* layout.cc (Free_list::allocate): Provide guarantee of minimum
[binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate. Here we just set
116 // the file size and hope that there is enough disk space. FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122 return ftruncate(o, offset + len);
123 }
124 #endif // !defined(HAVE_POSIX_FALLOCATE)
125
126 // Mingw does not have S_ISLNK.
127 #ifndef S_ISLNK
128 # define S_ISLNK(mode) 0
129 #endif
130
131 namespace gold
132 {
133
134 // Output_data variables.
135
136 bool Output_data::allocated_sizes_are_fixed;
137
138 // Output_data methods.
139
140 Output_data::~Output_data()
141 {
142 }
143
144 // Return the default alignment for the target size.
145
146 uint64_t
147 Output_data::default_alignment()
148 {
149 return Output_data::default_alignment_for_size(
150 parameters->target().get_size());
151 }
152
153 // Return the default alignment for a size--32 or 64.
154
155 uint64_t
156 Output_data::default_alignment_for_size(int size)
157 {
158 if (size == 32)
159 return 4;
160 else if (size == 64)
161 return 8;
162 else
163 gold_unreachable();
164 }
165
166 // Output_section_header methods. This currently assumes that the
167 // segment and section lists are complete at construction time.
168
169 Output_section_headers::Output_section_headers(
170 const Layout* layout,
171 const Layout::Segment_list* segment_list,
172 const Layout::Section_list* section_list,
173 const Layout::Section_list* unattached_section_list,
174 const Stringpool* secnamepool,
175 const Output_section* shstrtab_section)
176 : layout_(layout),
177 segment_list_(segment_list),
178 section_list_(section_list),
179 unattached_section_list_(unattached_section_list),
180 secnamepool_(secnamepool),
181 shstrtab_section_(shstrtab_section)
182 {
183 }
184
185 // Compute the current data size.
186
187 off_t
188 Output_section_headers::do_size() const
189 {
190 // Count all the sections. Start with 1 for the null section.
191 off_t count = 1;
192 if (!parameters->options().relocatable())
193 {
194 for (Layout::Segment_list::const_iterator p =
195 this->segment_list_->begin();
196 p != this->segment_list_->end();
197 ++p)
198 if ((*p)->type() == elfcpp::PT_LOAD)
199 count += (*p)->output_section_count();
200 }
201 else
202 {
203 for (Layout::Section_list::const_iterator p =
204 this->section_list_->begin();
205 p != this->section_list_->end();
206 ++p)
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208 ++count;
209 }
210 count += this->unattached_section_list_->size();
211
212 const int size = parameters->target().get_size();
213 int shdr_size;
214 if (size == 32)
215 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216 else if (size == 64)
217 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218 else
219 gold_unreachable();
220
221 return count * shdr_size;
222 }
223
224 // Write out the section headers.
225
226 void
227 Output_section_headers::do_write(Output_file* of)
228 {
229 switch (parameters->size_and_endianness())
230 {
231 #ifdef HAVE_TARGET_32_LITTLE
232 case Parameters::TARGET_32_LITTLE:
233 this->do_sized_write<32, false>(of);
234 break;
235 #endif
236 #ifdef HAVE_TARGET_32_BIG
237 case Parameters::TARGET_32_BIG:
238 this->do_sized_write<32, true>(of);
239 break;
240 #endif
241 #ifdef HAVE_TARGET_64_LITTLE
242 case Parameters::TARGET_64_LITTLE:
243 this->do_sized_write<64, false>(of);
244 break;
245 #endif
246 #ifdef HAVE_TARGET_64_BIG
247 case Parameters::TARGET_64_BIG:
248 this->do_sized_write<64, true>(of);
249 break;
250 #endif
251 default:
252 gold_unreachable();
253 }
254 }
255
256 template<int size, bool big_endian>
257 void
258 Output_section_headers::do_sized_write(Output_file* of)
259 {
260 off_t all_shdrs_size = this->data_size();
261 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264 unsigned char* v = view;
265
266 {
267 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268 oshdr.put_sh_name(0);
269 oshdr.put_sh_type(elfcpp::SHT_NULL);
270 oshdr.put_sh_flags(0);
271 oshdr.put_sh_addr(0);
272 oshdr.put_sh_offset(0);
273
274 size_t section_count = (this->data_size()
275 / elfcpp::Elf_sizes<size>::shdr_size);
276 if (section_count < elfcpp::SHN_LORESERVE)
277 oshdr.put_sh_size(0);
278 else
279 oshdr.put_sh_size(section_count);
280
281 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282 if (shstrndx < elfcpp::SHN_LORESERVE)
283 oshdr.put_sh_link(0);
284 else
285 oshdr.put_sh_link(shstrndx);
286
287 size_t segment_count = this->segment_list_->size();
288 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
290 oshdr.put_sh_addralign(0);
291 oshdr.put_sh_entsize(0);
292 }
293
294 v += shdr_size;
295
296 unsigned int shndx = 1;
297 if (!parameters->options().relocatable())
298 {
299 for (Layout::Segment_list::const_iterator p =
300 this->segment_list_->begin();
301 p != this->segment_list_->end();
302 ++p)
303 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304 this->secnamepool_,
305 v,
306 &shndx);
307 }
308 else
309 {
310 for (Layout::Section_list::const_iterator p =
311 this->section_list_->begin();
312 p != this->section_list_->end();
313 ++p)
314 {
315 // We do unallocated sections below, except that group
316 // sections have to come first.
317 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318 && (*p)->type() != elfcpp::SHT_GROUP)
319 continue;
320 gold_assert(shndx == (*p)->out_shndx());
321 elfcpp::Shdr_write<size, big_endian> oshdr(v);
322 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323 v += shdr_size;
324 ++shndx;
325 }
326 }
327
328 for (Layout::Section_list::const_iterator p =
329 this->unattached_section_list_->begin();
330 p != this->unattached_section_list_->end();
331 ++p)
332 {
333 // For a relocatable link, we did unallocated group sections
334 // above, since they have to come first.
335 if ((*p)->type() == elfcpp::SHT_GROUP
336 && parameters->options().relocatable())
337 continue;
338 gold_assert(shndx == (*p)->out_shndx());
339 elfcpp::Shdr_write<size, big_endian> oshdr(v);
340 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
341 v += shdr_size;
342 ++shndx;
343 }
344
345 of->write_output_view(this->offset(), all_shdrs_size, view);
346 }
347
348 // Output_segment_header methods.
349
350 Output_segment_headers::Output_segment_headers(
351 const Layout::Segment_list& segment_list)
352 : segment_list_(segment_list)
353 {
354 this->set_current_data_size_for_child(this->do_size());
355 }
356
357 void
358 Output_segment_headers::do_write(Output_file* of)
359 {
360 switch (parameters->size_and_endianness())
361 {
362 #ifdef HAVE_TARGET_32_LITTLE
363 case Parameters::TARGET_32_LITTLE:
364 this->do_sized_write<32, false>(of);
365 break;
366 #endif
367 #ifdef HAVE_TARGET_32_BIG
368 case Parameters::TARGET_32_BIG:
369 this->do_sized_write<32, true>(of);
370 break;
371 #endif
372 #ifdef HAVE_TARGET_64_LITTLE
373 case Parameters::TARGET_64_LITTLE:
374 this->do_sized_write<64, false>(of);
375 break;
376 #endif
377 #ifdef HAVE_TARGET_64_BIG
378 case Parameters::TARGET_64_BIG:
379 this->do_sized_write<64, true>(of);
380 break;
381 #endif
382 default:
383 gold_unreachable();
384 }
385 }
386
387 template<int size, bool big_endian>
388 void
389 Output_segment_headers::do_sized_write(Output_file* of)
390 {
391 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393 gold_assert(all_phdrs_size == this->data_size());
394 unsigned char* view = of->get_output_view(this->offset(),
395 all_phdrs_size);
396 unsigned char* v = view;
397 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398 p != this->segment_list_.end();
399 ++p)
400 {
401 elfcpp::Phdr_write<size, big_endian> ophdr(v);
402 (*p)->write_header(&ophdr);
403 v += phdr_size;
404 }
405
406 gold_assert(v - view == all_phdrs_size);
407
408 of->write_output_view(this->offset(), all_phdrs_size, view);
409 }
410
411 off_t
412 Output_segment_headers::do_size() const
413 {
414 const int size = parameters->target().get_size();
415 int phdr_size;
416 if (size == 32)
417 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418 else if (size == 64)
419 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420 else
421 gold_unreachable();
422
423 return this->segment_list_.size() * phdr_size;
424 }
425
426 // Output_file_header methods.
427
428 Output_file_header::Output_file_header(const Target* target,
429 const Symbol_table* symtab,
430 const Output_segment_headers* osh)
431 : target_(target),
432 symtab_(symtab),
433 segment_header_(osh),
434 section_header_(NULL),
435 shstrtab_(NULL)
436 {
437 this->set_data_size(this->do_size());
438 }
439
440 // Set the section table information for a file header.
441
442 void
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444 const Output_section* shstrtab)
445 {
446 this->section_header_ = shdrs;
447 this->shstrtab_ = shstrtab;
448 }
449
450 // Write out the file header.
451
452 void
453 Output_file_header::do_write(Output_file* of)
454 {
455 gold_assert(this->offset() == 0);
456
457 switch (parameters->size_and_endianness())
458 {
459 #ifdef HAVE_TARGET_32_LITTLE
460 case Parameters::TARGET_32_LITTLE:
461 this->do_sized_write<32, false>(of);
462 break;
463 #endif
464 #ifdef HAVE_TARGET_32_BIG
465 case Parameters::TARGET_32_BIG:
466 this->do_sized_write<32, true>(of);
467 break;
468 #endif
469 #ifdef HAVE_TARGET_64_LITTLE
470 case Parameters::TARGET_64_LITTLE:
471 this->do_sized_write<64, false>(of);
472 break;
473 #endif
474 #ifdef HAVE_TARGET_64_BIG
475 case Parameters::TARGET_64_BIG:
476 this->do_sized_write<64, true>(of);
477 break;
478 #endif
479 default:
480 gold_unreachable();
481 }
482 }
483
484 // Write out the file header with appropriate size and endianness.
485
486 template<int size, bool big_endian>
487 void
488 Output_file_header::do_sized_write(Output_file* of)
489 {
490 gold_assert(this->offset() == 0);
491
492 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493 unsigned char* view = of->get_output_view(0, ehdr_size);
494 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496 unsigned char e_ident[elfcpp::EI_NIDENT];
497 memset(e_ident, 0, elfcpp::EI_NIDENT);
498 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502 if (size == 32)
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504 else if (size == 64)
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506 else
507 gold_unreachable();
508 e_ident[elfcpp::EI_DATA] = (big_endian
509 ? elfcpp::ELFDATA2MSB
510 : elfcpp::ELFDATA2LSB);
511 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512 oehdr.put_e_ident(e_ident);
513
514 elfcpp::ET e_type;
515 if (parameters->options().relocatable())
516 e_type = elfcpp::ET_REL;
517 else if (parameters->options().output_is_position_independent())
518 e_type = elfcpp::ET_DYN;
519 else
520 e_type = elfcpp::ET_EXEC;
521 oehdr.put_e_type(e_type);
522
523 oehdr.put_e_machine(this->target_->machine_code());
524 oehdr.put_e_version(elfcpp::EV_CURRENT);
525
526 oehdr.put_e_entry(this->entry<size>());
527
528 if (this->segment_header_ == NULL)
529 oehdr.put_e_phoff(0);
530 else
531 oehdr.put_e_phoff(this->segment_header_->offset());
532
533 oehdr.put_e_shoff(this->section_header_->offset());
534 oehdr.put_e_flags(this->target_->processor_specific_flags());
535 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
537 if (this->segment_header_ == NULL)
538 {
539 oehdr.put_e_phentsize(0);
540 oehdr.put_e_phnum(0);
541 }
542 else
543 {
544 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545 size_t phnum = (this->segment_header_->data_size()
546 / elfcpp::Elf_sizes<size>::phdr_size);
547 if (phnum > elfcpp::PN_XNUM)
548 phnum = elfcpp::PN_XNUM;
549 oehdr.put_e_phnum(phnum);
550 }
551
552 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553 size_t section_count = (this->section_header_->data_size()
554 / elfcpp::Elf_sizes<size>::shdr_size);
555
556 if (section_count < elfcpp::SHN_LORESERVE)
557 oehdr.put_e_shnum(this->section_header_->data_size()
558 / elfcpp::Elf_sizes<size>::shdr_size);
559 else
560 oehdr.put_e_shnum(0);
561
562 unsigned int shstrndx = this->shstrtab_->out_shndx();
563 if (shstrndx < elfcpp::SHN_LORESERVE)
564 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565 else
566 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
568 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569 // the e_ident field.
570 parameters->target().adjust_elf_header(view, ehdr_size);
571
572 of->write_output_view(0, ehdr_size, view);
573 }
574
575 // Return the value to use for the entry address.
576
577 template<int size>
578 typename elfcpp::Elf_types<size>::Elf_Addr
579 Output_file_header::entry()
580 {
581 const bool should_issue_warning = (parameters->options().entry() != NULL
582 && !parameters->options().relocatable()
583 && !parameters->options().shared());
584 const char* entry = parameters->entry();
585 Symbol* sym = this->symtab_->lookup(entry);
586
587 typename Sized_symbol<size>::Value_type v;
588 if (sym != NULL)
589 {
590 Sized_symbol<size>* ssym;
591 ssym = this->symtab_->get_sized_symbol<size>(sym);
592 if (!ssym->is_defined() && should_issue_warning)
593 gold_warning("entry symbol '%s' exists but is not defined", entry);
594 v = ssym->value();
595 }
596 else
597 {
598 // We couldn't find the entry symbol. See if we can parse it as
599 // a number. This supports, e.g., -e 0x1000.
600 char* endptr;
601 v = strtoull(entry, &endptr, 0);
602 if (*endptr != '\0')
603 {
604 if (should_issue_warning)
605 gold_warning("cannot find entry symbol '%s'", entry);
606 v = 0;
607 }
608 }
609
610 return v;
611 }
612
613 // Compute the current data size.
614
615 off_t
616 Output_file_header::do_size() const
617 {
618 const int size = parameters->target().get_size();
619 if (size == 32)
620 return elfcpp::Elf_sizes<32>::ehdr_size;
621 else if (size == 64)
622 return elfcpp::Elf_sizes<64>::ehdr_size;
623 else
624 gold_unreachable();
625 }
626
627 // Output_data_const methods.
628
629 void
630 Output_data_const::do_write(Output_file* of)
631 {
632 of->write(this->offset(), this->data_.data(), this->data_.size());
633 }
634
635 // Output_data_const_buffer methods.
636
637 void
638 Output_data_const_buffer::do_write(Output_file* of)
639 {
640 of->write(this->offset(), this->p_, this->data_size());
641 }
642
643 // Output_section_data methods.
644
645 // Record the output section, and set the entry size and such.
646
647 void
648 Output_section_data::set_output_section(Output_section* os)
649 {
650 gold_assert(this->output_section_ == NULL);
651 this->output_section_ = os;
652 this->do_adjust_output_section(os);
653 }
654
655 // Return the section index of the output section.
656
657 unsigned int
658 Output_section_data::do_out_shndx() const
659 {
660 gold_assert(this->output_section_ != NULL);
661 return this->output_section_->out_shndx();
662 }
663
664 // Set the alignment, which means we may need to update the alignment
665 // of the output section.
666
667 void
668 Output_section_data::set_addralign(uint64_t addralign)
669 {
670 this->addralign_ = addralign;
671 if (this->output_section_ != NULL
672 && this->output_section_->addralign() < addralign)
673 this->output_section_->set_addralign(addralign);
674 }
675
676 // Output_data_strtab methods.
677
678 // Set the final data size.
679
680 void
681 Output_data_strtab::set_final_data_size()
682 {
683 this->strtab_->set_string_offsets();
684 this->set_data_size(this->strtab_->get_strtab_size());
685 }
686
687 // Write out a string table.
688
689 void
690 Output_data_strtab::do_write(Output_file* of)
691 {
692 this->strtab_->write(of, this->offset());
693 }
694
695 // Output_reloc methods.
696
697 // A reloc against a global symbol.
698
699 template<bool dynamic, int size, bool big_endian>
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701 Symbol* gsym,
702 unsigned int type,
703 Output_data* od,
704 Address address,
705 bool is_relative,
706 bool is_symbolless)
707 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708 is_relative_(is_relative), is_symbolless_(is_symbolless),
709 is_section_symbol_(false), shndx_(INVALID_CODE)
710 {
711 // this->type_ is a bitfield; make sure TYPE fits.
712 gold_assert(this->type_ == type);
713 this->u1_.gsym = gsym;
714 this->u2_.od = od;
715 if (dynamic)
716 this->set_needs_dynsym_index();
717 }
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721 Symbol* gsym,
722 unsigned int type,
723 Sized_relobj<size, big_endian>* relobj,
724 unsigned int shndx,
725 Address address,
726 bool is_relative,
727 bool is_symbolless)
728 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729 is_relative_(is_relative), is_symbolless_(is_symbolless),
730 is_section_symbol_(false), shndx_(shndx)
731 {
732 gold_assert(shndx != INVALID_CODE);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.relobj = relobj;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 }
740
741 // A reloc against a local symbol.
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index,
747 unsigned int type,
748 Output_data* od,
749 Address address,
750 bool is_relative,
751 bool is_symbolless,
752 bool is_section_symbol)
753 : address_(address), local_sym_index_(local_sym_index), type_(type),
754 is_relative_(is_relative), is_symbolless_(is_symbolless),
755 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
756 {
757 gold_assert(local_sym_index != GSYM_CODE
758 && local_sym_index != INVALID_CODE);
759 // this->type_ is a bitfield; make sure TYPE fits.
760 gold_assert(this->type_ == type);
761 this->u1_.relobj = relobj;
762 this->u2_.od = od;
763 if (dynamic)
764 this->set_needs_dynsym_index();
765 }
766
767 template<bool dynamic, int size, bool big_endian>
768 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
769 Sized_relobj<size, big_endian>* relobj,
770 unsigned int local_sym_index,
771 unsigned int type,
772 unsigned int shndx,
773 Address address,
774 bool is_relative,
775 bool is_symbolless,
776 bool is_section_symbol)
777 : address_(address), local_sym_index_(local_sym_index), type_(type),
778 is_relative_(is_relative), is_symbolless_(is_symbolless),
779 is_section_symbol_(is_section_symbol), shndx_(shndx)
780 {
781 gold_assert(local_sym_index != GSYM_CODE
782 && local_sym_index != INVALID_CODE);
783 gold_assert(shndx != INVALID_CODE);
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_ == type);
786 this->u1_.relobj = relobj;
787 this->u2_.relobj = relobj;
788 if (dynamic)
789 this->set_needs_dynsym_index();
790 }
791
792 // A reloc against the STT_SECTION symbol of an output section.
793
794 template<bool dynamic, int size, bool big_endian>
795 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796 Output_section* os,
797 unsigned int type,
798 Output_data* od,
799 Address address)
800 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
801 is_relative_(false), is_symbolless_(false),
802 is_section_symbol_(true), shndx_(INVALID_CODE)
803 {
804 // this->type_ is a bitfield; make sure TYPE fits.
805 gold_assert(this->type_ == type);
806 this->u1_.os = os;
807 this->u2_.od = od;
808 if (dynamic)
809 this->set_needs_dynsym_index();
810 else
811 os->set_needs_symtab_index();
812 }
813
814 template<bool dynamic, int size, bool big_endian>
815 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816 Output_section* os,
817 unsigned int type,
818 Sized_relobj<size, big_endian>* relobj,
819 unsigned int shndx,
820 Address address)
821 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
822 is_relative_(false), is_symbolless_(false),
823 is_section_symbol_(true), shndx_(shndx)
824 {
825 gold_assert(shndx != INVALID_CODE);
826 // this->type_ is a bitfield; make sure TYPE fits.
