[GOLD] Output_data_got tidy
[binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <algorithm>
27 #include <list>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "mapfile.h"
32 #include "layout.h"
33 #include "reloc-types.h"
34
35 namespace gold
36 {
37
38 class General_options;
39 class Object;
40 class Symbol;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // This class represents the output file.
53
54 class Output_file
55 {
56 public:
57 Output_file(const char* name);
58
59 // Indicate that this is a temporary file which should not be
60 // output.
61 void
62 set_is_temporary()
63 { this->is_temporary_ = true; }
64
65 // Try to open an existing file. Returns false if the file doesn't
66 // exist, has a size of 0 or can't be mmaped. This method is
67 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
68 // that file as the base for incremental linking.
69 bool
70 open_base_file(const char* base_name, bool writable);
71
72 // Open the output file. FILE_SIZE is the final size of the file.
73 // If the file already exists, it is deleted/truncated. This method
74 // is thread-unsafe.
75 void
76 open(off_t file_size);
77
78 // Resize the output file. This method is thread-unsafe.
79 void
80 resize(off_t file_size);
81
82 // Close the output file (flushing all buffered data) and make sure
83 // there are no errors. This method is thread-unsafe.
84 void
85 close();
86
87 // Return the size of this file.
88 off_t
89 filesize()
90 { return this->file_size_; }
91
92 // Return the name of this file.
93 const char*
94 filename()
95 { return this->name_; }
96
97 // We currently always use mmap which makes the view handling quite
98 // simple. In the future we may support other approaches.
99
100 // Write data to the output file.
101 void
102 write(off_t offset, const void* data, size_t len)
103 { memcpy(this->base_ + offset, data, len); }
104
105 // Get a buffer to use to write to the file, given the offset into
106 // the file and the size.
107 unsigned char*
108 get_output_view(off_t start, size_t size)
109 {
110 gold_assert(start >= 0
111 && start + static_cast<off_t>(size) <= this->file_size_);
112 return this->base_ + start;
113 }
114
115 // VIEW must have been returned by get_output_view. Write the
116 // buffer to the file, passing in the offset and the size.
117 void
118 write_output_view(off_t, size_t, unsigned char*)
119 { }
120
121 // Get a read/write buffer. This is used when we want to write part
122 // of the file, read it in, and write it again.
123 unsigned char*
124 get_input_output_view(off_t start, size_t size)
125 { return this->get_output_view(start, size); }
126
127 // Write a read/write buffer back to the file.
128 void
129 write_input_output_view(off_t, size_t, unsigned char*)
130 { }
131
132 // Get a read buffer. This is used when we just want to read part
133 // of the file back it in.
134 const unsigned char*
135 get_input_view(off_t start, size_t size)
136 { return this->get_output_view(start, size); }
137
138 // Release a read bfufer.
139 void
140 free_input_view(off_t, size_t, const unsigned char*)
141 { }
142
143 private:
144 // Map the file into memory or, if that fails, allocate anonymous
145 // memory.
146 void
147 map();
148
149 // Allocate anonymous memory for the file.
150 bool
151 map_anonymous();
152
153 // Map the file into memory.
154 bool
155 map_no_anonymous(bool);
156
157 // Unmap the file from memory (and flush to disk buffers).
158 void
159 unmap();
160
161 // File name.
162 const char* name_;
163 // File descriptor.
164 int o_;
165 // File size.
166 off_t file_size_;
167 // Base of file mapped into memory.
168 unsigned char* base_;
169 // True iff base_ points to a memory buffer rather than an output file.
170 bool map_is_anonymous_;
171 // True if base_ was allocated using new rather than mmap.
172 bool map_is_allocated_;
173 // True if this is a temporary file which should not be output.
174 bool is_temporary_;
175 };
176
177 // An abtract class for data which has to go into the output file.
178
179 class Output_data
180 {
181 public:
182 explicit Output_data()
183 : address_(0), data_size_(0), offset_(-1),
184 is_address_valid_(false), is_data_size_valid_(false),
185 is_offset_valid_(false), is_data_size_fixed_(false),
186 has_dynamic_reloc_(false)
187 { }
188
189 virtual
190 ~Output_data();
191
192 // Return the address. For allocated sections, this is only valid
193 // after Layout::finalize is finished.
194 uint64_t
195 address() const
196 {
197 gold_assert(this->is_address_valid_);
198 return this->address_;
199 }
200
201 // Return the size of the data. For allocated sections, this must
202 // be valid after Layout::finalize calls set_address, but need not
203 // be valid before then.
204 off_t
205 data_size() const
206 {
207 gold_assert(this->is_data_size_valid_);
208 return this->data_size_;
209 }
210
211 // Get the current data size.
212 off_t
213 current_data_size() const
214 { return this->current_data_size_for_child(); }
215
216 // Return true if data size is fixed.
217 bool
218 is_data_size_fixed() const
219 { return this->is_data_size_fixed_; }
220
221 // Return the file offset. This is only valid after
222 // Layout::finalize is finished. For some non-allocated sections,
223 // it may not be valid until near the end of the link.
224 off_t
225 offset() const
226 {
227 gold_assert(this->is_offset_valid_);
228 return this->offset_;
229 }
230
231 // Reset the address, file offset and data size. This essentially
232 // disables the sanity testing about duplicate and unknown settings.
233 void
234 reset_address_and_file_offset()
235 {
236 this->is_address_valid_ = false;
237 this->is_offset_valid_ = false;
238 if (!this->is_data_size_fixed_)
239 this->is_data_size_valid_ = false;
240 this->do_reset_address_and_file_offset();
241 }
242
243 // As above, but just for data size.
244 void
245 reset_data_size()
246 {
247 if (!this->is_data_size_fixed_)
248 this->is_data_size_valid_ = false;
249 }
250
251 // Return true if address and file offset already have reset values. In
252 // other words, calling reset_address_and_file_offset will not change them.
253 bool
254 address_and_file_offset_have_reset_values() const
255 { return this->do_address_and_file_offset_have_reset_values(); }
256
257 // Return the required alignment.
258 uint64_t
259 addralign() const
260 { return this->do_addralign(); }
261
262 // Return whether this has a load address.
263 bool
264 has_load_address() const
265 { return this->do_has_load_address(); }
266
267 // Return the load address.
268 uint64_t
269 load_address() const
270 { return this->do_load_address(); }
271
272 // Return whether this is an Output_section.
273 bool
274 is_section() const
275 { return this->do_is_section(); }
276
277 // Return whether this is an Output_section of the specified type.
278 bool
279 is_section_type(elfcpp::Elf_Word stt) const
280 { return this->do_is_section_type(stt); }
281
282 // Return whether this is an Output_section with the specified flag
283 // set.
284 bool
285 is_section_flag_set(elfcpp::Elf_Xword shf) const
286 { return this->do_is_section_flag_set(shf); }
287
288 // Return the output section that this goes in, if there is one.
289 Output_section*
290 output_section()
291 { return this->do_output_section(); }
292
293 const Output_section*
294 output_section() const
295 { return this->do_output_section(); }
296
297 // Return the output section index, if there is an output section.
298 unsigned int
299 out_shndx() const
300 { return this->do_out_shndx(); }
301
302 // Set the output section index, if this is an output section.
303 void
304 set_out_shndx(unsigned int shndx)
305 { this->do_set_out_shndx(shndx); }
306
307 // Set the address and file offset of this data, and finalize the
308 // size of the data. This is called during Layout::finalize for
309 // allocated sections.
310 void
311 set_address_and_file_offset(uint64_t addr, off_t off)
312 {
313 this->set_address(addr);
314 this->set_file_offset(off);
315 this->finalize_data_size();
316 }
317
318 // Set the address.
319 void
320 set_address(uint64_t addr)
321 {
322 gold_assert(!this->is_address_valid_);
323 this->address_ = addr;
324 this->is_address_valid_ = true;
325 }
326
327 // Set the file offset.
