 {
3857 section_size_type length =
3858 convert_to_section_size_type(aligned_address - address);
3859 std::string this_fill;
3860 this_fill.reserve(length);
3861 while (this_fill.length() + fill.length() <= length)
3862 this_fill += fill;
3863 if (this_fill.length() < length)
3864 this_fill.append(fill, 0, length - this_fill.length());
3865
3866 Output_section_data* posd = new Output_data_const(this_fill, 0);
3867 remaining.push_back(Input_section(posd));
3868 }
3869 address = aligned_address;
3870
3871 remaining.push_back(*p);
3872
3873 p->finalize_data_size();
3874 address += p->data_size();
3875 }
3876 }
3877
3878 this->input_sections_.swap(remaining);
3879 this->first_input_offset_ = 0;
3880
3881 uint64_t data_size = address - orig_address;
3882 this->set_current_data_size_for_child(data_size);
3883 return data_size;
3884 }
3885
3886 // Add a script input section. SIS is an Output_section::Input_section,
3887 // which can be either a plain input section or a special input section like
3888 // a relaxed input section. For a special input section, its size must be
3889 // finalized.
3890
3891 void
3892 Output_section::add_script_input_section(const Input_section& sis)
3893 {
3894 uint64_t data_size = sis.data_size();
3895 uint64_t addralign = sis.addralign();
3896 if (addralign > this->addralign_)
3897 this->addralign_ = addralign;
3898
3899 off_t offset_in_section = this->current_data_size_for_child();
3900 off_t aligned_offset_in_section = align_address(offset_in_section,
3901 addralign);
3902
3903 this->set_current_data_size_for_child(aligned_offset_in_section
3904 + data_size);
3905
3906 this->input_sections_.push_back(sis);
3907
3908 // Update fast lookup maps if necessary.
3909 if (this->lookup_maps_->is_valid())
3910 {
3911 if (sis.is_relaxed_input_section())
3912 {
3913 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3914 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3915 poris->shndx(), poris);
3916 }
3917 }
3918 }
3919
3920 // Save states for relaxation.
3921
3922 void
3923 Output_section::save_states()
3924 {
3925 gold_assert(this->checkpoint_ == NULL);
3926 Checkpoint_output_section* checkpoint =
3927 new Checkpoint_output_section(this->addralign_, this->flags_,
3928 this->input_sections_,
3929 this->first_input_offset_,
3930 this->attached_input_sections_are_sorted_);
3931 this->checkpoint_ = checkpoint;
3932 gold_assert(this->fills_.empty());
3933 }
3934
3935 void
3936 Output_section::discard_states()
3937 {
3938 gold_assert(this->checkpoint_ != NULL);
3939 delete this->checkpoint_;
3940 this->checkpoint_ = NULL;
3941 gold_assert(this->fills_.empty());
3942
3943 // Simply invalidate the fast lookup maps since we do not keep
3944 // track of them.
3945 this->lookup_maps_->invalidate();
3946 }
3947
3948 void
3949 Output_section::restore_states()
3950 {
3951 gold_assert(this->checkpoint_ != NULL);
3952 Checkpoint_output_section* checkpoint = this->checkpoint_;
3953
3954 this->addralign_ = checkpoint->addralign();
3955 this->flags_ = checkpoint->flags();
3956 this->first_input_offset_ = checkpoint->first_input_offset();
3957
3958 if (!checkpoint->input_sections_saved())
3959 {
3960 // If we have not copied the input sections, just resize it.
3961 size_t old_size = checkpoint->input_sections_size();
3962 gold_assert(this->input_sections_.size() >= old_size);
3963 this->input_sections_.resize(old_size);
3964 }
3965 else
3966 {
3967 // We need to copy the whole list. This is not efficient for
3968 // extremely large output with hundreads of thousands of input
3969 // objects. We may need to re-think how we should pass sections
3970 // to scripts.
3971 this->input_sections_ = *checkpoint->input_sections();
3972 }
3973
3974 this->attached_input_sections_are_sorted_ =
3975 checkpoint->attached_input_sections_are_sorted();
3976
3977 // Simply invalidate the fast lookup maps since we do not keep
3978 // track of them.
3979 this->lookup_maps_->invalidate();
3980 }
3981
3982 // Update the section offsets of input sections in this. This is required if
3983 // relaxation causes some input sections to change sizes.
3984
3985 void
3986 Output_section::adjust_section_offsets()
3987 {
3988 if (!this->section_offsets_need_adjustment_)
3989 return;
3990
3991 off_t off = 0;
3992 for (Input_section_list::iterator p = this->input_sections_.begin();
3993 p != this->input_sections_.end();
3994 ++p)
3995 {
3996 off = align_address(off, p->addralign());
3997 if (p->is_input_section())
3998 p->relobj()->set_section_offset(p->shndx(), off);
3999 off += p->data_size();
4000 }
4001
4002 this->section_offsets_need_adjustment_ = false;
4003 }
4004
4005 // Print to the map file.
4006
4007 void
4008 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4009 {
4010 mapfile->print_output_section(this);
4011
4012 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4013 p != this->input_sections_.end();
4014 ++p)
4015 p->print_to_mapfile(mapfile);
4016 }
4017
4018 // Print stats for merge sections to stderr.
4019
4020 void
4021 Output_section::print_merge_stats()
4022 {
4023 Input_section_list::iterator p;
4024 for (p = this->input_sections_.begin();
4025 p != this->input_sections_.end();
4026 ++p)
4027 p->print_merge_stats(this->name_);
4028 }
4029
4030 // Set a fixed layout for the section. Used for incremental update links.
4031
4032 void
4033 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4034 off_t sh_size, uint64_t sh_addralign)
4035 {
4036 this->addralign_ = sh_addralign;
4037 this->set_current_data_size(sh_size);
4038 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4039 this->set_address(sh_addr);
4040 this->set_file_offset(sh_offset);
4041 this->finalize_data_size();
4042 this->free_list_.init(sh_size, false);
4043 this->has_fixed_layout_ = true;
4044 }
4045
4046 // Reserve space within the fixed layout for the section. Used for
4047 // incremental update links.
4048
4049 void
4050 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4051 {
4052 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4053 }
4054
4055 // Allocate space from the free list for the section. Used for
4056 // incremental update links.
4057
4058 off_t
4059 Output_section::allocate(off_t len, uint64_t addralign)
4060 {
4061 return this->free_list_.allocate(len, addralign, 0);
4062 }
4063
4064 // Output segment methods.