827 gold_assert(this->type_ == type);
828 this->u1_.os = os;
829 this->u2_.relobj = relobj;
830 if (dynamic)
831 this->set_needs_dynsym_index();
832 else
833 os->set_needs_symtab_index();
834 }
835
836 // An absolute relocation.
837
838 template<bool dynamic, int size, bool big_endian>
839 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
840 unsigned int type,
841 Output_data* od,
842 Address address)
843 : address_(address), local_sym_index_(0), type_(type),
844 is_relative_(false), is_symbolless_(false),
845 is_section_symbol_(false), shndx_(INVALID_CODE)
846 {
847 // this->type_ is a bitfield; make sure TYPE fits.
848 gold_assert(this->type_ == type);
849 this->u1_.relobj = NULL;
850 this->u2_.od = od;
851 }
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Sized_relobj<size, big_endian>* relobj,
857 unsigned int shndx,
858 Address address)
859 : address_(address), local_sym_index_(0), type_(type),
860 is_relative_(false), is_symbolless_(false),
861 is_section_symbol_(false), shndx_(shndx)
862 {
863 gold_assert(shndx != INVALID_CODE);
864 // this->type_ is a bitfield; make sure TYPE fits.
865 gold_assert(this->type_ == type);
866 this->u1_.relobj = NULL;
867 this->u2_.relobj = relobj;
868 }
869
870 // A target specific relocation.
871
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 unsigned int type,
875 void* arg,
876 Output_data* od,
877 Address address)
878 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
879 is_relative_(false), is_symbolless_(false),
880 is_section_symbol_(false), shndx_(INVALID_CODE)
881 {
882 // this->type_ is a bitfield; make sure TYPE fits.
883 gold_assert(this->type_ == type);
884 this->u1_.arg = arg;
885 this->u2_.od = od;
886 }
887
888 template<bool dynamic, int size, bool big_endian>
889 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
890 unsigned int type,
891 void* arg,
892 Sized_relobj<size, big_endian>* relobj,
893 unsigned int shndx,
894 Address address)
895 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896 is_relative_(false), is_symbolless_(false),
897 is_section_symbol_(false), shndx_(shndx)
898 {
899 gold_assert(shndx != INVALID_CODE);
900 // this->type_ is a bitfield; make sure TYPE fits.
901 gold_assert(this->type_ == type);
902 this->u1_.arg = arg;
903 this->u2_.relobj = relobj;
904 }
905
906 // Record that we need a dynamic symbol index for this relocation.
907
908 template<bool dynamic, int size, bool big_endian>
909 void
910 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
911 set_needs_dynsym_index()
912 {
913 if (this->is_symbolless_)
914 return;
915 switch (this->local_sym_index_)
916 {
917 case INVALID_CODE:
918 gold_unreachable();
919
920 case GSYM_CODE:
921 this->u1_.gsym->set_needs_dynsym_entry();
922 break;
923
924 case SECTION_CODE:
925 this->u1_.os->set_needs_dynsym_index();
926 break;
927
928 case TARGET_CODE:
929 // The target must take care of this if necessary.
930 break;
931
932 case 0:
933 break;
934
935 default:
936 {
937 const unsigned int lsi = this->local_sym_index_;
938 Sized_relobj_file<size, big_endian>* relobj =
939 this->u1_.relobj->sized_relobj();
940 gold_assert(relobj != NULL);
941 if (!this->is_section_symbol_)
942 relobj->set_needs_output_dynsym_entry(lsi);
943 else
944 relobj->output_section(lsi)->set_needs_dynsym_index();
945 }
946 break;
947 }
948 }
949
950 // Get the symbol index of a relocation.
951
952 template<bool dynamic, int size, bool big_endian>
953 unsigned int
954 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
955 const
956 {
957 unsigned int index;
958 if (this->is_symbolless_)
959 return 0;
960 switch (this->local_sym_index_)
961 {
962 case INVALID_CODE:
963 gold_unreachable();
964
965 case GSYM_CODE:
966 if (this->u1_.gsym == NULL)
967 index = 0;
968 else if (dynamic)
969 index = this->u1_.gsym->dynsym_index();
970 else
971 index = this->u1_.gsym->symtab_index();
972 break;
973
974 case SECTION_CODE:
975 if (dynamic)
976 index = this->u1_.os->dynsym_index();
977 else
978 index = this->u1_.os->symtab_index();
979 break;
980
981 case TARGET_CODE:
982 index = parameters->target().reloc_symbol_index(this->u1_.arg,
983 this->type_);
984 break;
985
986 case 0:
987 // Relocations without symbols use a symbol index of 0.
988 index = 0;
989 break;
990
991 default:
992 {
993 const unsigned int lsi = this->local_sym_index_;
994 Sized_relobj_file<size, big_endian>* relobj =
995 this->u1_.relobj->sized_relobj();
996 gold_assert(relobj != NULL);
997 if (!this->is_section_symbol_)
998 {
999 if (dynamic)
1000 index = relobj->dynsym_index(lsi);
1001 else
1002 index = relobj->symtab_index(lsi);
1003 }
1004 else
1005 {
1006 Output_section* os = relobj->output_section(lsi);
1007 gold_assert(os != NULL);
1008 if (dynamic)
1009 index = os->dynsym_index();
1010 else
1011 index = os->symtab_index();
1012 }
1013 }
1014 break;
1015 }
1016 gold_assert(index != -1U);
1017 return index;
1018 }
1019
1020 // For a local section symbol, get the address of the offset ADDEND
1021 // within the input section.
1022
1023 template<bool dynamic, int size, bool big_endian>
1024 typename elfcpp::Elf_types<size>::Elf_Addr
1025 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1026 local_section_offset(Addend addend) const
1027 {
1028 gold_assert(this->local_sym_index_ != GSYM_CODE
1029 && this->local_sym_index_ != SECTION_CODE
1030 && this->local_sym_index_ != TARGET_CODE
1031 && this->local_sym_index_ != INVALID_CODE
1032 && this->local_sym_index_ != 0
1033 && this->is_section_symbol_);
1034 const unsigned int lsi = this->local_sym_index_;
1035 Output_section* os = this->u1_.relobj->output_section(lsi);
1036 gold_assert(os != NULL);
1037 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1038 if (offset != invalid_address)
1039 return offset + addend;
1040 // This is a merge section.
1041 Sized_relobj_file<size, big_endian>* relobj =
1042 this->u1_.relobj->sized_relobj();
1043 gold_assert(relobj != NULL);
1044 offset = os->output_address(relobj, lsi, addend);
1045 gold_assert(offset != invalid_address);
1046 return offset;
1047 }
1048
1049 // Get the output address of a relocation.
1050
1051 template<bool dynamic, int size, bool big_endian>
1052 typename elfcpp::Elf_types<size>::Elf_Addr
1053 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1054 {
1055 Address address = this->address_;
1056 if (this->shndx_ != INVALID_CODE)
1057 {
1058 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1059 gold_assert(os != NULL);
1060 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1061 if (off != invalid_address)
1062 address += os->address() + off;
1063 else
1064 {
1065 Sized_relobj_file<size, big_endian>* relobj =
1066 this->u2_.relobj->sized_relobj();
1067 gold_assert(relobj != NULL);
1068 address = os->output_address(relobj, this->shndx_, address);
1069 gold_assert(address != invalid_address);
1070 }
1071 }
1072 else if (this->u2_.od != NULL)
1073 address += this->u2_.od->address();
1074 return address;
1075 }
1076
1077 // Write out the offset and info fields of a Rel or Rela relocation
1078 // entry.
1079
1080 template<bool dynamic, int size, bool big_endian>
1081 template<typename Write_rel>
1082 void
1083 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1084 Write_rel* wr) const
1085 {
1086 wr->put_r_offset(this->get_address());
1087 unsigned int sym_index = this->get_symbol_index();
1088 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1089 }
1090
1091 // Write out a Rel relocation.
1092
1093 template<bool dynamic, int size, bool big_endian>
1094 void
1095 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1096 unsigned char* pov) const
1097 {
1098 elfcpp::Rel_write<size, big_endian> orel(pov);
1099 this->write_rel(&orel);
1100 }
1101
1102 // Get the value of the symbol referred to by a Rel relocation.
1103
1104 template<bool dynamic, int size, bool big_endian>
1105 typename elfcpp::Elf_types<size>::Elf_Addr
1106 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1107 Addend addend) const
1108 {
1109 if (this->local_sym_index_ == GSYM_CODE)
1110 {
1111 const Sized_symbol<size>* sym;
1112 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1113 return sym->value() + addend;
1114 }
1115 gold_assert(this->local_sym_index_ != SECTION_CODE
1116 && this->local_sym_index_ != TARGET_CODE
1117 && this->local_sym_index_ != INVALID_CODE
1118 && this->local_sym_index_ != 0
1119 && !this->is_section_symbol_);
1120 const unsigned int lsi = this->local_sym_index_;
1121 Sized_relobj_file<size, big_endian>* relobj =
1122 this->u1_.relobj->sized_relobj();
1123 gold_assert(relobj != NULL);
1124 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1125 return symval->value(relobj, addend);
1126 }
1127
1128 // Reloc comparison. This function sorts the dynamic relocs for the
1129 // benefit of the dynamic linker. First we sort all relative relocs
1130 // to the front. Among relative relocs, we sort by output address.
1131 // Among non-relative relocs, we sort by symbol index, then by output
1132 // address.
1133
1134 template<bool dynamic, int size, bool big_endian>
1135 int
1136 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1137 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1138 const
1139 {
1140 if (this->is_relative_)
1141 {
1142 if (!r2.is_relative_)
1143 return -1;
1144 // Otherwise sort by reloc address below.
1145 }
1146 else if (r2.is_relative_)
1147 return 1;
1148 else
1149 {
1150 unsigned int sym1 = this->get_symbol_index();
1151 unsigned int sym2 = r2.get_symbol_index();
1152 if (sym1 < sym2)
1153 return -1;
1154 else if (sym1 > sym2)
1155 return 1;
1156 // Otherwise sort by reloc address.
1157 }
1158
1159 section_offset_type addr1 = this->get_address();
1160 section_offset_type addr2 = r2.get_address();
1161 if (addr1 < addr2)
1162 return -1;
1163 else if (addr1 > addr2)
1164 return 1;
1165
1166 // Final tie breaker, in order to generate the same output on any
1167 // host: reloc type.
1168 unsigned int type1 = this->type_;
1169 unsigned int type2 = r2.type_;
1170 if (type1 < type2)
1171 return -1;
1172 else if (type1 > type2)
1173 return 1;
1174
1175 // These relocs appear to be exactly the same.
1176 return 0;
1177 }
1178
1179 // Write out a Rela relocation.
1180
1181 template<bool dynamic, int size, bool big_endian>
1182 void
1183 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1184 unsigned char* pov) const
1185 {
1186 elfcpp::Rela_write<size, big_endian> orel(pov);
1187 this->rel_.write_rel(&orel);
1188 Addend addend = this->addend_;
1189 if (this->rel_.is_target_specific())
1190 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1191 this->rel_.type(), addend);
1192 else if (this->rel_.is_symbolless())
1193 addend = this->rel_.symbol_value(addend);
1194 else if (this->rel_.is_local_section_symbol())
1195 addend = this->rel_.local_section_offset(addend);
1196 orel.put_r_addend(addend);
1197 }
1198
1199 // Output_data_reloc_base methods.
1200
1201 // Adjust the output section.
1202
1203 template<int sh_type, bool dynamic, int size, bool big_endian>
1204 void
1205 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1206 ::do_adjust_output_section(Output_section* os)
1207 {
1208 if (sh_type == elfcpp::SHT_REL)
1209 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1210 else if (sh_type == elfcpp::SHT_RELA)
1211 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1212 else
1213 gold_unreachable();
1214
1215 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1216 // static link. The backends will generate a dynamic reloc section
1217 // to hold this. In that case we don't want to link to the dynsym
1218 // section, because there isn't one.
1219 if (!dynamic)
1220 os->set_should_link_to_symtab();
1221 else if (parameters->doing_static_link())
1222 ;
1223 else
1224 os->set_should_link_to_dynsym();
1225 }
1226
1227 // Write out relocation data.
1228
1229 template<int sh_type, bool dynamic, int size, bool big_endian>
1230 void
1231 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1232 Output_file* of)
1233 {
1234 const off_t off = this->offset();
1235 const off_t oview_size = this->data_size();
1236 unsigned char* const oview = of->get_output_view(off, oview_size);
1237
1238 if (this->sort_relocs())
1239 {
1240 gold_assert(dynamic);
1241 std::sort(this->relocs_.begin(), this->relocs_.end(),
1242 Sort_relocs_comparison());
1243 }
1244
1245 unsigned char* pov = oview;
1246 for (typename Relocs::const_iterator p = this->relocs_.begin();
1247 p != this->relocs_.end();
1248 ++p)
1249 {
1250 p->write(pov);
1251 pov += reloc_size;
1252 }
1253
1254 gold_assert(pov - oview == oview_size);
1255
1256 of->write_output_view(off, oview_size, oview);
1257
1258 // We no longer need the relocation entries.
1259 this->relocs_.clear();
1260 }
1261
1262 // Class Output_relocatable_relocs.
1263
1264 template<int sh_type, int size, bool big_endian>
1265 void
1266 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1267 {
1268 this->set_data_size(this->rr_->output_reloc_count()
1269 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1270 }
1271
1272 // class Output_data_group.
1273
1274 template<int size, bool big_endian>
1275 Output_data_group<size, big_endian>::Output_data_group(
1276 Sized_relobj_file<size, big_endian>* relobj,
1277 section_size_type entry_count,
1278 elfcpp::Elf_Word flags,
1279 std::vector<unsigned int>* input_shndxes)
1280 : Output_section_data(entry_count * 4, 4, false),
1281 relobj_(relobj),
1282 flags_(flags)
1283 {
1284 this->input_shndxes_.swap(*input_shndxes);
1285 }
1286
1287 // Write out the section group, which means translating the section
1288 // indexes to apply to the output file.
1289
1290 template<int size, bool big_endian>
1291 void
1292 Output_data_group<size, big_endian>::do_write(Output_file* of)
1293 {
1294 const off_t off = this->offset();
1295 const section_size_type oview_size =
1296 convert_to_section_size_type(this->data_size());
1297 unsigned char* const oview = of->get_output_view(off, oview_size);
1298
1299 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1300 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1301 ++contents;
1302
1303 for (std::vector<unsigned int>::const_iterator p =
1304 this->input_shndxes_.begin();
1305 p != this->input_shndxes_.end();
1306 ++p, ++contents)
1307 {
1308 Output_section* os = this->relobj_->output_section(*p);
1309
1310 unsigned int output_shndx;
1311 if (os != NULL)
1312 output_shndx = os->out_shndx();
1313 else
1314 {
1315 this->relobj_->error(_("section group retained but "
1316 "group element discarded"));
1317 output_shndx = 0;
1318 }
1319
1320 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1321 }
1322
1323 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1324 gold_assert(wrote == oview_size);
1325
1326 of->write_output_view(off, oview_size, oview);
1327
1328 // We no longer need this information.
1329 this->input_shndxes_.clear();
1330 }
1331
1332 // Output_data_got::Got_entry methods.
1333
1334 // Write out the entry.
1335
1336 template<int size, bool big_endian>
1337 void
1338 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1339 {
1340 Valtype val = 0;
1341
1342 switch (this->local_sym_index_)
1343 {
1344 case GSYM_CODE:
1345 {
1346 // If the symbol is resolved locally, we need to write out the
1347 // link-time value, which will be relocated dynamically by a
1348 // RELATIVE relocation.
1349 Symbol* gsym = this->u_.gsym;
1350 if (this->use_plt_offset_ && gsym->has_plt_offset())
1351 val = (parameters->target().plt_address_for_global(gsym)
1352 + gsym->plt_offset());
1353 else
1354 {
1355 Sized_symbol<size>* sgsym;
1356 // This cast is a bit ugly. We don't want to put a
1357 // virtual method in Symbol, because we want Symbol to be
1358 // as small as possible.
1359 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1360 val = sgsym->value();
1361 }
1362 }
1363 break;
1364
1365 case CONSTANT_CODE:
1366 val = this->u_.constant;
1367 break;
1368
1369 case RESERVED_CODE:
1370 // If we're doing an incremental update, don't touch this GOT entry.
1371 if (parameters->incremental_update())
1372 return;
1373 val = this->u_.constant;
1374 break;
1375
1376 default:
1377 {
1378 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1379 const unsigned int lsi = this->local_sym_index_;
1380 const Symbol_value<size>* symval = object->local_symbol(lsi);
1381 if (!this->use_plt_offset_)
1382 val = symval->value(this->u_.object, 0);
1383 else
1384 {
1385 uint64_t plt_address =
1386 parameters->target().plt_address_for_local(object, lsi);
1387 val = plt_address + object->local_plt_offset(lsi);
1388 }
1389 }
1390 break;
1391 }
1392
1393 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1394 }
1395
1396 // Output_data_got methods.
1397
1398 // Add an entry for a global symbol to the GOT. This returns true if
1399 // this is a new GOT entry, false if the symbol already had a GOT
1400 // entry.
1401
1402 template<int size, bool big_endian>
1403 bool
1404 Output_data_got<size, big_endian>::add_global(
1405 Symbol* gsym,
1406 unsigned int got_type)
1407 {
1408 if (gsym->has_got_offset(got_type))
1409 return false;
1410
1411 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1412 gsym->set_got_offset(got_type, got_offset);
1413 return true;
1414 }
1415
1416 // Like add_global, but use the PLT offset.
1417
1418 template<int size, bool big_endian>
1419 bool
1420 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1421 unsigned int got_type)
1422 {
1423 if (gsym->has_got_offset(got_type))
1424 return false;
1425
1426 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1427 gsym->set_got_offset(got_type, got_offset);
1428 return true;
1429 }
1430
1431 // Add an entry for a global symbol to the GOT, and add a dynamic
1432 // relocation of type R_TYPE for the GOT entry.
1433
1434 template<int size, bool big_endian>
1435 void
1436 Output_data_got<size, big_endian>::add_global_with_rel(
1437 Symbol* gsym,
1438 unsigned int got_type,
1439 Rel_dyn* rel_dyn,
1440 unsigned int r_type)
1441 {
1442 if (gsym->has_got_offset(got_type))
1443 return;
1444
1445 unsigned int got_offset = this->add_got_entry(Got_entry());
1446 gsym->set_got_offset(got_type, got_offset);
1447 rel_dyn->add_global(gsym, r_type, this, got_offset);
1448 }
1449
1450 template<int size, bool big_endian>
1451 void
1452 Output_data_got<size, big_endian>::add_global_with_rela(
1453 Symbol* gsym,
1454 unsigned int got_type,
1455 Rela_dyn* rela_dyn,
1456 unsigned int r_type)
1457 {
1458 if (gsym->has_got_offset(got_type))
1459 return;
1460
1461 unsigned int got_offset = this->add_got_entry(Got_entry());
1462 gsym->set_got_offset(got_type, got_offset);
1463 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a global symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1472 Symbol* gsym,
1473 unsigned int got_type,
1474 Rel_dyn* rel_dyn,
1475 unsigned int r_type_1,
1476 unsigned int r_type_2)
1477 {
1478 if (gsym->has_got_offset(got_type))
1479 return;
1480
1481 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1482 gsym->set_got_offset(got_type, got_offset);
1483 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1484
1485 if (r_type_2 != 0)
1486 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1487 }
1488
1489 template<int size, bool big_endian>
1490 void
1491 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1492 Symbol* gsym,
1493 unsigned int got_type,
1494 Rela_dyn* rela_dyn,
1495 unsigned int r_type_1,
1496 unsigned int r_type_2)
1497 {
1498 if (gsym->has_got_offset(got_type))
1499 return;
1500
1501 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1502 gsym->set_got_offset(got_type, got_offset);
1503 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1504
1505 if (r_type_2 != 0)
1506 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1507 }
1508
1509 // Add an entry for a local symbol to the GOT. This returns true if
1510 // this is a new GOT entry, false if the symbol already has a GOT
1511 // entry.