328 void
329 set_file_offset(off_t off)
330 {
331 gold_assert(!this->is_offset_valid_);
332 this->offset_ = off;
333 this->is_offset_valid_ = true;
334 }
335
336 // Update the data size without finalizing it.
337 void
338 pre_finalize_data_size()
339 {
340 if (!this->is_data_size_valid_)
341 {
342 // Tell the child class to update the data size.
343 this->update_data_size();
344 }
345 }
346
347 // Finalize the data size.
348 void
349 finalize_data_size()
350 {
351 if (!this->is_data_size_valid_)
352 {
353 // Tell the child class to set the data size.
354 this->set_final_data_size();
355 gold_assert(this->is_data_size_valid_);
356 }
357 }
358
359 // Set the TLS offset. Called only for SHT_TLS sections.
360 void
361 set_tls_offset(uint64_t tls_base)
362 { this->do_set_tls_offset(tls_base); }
363
364 // Return the TLS offset, relative to the base of the TLS segment.
365 // Valid only for SHT_TLS sections.
366 uint64_t
367 tls_offset() const
368 { return this->do_tls_offset(); }
369
370 // Write the data to the output file. This is called after
371 // Layout::finalize is complete.
372 void
373 write(Output_file* file)
374 { this->do_write(file); }
375
376 // This is called by Layout::finalize to note that the sizes of
377 // allocated sections must now be fixed.
378 static void
379 layout_complete()
380 { Output_data::allocated_sizes_are_fixed = true; }
381
382 // Used to check that layout has been done.
383 static bool
384 is_layout_complete()
385 { return Output_data::allocated_sizes_are_fixed; }
386
387 // Note that a dynamic reloc has been applied to this data.
388 void
389 add_dynamic_reloc()
390 { this->has_dynamic_reloc_ = true; }
391
392 // Return whether a dynamic reloc has been applied.
393 bool
394 has_dynamic_reloc() const
395 { return this->has_dynamic_reloc_; }
396
397 // Whether the address is valid.
398 bool
399 is_address_valid() const
400 { return this->is_address_valid_; }
401
402 // Whether the file offset is valid.
403 bool
404 is_offset_valid() const
405 { return this->is_offset_valid_; }
406
407 // Whether the data size is valid.
408 bool
409 is_data_size_valid() const
410 { return this->is_data_size_valid_; }
411
412 // Print information to the map file.
413 void
414 print_to_mapfile(Mapfile* mapfile) const
415 { return this->do_print_to_mapfile(mapfile); }
416
417 protected:
418 // Functions that child classes may or in some cases must implement.
419
420 // Write the data to the output file.
421 virtual void
422 do_write(Output_file*) = 0;
423
424 // Return the required alignment.
425 virtual uint64_t
426 do_addralign() const = 0;
427
428 // Return whether this has a load address.
429 virtual bool
430 do_has_load_address() const
431 { return false; }
432
433 // Return the load address.
434 virtual uint64_t
435 do_load_address() const
436 { gold_unreachable(); }
437
438 // Return whether this is an Output_section.
439 virtual bool
440 do_is_section() const
441 { return false; }
442
443 // Return whether this is an Output_section of the specified type.
444 // This only needs to be implement by Output_section.
445 virtual bool
446 do_is_section_type(elfcpp::Elf_Word) const
447 { return false; }
448
449 // Return whether this is an Output_section with the specific flag
450 // set. This only needs to be implemented by Output_section.
451 virtual bool
452 do_is_section_flag_set(elfcpp::Elf_Xword) const
453 { return false; }
454
455 // Return the output section, if there is one.
456 virtual Output_section*
457 do_output_section()
458 { return NULL; }
459
460 virtual const Output_section*
461 do_output_section() const
462 { return NULL; }
463
464 // Return the output section index, if there is an output section.
465 virtual unsigned int
466 do_out_shndx() const
467 { gold_unreachable(); }
468
469 // Set the output section index, if this is an output section.
470 virtual void
471 do_set_out_shndx(unsigned int)
472 { gold_unreachable(); }
473
474 // This is a hook for derived classes to set the preliminary data size.
475 // This is called by pre_finalize_data_size, normally called during
476 // Layout::finalize, before the section address is set, and is used
477 // during an incremental update, when we need to know the size of a
478 // section before allocating space in the output file. For classes
479 // where the current data size is up to date, this default version of
480 // the method can be inherited.
481 virtual void
482 update_data_size()
483 { }
484
485 // This is a hook for derived classes to set the data size. This is
486 // called by finalize_data_size, normally called during
487 // Layout::finalize, when the section address is set.
488 virtual void
489 set_final_data_size()
490 { gold_unreachable(); }
491
492 // A hook for resetting the address and file offset.
493 virtual void
494 do_reset_address_and_file_offset()
495 { }
496
497 // Return true if address and file offset already have reset values. In
498 // other words, calling reset_address_and_file_offset will not change them.
499 // A child class overriding do_reset_address_and_file_offset may need to
500 // also override this.
501 virtual bool
502 do_address_and_file_offset_have_reset_values() const
503 { return !this->is_address_valid_ && !this->is_offset_valid_; }
504
505 // Set the TLS offset. Called only for SHT_TLS sections.
506 virtual void
507 do_set_tls_offset(uint64_t)
508 { gold_unreachable(); }
509
510 // Return the TLS offset, relative to the base of the TLS segment.
511 // Valid only for SHT_TLS sections.
512 virtual uint64_t
513 do_tls_offset() const
514 { gold_unreachable(); }
515
516 // Print to the map file. This only needs to be implemented by
517 // classes which may appear in a PT_LOAD segment.
518 virtual void
519 do_print_to_mapfile(Mapfile*) const
520 { gold_unreachable(); }
521
522 // Functions that child classes may call.
523
524 // Reset the address. The Output_section class needs this when an
525 // SHF_ALLOC input section is added to an output section which was
526 // formerly not SHF_ALLOC.
527 void
528 mark_address_invalid()
529 { this->is_address_valid_ = false; }
530
531 // Set the size of the data.
532 void
533 set_data_size(off_t data_size)
534 {
535 gold_assert(!this->is_data_size_valid_
536 && !this->is_data_size_fixed_);
537 this->data_size_ = data_size;
538 this->is_data_size_valid_ = true;
539 }
540
541 // Fix the data size. Once it is fixed, it cannot be changed
542 // and the data size remains always valid.
543 void
544 fix_data_size()
545 {
546 gold_assert(this->is_data_size_valid_);
547 this->is_data_size_fixed_ = true;
548 }
549
550 // Get the current data size--this is for the convenience of
551 // sections which build up their size over time.
552 off_t
553 current_data_size_for_child() const
554 { return this->data_size_; }
555
556 // Set the current data size--this is for the convenience of
557 // sections which build up their size over time.
558 void
559 set_current_data_size_for_child(off_t data_size)
560 {
561 gold_assert(!this->is_data_size_valid_);
562 this->data_size_ = data_size;
563 }
564
565 // Return default alignment for the target size.
566 static uint64_t
567 default_alignment();
568
569 // Return default alignment for a specified size--32 or 64.
570 static uint64_t
571 default_alignment_for_size(int size);
572
573 private:
574 Output_data(const Output_data&);
575 Output_data& operator=(const Output_data&);
576
577 // This is used for verification, to make sure that we don't try to
578 // change any sizes of allocated sections after we set the section
579 // addresses.
580 static bool allocated_sizes_are_fixed;
581
582 // Memory address in output file.
583 uint64_t address_;
584 // Size of data in output file.
585 off_t data_size_;
586 // File offset of contents in output file.
587 off_t offset_;
588 // Whether address_ is valid.
589 bool is_address_valid_ : 1;
590 // Whether data_size_ is valid.