4065
4066 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4067 : vaddr_(0),
4068 paddr_(0),
4069 memsz_(0),
4070 align_(0),
4071 max_align_(0),
4072 min_p_align_(0),
4073 offset_(0),
4074 filesz_(0),
4075 type_(type),
4076 flags_(flags),
4077 is_max_align_known_(false),
4078 are_addresses_set_(false),
4079 is_large_data_segment_(false),
4080 is_unique_segment_(false)
4081 {
4082 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4083 // the flags.
4084 if (type == elfcpp::PT_TLS)
4085 this->flags_ = elfcpp::PF_R;
4086 }
4087
4088 // Add an Output_section to a PT_LOAD Output_segment.
4089
4090 void
4091 Output_segment::add_output_section_to_load(Layout* layout,
4092 Output_section* os,
4093 elfcpp::Elf_Word seg_flags)
4094 {
4095 gold_assert(this->type() == elfcpp::PT_LOAD);
4096 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4097 gold_assert(!this->is_max_align_known_);
4098 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4099
4100 this->update_flags_for_output_section(seg_flags);
4101
4102 // We don't want to change the ordering if we have a linker script
4103 // with a SECTIONS clause.
4104 Output_section_order order = os->order();
4105 if (layout->script_options()->saw_sections_clause())
4106 order = static_cast<Output_section_order>(0);
4107 else
4108 gold_assert(order != ORDER_INVALID);
4109
4110 this->output_lists_[order].push_back(os);
4111 }
4112
4113 // Add an Output_section to a non-PT_LOAD Output_segment.
4114
4115 void
4116 Output_segment::add_output_section_to_nonload(Output_section* os,
4117 elfcpp::Elf_Word seg_flags)
4118 {
4119 gold_assert(this->type() != elfcpp::PT_LOAD);
4120 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4121 gold_assert(!this->is_max_align_known_);
4122
4123 this->update_flags_for_output_section(seg_flags);
4124
4125 this->output_lists_[0].push_back(os);
4126 }
4127
4128 // Remove an Output_section from this segment. It is an error if it
4129 // is not present.
4130
4131 void
4132 Output_segment::remove_output_section(Output_section* os)
4133 {
4134 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4135 {
4136 Output_data_list* pdl = &this->output_lists_[i];
4137 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4138 {
4139 if (*p == os)
4140 {
4141 pdl->erase(p);
4142 return;
4143 }
4144 }
4145 }
4146 gold_unreachable();
4147 }
4148
4149 // Add an Output_data (which need not be an Output_section) to the
4150 // start of a segment.
4151
4152 void
4153 Output_segment::add_initial_output_data(Output_data* od)
4154 {
4155 gold_assert(!this->is_max_align_known_);
4156 Output_data_list::iterator p = this->output_lists_[0].begin();
4157 this->output_lists_[0].insert(p, od);
4158 }
4159
4160 // Return true if this segment has any sections which hold actual
4161 // data, rather than being a BSS section.
4162
4163 bool
4164 Output_segment::has_any_data_sections() const
4165 {
4166 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4167 {
4168 const Output_data_list* pdl = &this->output_lists_[i];
4169 for (Output_data_list::const_iterator p = pdl->begin();
4170 p != pdl->end();
4171 ++p)
4172 {
4173 if (!(*p)->is_section())
4174 return true;
4175 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4176 return true;
4177 }
4178 }
4179 return false;
4180 }
4181
4182 // Return whether the first data section (not counting TLS sections)
4183 // is a relro section.
4184
4185 bool
4186 Output_segment::is_first_section_relro() const
4187 {
4188 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189 {
4190 if (i == static_cast<int>(ORDER_TLS_BSS))
4191 continue;
4192 const Output_data_list* pdl = &this->output_lists_[i];
4193 if (!pdl->empty())
4194 {
4195 Output_data* p = pdl->front();
4196 return p->is_section() && p->output_section()->is_relro();
4197 }
4198 }
4199 return false;
4200 }
4201
4202 // Return the maximum alignment of the Output_data in Output_segment.
4203
4204 uint64_t
4205 Output_segment::maximum_alignment()
4206 {
4207 if (!this->is_max_align_known_)
4208 {
4209 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4210 {
4211 const Output_data_list* pdl = &this->output_lists_[i];
4212 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4213 if (addralign > this->max_align_)
4214 this->max_align_ = addralign;
4215 }
4216 this->is_max_align_known_ = true;
4217 }
4218
4219 return this->max_align_;
4220 }
4221
4222 // Return the maximum alignment of a list of Output_data.
4223
4224 uint64_t
4225 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4226 {
4227 uint64_t ret = 0;
4228 for (Output_data_list::const_iterator p = pdl->begin();
4229 p != pdl->end();
4230 ++p)
4231 {
4232 uint64_t addralign = (*p)->addralign();
4233 if (addralign > ret)
4234 ret = addralign;
4235 }
4236 return ret;
4237 }
4238
4239 // Return whether this segment has any dynamic relocs.
4240
4241 bool
4242 Output_segment::has_dynamic_reloc() const
4243 {
4244 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4245 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4246 return true;
4247 return false;
4248 }
4249
4250 // Return whether this Output_data_list has any dynamic relocs.
4251
4252 bool
4253 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4254 {
4255 for (Output_data_list::const_iterator p = pdl->begin();
4256 p != pdl->end();
4257 ++p)
4258 if ((*p)->has_dynamic_reloc())
4259 return true;
4260 return false;
4261 }
4262
4263 // Set the section addresses for an Output_segment. If RESET is true,
4264 // reset the addresses first. ADDR is the address and *POFF is the
4265 // file offset. Set the section indexes starting with *PSHNDX.
4266 // INCREASE_RELRO is the size of the portion of the first non-relro
4267 // section that should be included in the PT_GNU_RELRO segment.
4268 // If this segment has relro sections, and has been aligned for
4269 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4270 // the immediately following segment. Update *HAS_RELRO, *POFF,
4271 // and *PSHNDX.