1512
1513 template<int size, bool big_endian>
1514 bool
1515 Output_data_got<size, big_endian>::add_local(
1516 Sized_relobj_file<size, big_endian>* object,
1517 unsigned int symndx,
1518 unsigned int got_type)
1519 {
1520 if (object->local_has_got_offset(symndx, got_type))
1521 return false;
1522
1523 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1524 false));
1525 object->set_local_got_offset(symndx, got_type, got_offset);
1526 return true;
1527 }
1528
1529 // Like add_local, but use the PLT offset.
1530
1531 template<int size, bool big_endian>
1532 bool
1533 Output_data_got<size, big_endian>::add_local_plt(
1534 Sized_relobj_file<size, big_endian>* object,
1535 unsigned int symndx,
1536 unsigned int got_type)
1537 {
1538 if (object->local_has_got_offset(symndx, got_type))
1539 return false;
1540
1541 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1542 true));
1543 object->set_local_got_offset(symndx, got_type, got_offset);
1544 return true;
1545 }
1546
1547 // Add an entry for a local symbol to the GOT, and add a dynamic
1548 // relocation of type R_TYPE for the GOT entry.
1549
1550 template<int size, bool big_endian>
1551 void
1552 Output_data_got<size, big_endian>::add_local_with_rel(
1553 Sized_relobj_file<size, big_endian>* object,
1554 unsigned int symndx,
1555 unsigned int got_type,
1556 Rel_dyn* rel_dyn,
1557 unsigned int r_type)
1558 {
1559 if (object->local_has_got_offset(symndx, got_type))
1560 return;
1561
1562 unsigned int got_offset = this->add_got_entry(Got_entry());
1563 object->set_local_got_offset(symndx, got_type, got_offset);
1564 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1565 }
1566
1567 template<int size, bool big_endian>
1568 void
1569 Output_data_got<size, big_endian>::add_local_with_rela(
1570 Sized_relobj_file<size, big_endian>* object,
1571 unsigned int symndx,
1572 unsigned int got_type,
1573 Rela_dyn* rela_dyn,
1574 unsigned int r_type)
1575 {
1576 if (object->local_has_got_offset(symndx, got_type))
1577 return;
1578
1579 unsigned int got_offset = this->add_got_entry(Got_entry());
1580 object->set_local_got_offset(symndx, got_type, got_offset);
1581 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1582 }
1583
1584 // Add a pair of entries for a local symbol to the GOT, and add
1585 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1586 // If R_TYPE_2 == 0, add the second entry with no relocation.
1587 template<int size, bool big_endian>
1588 void
1589 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1590 Sized_relobj_file<size, big_endian>* object,
1591 unsigned int symndx,
1592 unsigned int shndx,
1593 unsigned int got_type,
1594 Rel_dyn* rel_dyn,
1595 unsigned int r_type_1,
1596 unsigned int r_type_2)
1597 {
1598 if (object->local_has_got_offset(symndx, got_type))
1599 return;
1600
1601 unsigned int got_offset =
1602 this->add_got_entry_pair(Got_entry(),
1603 Got_entry(object, symndx, false));
1604 object->set_local_got_offset(symndx, got_type, got_offset);
1605 Output_section* os = object->output_section(shndx);
1606 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1607
1608 if (r_type_2 != 0)
1609 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1610 }
1611
1612 template<int size, bool big_endian>
1613 void
1614 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1615 Sized_relobj_file<size, big_endian>* object,
1616 unsigned int symndx,
1617 unsigned int shndx,
1618 unsigned int got_type,
1619 Rela_dyn* rela_dyn,
1620 unsigned int r_type_1,
1621 unsigned int r_type_2)
1622 {
1623 if (object->local_has_got_offset(symndx, got_type))
1624 return;
1625
1626 unsigned int got_offset =
1627 this->add_got_entry_pair(Got_entry(),
1628 Got_entry(object, symndx, false));
1629 object->set_local_got_offset(symndx, got_type, got_offset);
1630 Output_section* os = object->output_section(shndx);
1631 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1632
1633 if (r_type_2 != 0)
1634 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1635 }
1636
1637 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639 template<int size, bool big_endian>
1640 void
1641 Output_data_got<size, big_endian>::reserve_local(
1642 unsigned int i,
1643 Sized_relobj<size, big_endian>* object,
1644 unsigned int sym_index,
1645 unsigned int got_type)
1646 {
1647 this->reserve_slot(i);
1648 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649 }
1650
1651 // Reserve a slot in the GOT for a global symbol.
1652
1653 template<int size, bool big_endian>
1654 void
1655 Output_data_got<size, big_endian>::reserve_global(
1656 unsigned int i,
1657 Symbol* gsym,
1658 unsigned int got_type)
1659 {
1660 this->reserve_slot(i);
1661 gsym->set_got_offset(got_type, this->got_offset(i));
1662 }
1663
1664 // Write out the GOT.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Output_data_got<size, big_endian>::do_write(Output_file* of)
1669 {
1670 const int add = size / 8;
1671
1672 const off_t off = this->offset();
1673 const off_t oview_size = this->data_size();
1674 unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676 unsigned char* pov = oview;
1677 for (typename Got_entries::const_iterator p = this->entries_.begin();
1678 p != this->entries_.end();
1679 ++p)
1680 {
1681 p->write(pov);
1682 pov += add;
1683 }
1684
1685 gold_assert(pov - oview == oview_size);
1686
1687 of->write_output_view(off, oview_size, oview);
1688
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1691 }
1692
1693 // Create a new GOT entry and return its offset.
1694
1695 template<int size, bool big_endian>
1696 unsigned int
1697 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1698 {
1699 if (!this->is_data_size_valid())
1700 {
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1704 }
1705 else
1706 {
1707 // For an incremental update, find an available slot.
1708 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int size, bool big_endian>
1722 unsigned int
1723 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1724 Got_entry got_entry_2)
1725 {
1726 if (!this->is_data_size_valid())
1727 {
1728 unsigned int got_offset;
1729 this->entries_.push_back(got_entry_1);
1730 got_offset = this->last_got_offset();
1731 this->entries_.push_back(got_entry_2);
1732 this->set_got_size();
1733 return got_offset;
1734 }
1735 else
1736 {
1737 // For an incremental update, find an available pair of slots.
1738 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1739 if (got_offset == -1)
1740 gold_fallback(_("out of patch space (GOT);"
1741 " relink with --incremental-full"));
1742 unsigned int got_index = got_offset / (size / 8);
1743 gold_assert(got_index < this->entries_.size());
1744 this->entries_[got_index] = got_entry_1;
1745 this->entries_[got_index + 1] = got_entry_2;
1746 return static_cast<unsigned int>(got_offset);
1747 }
1748 }
1749
1750 // Output_data_dynamic::Dynamic_entry methods.
1751
1752 // Write out the entry.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Output_data_dynamic::Dynamic_entry::write(
1757 unsigned char* pov,
1758 const Stringpool* pool) const
1759 {
1760 typename elfcpp::Elf_types<size>::Elf_WXword val;
1761 switch (this->offset_)
1762 {
1763 case DYNAMIC_NUMBER:
1764 val = this->u_.val;
1765 break;
1766
1767 case DYNAMIC_SECTION_SIZE:
1768 val = this->u_.od->data_size();
1769 if (this->od2 != NULL)
1770 val += this->od2->data_size();
1771 break;
1772
1773 case DYNAMIC_SYMBOL:
1774 {
1775 const Sized_symbol<size>* s =
1776 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1777 val = s->value();
1778 }
1779 break;
1780
1781 case DYNAMIC_STRING:
1782 val = pool->get_offset(this->u_.str);
1783 break;
1784
1785 default:
1786 val = this->u_.od->address() + this->offset_;
1787 break;
1788 }
1789
1790 elfcpp::Dyn_write<size, big_endian> dw(pov);
1791 dw.put_d_tag(this->tag_);
1792 dw.put_d_val(val);
1793 }
1794
1795 // Output_data_dynamic methods.
1796
1797 // Adjust the output section to set the entry size.
1798
1799 void
1800 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801 {
1802 if (parameters->target().get_size() == 32)
1803 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1804 else if (parameters->target().get_size() == 64)
1805 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806 else
1807 gold_unreachable();
1808 }
1809
1810 // Set the final data size.
1811
1812 void
1813 Output_data_dynamic::set_final_data_size()
1814 {
1815 // Add the terminating entry if it hasn't been added.
1816 // Because of relaxation, we can run this multiple times.
1817 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818 {
1819 int extra = parameters->options().spare_dynamic_tags();
1820 for (int i = 0; i < extra; ++i)
1821 this->add_constant(elfcpp::DT_NULL, 0);
1822 this->add_constant(elfcpp::DT_NULL, 0);
1823 }
1824
1825 int dyn_size;
1826 if (parameters->target().get_size() == 32)
1827 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1828 else if (parameters->target().get_size() == 64)
1829 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830 else
1831 gold_unreachable();
1832 this->set_data_size(this->entries_.size() * dyn_size);
1833 }
1834
1835 // Write out the dynamic entries.
1836
1837 void
1838 Output_data_dynamic::do_write(Output_file* of)
1839 {
1840 switch (parameters->size_and_endianness())
1841 {
1842 #ifdef HAVE_TARGET_32_LITTLE
1843 case Parameters::TARGET_32_LITTLE:
1844 this->sized_write<32, false>(of);
1845 break;
1846 #endif
1847 #ifdef HAVE_TARGET_32_BIG
1848 case Parameters::TARGET_32_BIG:
1849 this->sized_write<32, true>(of);
1850 break;
1851 #endif
1852 #ifdef HAVE_TARGET_64_LITTLE
1853 case Parameters::TARGET_64_LITTLE:
1854 this->sized_write<64, false>(of);
1855 break;
1856 #endif
1857 #ifdef HAVE_TARGET_64_BIG
1858 case Parameters::TARGET_64_BIG:
1859 this->sized_write<64, true>(of);
1860 break;
1861 #endif
1862 default:
1863 gold_unreachable();
1864 }
1865 }
1866
1867 template<int size, bool big_endian>
1868 void
1869 Output_data_dynamic::sized_write(Output_file* of)
1870 {
1871 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
1873 const off_t offset = this->offset();
1874 const off_t oview_size = this->data_size();
1875 unsigned char* const oview = of->get_output_view(offset, oview_size);
1876
1877 unsigned char* pov = oview;
1878 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879 p != this->entries_.end();
1880 ++p)
1881 {
1882 p->write<size, big_endian>(pov, this->pool_);
1883 pov += dyn_size;
1884 }
1885
1886 gold_assert(pov - oview == oview_size);
1887
1888 of->write_output_view(offset, oview_size, oview);
1889
1890 // We no longer need the dynamic entries.
1891 this->entries_.clear();
1892 }
1893
1894 // Class Output_symtab_xindex.
1895
1896 void
1897 Output_symtab_xindex::do_write(Output_file* of)
1898 {
1899 const off_t offset = this->offset();
1900 const off_t oview_size = this->data_size();
1901 unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903 memset(oview, 0, oview_size);
1904
1905 if (parameters->target().is_big_endian())
1906 this->endian_do_write<true>(oview);
1907 else
1908 this->endian_do_write<false>(oview);
1909
1910 of->write_output_view(offset, oview_size, oview);
1911
1912 // We no longer need the data.
1913 this->entries_.clear();
1914 }
1915
1916 template<bool big_endian>
1917 void
1918 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919 {
1920 for (Xindex_entries::const_iterator p = this->entries_.begin();
1921 p != this->entries_.end();
1922 ++p)
1923 {
1924 unsigned int symndx = p->first;
1925 gold_assert(symndx * 4 < this->data_size());
1926 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927 }
1928 }
1929
1930 // Output_fill_debug_info methods.
1931
1932 // Return the minimum size needed for a dummy compilation unit header.
1933
1934 size_t
1935 Output_fill_debug_info::do_minimum_hole_size() const
1936 {
1937 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938 // address_size.
1939 const size_t len = 4 + 2 + 4 + 1;
1940 // For type units, add type_signature, type_offset.
1941 if (this->is_debug_types_)
1942 return len + 8 + 4;
1943 return len;
1944 }
1945
1946 // Write a dummy compilation unit header to fill a hole in the
1947 // .debug_info or .debug_types section.
1948
1949 void
1950 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951 {
1952 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", off, len);
1953
1954 gold_assert(len >= this->do_minimum_hole_size());
1955
1956 unsigned char* const oview = of->get_output_view(off, len);
1957 unsigned char* pov = oview;
1958
1959 // Write header fields: unit_length, version, debug_abbrev_offset,
1960 // address_size.
1961 if (this->is_big_endian())
1962 {
1963 elfcpp::Swap<32, true>::writeval(pov, len - 4);
1964 elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
1965 elfcpp::Swap<32, true>::writeval(pov + 6, 0);
1966 }
1967 else
1968 {
1969 elfcpp::Swap<32, false>::writeval(pov, len - 4);
1970 elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
1971 elfcpp::Swap<32, false>::writeval(pov + 6, 0);
1972 }
1973 pov += 4 + 2 + 4;
1974 *pov++ = 4;
1975
1976 // For type units, the additional header fields -- type_signature,
1977 // type_offset -- can be filled with zeroes.
1978
1979 // Fill the remainder of the free space with zeroes. The first
1980 // zero should tell the consumer there are no DIEs to read in this
1981 // compilation unit.
1982 if (pov < oview + len)
1983 memset(pov, 0, oview + len - pov);
1984
1985 of->write_output_view(off, len, oview);
1986 }
1987
1988 // Output_fill_debug_line methods.
1989
1990 // Return the minimum size needed for a dummy line number program header.
1991
1992 size_t
1993 Output_fill_debug_line::do_minimum_hole_size() const
1994 {
1995 // Line number program header fields: unit_length, version, header_length,
1996 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1997 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1998 const size_t len = 4 + 2 + 4 + this->header_length;
1999 return len;
2000 }
2001
2002 // Write a dummy line number program header to fill a hole in the
2003 // .debug_line section.
2004
2005 void
2006 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2007 {
2008 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", off, len);
2009
2010 gold_assert(len >= this->do_minimum_hole_size());
2011
2012 unsigned char* const oview = of->get_output_view(off, len);
2013 unsigned char* pov = oview;
2014
2015 // Write header fields: unit_length, version, header_length,
2016 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2017 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2018 // We set the header_length field to cover the entire hole, so the
2019 // line number program is empty.
2020 if (this->is_big_endian())
2021 {
2022 elfcpp::Swap<32, true>::writeval(pov, len - 4);
2023 elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
2024 elfcpp::Swap<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2025 }
2026 else
2027 {
2028 elfcpp::Swap<32, false>::writeval(pov, len - 4);
2029 elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
2030 elfcpp::Swap<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2031 }
2032 pov += 4 + 2 + 4;
2033 *pov++ = 1; // minimum_instruction_length
2034 *pov++ = 0; // default_is_stmt
2035 *pov++ = 0; // line_base
2036 *pov++ = 5; // line_range
2037 *pov++ = 13; // opcode_base
2038 *pov++ = 0; // standard_opcode_lengths[1]
2039 *pov++ = 1; // standard_opcode_lengths[2]
2040 *pov++ = 1; // standard_opcode_lengths[3]
2041 *pov++ = 1; // standard_opcode_lengths[4]
2042 *pov++ = 1; // standard_opcode_lengths[5]
2043 *pov++ = 0; // standard_opcode_lengths[6]
2044 *pov++ = 0; // standard_opcode_lengths[7]
2045 *pov++ = 0; // standard_opcode_lengths[8]
2046 *pov++ = 1; // standard_opcode_lengths[9]
2047 *pov++ = 0; // standard_opcode_lengths[10]
2048 *pov++ = 0; // standard_opcode_lengths[11]
2049 *pov++ = 1; // standard_opcode_lengths[12]
2050 *pov++ = 0; // include_directories (empty)
2051 *pov++ = 0; // filenames (empty)
2052
2053 // Some consumers don't check the header_length field, and simply
2054 // start reading the line number program immediately following the
2055 // header. For those consumers, we fill the remainder of the free
2056 // space with DW_LNS_set_basic_block opcodes. These are effectively
2057 // no-ops: the resulting line table program will not create any rows.
2058 if (pov < oview + len)
2059 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2060
2061 of->write_output_view(off, len, oview);
2062 }
2063
2064 // Output_section::Input_section methods.
2065
2066 // Return the current data size. For an input section we store the size here.
2067 // For an Output_section_data, we have to ask it for the size.
2068
2069 off_t
2070 Output_section::Input_section::current_data_size() const
2071 {
2072 if (this->is_input_section())
2073 return this->u1_.data_size;
2074 else
2075 {
2076 this->u2_.posd->pre_finalize_data_size();
2077 return this->u2_.posd->current_data_size();
2078 }
2079 }
2080
2081 // Return the data size. For an input section we store the size here.
2082 // For an Output_section_data, we have to ask it for the size.
2083
2084 off_t
2085 Output_section::Input_section::data_size() const
2086 {
2087 if (this->is_input_section())
2088 return this->u1_.data_size;
2089 else
2090 return this->u2_.posd->data_size();
2091 }
2092
2093 // Return the object for an input section.
2094
2095 Relobj*
2096 Output_section::Input_section::relobj() const
2097 {
2098 if (this->is_input_section())
2099 return this->u2_.object;
2100 else if (this->is_merge_section())
2101 {
2102 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2103 return this->u2_.pomb->first_relobj();
2104 }
2105 else if (this->is_relaxed_input_section())
2106 return this->u2_.poris->relobj();
2107 else
2108 gold_unreachable();
2109 }
2110
2111 // Return the input section index for an input section.
2112
2113 unsigned int
2114 Output_section::Input_section::shndx() const
2115 {
2116 if (this->is_input_section())
2117 return this->shndx_;
2118 else if (this->is_merge_section())
2119 {
2120 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2121 return this->u2_.pomb->first_shndx();
2122 }
2123 else if (this->is_relaxed_input_section())
2124 return this->u2_.poris->shndx();
2125 else
2126 gold_unreachable();
2127 }
2128
2129 // Set the address and file offset.
2130
2131 void
2132 Output_section::Input_section::set_address_and_file_offset(
2133 uint64_t address,
2134 off_t file_offset,
2135 off_t section_file_offset)
2136 {
2137 if (this->is_input_section())
2138 this->u2_.object->set_section_offset(this->shndx_,
2139 file_offset - section_file_offset);
2140 else
2141 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2142 }
2143
2144 // Reset the address and file offset.
2145
2146 void
2147 Output_section::Input_section::reset_address_and_file_offset()
2148 {
2149 if (!this->is_input_section())
2150 this->u2_.posd->reset_address_and_file_offset();
2151 }
2152
2153 // Finalize the data size.
2154
2155 void
2156 Output_section::Input_section::finalize_data_size()
2157 {
2158 if (!this->is_input_section())
2159 this->u2_.posd->finalize_data_size();
2160 }
2161
2162 // Try to turn an input offset into an output offset. We want to
2163 // return the output offset relative to the start of this
2164 // Input_section in the output section.