591 bool is_data_size_valid_ : 1;
592 // Whether offset_ is valid.
593 bool is_offset_valid_ : 1;
594 // Whether data size is fixed.
595 bool is_data_size_fixed_ : 1;
596 // Whether any dynamic relocs have been applied to this section.
597 bool has_dynamic_reloc_ : 1;
598 };
599
600 // Output the section headers.
601
602 class Output_section_headers : public Output_data
603 {
604 public:
605 Output_section_headers(const Layout*,
606 const Layout::Segment_list*,
607 const Layout::Section_list*,
608 const Layout::Section_list*,
609 const Stringpool*,
610 const Output_section*);
611
612 protected:
613 // Write the data to the file.
614 void
615 do_write(Output_file*);
616
617 // Return the required alignment.
618 uint64_t
619 do_addralign() const
620 { return Output_data::default_alignment(); }
621
622 // Write to a map file.
623 void
624 do_print_to_mapfile(Mapfile* mapfile) const
625 { mapfile->print_output_data(this, _("** section headers")); }
626
627 // Update the data size.
628 void
629 update_data_size()
630 { this->set_data_size(this->do_size()); }
631
632 // Set final data size.
633 void
634 set_final_data_size()
635 { this->set_data_size(this->do_size()); }
636
637 private:
638 // Write the data to the file with the right size and endianness.
639 template<int size, bool big_endian>
640 void
641 do_sized_write(Output_file*);
642
643 // Compute data size.
644 off_t
645 do_size() const;
646
647 const Layout* layout_;
648 const Layout::Segment_list* segment_list_;
649 const Layout::Section_list* section_list_;
650 const Layout::Section_list* unattached_section_list_;
651 const Stringpool* secnamepool_;
652 const Output_section* shstrtab_section_;
653 };
654
655 // Output the segment headers.
656
657 class Output_segment_headers : public Output_data
658 {
659 public:
660 Output_segment_headers(const Layout::Segment_list& segment_list);
661
662 protected:
663 // Write the data to the file.
664 void
665 do_write(Output_file*);
666
667 // Return the required alignment.
668 uint64_t
669 do_addralign() const
670 { return Output_data::default_alignment(); }
671
672 // Write to a map file.
673 void
674 do_print_to_mapfile(Mapfile* mapfile) const
675 { mapfile->print_output_data(this, _("** segment headers")); }
676
677 // Set final data size.
678 void
679 set_final_data_size()
680 { this->set_data_size(this->do_size()); }
681
682 private:
683 // Write the data to the file with the right size and endianness.
684 template<int size, bool big_endian>
685 void
686 do_sized_write(Output_file*);
687
688 // Compute the current size.
689 off_t
690 do_size() const;
691
692 const Layout::Segment_list& segment_list_;
693 };
694
695 // Output the ELF file header.
696
697 class Output_file_header : public Output_data
698 {
699 public:
700 Output_file_header(Target*,
701 const Symbol_table*,
702 const Output_segment_headers*);
703
704 // Add information about the section headers. We lay out the ELF
705 // file header before we create the section headers.
706 void set_section_info(const Output_section_headers*,
707 const Output_section* shstrtab);
708
709 protected:
710 // Write the data to the file.
711 void
712 do_write(Output_file*);
713
714 // Return the required alignment.
715 uint64_t
716 do_addralign() const
717 { return Output_data::default_alignment(); }
718
719 // Write to a map file.
720 void
721 do_print_to_mapfile(Mapfile* mapfile) const
722 { mapfile->print_output_data(this, _("** file header")); }
723
724 // Set final data size.
725 void
726 set_final_data_size(void)
727 { this->set_data_size(this->do_size()); }
728
729 private:
730 // Write the data to the file with the right size and endianness.
731 template<int size, bool big_endian>
732 void
733 do_sized_write(Output_file*);
734
735 // Return the value to use for the entry address.
736 template<int size>
737 typename elfcpp::Elf_types<size>::Elf_Addr
738 entry();
739
740 // Compute the current data size.
741 off_t
742 do_size() const;
743
744 Target* target_;
745 const Symbol_table* symtab_;
746 const Output_segment_headers* segment_header_;
747 const Output_section_headers* section_header_;
748 const Output_section* shstrtab_;
749 };
750
751 // Output sections are mainly comprised of input sections. However,
752 // there are cases where we have data to write out which is not in an
753 // input section. Output_section_data is used in such cases. This is
754 // an abstract base class.
755
756 class Output_section_data : public Output_data
757 {
758 public:
759 Output_section_data(off_t data_size, uint64_t addralign,
760 bool is_data_size_fixed)
761 : Output_data(), output_section_(NULL), addralign_(addralign)
762 {
763 this->set_data_size(data_size);
764 if (is_data_size_fixed)
765 this->fix_data_size();
766 }
767
768 Output_section_data(uint64_t addralign)
769 : Output_data(), output_section_(NULL), addralign_(addralign)
770 { }
771
772 // Return the output section.
773 Output_section*
774 output_section()
775 { return this->output_section_; }
776
777 const Output_section*
778 output_section() const
779 { return this->output_section_; }
780
781 // Record the output section.
782 void
783 set_output_section(Output_section* os);
784
785 // Add an input section, for SHF_MERGE sections. This returns true
786 // if the section was handled.
787 bool
788 add_input_section(Relobj* object, unsigned int shndx)
789 { return this->do_add_input_section(object, shndx); }
790
791 // Given an input OBJECT, an input section index SHNDX within that
792 // object, and an OFFSET relative to the start of that input
793 // section, return whether or not the corresponding offset within
794 // the output section is known. If this function returns true, it
795 // sets *POUTPUT to the output offset. The value -1 indicates that
796 // this input offset is being discarded.
797 bool
798 output_offset(const Relobj* object, unsigned int shndx,
799 section_offset_type offset,
800 section_offset_type* poutput) const
801 { return this->do_output_offset(object, shndx, offset, poutput); }
802
803 // Write the contents to a buffer. This is used for sections which
804 // require postprocessing, such as compression.
805 void
806 write_to_buffer(unsigned char* buffer)
807 { this->do_write_to_buffer(buffer); }
808
809 // Print merge stats to stderr. This should only be called for
810 // SHF_MERGE sections.
811 void
812 print_merge_stats(const char* section_name)
813 { this->do_print_merge_stats(section_name); }
814
815 protected:
816 // The child class must implement do_write.
817
818 // The child class may implement specific adjustments to the output
819 // section.
820 virtual void
821 do_adjust_output_section(Output_section*)
822 { }
823
824 // May be implemented by child class. Return true if the section
825 // was handled.
826 virtual bool
827 do_add_input_section(Relobj*, unsigned int)
828 { gold_unreachable(); }
829
830 // The child class may implement output_offset.
831 virtual bool
832 do_output_offset(const Relobj*, unsigned int, section_offset_type,
833 section_offset_type*) const
834 { return false; }
835
836 // The child class may implement write_to_buffer. Most child
837 // classes can not appear in a compressed section, and they do not
838 // implement this.
839 virtual void
840 do_write_to_buffer(unsigned char*)
841 { gold_unreachable(); }
842
843 // Print merge statistics.
844 virtual void
845 do_print_merge_stats(const char*)
846 { gold_unreachable(); }
847
848 // Return the required alignment.
849 uint64_t
850 do_addralign() const
851 { return this->addralign_; }
852
853 // Return the output section.
854 Output_section*
855 do_output_section()
856 { return this->output_section_; }
857
858 const Output_section*
859 do_output_section() const
860 { return this->output_section_; }
861
862 // Return the section index of the output section.
863 unsigned int
864 do_out_shndx() const;
865
866 // Set the alignment.
867 void
868 set_addralign(uint64_t addralign);
869
870 private:
871 // The output section for this section.
872 Output_section* output_section_;
873 // The required alignment.