4272
4273 uint64_t
4274 Output_segment::set_section_addresses(const Target* target,
4275 Layout* layout, bool reset,
4276 uint64_t addr,
4277 unsigned int* increase_relro,
4278 bool* has_relro,
4279 off_t* poff,
4280 unsigned int* pshndx)
4281 {
4282 gold_assert(this->type_ == elfcpp::PT_LOAD);
4283
4284 uint64_t last_relro_pad = 0;
4285 off_t orig_off = *poff;
4286
4287 bool in_tls = false;
4288
4289 // If we have relro sections, we need to pad forward now so that the
4290 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4291 if (parameters->options().relro()
4292 && this->is_first_section_relro()
4293 && (!this->are_addresses_set_ || reset))
4294 {
4295 uint64_t relro_size = 0;
4296 off_t off = *poff;
4297 uint64_t max_align = 0;
4298 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4299 {
4300 Output_data_list* pdl = &this->output_lists_[i];
4301 Output_data_list::iterator p;
4302 for (p = pdl->begin(); p != pdl->end(); ++p)
4303 {
4304 if (!(*p)->is_section())
4305 break;
4306 uint64_t align = (*p)->addralign();
4307 if (align > max_align)
4308 max_align = align;
4309 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4310 in_tls = true;
4311 else if (in_tls)
4312 {
4313 // Align the first non-TLS section to the alignment
4314 // of the TLS segment.
4315 align = max_align;
4316 in_tls = false;
4317 }
4318 // Ignore the size of the .tbss section.
4319 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4320 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4321 continue;
4322 relro_size = align_address(relro_size, align);
4323 if ((*p)->is_address_valid())
4324 relro_size += (*p)->data_size();
4325 else
4326 {
4327 // FIXME: This could be faster.
4328 (*p)->set_address_and_file_offset(relro_size,
4329 relro_size);
4330 relro_size += (*p)->data_size();
4331 (*p)->reset_address_and_file_offset();
4332 }
4333 }
4334 if (p != pdl->end())
4335 break;
4336 }
4337 relro_size += *increase_relro;
4338 // Pad the total relro size to a multiple of the maximum
4339 // section alignment seen.
4340 uint64_t aligned_size = align_address(relro_size, max_align);
4341 // Note the amount of padding added after the last relro section.
4342 last_relro_pad = aligned_size - relro_size;
4343 *has_relro = true;
4344
4345 uint64_t page_align = parameters->target().abi_pagesize();
4346
4347 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4348 uint64_t desired_align = page_align - (aligned_size % page_align);
4349 if (desired_align < off % page_align)
4350 off += page_align;
4351 off += desired_align - off % page_align;
4352 addr += off - orig_off;
4353 orig_off = off;
4354 *poff = off;
4355 }
4356
4357 if (!reset && this->are_addresses_set_)
4358 {
4359 gold_assert(this->paddr_ == addr);
4360 addr = this->vaddr_;
4361 }
4362 else
4363 {
4364 this->vaddr_ = addr;
4365 this->paddr_ = addr;
4366 this->are_addresses_set_ = true;
4367 }
4368
4369 in_tls = false;
4370
4371 this->offset_ = orig_off;
4372
4373 off_t off = 0;
4374 off_t foff = *poff;
4375 uint64_t ret = 0;
4376 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4377 {
4378 if (i == static_cast<int>(ORDER_RELRO_LAST))
4379 {
4380 *poff += last_relro_pad;
4381 foff += last_relro_pad;
4382 addr += last_relro_pad;
4383 if (this->output_lists_[i].empty())
4384 {
4385 // If there is nothing in the ORDER_RELRO_LAST list,
4386 // the padding will occur at the end of the relro
4387 // segment, and we need to add it to *INCREASE_RELRO.
4388 *increase_relro += last_relro_pad;
4389 }
4390 }
4391 addr = this->set_section_list_addresses(layout, reset,
4392 &this->output_lists_[i],
4393 addr, poff, &foff, pshndx,
4394 &in_tls);
4395
4396 // FOFF tracks the last offset used for the file image,
4397 // and *POFF tracks the last offset used for the memory image.
4398 // When not using a linker script, bss sections should all
4399 // be processed in the ORDER_SMALL_BSS and later buckets.
4400 gold_assert(*poff == foff
4401 || i == static_cast<int>(ORDER_TLS_BSS)
4402 || i >= static_cast<int>(ORDER_SMALL_BSS)
4403 || layout->script_options()->saw_sections_clause());
4404
4405 this->filesz_ = foff - orig_off;
4406 off = foff;
4407
4408 ret = addr;
4409 }
4410
4411 // If the last section was a TLS section, align upward to the
4412 // alignment of the TLS segment, so that the overall size of the TLS
4413 // segment is aligned.
4414 if (in_tls)
4415 {
4416 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4417 *poff = align_address(*poff, segment_align);
4418 }
4419
4420 this->memsz_ = *poff - orig_off;
4421
4422 // Ignore the file offset adjustments made by the BSS Output_data
4423 // objects.
4424 *poff = off;
4425
4426 // If code segments must contain only code, and this code segment is
4427 // page-aligned in the file, then fill it out to a whole page with
4428 // code fill (the tail of the segment will not be within any section).
4429 // Thus the entire code segment can be mapped from the file as whole
4430 // pages and that mapping will contain only valid instructions.
4431 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4432 {
4433 uint64_t abi_pagesize = target->abi_pagesize();
4434 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4435 {
4436 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4437
4438 std::string fill_data;
4439 if (target->has_code_fill())
4440 fill_data = target->code_fill(fill_size);
4441 else
4442 fill_data.resize(fill_size); // Zero fill.
4443
4444 Output_data_const* fill = new Output_data_const(fill_data, 0);
4445 fill->set_address(this->vaddr_ + this->memsz_);
4446 fill->set_file_offset(off);
4447 layout->add_relax_output(fill);
4448
4449 off += fill_size;
4450 gold_assert(off % abi_pagesize == 0);
4451 ret += fill_size;
4452 gold_assert(ret % abi_pagesize == 0);
4453
4454 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4455 this->memsz_ = this->filesz_ += fill_size;
4456
4457 *poff = off;
4458 }
4459 }
4460
4461 return ret;
4462 }
4463
4464 // Set the addresses and file offsets in a list of Output_data
4465 // structures.
4466
4467 uint64_t
4468 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4469 Output_data_list* pdl,
4470 uint64_t addr, off_t* poff,
4471 off_t* pfoff,
4472 unsigned int* pshndx,
4473 bool* in_tls)
4474 {
4475 off_t startoff = *poff;
4476 // For incremental updates, we may allocate non-fixed sections from
4477 // free space in the file. This keeps track of the high-water mark.