2165
2166 inline bool
2167 Output_section::Input_section::output_offset(
2168 const Relobj* object,
2169 unsigned int shndx,
2170 section_offset_type offset,
2171 section_offset_type* poutput) const
2172 {
2173 if (!this->is_input_section())
2174 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2175 else
2176 {
2177 if (this->shndx_ != shndx || this->u2_.object != object)
2178 return false;
2179 *poutput = offset;
2180 return true;
2181 }
2182 }
2183
2184 // Return whether this is the merge section for the input section
2185 // SHNDX in OBJECT.
2186
2187 inline bool
2188 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2189 unsigned int shndx) const
2190 {
2191 if (this->is_input_section())
2192 return false;
2193 return this->u2_.posd->is_merge_section_for(object, shndx);
2194 }
2195
2196 // Write out the data. We don't have to do anything for an input
2197 // section--they are handled via Object::relocate--but this is where
2198 // we write out the data for an Output_section_data.
2199
2200 void
2201 Output_section::Input_section::write(Output_file* of)
2202 {
2203 if (!this->is_input_section())
2204 this->u2_.posd->write(of);
2205 }
2206
2207 // Write the data to a buffer. As for write(), we don't have to do
2208 // anything for an input section.
2209
2210 void
2211 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2212 {
2213 if (!this->is_input_section())
2214 this->u2_.posd->write_to_buffer(buffer);
2215 }
2216
2217 // Print to a map file.
2218
2219 void
2220 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2221 {
2222 switch (this->shndx_)
2223 {
2224 case OUTPUT_SECTION_CODE:
2225 case MERGE_DATA_SECTION_CODE:
2226 case MERGE_STRING_SECTION_CODE:
2227 this->u2_.posd->print_to_mapfile(mapfile);
2228 break;
2229
2230 case RELAXED_INPUT_SECTION_CODE:
2231 {
2232 Output_relaxed_input_section* relaxed_section =
2233 this->relaxed_input_section();
2234 mapfile->print_input_section(relaxed_section->relobj(),
2235 relaxed_section->shndx());
2236 }
2237 break;
2238 default:
2239 mapfile->print_input_section(this->u2_.object, this->shndx_);
2240 break;
2241 }
2242 }
2243
2244 // Output_section methods.
2245
2246 // Construct an Output_section. NAME will point into a Stringpool.
2247
2248 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2249 elfcpp::Elf_Xword flags)
2250 : name_(name),
2251 addralign_(0),
2252 entsize_(0),
2253 load_address_(0),
2254 link_section_(NULL),
2255 link_(0),
2256 info_section_(NULL),
2257 info_symndx_(NULL),
2258 info_(0),
2259 type_(type),
2260 flags_(flags),
2261 order_(ORDER_INVALID),
2262 out_shndx_(-1U),
2263 symtab_index_(0),
2264 dynsym_index_(0),
2265 input_sections_(),
2266 first_input_offset_(0),
2267 fills_(),
2268 postprocessing_buffer_(NULL),
2269 needs_symtab_index_(false),
2270 needs_dynsym_index_(false),
2271 should_link_to_symtab_(false),
2272 should_link_to_dynsym_(false),
2273 after_input_sections_(false),
2274 requires_postprocessing_(false),
2275 found_in_sections_clause_(false),
2276 has_load_address_(false),
2277 info_uses_section_index_(false),
2278 input_section_order_specified_(false),
2279 may_sort_attached_input_sections_(false),
2280 must_sort_attached_input_sections_(false),
2281 attached_input_sections_are_sorted_(false),
2282 is_relro_(false),
2283 is_small_section_(false),
2284 is_large_section_(false),
2285 generate_code_fills_at_write_(false),
2286 is_entsize_zero_(false),
2287 section_offsets_need_adjustment_(false),
2288 is_noload_(false),
2289 always_keeps_input_sections_(false),
2290 has_fixed_layout_(false),
2291 is_patch_space_allowed_(false),
2292 tls_offset_(0),
2293 checkpoint_(NULL),
2294 lookup_maps_(new Output_section_lookup_maps),
2295 free_list_(),
2296 free_space_fill_(NULL),
2297 patch_space_(0)
2298 {
2299 // An unallocated section has no address. Forcing this means that
2300 // we don't need special treatment for symbols defined in debug
2301 // sections.
2302 if ((flags & elfcpp::SHF_ALLOC) == 0)
2303 this->set_address(0);
2304 }
2305
2306 Output_section::~Output_section()
2307 {
2308 delete this->checkpoint_;
2309 }
2310
2311 // Set the entry size.
2312
2313 void
2314 Output_section::set_entsize(uint64_t v)
2315 {
2316 if (this->is_entsize_zero_)
2317 ;
2318 else if (this->entsize_ == 0)
2319 this->entsize_ = v;
2320 else if (this->entsize_ != v)
2321 {
2322 this->entsize_ = 0;
2323 this->is_entsize_zero_ = 1;
2324 }
2325 }
2326
2327 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2328 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2329 // relocation section which applies to this section, or 0 if none, or
2330 // -1U if more than one. Return the offset of the input section
2331 // within the output section. Return -1 if the input section will
2332 // receive special handling. In the normal case we don't always keep
2333 // track of input sections for an Output_section. Instead, each
2334 // Object keeps track of the Output_section for each of its input
2335 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2336 // track of input sections here; this is used when SECTIONS appears in
2337 // a linker script.
2338
2339 template<int size, bool big_endian>
2340 off_t
2341 Output_section::add_input_section(Layout* layout,
2342 Sized_relobj_file<size, big_endian>* object,
2343 unsigned int shndx,
2344 const char* secname,
2345 const elfcpp::Shdr<size, big_endian>& shdr,
2346 unsigned int reloc_shndx,
2347 bool have_sections_script)
2348 {
2349 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2350 if ((addralign & (addralign - 1)) != 0)
2351 {
2352 object->error(_("invalid alignment %lu for section \"%s\""),
2353 static_cast<unsigned long>(addralign), secname);
2354 addralign = 1;
2355 }
2356
2357 if (addralign > this->addralign_)
2358 this->addralign_ = addralign;
2359
2360 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2361 uint64_t entsize = shdr.get_sh_entsize();
2362
2363 // .debug_str is a mergeable string section, but is not always so
2364 // marked by compilers. Mark manually here so we can optimize.
2365 if (strcmp(secname, ".debug_str") == 0)
2366 {
2367 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2368 entsize = 1;
2369 }
2370
2371 this->update_flags_for_input_section(sh_flags);
2372 this->set_entsize(entsize);
2373
2374 // If this is a SHF_MERGE section, we pass all the input sections to
2375 // a Output_data_merge. We don't try to handle relocations for such
2376 // a section. We don't try to handle empty merge sections--they
2377 // mess up the mappings, and are useless anyhow.
2378 // FIXME: Need to handle merge sections during incremental update.
2379 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2380 && reloc_shndx == 0
2381 && shdr.get_sh_size() > 0
2382 && !parameters->incremental())
2383 {
2384 // Keep information about merged input sections for rebuilding fast
2385 // lookup maps if we have sections-script or we do relaxation.
2386 bool keeps_input_sections = (this->always_keeps_input_sections_
2387 || have_sections_script
2388 || parameters->target().may_relax());
2389
2390 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2391 addralign, keeps_input_sections))
2392 {
2393 // Tell the relocation routines that they need to call the
2394 // output_offset method to determine the final address.
2395 return -1;
2396 }
2397 }
2398
2399 section_size_type input_section_size = shdr.get_sh_size();
2400 section_size_type uncompressed_size;
2401 if (object->section_is_compressed(shndx, &uncompressed_size))
2402 input_section_size = uncompressed_size;
2403
2404 off_t offset_in_section;
2405 off_t aligned_offset_in_section;
2406 if (this->has_fixed_layout())
2407 {
2408 // For incremental updates, find a chunk of unused space in the section.
2409 offset_in_section = this->free_list_.allocate(input_section_size,
2410 addralign, 0);
2411 if (offset_in_section == -1)
2412 gold_fallback(_("out of patch space in section %s; "
2413 "relink with --incremental-full"),
2414 this->name());
2415 aligned_offset_in_section = offset_in_section;
2416 }
2417 else
2418 {
2419 offset_in_section = this->current_data_size_for_child();
2420 aligned_offset_in_section = align_address(offset_in_section,
2421 addralign);
2422 this->set_current_data_size_for_child(aligned_offset_in_section
2423 + input_section_size);
2424 }
2425
2426 // Determine if we want to delay code-fill generation until the output
2427 // section is written. When the target is relaxing, we want to delay fill
2428 // generating to avoid adjusting them during relaxation. Also, if we are
2429 // sorting input sections we must delay fill generation.
2430 if (!this->generate_code_fills_at_write_
2431 && !have_sections_script
2432 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2433 && parameters->target().has_code_fill()
2434 && (parameters->target().may_relax()
2435 || layout->is_section_ordering_specified()))
2436 {
2437 gold_assert(this->fills_.empty());
2438 this->generate_code_fills_at_write_ = true;
2439 }
2440
2441 if (aligned_offset_in_section > offset_in_section
2442 && !this->generate_code_fills_at_write_
2443 && !have_sections_script
2444 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2445 && parameters->target().has_code_fill())
2446 {
2447 // We need to add some fill data. Using fill_list_ when
2448 // possible is an optimization, since we will often have fill
2449 // sections without input sections.
2450 off_t fill_len = aligned_offset_in_section - offset_in_section;
2451 if (this->input_sections_.empty())
2452 this->fills_.push_back(Fill(offset_in_section, fill_len));
2453 else
2454 {
2455 std::string fill_data(parameters->target().code_fill(fill_len));
2456 Output_data_const* odc = new Output_data_const(fill_data, 1);
2457 this->input_sections_.push_back(Input_section(odc));
2458 }
2459 }
2460
2461 // We need to keep track of this section if we are already keeping
2462 // track of sections, or if we are relaxing. Also, if this is a
2463 // section which requires sorting, or which may require sorting in
2464 // the future, we keep track of the sections. If the
2465 // --section-ordering-file option is used to specify the order of
2466 // sections, we need to keep track of sections.
2467 if (this->always_keeps_input_sections_
2468 || have_sections_script
2469 || !this->input_sections_.empty()
2470 || this->may_sort_attached_input_sections()
2471 || this->must_sort_attached_input_sections()
2472 || parameters->options().user_set_Map()
2473 || parameters->target().may_relax()
2474 || layout->is_section_ordering_specified())
2475 {
2476 Input_section isecn(object, shndx, input_section_size, addralign);
2477 if (layout->is_section_ordering_specified())
2478 {
2479 unsigned int section_order_index =
2480 layout->find_section_order_index(std::string(secname));
2481 if (section_order_index != 0)
2482 {
2483 isecn.set_section_order_index(section_order_index);
2484 this->set_input_section_order_specified();
2485 }
2486 }
2487 if (this->has_fixed_layout())
2488 {
2489 // For incremental updates, finalize the address and offset now.
2490 uint64_t addr = this->address();
2491 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2492 aligned_offset_in_section,
2493 this->offset());
2494 }
2495 this->input_sections_.push_back(isecn);
2496 }
2497
2498 return aligned_offset_in_section;
2499 }
2500
2501 // Add arbitrary data to an output section.
2502
2503 void
2504 Output_section::add_output_section_data(Output_section_data* posd)
2505 {
2506 Input_section inp(posd);
2507 this->add_output_section_data(&inp);
2508
2509 if (posd->is_data_size_valid())
2510 {
2511 off_t offset_in_section;
2512 if (this->has_fixed_layout())
2513 {
2514 // For incremental updates, find a chunk of unused space.
2515 offset_in_section = this->free_list_.allocate(posd->data_size(),
2516 posd->addralign(), 0);
2517 if (offset_in_section == -1)
2518 gold_fallback(_("out of patch space in section %s; "
2519 "relink with --incremental-full"),
2520 this->name());
2521 // Finalize the address and offset now.
2522 uint64_t addr = this->address();
2523 off_t offset = this->offset();
2524 posd->set_address_and_file_offset(addr + offset_in_section,
2525 offset + offset_in_section);
2526 }
2527 else
2528 {
2529 offset_in_section = this->current_data_size_for_child();
2530 off_t aligned_offset_in_section = align_address(offset_in_section,
2531 posd->addralign());
2532 this->set_current_data_size_for_child(aligned_offset_in_section
2533 + posd->data_size());
2534 }
2535 }
2536 else if (this->has_fixed_layout())
2537 {
2538 // For incremental updates, arrange for the data to have a fixed layout.
2539 // This will mean that additions to the data must be allocated from
2540 // free space within the containing output section.
2541 uint64_t addr = this->address();
2542 posd->set_address(addr);
2543 posd->set_file_offset(0);
2544 // FIXME: This should eventually be unreachable.
2545 // gold_unreachable();
2546 }
2547 }
2548
2549 // Add a relaxed input section.
2550
2551 void
2552 Output_section::add_relaxed_input_section(Layout* layout,
2553 Output_relaxed_input_section* poris,
2554 const std::string& name)
2555 {
2556 Input_section inp(poris);
2557
2558 // If the --section-ordering-file option is used to specify the order of
2559 // sections, we need to keep track of sections.
2560 if (layout->is_section_ordering_specified())
2561 {
2562 unsigned int section_order_index =
2563 layout->find_section_order_index(name);
2564 if (section_order_index != 0)
2565 {
2566 inp.set_section_order_index(section_order_index);
2567 this->set_input_section_order_specified();
2568 }
2569 }
2570
2571 this->add_output_section_data(&inp);
2572 if (this->lookup_maps_->is_valid())
2573 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2574 poris->shndx(), poris);
2575
2576 // For a relaxed section, we use the current data size. Linker scripts
2577 // get all the input sections, including relaxed one from an output
2578 // section and add them back to them same output section to compute the
2579 // output section size. If we do not account for sizes of relaxed input
2580 // sections, an output section would be incorrectly sized.
2581 off_t offset_in_section = this->current_data_size_for_child();
2582 off_t aligned_offset_in_section = align_address(offset_in_section,
2583 poris->addralign());
2584 this->set_current_data_size_for_child(aligned_offset_in_section
2585 + poris->current_data_size());
2586 }
2587
2588 // Add arbitrary data to an output section by Input_section.
2589
2590 void
2591 Output_section::add_output_section_data(Input_section* inp)
2592 {
2593 if (this->input_sections_.empty())
2594 this->first_input_offset_ = this->current_data_size_for_child();
2595
2596 this->input_sections_.push_back(*inp);
2597
2598 uint64_t addralign = inp->addralign();
2599 if (addralign > this->addralign_)
2600 this->addralign_ = addralign;
2601
2602 inp->set_output_section(this);
2603 }
2604
2605 // Add a merge section to an output section.
2606
2607 void
2608 Output_section::add_output_merge_section(Output_section_data* posd,
2609 bool is_string, uint64_t entsize)
2610 {
2611 Input_section inp(posd, is_string, entsize);
2612 this->add_output_section_data(&inp);
2613 }
2614
2615 // Add an input section to a SHF_MERGE section.
2616
2617 bool
2618 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2619 uint64_t flags, uint64_t entsize,
2620 uint64_t addralign,
2621 bool keeps_input_sections)
2622 {
2623 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2624
2625 // We only merge strings if the alignment is not more than the
2626 // character size. This could be handled, but it's unusual.
2627 if (is_string && addralign > entsize)
2628 return false;
2629
2630 // We cannot restore merged input section states.
2631 gold_assert(this->checkpoint_ == NULL);
2632
2633 // Look up merge sections by required properties.
2634 // Currently, we only invalidate the lookup maps in script processing
2635 // and relaxation. We should not have done either when we reach here.
2636 // So we assume that the lookup maps are valid to simply code.
2637 gold_assert(this->lookup_maps_->is_valid());
2638 Merge_section_properties msp(is_string, entsize, addralign);
2639 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2640 bool is_new = false;
2641 if (pomb != NULL)
2642 {
2643 gold_assert(pomb->is_string() == is_string
2644 && pomb->entsize() == entsize
2645 && pomb->addralign() == addralign);
2646 }
2647 else
2648 {
2649 // Create a new Output_merge_data or Output_merge_string_data.
2650 if (!is_string)
2651 pomb = new Output_merge_data(entsize, addralign);
2652 else
2653 {
2654 switch (entsize)
2655 {
2656 case 1:
2657 pomb = new Output_merge_string<char>(addralign);
2658 break;
2659 case 2:
2660 pomb = new Output_merge_string<uint16_t>(addralign);
2661 break;
2662 case 4:
2663 pomb = new Output_merge_string<uint32_t>(addralign);
2664 break;
2665 default:
2666 return false;
2667 }
2668 }
2669 // If we need to do script processing or relaxation, we need to keep
2670 // the original input sections to rebuild the fast lookup maps.
2671 if (keeps_input_sections)
2672 pomb->set_keeps_input_sections();
2673 is_new = true;
2674 }
2675
2676 if (pomb->add_input_section(object, shndx))
2677 {
2678 // Add new merge section to this output section and link merge
2679 // section properties to new merge section in map.
2680 if (is_new)
2681 {
2682 this->add_output_merge_section(pomb, is_string, entsize);
2683 this->lookup_maps_->add_merge_section(msp, pomb);
2684 }
2685
2686 // Add input section to new merge section and link input section to new
2687 // merge section in map.
2688 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2689 return true;
2690 }
2691 else
2692 {
2693 // If add_input_section failed, delete new merge section to avoid
2694 // exporting empty merge sections in Output_section::get_input_section.
2695 if (is_new)
2696 delete pomb;
2697 return false;
2698 }
2699 }
2700
2701 // Build a relaxation map to speed up relaxation of existing input sections.
2702 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2703
2704 void
2705 Output_section::build_relaxation_map(
2706 const Input_section_list& input_sections,
2707 size_t limit,
2708 Relaxation_map* relaxation_map) const
2709 {
2710 for (size_t i = 0; i < limit; ++i)
2711 {
2712 const Input_section& is(input_sections[i]);
2713 if (is.is_input_section() || is.is_relaxed_input_section())
2714 {
2715 Section_id sid(is.relobj(), is.shndx());
2716 (*relaxation_map)[sid] = i;
2717 }
2718 }
2719 }
2720
2721 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2722 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2723 // indices of INPUT_SECTIONS.
2724
2725 void
2726 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728 const Relaxation_map& map,
2729 Input_section_list* input_sections)
2730 {
2731 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732 {
2733 Output_relaxed_input_section* poris = relaxed_sections[i];
2734 Section_id sid(poris->relobj(), poris->shndx());
2735 Relaxation_map::const_iterator p = map.find(sid);
2736 gold_assert(p != map.end());
2737 gold_assert((*input_sections)[p->second].is_input_section());
2738
2739 // Remember section order index of original input section
2740 // if it is set. Copy it to the relaxed input section.
2741 unsigned int soi =
2742 (*input_sections)[p->second].section_order_index();
2743 (*input_sections)[p->second] = Input_section(poris);
2744 (*input_sections)[p->second].set_section_order_index(soi);
2745 }
2746 }
2747
2748 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749 // is a vector of pointers to Output_relaxed_input_section or its derived
2750 // classes. The relaxed sections must correspond to existing input sections.
2751
2752 void
2753 Output_section::convert_input_sections_to_relaxed_sections(
2754 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755 {
2756 gold_assert(parameters->target().may_relax());
2757
2758 // We want to make sure that restore_states does not undo the effect of
2759 // this. If there is no checkpoint active, just search the current
2760 // input section list and replace the sections there. If there is
2761 // a checkpoint, also replace the sections there.
2762
2763 // By default, we look at the whole list.
2764 size_t limit = this->input_sections_.size();
2765
2766 if (this->checkpoint_ != NULL)
2767 {
2768 // Replace input sections with relaxed input section in the saved
2769 // copy of the input section list.