874 uint64_t addralign_;
875 };
876
877 // Some Output_section_data classes build up their data step by step,
878 // rather than all at once. This class provides an interface for
879 // them.
880
881 class Output_section_data_build : public Output_section_data
882 {
883 public:
884 Output_section_data_build(uint64_t addralign)
885 : Output_section_data(addralign)
886 { }
887
888 Output_section_data_build(off_t data_size, uint64_t addralign)
889 : Output_section_data(data_size, addralign, false)
890 { }
891
892 // Set the current data size.
893 void
894 set_current_data_size(off_t data_size)
895 { this->set_current_data_size_for_child(data_size); }
896
897 protected:
898 // Set the final data size.
899 virtual void
900 set_final_data_size()
901 { this->set_data_size(this->current_data_size_for_child()); }
902 };
903
904 // A simple case of Output_data in which we have constant data to
905 // output.
906
907 class Output_data_const : public Output_section_data
908 {
909 public:
910 Output_data_const(const std::string& data, uint64_t addralign)
911 : Output_section_data(data.size(), addralign, true), data_(data)
912 { }
913
914 Output_data_const(const char* p, off_t len, uint64_t addralign)
915 : Output_section_data(len, addralign, true), data_(p, len)
916 { }
917
918 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
919 : Output_section_data(len, addralign, true),
920 data_(reinterpret_cast<const char*>(p), len)
921 { }
922
923 protected:
924 // Write the data to the output file.
925 void
926 do_write(Output_file*);
927
928 // Write the data to a buffer.
929 void
930 do_write_to_buffer(unsigned char* buffer)
931 { memcpy(buffer, this->data_.data(), this->data_.size()); }
932
933 // Write to a map file.
934 void
935 do_print_to_mapfile(Mapfile* mapfile) const
936 { mapfile->print_output_data(this, _("** fill")); }
937
938 private:
939 std::string data_;
940 };
941
942 // Another version of Output_data with constant data, in which the
943 // buffer is allocated by the caller.
944
945 class Output_data_const_buffer : public Output_section_data
946 {
947 public:
948 Output_data_const_buffer(const unsigned char* p, off_t len,
949 uint64_t addralign, const char* map_name)
950 : Output_section_data(len, addralign, true),
951 p_(p), map_name_(map_name)
952 { }
953
954 protected:
955 // Write the data the output file.
956 void
957 do_write(Output_file*);
958
959 // Write the data to a buffer.
960 void
961 do_write_to_buffer(unsigned char* buffer)
962 { memcpy(buffer, this->p_, this->data_size()); }
963
964 // Write to a map file.
965 void
966 do_print_to_mapfile(Mapfile* mapfile) const
967 { mapfile->print_output_data(this, _(this->map_name_)); }
968
969 private:
970 // The data to output.
971 const unsigned char* p_;
972 // Name to use in a map file. Maps are a rarely used feature, but
973 // the space usage is minor as aren't very many of these objects.
974 const char* map_name_;
975 };
976
977 // A place holder for a fixed amount of data written out via some
978 // other mechanism.
979
980 class Output_data_fixed_space : public Output_section_data
981 {
982 public:
983 Output_data_fixed_space(off_t data_size, uint64_t addralign,
984 const char* map_name)
985 : Output_section_data(data_size, addralign, true),
986 map_name_(map_name)
987 { }
988
989 protected:
990 // Write out the data--the actual data must be written out
991 // elsewhere.
992 void
993 do_write(Output_file*)
994 { }
995
996 // Write to a map file.
997 void
998 do_print_to_mapfile(Mapfile* mapfile) const
999 { mapfile->print_output_data(this, _(this->map_name_)); }
1000
1001 private:
1002 // Name to use in a map file. Maps are a rarely used feature, but
1003 // the space usage is minor as aren't very many of these objects.
1004 const char* map_name_;
1005 };
1006
1007 // A place holder for variable sized data written out via some other
1008 // mechanism.
1009
1010 class Output_data_space : public Output_section_data_build
1011 {
1012 public:
1013 explicit Output_data_space(uint64_t addralign, const char* map_name)
1014 : Output_section_data_build(addralign),
1015 map_name_(map_name)
1016 { }
1017
1018 explicit Output_data_space(off_t data_size, uint64_t addralign,
1019 const char* map_name)
1020 : Output_section_data_build(data_size, addralign),
1021 map_name_(map_name)
1022 { }
1023
1024 // Set the alignment.
1025 void
1026 set_space_alignment(uint64_t align)
1027 { this->set_addralign(align); }
1028
1029 protected:
1030 // Write out the data--the actual data must be written out
1031 // elsewhere.
1032 void
1033 do_write(Output_file*)
1034 { }
1035
1036 // Write to a map file.
1037 void
1038 do_print_to_mapfile(Mapfile* mapfile) const
1039 { mapfile->print_output_data(this, _(this->map_name_)); }
1040
1041 private:
1042 // Name to use in a map file. Maps are a rarely used feature, but
1043 // the space usage is minor as aren't very many of these objects.
1044 const char* map_name_;
1045 };
1046
1047 // Fill fixed space with zeroes. This is just like
1048 // Output_data_fixed_space, except that the map name is known.
1049
1050 class Output_data_zero_fill : public Output_section_data
1051 {
1052 public:
1053 Output_data_zero_fill(off_t data_size, uint64_t addralign)
1054 : Output_section_data(data_size, addralign, true)
1055 { }
1056
1057 protected:
1058 // There is no data to write out.
1059 void
1060 do_write(Output_file*)
1061 { }
1062
1063 // Write to a map file.
1064 void
1065 do_print_to_mapfile(Mapfile* mapfile) const
1066 { mapfile->print_output_data(this, "** zero fill"); }
1067 };
1068
1069 // A string table which goes into an output section.
1070
1071 class Output_data_strtab : public Output_section_data
1072 {
1073 public:
1074 Output_data_strtab(Stringpool* strtab)
1075 : Output_section_data(1), strtab_(strtab)
1076 { }
1077
1078 protected:
1079 // This is called to update the section size prior to assigning
1080 // the address and file offset.
1081 void
1082 update_data_size()
1083 { this->set_final_data_size(); }
1084
1085 // This is called to set the address and file offset. Here we make
1086 // sure that the Stringpool is finalized.
1087 void
1088 set_final_data_size();
1089
1090 // Write out the data.
1091 void
1092 do_write(Output_file*);
1093
1094 // Write the data to a buffer.
1095 void
1096 do_write_to_buffer(unsigned char* buffer)
1097 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
1098
1099 // Write to a map file.
1100 void
1101 do_print_to_mapfile(Mapfile* mapfile) const
1102 { mapfile->print_output_data(this, _("** string table")); }
1103
1104 private:
1105 Stringpool* strtab_;
1106 };
1107
1108 // This POD class is used to represent a single reloc in the output
1109 // file. This could be a private class within Output_data_reloc, but
1110 // the templatization is complex enough that I broke it out into a
1111 // separate class. The class is templatized on either elfcpp::SHT_REL
1112 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1113 // relocation or an ordinary relocation.
1114
1115 // A relocation can be against a global symbol, a local symbol, a
1116 // local section symbol, an output section, or the undefined symbol at
1117 // index 0. We represent the latter by using a NULL global symbol.
1118
1119 template<int sh_type, bool dynamic, int size, bool big_endian>
1120 class Output_reloc;
1121
1122 template<bool dynamic, int size, bool big_endian>
1123 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1124 {
1125 public:
1126 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1127 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1128
1129 static const Address invalid_address = static_cast<Address>(0) - 1;
1130
1131 // An uninitialized entry. We need this because we want to put
1132 // instances of this class into an STL container.