4478 off_t maxoff = startoff;
4479
4480 off_t off = startoff;
4481 off_t foff = *pfoff;
4482 for (Output_data_list::iterator p = pdl->begin();
4483 p != pdl->end();
4484 ++p)
4485 {
4486 bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4487 bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4488
4489 if (reset)
4490 (*p)->reset_address_and_file_offset();
4491
4492 // When doing an incremental update or when using a linker script,
4493 // the section will most likely already have an address.
4494 if (!(*p)->is_address_valid())
4495 {
4496 uint64_t align = (*p)->addralign();
4497
4498 if (is_tls)
4499 {
4500 // Give the first TLS section the alignment of the
4501 // entire TLS segment. Otherwise the TLS segment as a
4502 // whole may be misaligned.
4503 if (!*in_tls)
4504 {
4505 Output_segment* tls_segment = layout->tls_segment();
4506 gold_assert(tls_segment != NULL);
4507 uint64_t segment_align = tls_segment->maximum_alignment();
4508 gold_assert(segment_align >= align);
4509 align = segment_align;
4510
4511 *in_tls = true;
4512 }
4513 }
4514 else
4515 {
4516 // If this is the first section after the TLS segment,
4517 // align it to at least the alignment of the TLS
4518 // segment, so that the size of the overall TLS segment
4519 // is aligned.
4520 if (*in_tls)
4521 {
4522 uint64_t segment_align =
4523 layout->tls_segment()->maximum_alignment();
4524 if (segment_align > align)
4525 align = segment_align;
4526
4527 *in_tls = false;
4528 }
4529 }
4530
4531 if (!parameters->incremental_update())
4532 {
4533 gold_assert(off == foff || is_bss);
4534 off = align_address(off, align);
4535 if (is_tls || !is_bss)
4536 foff = off;
4537 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4538 }
4539 else
4540 {
4541 // Incremental update: allocate file space from free list.
4542 (*p)->pre_finalize_data_size();
4543 off_t current_size = (*p)->current_data_size();
4544 off = layout->allocate(current_size, align, startoff);
4545 foff = off;
4546 if (off == -1)
4547 {
4548 gold_assert((*p)->output_section() != NULL);
4549 gold_fallback(_("out of patch space for section %s; "
4550 "relink with --incremental-full"),
4551 (*p)->output_section()->name());
4552 }
4553 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4554 if ((*p)->data_size() > current_size)
4555 {
4556 gold_assert((*p)->output_section() != NULL);
4557 gold_fallback(_("%s: section changed size; "
4558 "relink with --incremental-full"),
4559 (*p)->output_section()->name());
4560 }
4561 }
4562 }
4563 else if (parameters->incremental_update())
4564 {
4565 // For incremental updates, use the fixed offset for the
4566 // high-water mark computation.
4567 off = (*p)->offset();
4568 foff = off;
4569 }
4570 else
4571 {
4572 // The script may have inserted a skip forward, but it
4573 // better not have moved backward.
4574 if ((*p)->address() >= addr + (off - startoff))
4575 {
4576 if (!is_bss && off > foff)
4577 gold_warning(_("script places BSS section in the middle "
4578 "of a LOAD segment; space will be allocated "
4579 "in the file"));
4580 off += (*p)->address() - (addr + (off - startoff));
4581 if (is_tls || !is_bss)
4582 foff = off;
4583 }
4584 else
4585 {
4586 if (!layout->script_options()->saw_sections_clause())
4587 gold_unreachable();
4588 else
4589 {
4590 Output_section* os = (*p)->output_section();
4591
4592 // Cast to unsigned long long to avoid format warnings.
4593 unsigned long long previous_dot =
4594 static_cast<unsigned long long>(addr + (off - startoff));
4595 unsigned long long dot =
4596 static_cast<unsigned long long>((*p)->address());
4597
4598 if (os == NULL)
4599 gold_error(_("dot moves backward in linker script "
4600 "from 0x%llx to 0x%llx"), previous_dot, dot);
4601 else
4602 gold_error(_("address of section '%s' moves backward "
4603 "from 0x%llx to 0x%llx"),
4604 os->name(), previous_dot, dot);
4605 }
4606 }
4607 (*p)->set_file_offset(foff);
4608 (*p)->finalize_data_size();
4609 }
4610
4611 if (parameters->incremental_update())
4612 gold_debug(DEBUG_INCREMENTAL,
4613 "set_section_list_addresses: %08lx %08lx %s",
4614 static_cast<long>(off),
4615 static_cast<long>((*p)->data_size()),
4616 ((*p)->output_section() != NULL
4617 ? (*p)->output_section()->name() : "(special)"));
4618
4619 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4620 // section. Such a section does not affect the size of a
4621 // PT_LOAD segment.
4622 if (!is_tls || !is_bss)
4623 off += (*p)->data_size();
4624
4625 // We don't allocate space in the file for SHT_NOBITS sections,
4626 // unless a script has force-placed one in the middle of a segment.
4627 if (!is_bss)
4628 foff = off;
4629
4630 if (off > maxoff)
4631 maxoff = off;
4632
4633 if ((*p)->is_section())
4634 {
4635 (*p)->set_out_shndx(*pshndx);
4636 ++*pshndx;
4637 }
4638 }
4639
4640 *poff = maxoff;
4641 *pfoff = foff;
4642 return addr + (maxoff - startoff);
4643 }
4644
4645 // For a non-PT_LOAD segment, set the offset from the sections, if
4646 // any. Add INCREASE to the file size and the memory size.
4647
4648 void
4649 Output_segment::set_offset(unsigned int increase)
4650 {
4651 gold_assert(this->type_ != elfcpp::PT_LOAD);
4652
4653 gold_assert(!this->are_addresses_set_);
4654
4655 // A non-load section only uses output_lists_[0].
4656
4657 Output_data_list* pdl = &this->output_lists_[0];
4658
4659 if (pdl->empty())
4660 {
4661 gold_assert(increase == 0);
4662 this->vaddr_ = 0;
4663 this->paddr_ = 0;
4664 this->are_addresses_set_ = true;
4665 this->memsz_ = 0;
4666 this->min_p_align_ = 0;
4667 this->offset_ = 0;
4668 this->filesz_ = 0;
4669 return;
4670 }
4671
4672 // Find the first and last section by address.