2770 if (this->checkpoint_->input_sections_saved())
2771 {
2772 Relaxation_map map;
2773 this->build_relaxation_map(
2774 *(this->checkpoint_->input_sections()),
2775 this->checkpoint_->input_sections()->size(),
2776 &map);
2777 this->convert_input_sections_in_list_to_relaxed_sections(
2778 relaxed_sections,
2779 map,
2780 this->checkpoint_->input_sections());
2781 }
2782 else
2783 {
2784 // We have not copied the input section list yet. Instead, just
2785 // look at the portion that would be saved.
2786 limit = this->checkpoint_->input_sections_size();
2787 }
2788 }
2789
2790 // Convert input sections in input_section_list.
2791 Relaxation_map map;
2792 this->build_relaxation_map(this->input_sections_, limit, &map);
2793 this->convert_input_sections_in_list_to_relaxed_sections(
2794 relaxed_sections,
2795 map,
2796 &this->input_sections_);
2797
2798 // Update fast look-up map.
2799 if (this->lookup_maps_->is_valid())
2800 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801 {
2802 Output_relaxed_input_section* poris = relaxed_sections[i];
2803 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804 poris->shndx(), poris);
2805 }
2806 }
2807
2808 // Update the output section flags based on input section flags.
2809
2810 void
2811 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2812 {
2813 // If we created the section with SHF_ALLOC clear, we set the
2814 // address. If we are now setting the SHF_ALLOC flag, we need to
2815 // undo that.
2816 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2817 && (flags & elfcpp::SHF_ALLOC) != 0)
2818 this->mark_address_invalid();
2819
2820 this->flags_ |= (flags
2821 & (elfcpp::SHF_WRITE
2822 | elfcpp::SHF_ALLOC
2823 | elfcpp::SHF_EXECINSTR));
2824
2825 if ((flags & elfcpp::SHF_MERGE) == 0)
2826 this->flags_ &=~ elfcpp::SHF_MERGE;
2827 else
2828 {
2829 if (this->current_data_size_for_child() == 0)
2830 this->flags_ |= elfcpp::SHF_MERGE;
2831 }
2832
2833 if ((flags & elfcpp::SHF_STRINGS) == 0)
2834 this->flags_ &=~ elfcpp::SHF_STRINGS;
2835 else
2836 {
2837 if (this->current_data_size_for_child() == 0)
2838 this->flags_ |= elfcpp::SHF_STRINGS;
2839 }
2840 }
2841
2842 // Find the merge section into which an input section with index SHNDX in
2843 // OBJECT has been added. Return NULL if none found.
2844
2845 Output_section_data*
2846 Output_section::find_merge_section(const Relobj* object,
2847 unsigned int shndx) const
2848 {
2849 if (!this->lookup_maps_->is_valid())
2850 this->build_lookup_maps();
2851 return this->lookup_maps_->find_merge_section(object, shndx);
2852 }
2853
2854 // Build the lookup maps for merge and relaxed sections. This is needs
2855 // to be declared as a const methods so that it is callable with a const
2856 // Output_section pointer. The method only updates states of the maps.
2857
2858 void
2859 Output_section::build_lookup_maps() const
2860 {
2861 this->lookup_maps_->clear();
2862 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2863 p != this->input_sections_.end();
2864 ++p)
2865 {
2866 if (p->is_merge_section())
2867 {
2868 Output_merge_base* pomb = p->output_merge_base();
2869 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2870 pomb->addralign());
2871 this->lookup_maps_->add_merge_section(msp, pomb);
2872 for (Output_merge_base::Input_sections::const_iterator is =
2873 pomb->input_sections_begin();
2874 is != pomb->input_sections_end();
2875 ++is)
2876 {
2877 const Const_section_id& csid = *is;
2878 this->lookup_maps_->add_merge_input_section(csid.first,
2879 csid.second, pomb);
2880 }
2881
2882 }
2883 else if (p->is_relaxed_input_section())
2884 {
2885 Output_relaxed_input_section* poris = p->relaxed_input_section();
2886 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2887 poris->shndx(), poris);
2888 }
2889 }
2890 }
2891
2892 // Find an relaxed input section corresponding to an input section
2893 // in OBJECT with index SHNDX.
2894
2895 const Output_relaxed_input_section*
2896 Output_section::find_relaxed_input_section(const Relobj* object,
2897 unsigned int shndx) const
2898 {
2899 if (!this->lookup_maps_->is_valid())
2900 this->build_lookup_maps();
2901 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2902 }
2903
2904 // Given an address OFFSET relative to the start of input section
2905 // SHNDX in OBJECT, return whether this address is being included in
2906 // the final link. This should only be called if SHNDX in OBJECT has
2907 // a special mapping.
2908
2909 bool
2910 Output_section::is_input_address_mapped(const Relobj* object,
2911 unsigned int shndx,
2912 off_t offset) const
2913 {
2914 // Look at the Output_section_data_maps first.
2915 const Output_section_data* posd = this->find_merge_section(object, shndx);
2916 if (posd == NULL)
2917 posd = this->find_relaxed_input_section(object, shndx);
2918
2919 if (posd != NULL)
2920 {
2921 section_offset_type output_offset;
2922 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2923 gold_assert(found);
2924 return output_offset != -1;
2925 }
2926
2927 // Fall back to the slow look-up.
2928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929 p != this->input_sections_.end();
2930 ++p)
2931 {
2932 section_offset_type output_offset;
2933 if (p->output_offset(object, shndx, offset, &output_offset))
2934 return output_offset != -1;
2935 }
2936
2937 // By default we assume that the address is mapped. This should
2938 // only be called after we have passed all sections to Layout. At
2939 // that point we should know what we are discarding.
2940 return true;
2941 }
2942
2943 // Given an address OFFSET relative to the start of input section
2944 // SHNDX in object OBJECT, return the output offset relative to the
2945 // start of the input section in the output section. This should only
2946 // be called if SHNDX in OBJECT has a special mapping.
2947
2948 section_offset_type
2949 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2950 section_offset_type offset) const
2951 {
2952 // This can only be called meaningfully when we know the data size
2953 // of this.
2954 gold_assert(this->is_data_size_valid());
2955
2956 // Look at the Output_section_data_maps first.
2957 const Output_section_data* posd = this->find_merge_section(object, shndx);
2958 if (posd == NULL)
2959 posd = this->find_relaxed_input_section(object, shndx);
2960 if (posd != NULL)
2961 {
2962 section_offset_type output_offset;
2963 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2964 gold_assert(found);
2965 return output_offset;
2966 }
2967
2968 // Fall back to the slow look-up.
2969 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2970 p != this->input_sections_.end();
2971 ++p)
2972 {
2973 section_offset_type output_offset;
2974 if (p->output_offset(object, shndx, offset, &output_offset))
2975 return output_offset;
2976 }
2977 gold_unreachable();
2978 }
2979
2980 // Return the output virtual address of OFFSET relative to the start
2981 // of input section SHNDX in object OBJECT.
2982
2983 uint64_t
2984 Output_section::output_address(const Relobj* object, unsigned int shndx,
2985 off_t offset) const
2986 {
2987 uint64_t addr = this->address() + this->first_input_offset_;
2988
2989 // Look at the Output_section_data_maps first.
2990 const Output_section_data* posd = this->find_merge_section(object, shndx);
2991 if (posd == NULL)
2992 posd = this->find_relaxed_input_section(object, shndx);
2993 if (posd != NULL && posd->is_address_valid())
2994 {
2995 section_offset_type output_offset;
2996 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2997 gold_assert(found);
2998 return posd->address() + output_offset;
2999 }
3000
3001 // Fall back to the slow look-up.
3002 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3003 p != this->input_sections_.end();
3004 ++p)
3005 {
3006 addr = align_address(addr, p->addralign());
3007 section_offset_type output_offset;
3008 if (p->output_offset(object, shndx, offset, &output_offset))
3009 {
3010 if (output_offset == -1)
3011 return -1ULL;
3012 return addr + output_offset;
3013 }
3014 addr += p->data_size();
3015 }
3016
3017 // If we get here, it means that we don't know the mapping for this
3018 // input section. This might happen in principle if
3019 // add_input_section were called before add_output_section_data.
3020 // But it should never actually happen.
3021
3022 gold_unreachable();
3023 }
3024
3025 // Find the output address of the start of the merged section for
3026 // input section SHNDX in object OBJECT.
3027
3028 bool
3029 Output_section::find_starting_output_address(const Relobj* object,
3030 unsigned int shndx,
3031 uint64_t* paddr) const
3032 {
3033 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3034 // Looking up the merge section map does not always work as we sometimes
3035 // find a merge section without its address set.
3036 uint64_t addr = this->address() + this->first_input_offset_;
3037 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3038 p != this->input_sections_.end();
3039 ++p)
3040 {
3041 addr = align_address(addr, p->addralign());
3042
3043 // It would be nice if we could use the existing output_offset
3044 // method to get the output offset of input offset 0.
3045 // Unfortunately we don't know for sure that input offset 0 is
3046 // mapped at all.
3047 if (p->is_merge_section_for(object, shndx))
3048 {
3049 *paddr = addr;
3050 return true;
3051 }
3052
3053 addr += p->data_size();
3054 }
3055
3056 // We couldn't find a merge output section for this input section.
3057 return false;
3058 }
3059
3060 // Update the data size of an Output_section.
3061
3062 void
3063 Output_section::update_data_size()
3064 {
3065 if (this->input_sections_.empty())
3066 return;
3067
3068 if (this->must_sort_attached_input_sections()
3069 || this->input_section_order_specified())
3070 this->sort_attached_input_sections();
3071
3072 off_t off = this->first_input_offset_;
3073 for (Input_section_list::iterator p = this->input_sections_.begin();
3074 p != this->input_sections_.end();
3075 ++p)
3076 {
3077 off = align_address(off, p->addralign());
3078 off += p->current_data_size();
3079 }
3080
3081 this->set_current_data_size_for_child(off);
3082 }
3083
3084 // Set the data size of an Output_section. This is where we handle
3085 // setting the addresses of any Output_section_data objects.
3086
3087 void
3088 Output_section::set_final_data_size()
3089 {
3090 off_t data_size;
3091
3092 if (this->input_sections_.empty())
3093 data_size = this->current_data_size_for_child();
3094 else
3095 {
3096 if (this->must_sort_attached_input_sections()
3097 || this->input_section_order_specified())
3098 this->sort_attached_input_sections();
3099
3100 uint64_t address = this->address();
3101 off_t startoff = this->offset();
3102 off_t off = startoff + this->first_input_offset_;
3103 for (Input_section_list::iterator p = this->input_sections_.begin();
3104 p != this->input_sections_.end();
3105 ++p)
3106 {
3107 off = align_address(off, p->addralign());
3108 p->set_address_and_file_offset(address + (off - startoff), off,
3109 startoff);
3110 off += p->data_size();
3111 }
3112 data_size = off - startoff;
3113 }
3114
3115 // For full incremental links, we want to allocate some patch space
3116 // in most sections for subsequent incremental updates.
3117 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3118 {
3119 double pct = parameters->options().incremental_patch();
3120 size_t extra = static_cast<size_t>(data_size * pct);
3121 if (this->free_space_fill_ != NULL
3122 && this->free_space_fill_->minimum_hole_size() > extra)
3123 extra = this->free_space_fill_->minimum_hole_size();
3124 off_t new_size = align_address(data_size + extra, this->addralign());
3125 this->patch_space_ = new_size - data_size;
3126 gold_debug(DEBUG_INCREMENTAL,
3127 "set_final_data_size: %08lx + %08lx: section %s",
3128 static_cast<long>(data_size),
3129 static_cast<long>(this->patch_space_),
3130 this->name());
3131 data_size = new_size;
3132 }
3133
3134 this->set_data_size(data_size);
3135 }
3136
3137 // Reset the address and file offset.
3138
3139 void
3140 Output_section::do_reset_address_and_file_offset()
3141 {
3142 // An unallocated section has no address. Forcing this means that
3143 // we don't need special treatment for symbols defined in debug
3144 // sections. We do the same in the constructor. This does not
3145 // apply to NOLOAD sections though.
3146 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3147 this->set_address(0);
3148
3149 for (Input_section_list::iterator p = this->input_sections_.begin();
3150 p != this->input_sections_.end();
3151 ++p)
3152 p->reset_address_and_file_offset();
3153
3154 // Remove any patch space that was added in set_final_data_size.
3155 if (this->patch_space_ > 0)
3156 {
3157 this->set_current_data_size_for_child(this->current_data_size_for_child()
3158 - this->patch_space_);
3159 this->patch_space_ = 0;
3160 }
3161 }
3162
3163 // Return true if address and file offset have the values after reset.
3164
3165 bool
3166 Output_section::do_address_and_file_offset_have_reset_values() const
3167 {
3168 if (this->is_offset_valid())
3169 return false;
3170
3171 // An unallocated section has address 0 after its construction or a reset.
3172 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3173 return this->is_address_valid() && this->address() == 0;
3174 else
3175 return !this->is_address_valid();
3176 }
3177
3178 // Set the TLS offset. Called only for SHT_TLS sections.
3179
3180 void
3181 Output_section::do_set_tls_offset(uint64_t tls_base)
3182 {
3183 this->tls_offset_ = this->address() - tls_base;
3184 }
3185
3186 // In a few cases we need to sort the input sections attached to an
3187 // output section. This is used to implement the type of constructor
3188 // priority ordering implemented by the GNU linker, in which the
3189 // priority becomes part of the section name and the sections are
3190 // sorted by name. We only do this for an output section if we see an
3191 // attached input section matching ".ctors.*", ".dtors.*",
3192 // ".init_array.*" or ".fini_array.*".
3193
3194 class Output_section::Input_section_sort_entry
3195 {
3196 public:
3197 Input_section_sort_entry()
3198 : input_section_(), index_(-1U), section_has_name_(false),
3199 section_name_()
3200 { }
3201
3202 Input_section_sort_entry(const Input_section& input_section,
3203 unsigned int index,
3204 bool must_sort_attached_input_sections)
3205 : input_section_(input_section), index_(index),
3206 section_has_name_(input_section.is_input_section()
3207 || input_section.is_relaxed_input_section())
3208 {
3209 if (this->section_has_name_
3210 && must_sort_attached_input_sections)
3211 {
3212 // This is only called single-threaded from Layout::finalize,
3213 // so it is OK to lock. Unfortunately we have no way to pass
3214 // in a Task token.
3215 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3216 Object* obj = (input_section.is_input_section()
3217 ? input_section.relobj()
3218 : input_section.relaxed_input_section()->relobj());
3219 Task_lock_obj<Object> tl(dummy_task, obj);
3220
3221 // This is a slow operation, which should be cached in
3222 // Layout::layout if this becomes a speed problem.
3223 this->section_name_ = obj->section_name(input_section.shndx());
3224 }
3225 }
3226
3227 // Return the Input_section.
3228 const Input_section&
3229 input_section() const
3230 {
3231 gold_assert(this->index_ != -1U);
3232 return this->input_section_;
3233 }
3234
3235 // The index of this entry in the original list. This is used to
3236 // make the sort stable.
3237 unsigned int
3238 index() const
3239 {
3240 gold_assert(this->index_ != -1U);
3241 return this->index_;
3242 }
3243
3244 // Whether there is a section name.
3245 bool
3246 section_has_name() const
3247 { return this->section_has_name_; }
3248
3249 // The section name.
3250 const std::string&
3251 section_name() const
3252 {
3253 gold_assert(this->section_has_name_);
3254 return this->section_name_;
3255 }
3256
3257 // Return true if the section name has a priority. This is assumed
3258 // to be true if it has a dot after the initial dot.
3259 bool
3260 has_priority() const
3261 {
3262 gold_assert(this->section_has_name_);
3263 return this->section_name_.find('.', 1) != std::string::npos;
3264 }
3265
3266 // Return the priority. Believe it or not, gcc encodes the priority
3267 // differently for .ctors/.dtors and .init_array/.fini_array
3268 // sections.
3269 unsigned int
3270 get_priority() const
3271 {
3272 gold_assert(this->section_has_name_);
3273 bool is_ctors;
3274 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3275 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3276 is_ctors = true;
3277 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3278 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3279 is_ctors = false;
3280 else
3281 return 0;
3282 char* end;
3283 unsigned long prio = strtoul((this->section_name_.c_str()
3284 + (is_ctors ? 7 : 12)),
3285 &end, 10);
3286 if (*end != '\0')
3287 return 0;
3288 else if (is_ctors)
3289 return 65535 - prio;
3290 else
3291 return prio;
3292 }
3293
3294 // Return true if this an input file whose base name matches
3295 // FILE_NAME. The base name must have an extension of ".o", and
3296 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3297 // This is to match crtbegin.o as well as crtbeginS.o without
3298 // getting confused by other possibilities. Overall matching the
3299 // file name this way is a dreadful hack, but the GNU linker does it
3300 // in order to better support gcc, and we need to be compatible.
3301 bool
3302 match_file_name(const char* file_name) const
3303 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3304
3305 // Returns 1 if THIS should appear before S in section order, -1 if S
3306 // appears before THIS and 0 if they are not comparable.
3307 int
3308 compare_section_ordering(const Input_section_sort_entry& s) const
3309 {
3310 unsigned int this_secn_index = this->input_section_.section_order_index();
3311 unsigned int s_secn_index = s.input_section().section_order_index();
3312 if (this_secn_index > 0 && s_secn_index > 0)
3313 {
3314 if (this_secn_index < s_secn_index)
3315 return 1;
3316 else if (this_secn_index > s_secn_index)
3317 return -1;
3318 }
3319 return 0;
3320 }
3321
3322 private:
3323 // The Input_section we are sorting.
3324 Input_section input_section_;
3325 // The index of this Input_section in the original list.
3326 unsigned int index_;
3327 // Whether this Input_section has a section name--it won't if this
3328 // is some random Output_section_data.
3329 bool section_has_name_;
3330 // The section name if there is one.
3331 std::string section_name_;
3332 };
3333
3334 // Return true if S1 should come before S2 in the output section.
3335
3336 bool
3337 Output_section::Input_section_sort_compare::operator()(
3338 const Output_section::Input_section_sort_entry& s1,
3339 const Output_section::Input_section_sort_entry& s2) const
3340 {
3341 // crtbegin.o must come first.
3342 bool s1_begin = s1.match_file_name("crtbegin");
3343 bool s2_begin = s2.match_file_name("crtbegin");
3344 if (s1_begin || s2_begin)
3345 {
3346 if (!s1_begin)
3347 return false;
3348 if (!s2_begin)
3349 return true;
3350 return s1.index() < s2.index();
3351 }
3352
3353 // crtend.o must come last.
3354 bool s1_end = s1.match_file_name("crtend");
3355 bool s2_end = s2.match_file_name("crtend");
3356 if (s1_end || s2_end)
3357 {
3358 if (!s1_end)
3359 return true;
3360 if (!s2_end)
3361 return false;
3362 return s1.index() < s2.index();
3363 }
3364
3365 // We sort all the sections with no names to the end.
3366 if (!s1.section_has_name() || !s2.section_has_name())
3367 {
3368 if (s1.section_has_name())
3369 return true;
3370 if (s2.section_has_name())
3371 return false;
3372 return s1.index() < s2.index();
3373 }
3374
3375 // A section with a priority follows a section without a priority.
3376 bool s1_has_priority = s1.has_priority();
3377 bool s2_has_priority = s2.has_priority();
3378 if (s1_has_priority && !s2_has_priority)
3379 return false;
3380 if (!s1_has_priority && s2_has_priority)
3381 return true;
3382
3383 // Check if a section order exists for these sections through a section
3384 // ordering file. If sequence_num is 0, an order does not exist.
3385 int sequence_num = s1.compare_section_ordering(s2);
3386 if (sequence_num != 0)
3387 return sequence_num == 1;
3388
3389 // Otherwise we sort by name.