1133 Output_reloc()
1134 : local_sym_index_(INVALID_CODE)
1135 { }
1136
1137 // We have a bunch of different constructors. They come in pairs
1138 // depending on how the address of the relocation is specified. It
1139 // can either be an offset in an Output_data or an offset in an
1140 // input section.
1141
1142 // A reloc against a global symbol.
1143
1144 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1145 Address address, bool is_relative, bool is_symbolless,
1146 bool use_plt_offset);
1147
1148 Output_reloc(Symbol* gsym, unsigned int type,
1149 Sized_relobj<size, big_endian>* relobj,
1150 unsigned int shndx, Address address, bool is_relative,
1151 bool is_symbolless, bool use_plt_offset);
1152
1153 // A reloc against a local symbol or local section symbol.
1154
1155 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1156 unsigned int local_sym_index, unsigned int type,
1157 Output_data* od, Address address, bool is_relative,
1158 bool is_symbolless, bool is_section_symbol,
1159 bool use_plt_offset);
1160
1161 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1162 unsigned int local_sym_index, unsigned int type,
1163 unsigned int shndx, Address address, bool is_relative,
1164 bool is_symbolless, bool is_section_symbol,
1165 bool use_plt_offset);
1166
1167 // A reloc against the STT_SECTION symbol of an output section.
1168
1169 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1170 Address address, bool is_relative);
1171
1172 Output_reloc(Output_section* os, unsigned int type,
1173 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1174 Address address, bool is_relative);
1175
1176 // An absolute or relative relocation with no symbol.
1177
1178 Output_reloc(unsigned int type, Output_data* od, Address address,
1179 bool is_relative);
1180
1181 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1182 unsigned int shndx, Address address, bool is_relative);
1183
1184 // A target specific relocation. The target will be called to get
1185 // the symbol index, passing ARG. The type and offset will be set
1186 // as for other relocation types.
1187
1188 Output_reloc(unsigned int type, void* arg, Output_data* od,
1189 Address address);
1190
1191 Output_reloc(unsigned int type, void* arg,
1192 Sized_relobj<size, big_endian>* relobj,
1193 unsigned int shndx, Address address);
1194
1195 // Return the reloc type.
1196 unsigned int
1197 type() const
1198 { return this->type_; }
1199
1200 // Return whether this is a RELATIVE relocation.
1201 bool
1202 is_relative() const
1203 { return this->is_relative_; }
1204
1205 // Return whether this is a relocation which should not use
1206 // a symbol, but which obtains its addend from a symbol.
1207 bool
1208 is_symbolless() const
1209 { return this->is_symbolless_; }
1210
1211 // Return whether this is against a local section symbol.
1212 bool
1213 is_local_section_symbol() const
1214 {
1215 return (this->local_sym_index_ != GSYM_CODE
1216 && this->local_sym_index_ != SECTION_CODE
1217 && this->local_sym_index_ != INVALID_CODE
1218 && this->local_sym_index_ != TARGET_CODE
1219 && this->is_section_symbol_);
1220 }
1221
1222 // Return whether this is a target specific relocation.
1223 bool
1224 is_target_specific() const
1225 { return this->local_sym_index_ == TARGET_CODE; }
1226
1227 // Return the argument to pass to the target for a target specific
1228 // relocation.
1229 void*
1230 target_arg() const
1231 {
1232 gold_assert(this->local_sym_index_ == TARGET_CODE);
1233 return this->u1_.arg;
1234 }
1235
1236 // For a local section symbol, return the offset of the input
1237 // section within the output section. ADDEND is the addend being
1238 // applied to the input section.
1239 Address
1240 local_section_offset(Addend addend) const;
1241
1242 // Get the value of the symbol referred to by a Rel relocation when
1243 // we are adding the given ADDEND.
1244 Address
1245 symbol_value(Addend addend) const;
1246
1247 // If this relocation is against an input section, return the
1248 // relocatable object containing the input section.
1249 Sized_relobj<size, big_endian>*
1250 get_relobj() const
1251 {
1252 if (this->shndx_ == INVALID_CODE)
1253 return NULL;
1254 return this->u2_.relobj;
1255 }
1256
1257 // Write the reloc entry to an output view.
1258 void
1259 write(unsigned char* pov) const;
1260
1261 // Write the offset and info fields to Write_rel.
1262 template<typename Write_rel>
1263 void write_rel(Write_rel*) const;
1264
1265 // This is used when sorting dynamic relocs. Return -1 to sort this
1266 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1267 int
1268 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1269 const;
1270
1271 // Return whether this reloc should be sorted before the argument
1272 // when sorting dynamic relocs.
1273 bool
1274 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1275 r2) const
1276 { return this->compare(r2) < 0; }
1277
1278 // Return the symbol index.
1279 unsigned int
1280 get_symbol_index() const;
1281
1282 // Return the output address.
1283 Address
1284 get_address() const;
1285
1286 private:
1287 // Record that we need a dynamic symbol index.
1288 void
1289 set_needs_dynsym_index();
1290
1291 // Codes for local_sym_index_.
1292 enum
1293 {
1294 // Global symbol.
1295 GSYM_CODE = -1U,
1296 // Output section.
1297 SECTION_CODE = -2U,
1298 // Target specific.
1299 TARGET_CODE = -3U,
1300 // Invalid uninitialized entry.
1301 INVALID_CODE = -4U
1302 };
1303
1304 union
1305 {
1306 // For a local symbol or local section symbol
1307 // (this->local_sym_index_ >= 0), the object. We will never
1308 // generate a relocation against a local symbol in a dynamic
1309 // object; that doesn't make sense. And our callers will always
1310 // be templatized, so we use Sized_relobj here.
1311 Sized_relobj<size, big_endian>* relobj;
1312 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1313 // symbol. If this is NULL, it indicates a relocation against the
1314 // undefined 0 symbol.
1315 Symbol* gsym;
1316 // For a relocation against an output section
1317 // (this->local_sym_index_ == SECTION_CODE), the output section.
1318 Output_section* os;
1319 // For a target specific relocation, an argument to pass to the
1320 // target.
1321 void* arg;
1322 } u1_;
1323 union
1324 {
1325 // If this->shndx_ is not INVALID CODE, the object which holds the
1326 // input section being used to specify the reloc address.
1327 Sized_relobj<size, big_endian>* relobj;
1328 // If this->shndx_ is INVALID_CODE, the output data being used to
1329 // specify the reloc address. This may be NULL if the reloc
1330 // address is absolute.
1331 Output_data* od;
1332 } u2_;
1333 // The address offset within the input section or the Output_data.
1334 Address address_;
1335 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1336 // relocation against an output section, or TARGET_CODE for a target
1337 // specific relocation, or INVALID_CODE for an uninitialized value.
1338 // Otherwise, for a local symbol (this->is_section_symbol_ is
1339 // false), the local symbol index. For a local section symbol
1340 // (this->is_section_symbol_ is true), the section index in the
1341 // input file.
1342 unsigned int local_sym_index_;
1343 // The reloc type--a processor specific code.
1344 unsigned int type_ : 28;
1345 // True if the relocation is a RELATIVE relocation.
1346 bool is_relative_ : 1;
1347 // True if the relocation is one which should not use
1348 // a symbol, but which obtains its addend from a symbol.
1349 bool is_symbolless_ : 1;
1350 // True if the relocation is against a section symbol.
1351 bool is_section_symbol_ : 1;
1352 // True if the addend should be the PLT offset.
1353 // (Used only for RELA, but stored here for space.)
1354 bool use_plt_offset_ : 1;
1355 // If the reloc address is an input section in an object, the
1356 // section index. This is INVALID_CODE if the reloc address is
1357 // specified in some other way.
1358 unsigned int shndx_;
1359 };
1360
1361 // The SHT_RELA version of Output_reloc<>. This is just derived from
1362 // the SHT_REL version of Output_reloc, but it adds an addend.