4673 const Output_data* first = NULL;
4674 const Output_data* last_data = NULL;
4675 const Output_data* last_bss = NULL;
4676 for (Output_data_list::const_iterator p = pdl->begin();
4677 p != pdl->end();
4678 ++p)
4679 {
4680 if (first == NULL
4681 || (*p)->address() < first->address()
4682 || ((*p)->address() == first->address()
4683 && (*p)->data_size() < first->data_size()))
4684 first = *p;
4685 const Output_data** plast;
4686 if ((*p)->is_section()
4687 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4688 plast = &last_bss;
4689 else
4690 plast = &last_data;
4691 if (*plast == NULL
4692 || (*p)->address() > (*plast)->address()
4693 || ((*p)->address() == (*plast)->address()
4694 && (*p)->data_size() > (*plast)->data_size()))
4695 *plast = *p;
4696 }
4697
4698 this->vaddr_ = first->address();
4699 this->paddr_ = (first->has_load_address()
4700 ? first->load_address()
4701 : this->vaddr_);
4702 this->are_addresses_set_ = true;
4703 this->offset_ = first->offset();
4704
4705 if (last_data == NULL)
4706 this->filesz_ = 0;
4707 else
4708 this->filesz_ = (last_data->address()
4709 + last_data->data_size()
4710 - this->vaddr_);
4711
4712 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4713 this->memsz_ = (last->address()
4714 + last->data_size()
4715 - this->vaddr_);
4716
4717 this->filesz_ += increase;
4718 this->memsz_ += increase;
4719
4720 // If this is a RELRO segment, verify that the segment ends at a
4721 // page boundary.
4722 if (this->type_ == elfcpp::PT_GNU_RELRO)
4723 {
4724 uint64_t page_align = parameters->target().abi_pagesize();
4725 uint64_t segment_end = this->vaddr_ + this->memsz_;
4726 if (parameters->incremental_update())
4727 {
4728 // The INCREASE_RELRO calculation is bypassed for an incremental
4729 // update, so we need to adjust the segment size manually here.
4730 segment_end = align_address(segment_end, page_align);
4731 this->memsz_ = segment_end - this->vaddr_;
4732 }
4733 else
4734 gold_assert(segment_end == align_address(segment_end, page_align));
4735 }
4736
4737 // If this is a TLS segment, align the memory size. The code in
4738 // set_section_list ensures that the section after the TLS segment
4739 // is aligned to give us room.
4740 if (this->type_ == elfcpp::PT_TLS)
4741 {
4742 uint64_t segment_align = this->maximum_alignment();
4743 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4744 this->memsz_ = align_address(this->memsz_, segment_align);
4745 }
4746 }
4747
4748 // Set the TLS offsets of the sections in the PT_TLS segment.
4749
4750 void
4751 Output_segment::set_tls_offsets()
4752 {
4753 gold_assert(this->type_ == elfcpp::PT_TLS);
4754
4755 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4756 p != this->output_lists_[0].end();
4757 ++p)
4758 (*p)->set_tls_offset(this->vaddr_);
4759 }
4760
4761 // Return the first section.
4762
4763 Output_section*
4764 Output_segment::first_section() const
4765 {
4766 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4767 {
4768 const Output_data_list* pdl = &this->output_lists_[i];
4769 for (Output_data_list::const_iterator p = pdl->begin();
4770 p != pdl->end();
4771 ++p)
4772 {
4773 if ((*p)->is_section())
4774 return (*p)->output_section();
4775 }
4776 }
4777 return NULL;
4778 }
4779
4780 // Return the number of Output_sections in an Output_segment.
4781
4782 unsigned int
4783 Output_segment::output_section_count() const
4784 {
4785 unsigned int ret = 0;
4786 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4787 ret += this->output_section_count_list(&this->output_lists_[i]);
4788 return ret;
4789 }
4790
4791 // Return the number of Output_sections in an Output_data_list.
4792
4793 unsigned int
4794 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4795 {
4796 unsigned int count = 0;
4797 for (Output_data_list::const_iterator p = pdl->begin();
4798 p != pdl->end();
4799 ++p)
4800 {
4801 if ((*p)->is_section())
4802 ++count;
4803 }
4804 return count;
4805 }
4806
4807 // Return the section attached to the list segment with the lowest
4808 // load address. This is used when handling a PHDRS clause in a
4809 // linker script.
4810
4811 Output_section*
4812 Output_segment::section_with_lowest_load_address() const
4813 {
4814 Output_section* found = NULL;
4815 uint64_t found_lma = 0;
4816 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4817 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4818 &found_lma);
4819 return found;
4820 }
4821
4822 // Look through a list for a section with a lower load address.
4823
4824 void
4825 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4826 Output_section** found,
4827 uint64_t* found_lma) const
4828 {
4829 for (Output_data_list::const_iterator p = pdl->begin();
4830 p != pdl->end();
4831 ++p)
4832 {
4833 if (!(*p)->is_section())
4834 continue;
4835 Output_section* os = static_cast<Output_section*>(*p);
4836 uint64_t lma = (os->has_load_address()
4837 ? os->load_address()
4838 : os->address());
4839 if (*found == NULL || lma < *found_lma)
4840 {
4841 *found = os;
4842 *found_lma = lma;
4843 }
4844 }
4845 }
4846
4847 // Write the segment data into *OPHDR.
4848
4849 template<int size, bool big_endian>
4850 void
4851 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4852 {
4853 ophdr->put_p_type(this->type_);
4854 ophdr->put_p_offset(this->offset_);
4855 ophdr->put_p_vaddr(this->vaddr_);
4856 ophdr->put_p_paddr(this->paddr_);
4857 ophdr->put_p_filesz(this->filesz_);
4858 ophdr->put_p_memsz(this->memsz_);
4859 ophdr->put_p_flags(this->flags_);
4860 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4861 }
4862
4863 // Write the section headers into V.
4864
4865 template<int size, bool big_endian>
4866 unsigned char*
4867 Output_segment::write_section_headers(const Layout* layout,
4868 const Stringpool* secnamepool,
4869 unsigned char* v,
4870 unsigned int* pshndx) const
4871 {
4872 // Every section that is attached to a segment must be attached to a
4873 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4874 // segments.