3390 int compare = s1.section_name().compare(s2.section_name());
3391 if (compare != 0)
3392 return compare < 0;
3393
3394 // Otherwise we keep the input order.
3395 return s1.index() < s2.index();
3396 }
3397
3398 // Return true if S1 should come before S2 in an .init_array or .fini_array
3399 // output section.
3400
3401 bool
3402 Output_section::Input_section_sort_init_fini_compare::operator()(
3403 const Output_section::Input_section_sort_entry& s1,
3404 const Output_section::Input_section_sort_entry& s2) const
3405 {
3406 // We sort all the sections with no names to the end.
3407 if (!s1.section_has_name() || !s2.section_has_name())
3408 {
3409 if (s1.section_has_name())
3410 return true;
3411 if (s2.section_has_name())
3412 return false;
3413 return s1.index() < s2.index();
3414 }
3415
3416 // A section without a priority follows a section with a priority.
3417 // This is the reverse of .ctors and .dtors sections.
3418 bool s1_has_priority = s1.has_priority();
3419 bool s2_has_priority = s2.has_priority();
3420 if (s1_has_priority && !s2_has_priority)
3421 return true;
3422 if (!s1_has_priority && s2_has_priority)
3423 return false;
3424
3425 // .ctors and .dtors sections without priority come after
3426 // .init_array and .fini_array sections without priority.
3427 if (!s1_has_priority
3428 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3429 && s1.section_name() != s2.section_name())
3430 return false;
3431 if (!s2_has_priority
3432 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3433 && s2.section_name() != s1.section_name())
3434 return true;
3435
3436 // Sort by priority if we can.
3437 if (s1_has_priority)
3438 {
3439 unsigned int s1_prio = s1.get_priority();
3440 unsigned int s2_prio = s2.get_priority();
3441 if (s1_prio < s2_prio)
3442 return true;
3443 else if (s1_prio > s2_prio)
3444 return false;
3445 }
3446
3447 // Check if a section order exists for these sections through a section
3448 // ordering file. If sequence_num is 0, an order does not exist.
3449 int sequence_num = s1.compare_section_ordering(s2);
3450 if (sequence_num != 0)
3451 return sequence_num == 1;
3452
3453 // Otherwise we sort by name.
3454 int compare = s1.section_name().compare(s2.section_name());
3455 if (compare != 0)
3456 return compare < 0;
3457
3458 // Otherwise we keep the input order.
3459 return s1.index() < s2.index();
3460 }
3461
3462 // Return true if S1 should come before S2. Sections that do not match
3463 // any pattern in the section ordering file are placed ahead of the sections
3464 // that match some pattern.
3465
3466 bool
3467 Output_section::Input_section_sort_section_order_index_compare::operator()(
3468 const Output_section::Input_section_sort_entry& s1,
3469 const Output_section::Input_section_sort_entry& s2) const
3470 {
3471 unsigned int s1_secn_index = s1.input_section().section_order_index();
3472 unsigned int s2_secn_index = s2.input_section().section_order_index();
3473
3474 // Keep input order if section ordering cannot determine order.
3475 if (s1_secn_index == s2_secn_index)
3476 return s1.index() < s2.index();
3477
3478 return s1_secn_index < s2_secn_index;
3479 }
3480
3481 // This updates the section order index of input sections according to the
3482 // the order specified in the mapping from Section id to order index.
3483
3484 void
3485 Output_section::update_section_layout(
3486 const Section_layout_order& order_map)
3487 {
3488 for (Input_section_list::iterator p = this->input_sections_.begin();
3489 p != this->input_sections_.end();
3490 ++p)
3491 {
3492 if (p->is_input_section()
3493 || p->is_relaxed_input_section())
3494 {
3495 Object* obj = (p->is_input_section()
3496 ? p->relobj()
3497 : p->relaxed_input_section()->relobj());
3498 unsigned int shndx = p->shndx();
3499 Section_layout_order::const_iterator it
3500 = order_map.find(Section_id(obj, shndx));
3501 if (it == order_map.end())
3502 continue;
3503 unsigned int section_order_index = it->second;
3504 if (section_order_index != 0)
3505 {
3506 p->set_section_order_index(section_order_index);
3507 this->set_input_section_order_specified();
3508 }
3509 }
3510 }
3511 }
3512
3513 // Sort the input sections attached to an output section.
3514
3515 void
3516 Output_section::sort_attached_input_sections()
3517 {
3518 if (this->attached_input_sections_are_sorted_)
3519 return;
3520
3521 if (this->checkpoint_ != NULL
3522 && !this->checkpoint_->input_sections_saved())
3523 this->checkpoint_->save_input_sections();
3524
3525 // The only thing we know about an input section is the object and
3526 // the section index. We need the section name. Recomputing this
3527 // is slow but this is an unusual case. If this becomes a speed
3528 // problem we can cache the names as required in Layout::layout.
3529
3530 // We start by building a larger vector holding a copy of each
3531 // Input_section, plus its current index in the list and its name.
3532 std::vector<Input_section_sort_entry> sort_list;
3533
3534 unsigned int i = 0;
3535 for (Input_section_list::iterator p = this->input_sections_.begin();
3536 p != this->input_sections_.end();
3537 ++p, ++i)
3538 sort_list.push_back(Input_section_sort_entry(*p, i,
3539 this->must_sort_attached_input_sections()));
3540
3541 // Sort the input sections.
3542 if (this->must_sort_attached_input_sections())
3543 {
3544 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3545 || this->type() == elfcpp::SHT_INIT_ARRAY
3546 || this->type() == elfcpp::SHT_FINI_ARRAY)
3547 std::sort(sort_list.begin(), sort_list.end(),
3548 Input_section_sort_init_fini_compare());
3549 else
3550 std::sort(sort_list.begin(), sort_list.end(),
3551 Input_section_sort_compare());
3552 }
3553 else
3554 {
3555 gold_assert(this->input_section_order_specified());
3556 std::sort(sort_list.begin(), sort_list.end(),
3557 Input_section_sort_section_order_index_compare());
3558 }
3559
3560 // Copy the sorted input sections back to our list.
3561 this->input_sections_.clear();
3562 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3563 p != sort_list.end();
3564 ++p)
3565 this->input_sections_.push_back(p->input_section());
3566 sort_list.clear();
3567
3568 // Remember that we sorted the input sections, since we might get
3569 // called again.
3570 this->attached_input_sections_are_sorted_ = true;
3571 }
3572
3573 // Write the section header to *OSHDR.
3574
3575 template<int size, bool big_endian>
3576 void
3577 Output_section::write_header(const Layout* layout,
3578 const Stringpool* secnamepool,
3579 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3580 {
3581 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3582 oshdr->put_sh_type(this->type_);
3583
3584 elfcpp::Elf_Xword flags = this->flags_;
3585 if (this->info_section_ != NULL && this->info_uses_section_index_)
3586 flags |= elfcpp::SHF_INFO_LINK;
3587 oshdr->put_sh_flags(flags);
3588
3589 oshdr->put_sh_addr(this->address());
3590 oshdr->put_sh_offset(this->offset());
3591 oshdr->put_sh_size(this->data_size());
3592 if (this->link_section_ != NULL)
3593 oshdr->put_sh_link(this->link_section_->out_shndx());
3594 else if (this->should_link_to_symtab_)
3595 oshdr->put_sh_link(layout->symtab_section_shndx());
3596 else if (this->should_link_to_dynsym_)
3597 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3598 else
3599 oshdr->put_sh_link(this->link_);
3600
3601 elfcpp::Elf_Word info;
3602 if (this->info_section_ != NULL)
3603 {
3604 if (this->info_uses_section_index_)
3605 info = this->info_section_->out_shndx();
3606 else
3607 info = this->info_section_->symtab_index();
3608 }
3609 else if (this->info_symndx_ != NULL)
3610 info = this->info_symndx_->symtab_index();
3611 else
3612 info = this->info_;
3613 oshdr->put_sh_info(info);
3614
3615 oshdr->put_sh_addralign(this->addralign_);
3616 oshdr->put_sh_entsize(this->entsize_);
3617 }
3618
3619 // Write out the data. For input sections the data is written out by
3620 // Object::relocate, but we have to handle Output_section_data objects
3621 // here.
3622
3623 void
3624 Output_section::do_write(Output_file* of)
3625 {
3626 gold_assert(!this->requires_postprocessing());
3627
3628 // If the target performs relaxation, we delay filler generation until now.
3629 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3630
3631 off_t output_section_file_offset = this->offset();
3632 for (Fill_list::iterator p = this->fills_.begin();
3633 p != this->fills_.end();
3634 ++p)
3635 {
3636 std::string fill_data(parameters->target().code_fill(p->length()));
3637 of->write(output_section_file_offset + p->section_offset(),
3638 fill_data.data(), fill_data.size());
3639 }
3640
3641 off_t off = this->offset() + this->first_input_offset_;
3642 for (Input_section_list::iterator p = this->input_sections_.begin();
3643 p != this->input_sections_.end();
3644 ++p)
3645 {
3646 off_t aligned_off = align_address(off, p->addralign());
3647 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3648 {
3649 size_t fill_len = aligned_off - off;
3650 std::string fill_data(parameters->target().code_fill(fill_len));
3651 of->write(off, fill_data.data(), fill_data.size());
3652 }
3653
3654 p->write(of);
3655 off = aligned_off + p->data_size();
3656 }
3657
3658 // For incremental links, fill in unused chunks in debug sections
3659 // with dummy compilation unit headers.
3660 if (this->free_space_fill_ != NULL)
3661 {
3662 for (Free_list::Const_iterator p = this->free_list_.begin();
3663 p != this->free_list_.end();
3664 ++p)
3665 {
3666 off_t off = p->start_;
3667 size_t len = p->end_ - off;
3668 this->free_space_fill_->write(of, this->offset() + off, len);
3669 }
3670 if (this->patch_space_ > 0)
3671 {
3672 off_t off = this->current_data_size_for_child() - this->patch_space_;
3673 this->free_space_fill_->write(of, this->offset() + off,
3674 this->patch_space_);
3675 }
3676 }
3677 }
3678
3679 // If a section requires postprocessing, create the buffer to use.
3680
3681 void
3682 Output_section::create_postprocessing_buffer()
3683 {
3684 gold_assert(this->requires_postprocessing());
3685
3686 if (this->postprocessing_buffer_ != NULL)
3687 return;
3688
3689 if (!this->input_sections_.empty())
3690 {
3691 off_t off = this->first_input_offset_;
3692 for (Input_section_list::iterator p = this->input_sections_.begin();
3693 p != this->input_sections_.end();
3694 ++p)
3695 {
3696 off = align_address(off, p->addralign());
3697 p->finalize_data_size();
3698 off += p->data_size();
3699 }
3700 this->set_current_data_size_for_child(off);
3701 }
3702
3703 off_t buffer_size = this->current_data_size_for_child();
3704 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3705 }
3706
3707 // Write all the data of an Output_section into the postprocessing
3708 // buffer. This is used for sections which require postprocessing,
3709 // such as compression. Input sections are handled by
3710 // Object::Relocate.
3711
3712 void
3713 Output_section::write_to_postprocessing_buffer()
3714 {
3715 gold_assert(this->requires_postprocessing());
3716
3717 // If the target performs relaxation, we delay filler generation until now.
3718 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3719
3720 unsigned char* buffer = this->postprocessing_buffer();
3721 for (Fill_list::iterator p = this->fills_.begin();
3722 p != this->fills_.end();
3723 ++p)
3724 {
3725 std::string fill_data(parameters->target().code_fill(p->length()));
3726 memcpy(buffer + p->section_offset(), fill_data.data(),
3727 fill_data.size());
3728 }
3729
3730 off_t off = this->first_input_offset_;
3731 for (Input_section_list::iterator p = this->input_sections_.begin();
3732 p != this->input_sections_.end();
3733 ++p)
3734 {
3735 off_t aligned_off = align_address(off, p->addralign());
3736 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3737 {
3738 size_t fill_len = aligned_off - off;
3739 std::string fill_data(parameters->target().code_fill(fill_len));
3740 memcpy(buffer + off, fill_data.data(), fill_data.size());
3741 }
3742
3743 p->write_to_buffer(buffer + aligned_off);
3744 off = aligned_off + p->data_size();
3745 }
3746 }
3747
3748 // Get the input sections for linker script processing. We leave
3749 // behind the Output_section_data entries. Note that this may be
3750 // slightly incorrect for merge sections. We will leave them behind,
3751 // but it is possible that the script says that they should follow
3752 // some other input sections, as in:
3753 // .rodata { *(.rodata) *(.rodata.cst*) }
3754 // For that matter, we don't handle this correctly:
3755 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3756 // With luck this will never matter.
3757
3758 uint64_t
3759 Output_section::get_input_sections(
3760 uint64_t address,
3761 const std::string& fill,
3762 std::list<Input_section>* input_sections)
3763 {
3764 if (this->checkpoint_ != NULL
3765 && !this->checkpoint_->input_sections_saved())
3766 this->checkpoint_->save_input_sections();
3767
3768 // Invalidate fast look-up maps.
3769 this->lookup_maps_->invalidate();
3770
3771 uint64_t orig_address = address;
3772
3773 address = align_address(address, this->addralign());
3774
3775 Input_section_list remaining;
3776 for (Input_section_list::iterator p = this->input_sections_.begin();
3777 p != this->input_sections_.end();
3778 ++p)
3779 {
3780 if (p->is_input_section()
3781 || p->is_relaxed_input_section()
3782 || p->is_merge_section())
3783 input_sections->push_back(*p);
3784 else
3785 {
3786 uint64_t aligned_address = align_address(address, p->addralign());
3787 if (aligned_address != address && !fill.empty())
3788 {
3789 section_size_type length =
3790 convert_to_section_size_type(aligned_address - address);
3791 std::string this_fill;
3792 this_fill.reserve(length);
3793 while (this_fill.length() + fill.length() <= length)
3794 this_fill += fill;
3795 if (this_fill.length() < length)
3796 this_fill.append(fill, 0, length - this_fill.length());
3797
3798 Output_section_data* posd = new Output_data_const(this_fill, 0);
3799 remaining.push_back(Input_section(posd));
3800 }
3801 address = aligned_address;
3802
3803 remaining.push_back(*p);
3804
3805 p->finalize_data_size();
3806 address += p->data_size();
3807 }
3808 }
3809
3810 this->input_sections_.swap(remaining);
3811 this->first_input_offset_ = 0;
3812
3813 uint64_t data_size = address - orig_address;
3814 this->set_current_data_size_for_child(data_size);
3815 return data_size;
3816 }
3817
3818 // Add a script input section. SIS is an Output_section::Input_section,
3819 // which can be either a plain input section or a special input section like
3820 // a relaxed input section. For a special input section, its size must be
3821 // finalized.
3822
3823 void
3824 Output_section::add_script_input_section(const Input_section& sis)
3825 {
3826 uint64_t data_size = sis.data_size();
3827 uint64_t addralign = sis.addralign();
3828 if (addralign > this->addralign_)
3829 this->addralign_ = addralign;
3830
3831 off_t offset_in_section = this->current_data_size_for_child();
3832 off_t aligned_offset_in_section = align_address(offset_in_section,
3833 addralign);
3834
3835 this->set_current_data_size_for_child(aligned_offset_in_section
3836 + data_size);
3837
3838 this->input_sections_.push_back(sis);
3839
3840 // Update fast lookup maps if necessary.
3841 if (this->lookup_maps_->is_valid())
3842 {
3843 if (sis.is_merge_section())
3844 {
3845 Output_merge_base* pomb = sis.output_merge_base();
3846 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3847 pomb->addralign());
3848 this->lookup_maps_->add_merge_section(msp, pomb);
3849 for (Output_merge_base::Input_sections::const_iterator p =
3850 pomb->input_sections_begin();
3851 p != pomb->input_sections_end();
3852 ++p)
3853 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3854 pomb);
3855 }
3856 else if (sis.is_relaxed_input_section())
3857 {
3858 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3859 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3860 poris->shndx(), poris);
3861 }
3862 }
3863 }
3864
3865 // Save states for relaxation.
3866
3867 void
3868 Output_section::save_states()
3869 {
3870 gold_assert(this->checkpoint_ == NULL);
3871 Checkpoint_output_section* checkpoint =
3872 new Checkpoint_output_section(this->addralign_, this->flags_,
3873 this->input_sections_,
3874 this->first_input_offset_,
3875 this->attached_input_sections_are_sorted_);
3876 this->checkpoint_ = checkpoint;
3877 gold_assert(this->fills_.empty());
3878 }
3879
3880 void
3881 Output_section::discard_states()
3882 {
3883 gold_assert(this->checkpoint_ != NULL);
3884 delete this->checkpoint_;
3885 this->checkpoint_ = NULL;
3886 gold_assert(this->fills_.empty());
3887
3888 // Simply invalidate the fast lookup maps since we do not keep
3889 // track of them.
3890 this->lookup_maps_->invalidate();
3891 }
3892
3893 void
3894 Output_section::restore_states()
3895 {
3896 gold_assert(this->checkpoint_ != NULL);
3897 Checkpoint_output_section* checkpoint = this->checkpoint_;
3898
3899 this->addralign_ = checkpoint->addralign();
3900 this->flags_ = checkpoint->flags();
3901 this->first_input_offset_ = checkpoint->first_input_offset();
3902
3903 if (!checkpoint->input_sections_saved())
3904 {
3905 // If we have not copied the input sections, just resize it.
3906 size_t old_size = checkpoint->input_sections_size();
3907 gold_assert(this->input_sections_.size() >= old_size);
3908 this->input_sections_.resize(old_size);
3909 }
3910 else
3911 {
3912 // We need to copy the whole list. This is not efficient for
3913 // extremely large output with hundreads of thousands of input
3914 // objects. We may need to re-think how we should pass sections
3915 // to scripts.
3916 this->input_sections_ = *checkpoint->input_sections();
3917 }
3918
3919 this->attached_input_sections_are_sorted_ =
3920 checkpoint->attached_input_sections_are_sorted();
3921
3922 // Simply invalidate the fast lookup maps since we do not keep
3923 // track of them.
3924 this->lookup_maps_->invalidate();
3925 }
3926
3927 // Update the section offsets of input sections in this. This is required if
3928 // relaxation causes some input sections to change sizes.
3929
3930 void
3931 Output_section::adjust_section_offsets()
3932 {
3933 if (!this->section_offsets_need_adjustment_)
3934 return;
3935
3936 off_t off = 0;
3937 for (Input_section_list::iterator p = this->input_sections_.begin();
3938 p != this->input_sections_.end();
3939 ++p)
3940 {
3941 off = align_address(off, p->addralign());
3942 if (p->is_input_section())
3943 p->relobj()->set_section_offset(p->shndx(), off);
3944 off += p->data_size();
3945 }
3946
3947 this->section_offsets_need_adjustment_ = false;
3948 }
3949
3950 // Print to the map file.
3951
3952 void
3953 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3954 {
3955 mapfile->print_output_section(this);
3956
3957 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3958 p != this->input_sections_.end();
3959 ++p)
3960 p->print_to_mapfile(mapfile);
3961 }
3962
3963 // Print stats for merge sections to stderr.
3964
3965 void
3966 Output_section::print_merge_stats()
3967 {
3968 Input_section_list::iterator p;
3969 for (p = this->input_sections_.begin();
3970 p != this->input_sections_.end();
3971 ++p)
3972 p->print_merge_stats(this->name_);
3973 }
3974
3975 // Set a fixed layout for the section. Used for incremental update links.