1363
1364 template<bool dynamic, int size, bool big_endian>
1365 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1366 {
1367 public:
1368 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1369 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1370
1371 // An uninitialized entry.
1372 Output_reloc()
1373 : rel_()
1374 { }
1375
1376 // A reloc against a global symbol.
1377
1378 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1379 Address address, Addend addend, bool is_relative,
1380 bool is_symbolless, bool use_plt_offset)
1381 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1382 use_plt_offset),
1383 addend_(addend)
1384 { }
1385
1386 Output_reloc(Symbol* gsym, unsigned int type,
1387 Sized_relobj<size, big_endian>* relobj,
1388 unsigned int shndx, Address address, Addend addend,
1389 bool is_relative, bool is_symbolless, bool use_plt_offset)
1390 : rel_(gsym, type, relobj, shndx, address, is_relative,
1391 is_symbolless, use_plt_offset), addend_(addend)
1392 { }
1393
1394 // A reloc against a local symbol.
1395
1396 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1397 unsigned int local_sym_index, unsigned int type,
1398 Output_data* od, Address address,
1399 Addend addend, bool is_relative,
1400 bool is_symbolless, bool is_section_symbol,
1401 bool use_plt_offset)
1402 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1403 is_symbolless, is_section_symbol, use_plt_offset),
1404 addend_(addend)
1405 { }
1406
1407 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1408 unsigned int local_sym_index, unsigned int type,
1409 unsigned int shndx, Address address,
1410 Addend addend, bool is_relative,
1411 bool is_symbolless, bool is_section_symbol,
1412 bool use_plt_offset)
1413 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1414 is_symbolless, is_section_symbol, use_plt_offset),
1415 addend_(addend)
1416 { }
1417
1418 // A reloc against the STT_SECTION symbol of an output section.
1419
1420 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1421 Address address, Addend addend, bool is_relative)
1422 : rel_(os, type, od, address, is_relative), addend_(addend)
1423 { }
1424
1425 Output_reloc(Output_section* os, unsigned int type,
1426 Sized_relobj<size, big_endian>* relobj,
1427 unsigned int shndx, Address address, Addend addend,
1428 bool is_relative)
1429 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1430 { }
1431
1432 // An absolute or relative relocation with no symbol.
1433
1434 Output_reloc(unsigned int type, Output_data* od, Address address,
1435 Addend addend, bool is_relative)
1436 : rel_(type, od, address, is_relative), addend_(addend)
1437 { }
1438
1439 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1440 unsigned int shndx, Address address, Addend addend,
1441 bool is_relative)
1442 : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1443 { }
1444
1445 // A target specific relocation. The target will be called to get
1446 // the symbol index and the addend, passing ARG. The type and
1447 // offset will be set as for other relocation types.
1448
1449 Output_reloc(unsigned int type, void* arg, Output_data* od,
1450 Address address, Addend addend)
1451 : rel_(type, arg, od, address), addend_(addend)
1452 { }
1453
1454 Output_reloc(unsigned int type, void* arg,
1455 Sized_relobj<size, big_endian>* relobj,
1456 unsigned int shndx, Address address, Addend addend)
1457 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1458 { }
1459
1460 // Return whether this is a RELATIVE relocation.
1461 bool
1462 is_relative() const
1463 { return this->rel_.is_relative(); }
1464
1465 // Return whether this is a relocation which should not use
1466 // a symbol, but which obtains its addend from a symbol.
1467 bool
1468 is_symbolless() const
1469 { return this->rel_.is_symbolless(); }
1470
1471 // If this relocation is against an input section, return the
1472 // relocatable object containing the input section.
1473 Sized_relobj<size, big_endian>*
1474 get_relobj() const
1475 { return this->rel_.get_relobj(); }
1476
1477 // Write the reloc entry to an output view.
1478 void
1479 write(unsigned char* pov) const;
1480
1481 // Return whether this reloc should be sorted before the argument
1482 // when sorting dynamic relocs.
1483 bool
1484 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1485 r2) const
1486 {
1487 int i = this->rel_.compare(r2.rel_);
1488 if (i < 0)
1489 return true;
1490 else if (i > 0)
1491 return false;
1492 else
1493 return this->addend_ < r2.addend_;
1494 }
1495
1496 private:
1497 // The basic reloc.
1498 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1499 // The addend.
1500 Addend addend_;
1501 };
1502
1503 // Output_data_reloc_generic is a non-template base class for
1504 // Output_data_reloc_base. This gives the generic code a way to hold
1505 // a pointer to a reloc section.
1506
1507 class Output_data_reloc_generic : public Output_section_data_build
1508 {
1509 public:
1510 Output_data_reloc_generic(int size, bool sort_relocs)
1511 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1512 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1513 { }
1514
1515 // Return the number of relative relocs in this section.
1516 size_t
1517 relative_reloc_count() const
1518 { return this->relative_reloc_count_; }
1519
1520 // Whether we should sort the relocs.
1521 bool
1522 sort_relocs() const
1523 { return this->sort_relocs_; }
1524
1525 // Add a reloc of type TYPE against the global symbol GSYM. The
1526 // relocation applies to the data at offset ADDRESS within OD.
1527 virtual void
1528 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1529 uint64_t address, uint64_t addend) = 0;
1530
1531 // Add a reloc of type TYPE against the global symbol GSYM. The
1532 // relocation applies to data at offset ADDRESS within section SHNDX
1533 // of object file RELOBJ. OD is the associated output section.
1534 virtual void
1535 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1536 Relobj* relobj, unsigned int shndx, uint64_t address,
1537 uint64_t addend) = 0;
1538
1539 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1540 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1541 // within OD.
1542 virtual void
1543 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1544 unsigned int type, Output_data* od, uint64_t address,
1545 uint64_t addend) = 0;
1546
1547 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1548 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1549 // within section SHNDX of RELOBJ. OD is the associated output
1550 // section.
1551 virtual void
1552 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1553 unsigned int type, Output_data* od, unsigned int shndx,
1554 uint64_t address, uint64_t addend) = 0;
1555
1556 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1557 // output section OS. The relocation applies to the data at offset
1558 // ADDRESS within OD.
1559 virtual void
1560 add_output_section_generic(Output_section *os, unsigned int type,
1561 Output_data* od, uint64_t address,
1562 uint64_t addend) = 0;
1563
1564 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1565 // output section OS. The relocation applies to the data at offset
1566 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1567 // output section.
1568 virtual void
1569 add_output_section_generic(Output_section* os, unsigned int type,
1570 Output_data* od, Relobj* relobj,
1571 unsigned int shndx, uint64_t address,
1572 uint64_t addend) = 0;
1573
1574 protected:
1575 // Note that we've added another relative reloc.
1576 void
1577 bump_relative_reloc_count()
1578 { ++this->relative_reloc_count_; }
1579
1580 private:
1581 // The number of relative relocs added to this section. This is to
1582 // support DT_RELCOUNT.
1583 size_t relative_reloc_count_;
1584 // Whether to sort the relocations when writing them out, to make
1585 // the dynamic linker more efficient.
1586 bool sort_relocs_;
1587 };
1588
1589 // Output_data_reloc is used to manage a section containing relocs.
1590 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1591 // indicates whether this is a dynamic relocation or a normal
1592 // relocation. Output_data_reloc_base is a base class.
1593 // Output_data_reloc is the real class, which we specialize based on
1594 // the reloc type.
1595
1596 template<int sh_type, bool dynamic, int size, bool big_endian>
1597 class Output_data_reloc_base : public Output_data_reloc_generic
1598 {
1599 public:
1600 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1601 typedef typename Output_reloc_type::Address Address;
1602 static const int reloc_size =
1603 Reloc_types<sh_type, size, big_endian>::reloc_size;
1604
1605 // Construct the section.
1606 Output_data_reloc_base(bool sort_relocs)
1607 : Output_data_reloc_generic(size, sort_relocs)
1608 { }
1609
1610 protected:
1611 // Write out the data.