4875 if (this->type_ != elfcpp::PT_LOAD)
4876 return v;
4877
4878 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4879 {
4880 const Output_data_list* pdl = &this->output_lists_[i];
4881 v = this->write_section_headers_list<size, big_endian>(layout,
4882 secnamepool,
4883 pdl,
4884 v, pshndx);
4885 }
4886
4887 return v;
4888 }
4889
4890 template<int size, bool big_endian>
4891 unsigned char*
4892 Output_segment::write_section_headers_list(const Layout* layout,
4893 const Stringpool* secnamepool,
4894 const Output_data_list* pdl,
4895 unsigned char* v,
4896 unsigned int* pshndx) const
4897 {
4898 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4899 for (Output_data_list::const_iterator p = pdl->begin();
4900 p != pdl->end();
4901 ++p)
4902 {
4903 if ((*p)->is_section())
4904 {
4905 const Output_section* ps = static_cast<const Output_section*>(*p);
4906 gold_assert(*pshndx == ps->out_shndx());
4907 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4908 ps->write_header(layout, secnamepool, &oshdr);
4909 v += shdr_size;
4910 ++*pshndx;
4911 }
4912 }
4913 return v;
4914 }
4915
4916 // Print the output sections to the map file.
4917
4918 void
4919 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4920 {
4921 if (this->type() != elfcpp::PT_LOAD)
4922 return;
4923 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4924 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4925 }
4926
4927 // Print an output section list to the map file.
4928
4929 void
4930 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4931 const Output_data_list* pdl) const
4932 {
4933 for (Output_data_list::const_iterator p = pdl->begin();
4934 p != pdl->end();
4935 ++p)
4936 (*p)->print_to_mapfile(mapfile);
4937 }
4938
4939 // Output_file methods.
4940
4941 Output_file::Output_file(const char* name)
4942 : name_(name),
4943 o_(-1),
4944 file_size_(0),
4945 base_(NULL),
4946 map_is_anonymous_(false),
4947 map_is_allocated_(false),
4948 is_temporary_(false)
4949 {
4950 }
4951
4952 // Try to open an existing file. Returns false if the file doesn't
4953 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4954 // NULL, open that file as the base for incremental linking, and
4955 // copy its contents to the new output file. This routine can
4956 // be called for incremental updates, in which case WRITABLE should
4957 // be true, or by the incremental-dump utility, in which case
4958 // WRITABLE should be false.
4959
4960 bool
4961 Output_file::open_base_file(const char* base_name, bool writable)
4962 {
4963 // The name "-" means "stdout".
4964 if (strcmp(this->name_, "-") == 0)
4965 return false;
4966
4967 bool use_base_file = base_name != NULL;
4968 if (!use_base_file)
4969 base_name = this->name_;
4970 else if (strcmp(base_name, this->name_) == 0)
4971 gold_fatal(_("%s: incremental base and output file name are the same"),
4972 base_name);
4973
4974 // Don't bother opening files with a size of zero.
4975 struct stat s;
4976 if (::stat(base_name, &s) != 0)
4977 {
4978 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4979 return false;
4980 }
4981 if (s.st_size == 0)
4982 {
4983 gold_info(_("%s: incremental base file is empty"), base_name);
4984 return false;
4985 }
4986
4987 // If we're using a base file, we want to open it read-only.
4988 if (use_base_file)
4989 writable = false;
4990
4991 int oflags = writable ? O_RDWR : O_RDONLY;
4992 int o = open_descriptor(-1, base_name, oflags, 0);
4993 if (o < 0)
4994 {
4995 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4996 return false;
4997 }
4998
4999 // If the base file and the output file are different, open a
5000 // new output file and read the contents from the base file into
5001 // the newly-mapped region.
5002 if (use_base_file)
5003 {
5004 this->open(s.st_size);
5005 ssize_t bytes_to_read = s.st_size;
5006 unsigned char* p = this->base_;
5007 while (bytes_to_read > 0)
5008 {
5009 ssize_t len = ::read(o, p, bytes_to_read);
5010 if (len < 0)
5011 {
5012 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5013 return false;
5014 }
5015 if (len == 0)
5016 {
5017 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5018 base_name,
5019 static_cast<long long>(s.st_size - bytes_to_read),
5020 static_cast<long long>(s.st_size));
5021 return false;
5022 }
5023 p += len;
5024 bytes_to_read -= len;
5025 }
5026 ::close(o);
5027 return true;
5028 }
5029
5030 this->o_ = o;
5031 this->file_size_ = s.st_size;
5032
5033 if (!this->map_no_anonymous(writable))
5034 {
5035 release_descriptor(o, true);
5036 this->o_ = -1;
5037 this->file_size_ = 0;
5038 return false;
5039 }
5040
5041 return true;
5042 }
5043
5044 // Open the output file.
5045
5046 void
5047 Output_file::open(off_t file_size)
5048 {
5049 this->file_size_ = file_size;
5050
5051 // Unlink the file first; otherwise the open() may fail if the file
5052 // is busy (e.g. it's an executable that's currently being executed).
5053 //
5054 // However, the linker may be part of a system where a zero-length
5055 // file is created for it to write to, with tight permissions (gcc
5056 // 2.95 did something like this). Unlinking the file would work
5057 // around those permission controls, so we only unlink if the file
5058 // has a non-zero size. We also unlink only regular files to avoid
5059 // trouble with directories/etc.
5060 //
5061 // If we fail, continue; this command is merely a best-effort attempt
5062 // to improve the odds for open().
5063
5064 // We let the name "-" mean "stdout"
5065 if (!this->is_temporary_)
5066 {
5067 if (strcmp(this->name_, "-") == 0)
5068 this->o_ = STDOUT_FILENO;
5069 else
5070 {
5071 struct stat s;
5072 if (::stat(this->name_, &s) == 0
5073 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5074 {
5075 if (s.st_size != 0)
5076 ::unlink(this->name_);
5077 else if (!parameters->options().relocatable())
5078 {
5079 // If we don't unlink the existing file, add execute
5080 // permission where read permissions already exist
5081 // and where the umask permits.
5082 int mask = ::umask(0);
5083 ::umask(mask);
5084 s.st_mode |= (s.st_mode & 0444) >> 2;
5085 ::chmod(this->name_, s.st_mode & ~mask);
5086 }
5087 }
5088
5089 int mode = parameters->options().relocatable() ? 0666 : 0777;
5090 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5091 mode);
5092 if (o < 0)
5093 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5094 this->o_ = o;
5095 }
5096 }
5097
5098 this->map();
5099 }
5100
5101 // Resize the output file.