3976
3977 void
3978 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3979 off_t sh_size, uint64_t sh_addralign)
3980 {
3981 this->addralign_ = sh_addralign;
3982 this->set_current_data_size(sh_size);
3983 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3984 this->set_address(sh_addr);
3985 this->set_file_offset(sh_offset);
3986 this->finalize_data_size();
3987 this->free_list_.init(sh_size, false);
3988 this->has_fixed_layout_ = true;
3989 }
3990
3991 // Reserve space within the fixed layout for the section. Used for
3992 // incremental update links.
3993
3994 void
3995 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3996 {
3997 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3998 }
3999
4000 // Allocate space from the free list for the section. Used for
4001 // incremental update links.
4002
4003 off_t
4004 Output_section::allocate(off_t len, uint64_t addralign)
4005 {
4006 return this->free_list_.allocate(len, addralign, 0);
4007 }
4008
4009 // Output segment methods.
4010
4011 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4012 : vaddr_(0),
4013 paddr_(0),
4014 memsz_(0),
4015 max_align_(0),
4016 min_p_align_(0),
4017 offset_(0),
4018 filesz_(0),
4019 type_(type),
4020 flags_(flags),
4021 is_max_align_known_(false),
4022 are_addresses_set_(false),
4023 is_large_data_segment_(false)
4024 {
4025 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4026 // the flags.
4027 if (type == elfcpp::PT_TLS)
4028 this->flags_ = elfcpp::PF_R;
4029 }
4030
4031 // Add an Output_section to a PT_LOAD Output_segment.
4032
4033 void
4034 Output_segment::add_output_section_to_load(Layout* layout,
4035 Output_section* os,
4036 elfcpp::Elf_Word seg_flags)
4037 {
4038 gold_assert(this->type() == elfcpp::PT_LOAD);
4039 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4040 gold_assert(!this->is_max_align_known_);
4041 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4042
4043 this->update_flags_for_output_section(seg_flags);
4044
4045 // We don't want to change the ordering if we have a linker script
4046 // with a SECTIONS clause.
4047 Output_section_order order = os->order();
4048 if (layout->script_options()->saw_sections_clause())
4049 order = static_cast<Output_section_order>(0);
4050 else
4051 gold_assert(order != ORDER_INVALID);
4052
4053 this->output_lists_[order].push_back(os);
4054 }
4055
4056 // Add an Output_section to a non-PT_LOAD Output_segment.
4057
4058 void
4059 Output_segment::add_output_section_to_nonload(Output_section* os,
4060 elfcpp::Elf_Word seg_flags)
4061 {
4062 gold_assert(this->type() != elfcpp::PT_LOAD);
4063 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4064 gold_assert(!this->is_max_align_known_);
4065
4066 this->update_flags_for_output_section(seg_flags);
4067
4068 this->output_lists_[0].push_back(os);
4069 }
4070
4071 // Remove an Output_section from this segment. It is an error if it
4072 // is not present.
4073
4074 void
4075 Output_segment::remove_output_section(Output_section* os)
4076 {
4077 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4078 {
4079 Output_data_list* pdl = &this->output_lists_[i];
4080 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4081 {
4082 if (*p == os)
4083 {
4084 pdl->erase(p);
4085 return;
4086 }
4087 }
4088 }
4089 gold_unreachable();
4090 }
4091
4092 // Add an Output_data (which need not be an Output_section) to the
4093 // start of a segment.
4094
4095 void
4096 Output_segment::add_initial_output_data(Output_data* od)
4097 {
4098 gold_assert(!this->is_max_align_known_);
4099 Output_data_list::iterator p = this->output_lists_[0].begin();
4100 this->output_lists_[0].insert(p, od);
4101 }
4102
4103 // Return true if this segment has any sections which hold actual
4104 // data, rather than being a BSS section.
4105
4106 bool
4107 Output_segment::has_any_data_sections() const
4108 {
4109 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4110 {
4111 const Output_data_list* pdl = &this->output_lists_[i];
4112 for (Output_data_list::const_iterator p = pdl->begin();
4113 p != pdl->end();
4114 ++p)
4115 {
4116 if (!(*p)->is_section())
4117 return true;
4118 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4119 return true;
4120 }
4121 }
4122 return false;
4123 }
4124
4125 // Return whether the first data section (not counting TLS sections)
4126 // is a relro section.
4127
4128 bool
4129 Output_segment::is_first_section_relro() const
4130 {
4131 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132 {
4133 if (i == static_cast<int>(ORDER_TLS_DATA)
4134 || i == static_cast<int>(ORDER_TLS_BSS))
4135 continue;
4136 const Output_data_list* pdl = &this->output_lists_[i];
4137 if (!pdl->empty())
4138 {
4139 Output_data* p = pdl->front();
4140 return p->is_section() && p->output_section()->is_relro();
4141 }
4142 }
4143 return false;
4144 }
4145
4146 // Return the maximum alignment of the Output_data in Output_segment.
4147
4148 uint64_t
4149 Output_segment::maximum_alignment()
4150 {
4151 if (!this->is_max_align_known_)
4152 {
4153 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154 {
4155 const Output_data_list* pdl = &this->output_lists_[i];
4156 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4157 if (addralign > this->max_align_)
4158 this->max_align_ = addralign;
4159 }
4160 this->is_max_align_known_ = true;
4161 }
4162
4163 return this->max_align_;
4164 }
4165
4166 // Return the maximum alignment of a list of Output_data.
4167
4168 uint64_t
4169 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4170 {
4171 uint64_t ret = 0;
4172 for (Output_data_list::const_iterator p = pdl->begin();
4173 p != pdl->end();
4174 ++p)
4175 {
4176 uint64_t addralign = (*p)->addralign();
4177 if (addralign > ret)
4178 ret = addralign;
4179 }
4180 return ret;
4181 }
4182
4183 // Return whether this segment has any dynamic relocs.
4184
4185 bool
4186 Output_segment::has_dynamic_reloc() const
4187 {
4188 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4190 return true;
4191 return false;
4192 }
4193
4194 // Return whether this Output_data_list has any dynamic relocs.
4195
4196 bool
4197 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4198 {
4199 for (Output_data_list::const_iterator p = pdl->begin();
4200 p != pdl->end();
4201 ++p)
4202 if ((*p)->has_dynamic_reloc())
4203 return true;
4204 return false;
4205 }
4206
4207 // Set the section addresses for an Output_segment. If RESET is true,
4208 // reset the addresses first. ADDR is the address and *POFF is the
4209 // file offset. Set the section indexes starting with *PSHNDX.
4210 // INCREASE_RELRO is the size of the portion of the first non-relro
4211 // section that should be included in the PT_GNU_RELRO segment.
4212 // If this segment has relro sections, and has been aligned for
4213 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4214 // the immediately following segment. Update *HAS_RELRO, *POFF,
4215 // and *PSHNDX.
4216
4217 uint64_t
4218 Output_segment::set_section_addresses(Layout* layout, bool reset,
4219 uint64_t addr,
4220 unsigned int* increase_relro,
4221 bool* has_relro,
4222 off_t* poff,
4223 unsigned int* pshndx)
4224 {
4225 gold_assert(this->type_ == elfcpp::PT_LOAD);
4226
4227 uint64_t last_relro_pad = 0;
4228 off_t orig_off = *poff;
4229
4230 bool in_tls = false;
4231
4232 // If we have relro sections, we need to pad forward now so that the
4233 // relro sections plus INCREASE_RELRO end on a common page boundary.
4234 if (parameters->options().relro()
4235 && this->is_first_section_relro()
4236 && (!this->are_addresses_set_ || reset))
4237 {
4238 uint64_t relro_size = 0;
4239 off_t off = *poff;
4240 uint64_t max_align = 0;
4241 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4242 {
4243 Output_data_list* pdl = &this->output_lists_[i];
4244 Output_data_list::iterator p;
4245 for (p = pdl->begin(); p != pdl->end(); ++p)
4246 {
4247 if (!(*p)->is_section())
4248 break;
4249 uint64_t align = (*p)->addralign();
4250 if (align > max_align)
4251 max_align = align;
4252 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4253 in_tls = true;
4254 else if (in_tls)
4255 {
4256 // Align the first non-TLS section to the alignment
4257 // of the TLS segment.
4258 align = max_align;
4259 in_tls = false;
4260 }
4261 relro_size = align_address(relro_size, align);
4262 // Ignore the size of the .tbss section.
4263 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4264 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4265 continue;
4266 if ((*p)->is_address_valid())
4267 relro_size += (*p)->data_size();
4268 else
4269 {
4270 // FIXME: This could be faster.
4271 (*p)->set_address_and_file_offset(addr + relro_size,
4272 off + relro_size);
4273 relro_size += (*p)->data_size();
4274 (*p)->reset_address_and_file_offset();
4275 }
4276 }
4277 if (p != pdl->end())
4278 break;
4279 }
4280 relro_size += *increase_relro;
4281 // Pad the total relro size to a multiple of the maximum
4282 // section alignment seen.
4283 uint64_t aligned_size = align_address(relro_size, max_align);
4284 // Note the amount of padding added after the last relro section.
4285 last_relro_pad = aligned_size - relro_size;
4286 *has_relro = true;
4287
4288 uint64_t page_align = parameters->target().common_pagesize();
4289
4290 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4291 uint64_t desired_align = page_align - (aligned_size % page_align);
4292 if (desired_align < *poff % page_align)
4293 *poff += page_align - *poff % page_align;
4294 *poff += desired_align - *poff % page_align;
4295 addr += *poff - orig_off;
4296 orig_off = *poff;
4297 }
4298
4299 if (!reset && this->are_addresses_set_)
4300 {
4301 gold_assert(this->paddr_ == addr);
4302 addr = this->vaddr_;
4303 }
4304 else
4305 {
4306 this->vaddr_ = addr;
4307 this->paddr_ = addr;
4308 this->are_addresses_set_ = true;
4309 }
4310
4311 in_tls = false;
4312
4313 this->offset_ = orig_off;
4314
4315 off_t off = 0;
4316 uint64_t ret;
4317 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4318 {
4319 if (i == static_cast<int>(ORDER_RELRO_LAST))
4320 {
4321 *poff += last_relro_pad;
4322 addr += last_relro_pad;
4323 if (this->output_lists_[i].empty())
4324 {
4325 // If there is nothing in the ORDER_RELRO_LAST list,
4326 // the padding will occur at the end of the relro
4327 // segment, and we need to add it to *INCREASE_RELRO.
4328 *increase_relro += last_relro_pad;
4329 }
4330 }
4331 addr = this->set_section_list_addresses(layout, reset,
4332 &this->output_lists_[i],
4333 addr, poff, pshndx, &in_tls);
4334 if (i < static_cast<int>(ORDER_SMALL_BSS))
4335 {
4336 this->filesz_ = *poff - orig_off;
4337 off = *poff;
4338 }
4339
4340 ret = addr;
4341 }
4342
4343 // If the last section was a TLS section, align upward to the
4344 // alignment of the TLS segment, so that the overall size of the TLS
4345 // segment is aligned.
4346 if (in_tls)
4347 {
4348 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4349 *poff = align_address(*poff, segment_align);
4350 }
4351
4352 this->memsz_ = *poff - orig_off;
4353
4354 // Ignore the file offset adjustments made by the BSS Output_data
4355 // objects.
4356 *poff = off;
4357
4358 return ret;
4359 }
4360
4361 // Set the addresses and file offsets in a list of Output_data
4362 // structures.
4363
4364 uint64_t
4365 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4366 Output_data_list* pdl,
4367 uint64_t addr, off_t* poff,
4368 unsigned int* pshndx,
4369 bool* in_tls)
4370 {
4371 off_t startoff = *poff;
4372 // For incremental updates, we may allocate non-fixed sections from
4373 // free space in the file. This keeps track of the high-water mark.
4374 off_t maxoff = startoff;
4375
4376 off_t off = startoff;
4377 for (Output_data_list::iterator p = pdl->begin();
4378 p != pdl->end();
4379 ++p)
4380 {
4381 if (reset)
4382 (*p)->reset_address_and_file_offset();
4383
4384 // When doing an incremental update or when using a linker script,
4385 // the section will most likely already have an address.
4386 if (!(*p)->is_address_valid())
4387 {
4388 uint64_t align = (*p)->addralign();
4389
4390 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4391 {
4392 // Give the first TLS section the alignment of the
4393 // entire TLS segment. Otherwise the TLS segment as a
4394 // whole may be misaligned.
4395 if (!*in_tls)
4396 {
4397 Output_segment* tls_segment = layout->tls_segment();
4398 gold_assert(tls_segment != NULL);
4399 uint64_t segment_align = tls_segment->maximum_alignment();
4400 gold_assert(segment_align >= align);
4401 align = segment_align;
4402
4403 *in_tls = true;
4404 }
4405 }
4406 else
4407 {
4408 // If this is the first section after the TLS segment,
4409 // align it to at least the alignment of the TLS
4410 // segment, so that the size of the overall TLS segment
4411 // is aligned.
4412 if (*in_tls)
4413 {
4414 uint64_t segment_align =
4415 layout->tls_segment()->maximum_alignment();
4416 if (segment_align > align)
4417 align = segment_align;
4418
4419 *in_tls = false;
4420 }
4421 }
4422
4423 if (!parameters->incremental_update())
4424 {
4425 off = align_address(off, align);
4426 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4427 }
4428 else
4429 {
4430 // Incremental update: allocate file space from free list.
4431 (*p)->pre_finalize_data_size();
4432 off_t current_size = (*p)->current_data_size();
4433 off = layout->allocate(current_size, align, startoff);
4434 if (off == -1)
4435 {
4436 gold_assert((*p)->output_section() != NULL);
4437 gold_fallback(_("out of patch space for section %s; "
4438 "relink with --incremental-full"),
4439 (*p)->output_section()->name());
4440 }
4441 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4442 if ((*p)->data_size() > current_size)
4443 {
4444 gold_assert((*p)->output_section() != NULL);
4445 gold_fallback(_("%s: section changed size; "
4446 "relink with --incremental-full"),
4447 (*p)->output_section()->name());
4448 }
4449 }
4450 }
4451 else if (parameters->incremental_update())
4452 {
4453 // For incremental updates, use the fixed offset for the
4454 // high-water mark computation.
4455 off = (*p)->offset();
4456 }
4457 else
4458 {
4459 // The script may have inserted a skip forward, but it
4460 // better not have moved backward.
4461 if ((*p)->address() >= addr + (off - startoff))
4462 off += (*p)->address() - (addr + (off - startoff));
4463 else
4464 {
4465 if (!layout->script_options()->saw_sections_clause())
4466 gold_unreachable();
4467 else
4468 {
4469 Output_section* os = (*p)->output_section();
4470
4471 // Cast to unsigned long long to avoid format warnings.
4472 unsigned long long previous_dot =
4473 static_cast<unsigned long long>(addr + (off - startoff));
4474 unsigned long long dot =
4475 static_cast<unsigned long long>((*p)->address());
4476
4477 if (os == NULL)
4478 gold_error(_("dot moves backward in linker script "
4479 "from 0x%llx to 0x%llx"), previous_dot, dot);
4480 else
4481 gold_error(_("address of section '%s' moves backward "
4482 "from 0x%llx to 0x%llx"),
4483 os->name(), previous_dot, dot);
4484 }
4485 }
4486 (*p)->set_file_offset(off);
4487 (*p)->finalize_data_size();
4488 }
4489
4490 if (parameters->incremental_update())
4491 gold_debug(DEBUG_INCREMENTAL,
4492 "set_section_list_addresses: %08lx %08lx %s",
4493 static_cast<long>(off),
4494 static_cast<long>((*p)->data_size()),
4495 ((*p)->output_section() != NULL
4496 ? (*p)->output_section()->name() : "(special)"));
4497
4498 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4499 // section. Such a section does not affect the size of a
4500 // PT_LOAD segment.
4501 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4502 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4503 off += (*p)->data_size();
4504
4505 if (off > maxoff)
4506 maxoff = off;
4507
4508 if ((*p)->is_section())
4509 {
4510 (*p)->set_out_shndx(*pshndx);
4511 ++*pshndx;
4512 }
4513 }
4514
4515 *poff = maxoff;
4516 return addr + (maxoff - startoff);
4517 }
4518
4519 // For a non-PT_LOAD segment, set the offset from the sections, if
4520 // any. Add INCREASE to the file size and the memory size.
4521
4522 void
4523 Output_segment::set_offset(unsigned int increase)
4524 {
4525 gold_assert(this->type_ != elfcpp::PT_LOAD);
4526
4527 gold_assert(!this->are_addresses_set_);
4528
4529 // A non-load section only uses output_lists_[0].
4530
4531 Output_data_list* pdl = &this->output_lists_[0];
4532
4533 if (pdl->empty())
4534 {
4535 gold_assert(increase == 0);
4536 this->vaddr_ = 0;
4537 this->paddr_ = 0;
4538 this->are_addresses_set_ = true;
4539 this->memsz_ = 0;
4540 this->min_p_align_ = 0;
4541 this->offset_ = 0;
4542 this->filesz_ = 0;
4543 return;
4544 }
4545
4546 // Find the first and last section by address.
4547 const Output_data* first = NULL;
4548 const Output_data* last_data = NULL;
4549 const Output_data* last_bss = NULL;
4550 for (Output_data_list::const_iterator p = pdl->begin();
4551 p != pdl->end();
4552 ++p)
4553 {
4554 if (first == NULL
4555 || (*p)->address() < first->address()
4556 || ((*p)->address() == first->address()
4557 && (*p)->data_size() < first->data_size()))
4558 first = *p;
4559 const Output_data** plast;
4560 if ((*p)->is_section()
4561 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4562 plast = &last_bss;
4563 else
4564 plast = &last_data;
4565 if (*plast == NULL
4566 || (*p)->address() > (*plast)->address()
4567 || ((*p)->address() == (*plast)->address()
4568 && (*p)->data_size() > (*plast)->data_size()))
4569 *plast = *p;
4570 }
4571
4572 this->vaddr_ = first->address();
4573 this->paddr_ = (first->has_load_address()
4574 ? first->load_address()
4575 : this->vaddr_);
4576 this->are_addresses_set_ = true;
4577 this->offset_ = first->offset();
4578
4579 if (last_data == NULL)
4580 this->filesz_ = 0;
4581 else
4582 this->filesz_ = (last_data->address()
4583 + last_data->data_size()
4584 - this->vaddr_);
4585
4586 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4587 this->memsz_ = (last->address()
4588 + last->data_size()
4589 - this->vaddr_);
4590
4591 this->filesz_ += increase;
4592 this->memsz_ += increase;
4593
4594 // If this is a RELRO segment, verify that the segment ends at a
4595 // page boundary.
4596 if (this->type_ == elfcpp::PT_GNU_RELRO)
4597 {
4598 uint64_t page_align = parameters->target().common_pagesize();
4599 uint64_t segment_end = this->vaddr_ + this->memsz_;
4600 if (parameters->incremental_update())
4601 {
4602 // The INCREASE_RELRO calculation is bypassed for an incremental
4603 // update, so we need to adjust the segment size manually here.
4604 segment_end = align_address(segment_end, page_align);
4605 this->memsz_ = segment_end - this->vaddr_;
4606 }
4607 else
4608 gold_assert(segment_end == align_address(segment_end, page_align));
4609 }
4610
4611 // If this is a TLS segment, align the memory size. The code in
4612 // set_section_list ensures that the section after the TLS segment
4613 // is aligned to give us room.
4614 if (this->type_ == elfcpp::PT_TLS)
4615 {
4616 uint64_t segment_align = this->maximum_alignment();
4617 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4618 this->memsz_ = align_address(this->memsz_, segment_align);
4619 }
4620 }
4621
4622 // Set the TLS offsets of the sections in the PT_TLS segment.