1612 void
1613 do_write(Output_file*);
1614
1615 // Generic implementation of do_write, allowing a customized
1616 // class for writing the output relocation (e.g., for MIPS-64).
1617 template<class Output_reloc_writer>
1618 void
1619 do_write_generic(Output_file* of)
1620 {
1621 const off_t off = this->offset();
1622 const off_t oview_size = this->data_size();
1623 unsigned char* const oview = of->get_output_view(off, oview_size);
1624
1625 if (this->sort_relocs())
1626 {
1627 gold_assert(dynamic);
1628 std::sort(this->relocs_.begin(), this->relocs_.end(),
1629 Sort_relocs_comparison());
1630 }
1631
1632 unsigned char* pov = oview;
1633 for (typename Relocs::const_iterator p = this->relocs_.begin();
1634 p != this->relocs_.end();
1635 ++p)
1636 {
1637 Output_reloc_writer::write(p, pov);
1638 pov += reloc_size;
1639 }
1640
1641 gold_assert(pov - oview == oview_size);
1642
1643 of->write_output_view(off, oview_size, oview);
1644
1645 // We no longer need the relocation entries.
1646 this->relocs_.clear();
1647 }
1648
1649 // Set the entry size and the link.
1650 void
1651 do_adjust_output_section(Output_section* os);
1652
1653 // Write to a map file.
1654 void
1655 do_print_to_mapfile(Mapfile* mapfile) const
1656 {
1657 mapfile->print_output_data(this,
1658 (dynamic
1659 ? _("** dynamic relocs")
1660 : _("** relocs")));
1661 }
1662
1663 // Add a relocation entry.
1664 void
1665 add(Output_data* od, const Output_reloc_type& reloc)
1666 {
1667 this->relocs_.push_back(reloc);
1668 this->set_current_data_size(this->relocs_.size() * reloc_size);
1669 if (dynamic)
1670 od->add_dynamic_reloc();
1671 if (reloc.is_relative())
1672 this->bump_relative_reloc_count();
1673 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1674 if (relobj != NULL)
1675 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1676 }
1677
1678 private:
1679 typedef std::vector<Output_reloc_type> Relocs;
1680
1681 // The class used to sort the relocations.
1682 struct Sort_relocs_comparison
1683 {
1684 bool
1685 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1686 { return r1.sort_before(r2); }
1687 };
1688
1689 // The relocations in this section.
1690 Relocs relocs_;
1691 };
1692
1693 // The class which callers actually create.
1694
1695 template<int sh_type, bool dynamic, int size, bool big_endian>
1696 class Output_data_reloc;
1697
1698 // The SHT_REL version of Output_data_reloc.
1699
1700 template<bool dynamic, int size, bool big_endian>
1701 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1702 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1703 {
1704 private:
1705 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1706 big_endian> Base;
1707
1708 public:
1709 typedef typename Base::Output_reloc_type Output_reloc_type;
1710 typedef typename Output_reloc_type::Address Address;
1711
1712 Output_data_reloc(bool sr)
1713 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1714 { }
1715
1716 // Add a reloc against a global symbol.
1717
1718 void
1719 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1720 {
1721 this->add(od, Output_reloc_type(gsym, type, od, address,
1722 false, false, false));
1723 }
1724
1725 void
1726 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1727 Sized_relobj<size, big_endian>* relobj,
1728 unsigned int shndx, Address address)
1729 {
1730 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1731 false, false, false));
1732 }
1733
1734 void
1735 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1736 uint64_t address, uint64_t addend)
1737 {
1738 gold_assert(addend == 0);
1739 this->add(od, Output_reloc_type(gsym, type, od,
1740 convert_types<Address, uint64_t>(address),
1741 false, false, false));
1742 }
1743
1744 void
1745 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1746 Relobj* relobj, unsigned int shndx, uint64_t address,
1747 uint64_t addend)
1748 {
1749 gold_assert(addend == 0);
1750 Sized_relobj<size, big_endian>* sized_relobj =
1751 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1752 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1753 convert_types<Address, uint64_t>(address),
1754 false, false, false));
1755 }
1756
1757 // Add a RELATIVE reloc against a global symbol. The final relocation
1758 // will not reference the symbol.
1759
1760 void
1761 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1762 Address address)
1763 {
1764 this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1765 false));
1766 }
1767
1768 void
1769 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1770 Sized_relobj<size, big_endian>* relobj,
1771 unsigned int shndx, Address address)
1772 {
1773 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1774 true, true, false));
1775 }
1776
1777 // Add a global relocation which does not use a symbol for the relocation,
1778 // but which gets its addend from a symbol.
1779
1780 void
1781 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1782 Output_data* od, Address address)
1783 {
1784 this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1785 false));
1786 }
1787
1788 void
1789 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1790 Output_data* od,
1791 Sized_relobj<size, big_endian>* relobj,
1792 unsigned int shndx, Address address)
1793 {
1794 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1795 false, true, false));
1796 }
1797
1798 // Add a reloc against a local symbol.
1799
1800 void
1801 add_local(Sized_relobj<size, big_endian>* relobj,
1802 unsigned int local_sym_index, unsigned int type,
1803 Output_data* od, Address address)
1804 {
1805 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1806 address, false, false, false, false));
1807 }
1808
1809 void
1810 add_local(Sized_relobj<size, big_endian>* relobj,
1811 unsigned int local_sym_index, unsigned int type,
1812 Output_data* od, unsigned int shndx, Address address)
1813 {
1814 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1815 address, false, false, false, false));
1816 }
1817
1818 void
1819 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1820 unsigned int type, Output_data* od, uint64_t address,
1821 uint64_t addend)
1822 {
1823 gold_assert(addend == 0);
1824 Sized_relobj<size, big_endian>* sized_relobj =
1825 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1826 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1827 convert_types<Address, uint64_t>(address),
1828 false, false, false, false));
1829 }
1830
1831 void
1832 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1833 unsigned int type, Output_data* od, unsigned int shndx,
1834 uint64_t address, uint64_t addend)
1835 {
1836 gold_assert(addend == 0);
1837 Sized_relobj<size, big_endian>* sized_relobj =
1838 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1839 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1840 convert_types<Address, uint64_t>(address),
1841 false, false, false, false));
1842 }
1843
1844 // Add a RELATIVE reloc against a local symbol.
1845
1846 void
1847 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1848 unsigned int local_sym_index, unsigned int type,
1849 Output_data* od, Address address)
1850 {
1851 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1852 address, true, true, false, false));
1853 }
1854
1855 void
1856 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1857 unsigned int local_sym_index, unsigned int type,
1858 Output_data* od, unsigned int shndx, Address address)
1859 {
1860 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1861 address, true, true, false, false));
1862 }
1863
1864 void
1865 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1866 unsigned int local_sym_index, unsigned int type,
1867 Output_data* od, unsigned int shndx, Address address,
1868 bool use_plt_offset)
1869 {
1870 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1871 address, true, true, false,
1872 use_plt_offset));
1873 }
1874
1875 // Add a local relocation which does not use a symbol for the relocation,
1876 // but which gets its addend from a symbol.
1877
1878 void
1879 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1880 unsigned int local_sym_index, unsigned int type,
1881 Output_data* od, Address address)
1882 {
1883 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1884 address, false, true, false, false));
1885 }
1886
1887 void
1888 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1889 unsigned int local_sym_index, unsigned int type,
1890 Output_data* od, unsigned int shndx,
1891 Address address)
1892 {
1893 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1894 address, false, true, false, false));
1895 }
1896
1897 // Add a reloc against a local section symbol. This will be
1898 // converted into a reloc against the STT_SECTION symbol of the
1899 // output section.