5102
5103 void
5104 Output_file::resize(off_t file_size)
5105 {
5106 // If the mmap is mapping an anonymous memory buffer, this is easy:
5107 // just mremap to the new size. If it's mapping to a file, we want
5108 // to unmap to flush to the file, then remap after growing the file.
5109 if (this->map_is_anonymous_)
5110 {
5111 void* base;
5112 if (!this->map_is_allocated_)
5113 {
5114 base = ::mremap(this->base_, this->file_size_, file_size,
5115 MREMAP_MAYMOVE);
5116 if (base == MAP_FAILED)
5117 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5118 }
5119 else
5120 {
5121 base = realloc(this->base_, file_size);
5122 if (base == NULL)
5123 gold_nomem();
5124 if (file_size > this->file_size_)
5125 memset(static_cast<char*>(base) + this->file_size_, 0,
5126 file_size - this->file_size_);
5127 }
5128 this->base_ = static_cast<unsigned char*>(base);
5129 this->file_size_ = file_size;
5130 }
5131 else
5132 {
5133 this->unmap();
5134 this->file_size_ = file_size;
5135 if (!this->map_no_anonymous(true))
5136 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5137 }
5138 }
5139
5140 // Map an anonymous block of memory which will later be written to the
5141 // file. Return whether the map succeeded.
5142
5143 bool
5144 Output_file::map_anonymous()
5145 {
5146 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5147 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5148 if (base == MAP_FAILED)
5149 {
5150 base = malloc(this->file_size_);
5151 if (base == NULL)
5152 return false;
5153 memset(base, 0, this->file_size_);
5154 this->map_is_allocated_ = true;
5155 }
5156 this->base_ = static_cast<unsigned char*>(base);
5157 this->map_is_anonymous_ = true;
5158 return true;
5159 }
5160
5161 // Map the file into memory. Return whether the mapping succeeded.
5162 // If WRITABLE is true, map with write access.
5163
5164 bool
5165 Output_file::map_no_anonymous(bool writable)
5166 {
5167 const int o = this->o_;
5168
5169 // If the output file is not a regular file, don't try to mmap it;
5170 // instead, we'll mmap a block of memory (an anonymous buffer), and
5171 // then later write the buffer to the file.
5172 void* base;
5173 struct stat statbuf;
5174 if (o == STDOUT_FILENO || o == STDERR_FILENO
5175 || ::fstat(o, &statbuf) != 0
5176 || !S_ISREG(statbuf.st_mode)
5177 || this->is_temporary_)
5178 return false;
5179
5180 // Ensure that we have disk space available for the file. If we
5181 // don't do this, it is possible that we will call munmap, close,
5182 // and exit with dirty buffers still in the cache with no assigned
5183 // disk blocks. If the disk is out of space at that point, the
5184 // output file will wind up incomplete, but we will have already
5185 // exited. The alternative to fallocate would be to use fdatasync,
5186 // but that would be a more significant performance hit.
5187 if (writable)
5188 {
5189 int err = gold_fallocate(o, 0, this->file_size_);
5190 if (err != 0)
5191 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5192 }
5193
5194 // Map the file into memory.
5195 int prot = PROT_READ;
5196 if (writable)
5197 prot |= PROT_WRITE;
5198 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5199
5200 // The mmap call might fail because of file system issues: the file
5201 // system might not support mmap at all, or it might not support
5202 // mmap with PROT_WRITE.
5203 if (base == MAP_FAILED)
5204 return false;
5205
5206 this->map_is_anonymous_ = false;
5207 this->base_ = static_cast<unsigned char*>(base);
5208 return true;
5209 }
5210
5211 // Map the file into memory.
5212
5213 void
5214 Output_file::map()
5215 {
5216 if (parameters->options().mmap_output_file()
5217 && this->map_no_anonymous(true))
5218 return;
5219
5220 // The mmap call might fail because of file system issues: the file
5221 // system might not support mmap at all, or it might not support
5222 // mmap with PROT_WRITE. I'm not sure which errno values we will
5223 // see in all cases, so if the mmap fails for any reason and we
5224 // don't care about file contents, try for an anonymous map.
5225 if (this->map_anonymous())
5226 return;
5227
5228 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5229 this->name_, static_cast<unsigned long>(this->file_size_),
5230 strerror(errno));
5231 }
5232
5233 // Unmap the file from memory.
5234
5235 void
5236 Output_file::unmap()
5237 {
5238 if (this->map_is_anonymous_)
5239 {
5240 // We've already written out the data, so there is no reason to
5241 // waste time unmapping or freeing the memory.
5242 }
5243 else
5244 {
5245 if (::munmap(this->base_, this->file_size_) < 0)
5246 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5247 }
5248 this->base_ = NULL;
5249 }
5250
5251 // Close the output file.
5252
5253 void
5254 Output_file::close()
5255 {
5256 // If the map isn't file-backed, we need to write it now.
5257 if (this->map_is_anonymous_ && !this->is_temporary_)
5258 {
5259 size_t bytes_to_write = this->file_size_;
5260 size_t offset = 0;
5261 while (bytes_to_write > 0)
5262 {
5263 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5264 bytes_to_write);
5265 if (bytes_written == 0)
5266 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5267 else if (bytes_written < 0)
5268 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5269 else
5270 {
5271 bytes_to_write -= bytes_written;
5272 offset += bytes_written;
5273 }
5274 }
5275 }
5276 this->unmap();
5277
5278 // We don't close stdout or stderr
5279 if (this->o_ != STDOUT_FILENO
5280 && this->o_ != STDERR_FILENO
5281 && !this->is_temporary_)
5282 if (::close(this->o_) < 0)
5283 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5284 this->o_ = -1;
5285 }
5286
5287 // Instantiate the templates we need. We could use the configure
5288 // script to restrict this to only the ones for implemented targets.