4623
4624 void
4625 Output_segment::set_tls_offsets()
4626 {
4627 gold_assert(this->type_ == elfcpp::PT_TLS);
4628
4629 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4630 p != this->output_lists_[0].end();
4631 ++p)
4632 (*p)->set_tls_offset(this->vaddr_);
4633 }
4634
4635 // Return the load address of the first section.
4636
4637 uint64_t
4638 Output_segment::first_section_load_address() const
4639 {
4640 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4641 {
4642 const Output_data_list* pdl = &this->output_lists_[i];
4643 for (Output_data_list::const_iterator p = pdl->begin();
4644 p != pdl->end();
4645 ++p)
4646 {
4647 if ((*p)->is_section())
4648 return ((*p)->has_load_address()
4649 ? (*p)->load_address()
4650 : (*p)->address());
4651 }
4652 }
4653 gold_unreachable();
4654 }
4655
4656 // Return the number of Output_sections in an Output_segment.
4657
4658 unsigned int
4659 Output_segment::output_section_count() const
4660 {
4661 unsigned int ret = 0;
4662 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663 ret += this->output_section_count_list(&this->output_lists_[i]);
4664 return ret;
4665 }
4666
4667 // Return the number of Output_sections in an Output_data_list.
4668
4669 unsigned int
4670 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4671 {
4672 unsigned int count = 0;
4673 for (Output_data_list::const_iterator p = pdl->begin();
4674 p != pdl->end();
4675 ++p)
4676 {
4677 if ((*p)->is_section())
4678 ++count;
4679 }
4680 return count;
4681 }
4682
4683 // Return the section attached to the list segment with the lowest
4684 // load address. This is used when handling a PHDRS clause in a
4685 // linker script.
4686
4687 Output_section*
4688 Output_segment::section_with_lowest_load_address() const
4689 {
4690 Output_section* found = NULL;
4691 uint64_t found_lma = 0;
4692 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4693 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4694 &found_lma);
4695 return found;
4696 }
4697
4698 // Look through a list for a section with a lower load address.
4699
4700 void
4701 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4702 Output_section** found,
4703 uint64_t* found_lma) const
4704 {
4705 for (Output_data_list::const_iterator p = pdl->begin();
4706 p != pdl->end();
4707 ++p)
4708 {
4709 if (!(*p)->is_section())
4710 continue;
4711 Output_section* os = static_cast<Output_section*>(*p);
4712 uint64_t lma = (os->has_load_address()
4713 ? os->load_address()
4714 : os->address());
4715 if (*found == NULL || lma < *found_lma)
4716 {
4717 *found = os;
4718 *found_lma = lma;
4719 }
4720 }
4721 }
4722
4723 // Write the segment data into *OPHDR.
4724
4725 template<int size, bool big_endian>
4726 void
4727 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4728 {
4729 ophdr->put_p_type(this->type_);
4730 ophdr->put_p_offset(this->offset_);
4731 ophdr->put_p_vaddr(this->vaddr_);
4732 ophdr->put_p_paddr(this->paddr_);
4733 ophdr->put_p_filesz(this->filesz_);
4734 ophdr->put_p_memsz(this->memsz_);
4735 ophdr->put_p_flags(this->flags_);
4736 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4737 }
4738
4739 // Write the section headers into V.
4740
4741 template<int size, bool big_endian>
4742 unsigned char*
4743 Output_segment::write_section_headers(const Layout* layout,
4744 const Stringpool* secnamepool,
4745 unsigned char* v,
4746 unsigned int* pshndx) const
4747 {
4748 // Every section that is attached to a segment must be attached to a
4749 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4750 // segments.
4751 if (this->type_ != elfcpp::PT_LOAD)
4752 return v;
4753
4754 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4755 {
4756 const Output_data_list* pdl = &this->output_lists_[i];
4757 v = this->write_section_headers_list<size, big_endian>(layout,
4758 secnamepool,
4759 pdl,
4760 v, pshndx);
4761 }
4762
4763 return v;
4764 }
4765
4766 template<int size, bool big_endian>
4767 unsigned char*
4768 Output_segment::write_section_headers_list(const Layout* layout,
4769 const Stringpool* secnamepool,
4770 const Output_data_list* pdl,
4771 unsigned char* v,
4772 unsigned int* pshndx) const
4773 {
4774 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4775 for (Output_data_list::const_iterator p = pdl->begin();
4776 p != pdl->end();
4777 ++p)
4778 {
4779 if ((*p)->is_section())
4780 {
4781 const Output_section* ps = static_cast<const Output_section*>(*p);
4782 gold_assert(*pshndx == ps->out_shndx());
4783 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4784 ps->write_header(layout, secnamepool, &oshdr);
4785 v += shdr_size;
4786 ++*pshndx;
4787 }
4788 }
4789 return v;
4790 }
4791
4792 // Print the output sections to the map file.
4793
4794 void
4795 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4796 {
4797 if (this->type() != elfcpp::PT_LOAD)
4798 return;
4799 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4800 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4801 }
4802
4803 // Print an output section list to the map file.
4804
4805 void
4806 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4807 const Output_data_list* pdl) const
4808 {
4809 for (Output_data_list::const_iterator p = pdl->begin();
4810 p != pdl->end();
4811 ++p)
4812 (*p)->print_to_mapfile(mapfile);
4813 }
4814
4815 // Output_file methods.
4816
4817 Output_file::Output_file(const char* name)
4818 : name_(name),
4819 o_(-1),
4820 file_size_(0),
4821 base_(NULL),
4822 map_is_anonymous_(false),
4823 map_is_allocated_(false),
4824 is_temporary_(false)
4825 {
4826 }
4827
4828 // Try to open an existing file. Returns false if the file doesn't
4829 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4830 // NULL, open that file as the base for incremental linking, and
4831 // copy its contents to the new output file. This routine can
4832 // be called for incremental updates, in which case WRITABLE should
4833 // be true, or by the incremental-dump utility, in which case
4834 // WRITABLE should be false.
4835
4836 bool
4837 Output_file::open_base_file(const char* base_name, bool writable)
4838 {
4839 // The name "-" means "stdout".
4840 if (strcmp(this->name_, "-") == 0)
4841 return false;
4842
4843 bool use_base_file = base_name != NULL;
4844 if (!use_base_file)
4845 base_name = this->name_;
4846 else if (strcmp(base_name, this->name_) == 0)
4847 gold_fatal(_("%s: incremental base and output file name are the same"),
4848 base_name);
4849
4850 // Don't bother opening files with a size of zero.
4851 struct stat s;
4852 if (::stat(base_name, &s) != 0)
4853 {
4854 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4855 return false;
4856 }
4857 if (s.st_size == 0)
4858 {
4859 gold_info(_("%s: incremental base file is empty"), base_name);
4860 return false;
4861 }
4862
4863 // If we're using a base file, we want to open it read-only.
4864 if (use_base_file)
4865 writable = false;
4866
4867 int oflags = writable ? O_RDWR : O_RDONLY;
4868 int o = open_descriptor(-1, base_name, oflags, 0);
4869 if (o < 0)
4870 {
4871 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4872 return false;
4873 }
4874
4875 // If the base file and the output file are different, open a
4876 // new output file and read the contents from the base file into
4877 // the newly-mapped region.
4878 if (use_base_file)
4879 {
4880 this->open(s.st_size);
4881 ssize_t len = ::read(o, this->base_, s.st_size);
4882 if (len < 0)
4883 {
4884 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4885 return false;
4886 }
4887 if (len < s.st_size)
4888 {
4889 gold_info(_("%s: file too short"), base_name);
4890 return false;
4891 }
4892 ::close(o);
4893 return true;
4894 }
4895
4896 this->o_ = o;
4897 this->file_size_ = s.st_size;
4898
4899 if (!this->map_no_anonymous(writable))
4900 {
4901 release_descriptor(o, true);
4902 this->o_ = -1;
4903 this->file_size_ = 0;
4904 return false;
4905 }
4906
4907 return true;
4908 }
4909
4910 // Open the output file.
4911
4912 void
4913 Output_file::open(off_t file_size)
4914 {
4915 this->file_size_ = file_size;
4916
4917 // Unlink the file first; otherwise the open() may fail if the file
4918 // is busy (e.g. it's an executable that's currently being executed).
4919 //
4920 // However, the linker may be part of a system where a zero-length
4921 // file is created for it to write to, with tight permissions (gcc
4922 // 2.95 did something like this). Unlinking the file would work
4923 // around those permission controls, so we only unlink if the file
4924 // has a non-zero size. We also unlink only regular files to avoid
4925 // trouble with directories/etc.
4926 //
4927 // If we fail, continue; this command is merely a best-effort attempt
4928 // to improve the odds for open().
4929
4930 // We let the name "-" mean "stdout"
4931 if (!this->is_temporary_)
4932 {
4933 if (strcmp(this->name_, "-") == 0)
4934 this->o_ = STDOUT_FILENO;
4935 else
4936 {
4937 struct stat s;
4938 if (::stat(this->name_, &s) == 0
4939 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4940 {
4941 if (s.st_size != 0)
4942 ::unlink(this->name_);
4943 else if (!parameters->options().relocatable())
4944 {
4945 // If we don't unlink the existing file, add execute
4946 // permission where read permissions already exist
4947 // and where the umask permits.
4948 int mask = ::umask(0);
4949 ::umask(mask);
4950 s.st_mode |= (s.st_mode & 0444) >> 2;
4951 ::chmod(this->name_, s.st_mode & ~mask);
4952 }
4953 }
4954
4955 int mode = parameters->options().relocatable() ? 0666 : 0777;
4956 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4957 mode);
4958 if (o < 0)
4959 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4960 this->o_ = o;
4961 }
4962 }
4963
4964 this->map();
4965 }
4966
4967 // Resize the output file.
4968
4969 void
4970 Output_file::resize(off_t file_size)
4971 {
4972 // If the mmap is mapping an anonymous memory buffer, this is easy:
4973 // just mremap to the new size. If it's mapping to a file, we want
4974 // to unmap to flush to the file, then remap after growing the file.
4975 if (this->map_is_anonymous_)
4976 {
4977 void* base;
4978 if (!this->map_is_allocated_)
4979 {
4980 base = ::mremap(this->base_, this->file_size_, file_size,
4981 MREMAP_MAYMOVE);
4982 if (base == MAP_FAILED)
4983 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4984 }
4985 else
4986 {
4987 base = realloc(this->base_, file_size);
4988 if (base == NULL)
4989 gold_nomem();
4990 if (file_size > this->file_size_)
4991 memset(static_cast<char*>(base) + this->file_size_, 0,
4992 file_size - this->file_size_);
4993 }
4994 this->base_ = static_cast<unsigned char*>(base);
4995 this->file_size_ = file_size;
4996 }
4997 else
4998 {
4999 this->unmap();
5000 this->file_size_ = file_size;
5001 if (!this->map_no_anonymous(true))
5002 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5003 }
5004 }
5005
5006 // Map an anonymous block of memory which will later be written to the
5007 // file. Return whether the map succeeded.
5008
5009 bool
5010 Output_file::map_anonymous()
5011 {
5012 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5013 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5014 if (base == MAP_FAILED)
5015 {
5016 base = malloc(this->file_size_);
5017 if (base == NULL)
5018 return false;
5019 memset(base, 0, this->file_size_);
5020 this->map_is_allocated_ = true;
5021 }
5022 this->base_ = static_cast<unsigned char*>(base);
5023 this->map_is_anonymous_ = true;
5024 return true;
5025 }
5026
5027 // Map the file into memory. Return whether the mapping succeeded.
5028 // If WRITABLE is true, map with write access.
5029
5030 bool
5031 Output_file::map_no_anonymous(bool writable)
5032 {
5033 const int o = this->o_;
5034
5035 // If the output file is not a regular file, don't try to mmap it;
5036 // instead, we'll mmap a block of memory (an anonymous buffer), and
5037 // then later write the buffer to the file.
5038 void* base;
5039 struct stat statbuf;
5040 if (o == STDOUT_FILENO || o == STDERR_FILENO
5041 || ::fstat(o, &statbuf) != 0
5042 || !S_ISREG(statbuf.st_mode)
5043 || this->is_temporary_)
5044 return false;
5045
5046 // Ensure that we have disk space available for the file. If we
5047 // don't do this, it is possible that we will call munmap, close,
5048 // and exit with dirty buffers still in the cache with no assigned
5049 // disk blocks. If the disk is out of space at that point, the
5050 // output file will wind up incomplete, but we will have already
5051 // exited. The alternative to fallocate would be to use fdatasync,
5052 // but that would be a more significant performance hit.
5053 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5054 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5055
5056 // Map the file into memory.
5057 int prot = PROT_READ;
5058 if (writable)
5059 prot |= PROT_WRITE;
5060 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5061
5062 // The mmap call might fail because of file system issues: the file
5063 // system might not support mmap at all, or it might not support
5064 // mmap with PROT_WRITE.
5065 if (base == MAP_FAILED)
5066 return false;
5067
5068 this->map_is_anonymous_ = false;
5069 this->base_ = static_cast<unsigned char*>(base);
5070 return true;
5071 }
5072
5073 // Map the file into memory.
5074
5075 void
5076 Output_file::map()
5077 {
5078 if (this->map_no_anonymous(true))
5079 return;
5080
5081 // The mmap call might fail because of file system issues: the file
5082 // system might not support mmap at all, or it might not support
5083 // mmap with PROT_WRITE. I'm not sure which errno values we will
5084 // see in all cases, so if the mmap fails for any reason and we
5085 // don't care about file contents, try for an anonymous map.
5086 if (this->map_anonymous())
5087 return;
5088
5089 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5090 this->name_, static_cast<unsigned long>(this->file_size_),
5091 strerror(errno));
5092 }
5093
5094 // Unmap the file from memory.
5095
5096 void
5097 Output_file::unmap()
5098 {
5099 if (this->map_is_anonymous_)
5100 {
5101 // We've already written out the data, so there is no reason to
5102 // waste time unmapping or freeing the memory.
5103 }
5104 else
5105 {
5106 if (::munmap(this->base_, this->file_size_) < 0)
5107 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5108 }
5109 this->base_ = NULL;
5110 }
5111
5112 // Close the output file.
5113
5114 void
5115 Output_file::close()
5116 {
5117 // If the map isn't file-backed, we need to write it now.
5118 if (this->map_is_anonymous_ && !this->is_temporary_)
5119 {
5120 size_t bytes_to_write = this->file_size_;
5121 size_t offset = 0;
5122 while (bytes_to_write > 0)
5123 {
5124 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5125 bytes_to_write);
5126 if (bytes_written == 0)
5127 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5128 else if (bytes_written < 0)
5129 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5130 else
5131 {
5132 bytes_to_write -= bytes_written;
5133 offset += bytes_written;
5134 }
5135 }
5136 }
5137 this->unmap();
5138
5139 // We don't close stdout or stderr
5140 if (this->o_ != STDOUT_FILENO
5141 && this->o_ != STDERR_FILENO
5142 && !this->is_temporary_)
5143 if (::close(this->o_) < 0)
5144 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5145 this->o_ = -1;
5146 }
5147
5148 // Instantiate the templates we need. We could use the configure
5149 // script to restrict this to only the ones for implemented targets.
5150
5151 #ifdef HAVE_TARGET_32_LITTLE
5152 template
5153 off_t
5154 Output_section::add_input_section<32, false>(
5155 Layout* layout,
5156 Sized_relobj_file<32, false>* object,
5157 unsigned int shndx,
5158 const char* secname,
5159 const elfcpp::Shdr<32, false>& shdr,
5160 unsigned int reloc_shndx,
5161 bool have_sections_script);
5162 #endif
5163
5164 #ifdef HAVE_TARGET_32_BIG
5165 template
5166 off_t
5167 Output_section::add_input_section<32, true>(
5168 Layout* layout,
5169 Sized_relobj_file<32, true>* object,
5170 unsigned int shndx,
5171 const char* secname,
5172 const elfcpp::Shdr<32, true>& shdr,
5173 unsigned int reloc_shndx,
5174 bool have_sections_script);
5175 #endif
5176
5177 #ifdef HAVE_TARGET_64_LITTLE
5178 template
5179 off_t
5180 Output_section::add_input_section<64, false>(
5181 Layout* layout,
5182 Sized_relobj_file<64, false>* object,
5183 unsigned int shndx,
5184 const char* secname,
5185 const elfcpp::Shdr<64, false>& shdr,
5186 unsigned int reloc_shndx,
5187 bool have_sections_script);
5188 #endif
5189
5190 #ifdef HAVE_TARGET_64_BIG
5191 template
5192 off_t
5193 Output_section::add_input_section<64, true>(
5194 Layout* layout,
5195 Sized_relobj_file<64, true>* object,
5196 unsigned int shndx,
5197 const char* secname,
5198 const elfcpp::Shdr<64, true>& shdr,
5199 unsigned int reloc_shndx,
5200 bool have_sections_script);
5201 #endif
5202
5203 #ifdef HAVE_TARGET_32_LITTLE
5204 template
5205 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5206 #endif
5207
5208 #ifdef HAVE_TARGET_32_BIG
5209 template
5210 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5211 #endif
5212
5213 #ifdef HAVE_TARGET_64_LITTLE
5214 template
5215 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5216 #endif
5217
5218 #ifdef HAVE_TARGET_64_BIG
5219 template
5220 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5221 #endif
5222
5223 #ifdef HAVE_TARGET_32_LITTLE
5224 template
5225 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5226 #endif
5227
5228 #ifdef HAVE_TARGET_32_BIG
5229 template
5230 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5231 #endif
5232
5233 #ifdef HAVE_TARGET_64_LITTLE
5234 template
5235 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5236 #endif
5237
5238 #ifdef HAVE_TARGET_64_BIG
5239 template
5240 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5241 #endif
5242
5243 #ifdef HAVE_TARGET_32_LITTLE
5244 template
5245 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5246 #endif
5247
5248 #ifdef HAVE_TARGET_32_BIG
5249 template
5250 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5251 #endif
5252
5253 #ifdef HAVE_TARGET_64_LITTLE
5254 template
5255 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5256 #endif
5257
5258 #ifdef HAVE_TARGET_64_BIG
5259 template
5260 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_LITTLE
5264 template
5265 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_32_BIG
5269 template
5270 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_LITTLE
5274 template
5275 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_64_BIG
5279 template
5280 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_32_LITTLE
5284 template
5285 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_32_BIG
5289 template
5290 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_LITTLE
5294 template
5295 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_64_BIG
5299 template
5300 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_LITTLE
5304 template
5305 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_32_BIG
5309 template
5310 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_LITTLE
5314 template
5315 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_64_BIG
5319 template
5320 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_32_LITTLE
5324 template
5325 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_32_BIG
5329 template
5330 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_64_LITTLE
5334 template
5335 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_64_BIG
5339 template
5340 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_32_LITTLE
5344 template
5345 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_32_BIG
5349 template
5350 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_64_LITTLE
5354 template
5355 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_64_BIG
5359 template
5360 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_LITTLE
5364 template
5365 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_32_BIG
5369 template
5370 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_LITTLE
5374 template
5375 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_64_BIG
5379 template
5380 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_LITTLE
5384 template
5385 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_32_BIG
5389 template
5390 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_LITTLE
5394 template
5395 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_64_BIG
5399 template
5400 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_LITTLE
5404 template
5405 class Output_data_group<32, false>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_32_BIG
5409 template
5410 class Output_data_group<32, true>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_LITTLE
5414 template
5415 class Output_data_group<64, false>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_64_BIG
5419 template
5420 class Output_data_group<64, true>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_LITTLE
5424 template
5425 class Output_data_got<32, false>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_32_BIG
5429 template
5430 class Output_data_got<32, true>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_LITTLE
5434 template
5435 class Output_data_got<64, false>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_64_BIG
5439 template
5440 class Output_data_got<64, true>;
5441 #endif
5442
5443 } // End namespace gold.