5289
5290 #ifdef HAVE_TARGET_32_LITTLE
5291 template
5292 off_t
5293 Output_section::add_input_section<32, false>(
5294 Layout* layout,
5295 Sized_relobj_file<32, false>* object,
5296 unsigned int shndx,
5297 const char* secname,
5298 const elfcpp::Shdr<32, false>& shdr,
5299 unsigned int reloc_shndx,
5300 bool have_sections_script);
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_BIG
5304 template
5305 off_t
5306 Output_section::add_input_section<32, true>(
5307 Layout* layout,
5308 Sized_relobj_file<32, true>* object,
5309 unsigned int shndx,
5310 const char* secname,
5311 const elfcpp::Shdr<32, true>& shdr,
5312 unsigned int reloc_shndx,
5313 bool have_sections_script);
5314 #endif
5315
5316 #ifdef HAVE_TARGET_64_LITTLE
5317 template
5318 off_t
5319 Output_section::add_input_section<64, false>(
5320 Layout* layout,
5321 Sized_relobj_file<64, false>* object,
5322 unsigned int shndx,
5323 const char* secname,
5324 const elfcpp::Shdr<64, false>& shdr,
5325 unsigned int reloc_shndx,
5326 bool have_sections_script);
5327 #endif
5328
5329 #ifdef HAVE_TARGET_64_BIG
5330 template
5331 off_t
5332 Output_section::add_input_section<64, true>(
5333 Layout* layout,
5334 Sized_relobj_file<64, true>* object,
5335 unsigned int shndx,
5336 const char* secname,
5337 const elfcpp::Shdr<64, true>& shdr,
5338 unsigned int reloc_shndx,
5339 bool have_sections_script);
5340 #endif
5341
5342 #ifdef HAVE_TARGET_32_LITTLE
5343 template
5344 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5345 #endif
5346
5347 #ifdef HAVE_TARGET_32_BIG
5348 template
5349 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5350 #endif
5351
5352 #ifdef HAVE_TARGET_64_LITTLE
5353 template
5354 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5355 #endif
5356
5357 #ifdef HAVE_TARGET_64_BIG
5358 template
5359 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5360 #endif
5361
5362 #ifdef HAVE_TARGET_32_LITTLE
5363 template
5364 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5365 #endif
5366
5367 #ifdef HAVE_TARGET_32_BIG
5368 template
5369 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5370 #endif
5371
5372 #ifdef HAVE_TARGET_64_LITTLE
5373 template
5374 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5375 #endif
5376
5377 #ifdef HAVE_TARGET_64_BIG
5378 template
5379 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5380 #endif
5381
5382 #ifdef HAVE_TARGET_32_LITTLE
5383 template
5384 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5385 #endif
5386
5387 #ifdef HAVE_TARGET_32_BIG
5388 template
5389 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5390 #endif
5391
5392 #ifdef HAVE_TARGET_64_LITTLE
5393 template
5394 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5395 #endif
5396
5397 #ifdef HAVE_TARGET_64_BIG
5398 template
5399 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5400 #endif
5401
5402 #ifdef HAVE_TARGET_32_LITTLE
5403 template
5404 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5405 #endif
5406
5407 #ifdef HAVE_TARGET_32_BIG
5408 template
5409 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5410 #endif
5411
5412 #ifdef HAVE_TARGET_64_LITTLE
5413 template
5414 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5415 #endif
5416
5417 #ifdef HAVE_TARGET_64_BIG
5418 template
5419 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5420 #endif
5421
5422 #ifdef HAVE_TARGET_32_LITTLE
5423 template
5424 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5425 #endif
5426
5427 #ifdef HAVE_TARGET_32_BIG
5428 template
5429 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5430 #endif
5431
5432 #ifdef HAVE_TARGET_64_LITTLE
5433 template
5434 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5435 #endif
5436
5437 #ifdef HAVE_TARGET_64_BIG
5438 template
5439 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5440 #endif
5441
5442 #ifdef HAVE_TARGET_32_LITTLE
5443 template
5444 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5445 #endif
5446
5447 #ifdef HAVE_TARGET_32_BIG
5448 template
5449 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5450 #endif
5451
5452 #ifdef HAVE_TARGET_64_LITTLE
5453 template
5454 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5455 #endif
5456
5457 #ifdef HAVE_TARGET_64_BIG
5458 template
5459 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5460 #endif
5461
5462 #ifdef HAVE_TARGET_32_LITTLE
5463 template
5464 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5465 #endif
5466
5467 #ifdef HAVE_TARGET_32_BIG
5468 template
5469 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5470 #endif
5471
5472 #ifdef HAVE_TARGET_64_LITTLE
5473 template
5474 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5475 #endif
5476
5477 #ifdef HAVE_TARGET_64_BIG
5478 template
5479 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5480 #endif
5481
5482 #ifdef HAVE_TARGET_32_LITTLE
5483 template
5484 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5485 #endif
5486
5487 #ifdef HAVE_TARGET_32_BIG
5488 template
5489 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5490 #endif
5491
5492 #ifdef HAVE_TARGET_64_LITTLE
5493 template
5494 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5495 #endif
5496
5497 #ifdef HAVE_TARGET_64_BIG
5498 template
5499 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5500 #endif
5501
5502 #ifdef HAVE_TARGET_32_LITTLE
5503 template
5504 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5505 #endif
5506
5507 #ifdef HAVE_TARGET_32_BIG
5508 template
5509 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5510 #endif
5511
5512 #ifdef HAVE_TARGET_64_LITTLE
5513 template
5514 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5515 #endif
5516
5517 #ifdef HAVE_TARGET_64_BIG
5518 template
5519 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5520 #endif
5521
5522 #ifdef HAVE_TARGET_32_LITTLE
5523 template
5524 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5525 #endif
5526
5527 #ifdef HAVE_TARGET_32_BIG
5528 template
5529 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5530 #endif
5531
5532 #ifdef HAVE_TARGET_64_LITTLE
5533 template
5534 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5535 #endif
5536
5537 #ifdef HAVE_TARGET_64_BIG
5538 template
5539 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5540 #endif
5541
5542 #ifdef HAVE_TARGET_32_LITTLE
5543 template
5544 class Output_data_group<32, false>;
5545 #endif
5546
5547 #ifdef HAVE_TARGET_32_BIG
5548 template
5549 class Output_data_group<32, true>;
5550 #endif
5551
5552 #ifdef HAVE_TARGET_64_LITTLE
5553 template
5554 class Output_data_group<64, false>;
5555 #endif
5556
5557 #ifdef HAVE_TARGET_64_BIG
5558 template
5559 class Output_data_group<64, true>;
5560 #endif
5561
5562 template
5563 class Output_data_got<32, false>;
5564
5565 template
5566 class Output_data_got<32, true>;
5567
5568 template
5569 class Output_data_got<64, false>;
5570
5571 template
5572 class Output_data_got<64, true>;
5573
5574 } // End namespace gold.