1900
1901 void
1902 add_local_section(Sized_relobj<size, big_endian>* relobj,
1903 unsigned int input_shndx, unsigned int type,
1904 Output_data* od, Address address)
1905 {
1906 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1907 address, false, false, true, false));
1908 }
1909
1910 void
1911 add_local_section(Sized_relobj<size, big_endian>* relobj,
1912 unsigned int input_shndx, unsigned int type,
1913 Output_data* od, unsigned int shndx, Address address)
1914 {
1915 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1916 address, false, false, true, false));
1917 }
1918
1919 // A reloc against the STT_SECTION symbol of an output section.
1920 // OS is the Output_section that the relocation refers to; OD is
1921 // the Output_data object being relocated.
1922
1923 void
1924 add_output_section(Output_section* os, unsigned int type,
1925 Output_data* od, Address address)
1926 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1927
1928 void
1929 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1930 Sized_relobj<size, big_endian>* relobj,
1931 unsigned int shndx, Address address)
1932 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1933
1934 void
1935 add_output_section_generic(Output_section* os, unsigned int type,
1936 Output_data* od, uint64_t address,
1937 uint64_t addend)
1938 {
1939 gold_assert(addend == 0);
1940 this->add(od, Output_reloc_type(os, type, od,
1941 convert_types<Address, uint64_t>(address),
1942 false));
1943 }
1944
1945 void
1946 add_output_section_generic(Output_section* os, unsigned int type,
1947 Output_data* od, Relobj* relobj,
1948 unsigned int shndx, uint64_t address,
1949 uint64_t addend)
1950 {
1951 gold_assert(addend == 0);
1952 Sized_relobj<size, big_endian>* sized_relobj =
1953 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1954 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1955 convert_types<Address, uint64_t>(address),
1956 false));
1957 }
1958
1959 // As above, but the reloc TYPE is relative
1960
1961 void
1962 add_output_section_relative(Output_section* os, unsigned int type,
1963 Output_data* od, Address address)
1964 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1965
1966 void
1967 add_output_section_relative(Output_section* os, unsigned int type,
1968 Output_data* od,
1969 Sized_relobj<size, big_endian>* relobj,
1970 unsigned int shndx, Address address)
1971 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1972
1973 // Add an absolute relocation.
1974
1975 void
1976 add_absolute(unsigned int type, Output_data* od, Address address)
1977 { this->add(od, Output_reloc_type(type, od, address, false)); }
1978
1979 void
1980 add_absolute(unsigned int type, Output_data* od,
1981 Sized_relobj<size, big_endian>* relobj,
1982 unsigned int shndx, Address address)
1983 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1984
1985 // Add a relative relocation
1986
1987 void
1988 add_relative(unsigned int type, Output_data* od, Address address)
1989 { this->add(od, Output_reloc_type(type, od, address, true)); }
1990
1991 void
1992 add_relative(unsigned int type, Output_data* od,
1993 Sized_relobj<size, big_endian>* relobj,
1994 unsigned int shndx, Address address)
1995 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1996
1997 // Add a target specific relocation. A target which calls this must
1998 // define the reloc_symbol_index and reloc_addend virtual functions.
1999
2000 void
2001 add_target_specific(unsigned int type, void* arg, Output_data* od,
2002 Address address)
2003 { this->add(od, Output_reloc_type(type, arg, od, address)); }
2004
2005 void
2006 add_target_specific(unsigned int type, void* arg, Output_data* od,
2007 Sized_relobj<size, big_endian>* relobj,
2008 unsigned int shndx, Address address)
2009 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
2010 };
2011
2012 // The SHT_RELA version of Output_data_reloc.
2013
2014 template<bool dynamic, int size, bool big_endian>
2015 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
2016 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
2017 {
2018 private:
2019 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
2020 big_endian> Base;
2021
2022 public:
2023 typedef typename Base::Output_reloc_type Output_reloc_type;
2024 typedef typename Output_reloc_type::Address Address;
2025 typedef typename Output_reloc_type::Addend Addend;
2026
2027 Output_data_reloc(bool sr)
2028 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
2029 { }
2030
2031 // Add a reloc against a global symbol.
2032
2033 void
2034 add_global(Symbol* gsym, unsigned int type, Output_data* od,
2035 Address address, Addend addend)
2036 {
2037 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
2038 false, false, false));
2039 }
2040
2041 void
2042 add_global(Symbol* gsym, unsigned int type, Output_data* od,
2043 Sized_relobj<size, big_endian>* relobj,
2044 unsigned int shndx, Address address,
2045 Addend addend)
2046 {
2047 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2048 addend, false, false, false));
2049 }
2050
2051 void
2052 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
2053 uint64_t address, uint64_t addend)
2054 {
2055 this->add(od, Output_reloc_type(gsym, type, od,
2056 convert_types<Address, uint64_t>(address),
2057 convert_types<Addend, uint64_t>(addend),
2058 false, false, false));
2059 }
2060
2061 void
2062 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
2063 Relobj* relobj, unsigned int shndx, uint64_t address,
2064 uint64_t addend)
2065 {
2066 Sized_relobj<size, big_endian>* sized_relobj =
2067 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2068 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
2069 convert_types<Address, uint64_t>(address),
2070 convert_types<Addend, uint64_t>(addend),
2071 false, false, false));
2072 }
2073
2074 // Add a RELATIVE reloc against a global symbol. The final output
2075 // relocation will not reference the symbol, but we must keep the symbol
2076 // information long enough to set the addend of the relocation correctly
2077 // when it is written.
2078
2079 void
2080 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
2081 Address address, Addend addend, bool use_plt_offset)
2082 {
2083 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
2084 true, use_plt_offset));
2085 }
2086
2087 void
2088 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
2089 Sized_relobj<size, big_endian>* relobj,
2090 unsigned int shndx, Address address, Addend addend,
2091 bool use_plt_offset)
2092 {
2093 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2094 addend, true, true, use_plt_offset));
2095 }
2096
2097 // Add a global relocation which does not use a symbol for the relocation,
2098 // but which gets its addend from a symbol.
2099
2100 void
2101 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
2102 Address address, Addend addend)
2103 {
2104 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
2105 false, true, false));
2106 }
2107
2108 void
2109 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
2110 Output_data* od,
2111 Sized_relobj<size, big_endian>* relobj,
2112 unsigned int shndx, Address address,
2113 Addend addend)
2114 {
2115 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
2116 addend, false, true, false));
2117 }
2118
2119 // Add a reloc against a local symbol.
2120
2121 void
2122 add_local(Sized_relobj<size, big_endian>* relobj,
2123 unsigned int local_sym_index, unsigned int type,
2124 Output_data* od, Address address, Addend addend)
2125 {
2126 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2127 addend, false, false, false, false));
2128 }
2129
2130 void
2131 add_local(Sized_relobj<size, big_endian>* relobj,
2132 unsigned int local_sym_index, unsigned int type,
2133 Output_data* od, unsigned int shndx, Address address,
2134 Addend addend)
2135 {
2136 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2137 address, addend, false, false, false,
2138 false));
2139 }
2140
2141 void
2142 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2143 unsigned int type, Output_data* od, uint64_t address,
2144 uint64_t addend)
2145 {
2146 Sized_relobj<size, big_endian>* sized_relobj =
2147 static_cast<Sized_relobj<size, big_endian> *>(relobj);
2148 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
2149 convert_types<Address, uint64_t>(address),
2150 convert_types<Addend, uint64_t>(addend),
2151 false, false, false, false));
2152 }
2153
2154 void
2155 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2156 unsigned int type, Output_data* od, unsigned int shndx,
2157 uint64_t address, uint64_t addend)
2158 {
2159 Sized_relobj<size, big_endian>* sized_relobj =
2160 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2161 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2162 convert_types<Address, uint64_t>(address),
2163 convert_types<Addend, uint64_t>(addend),
2164 false, false, false, false));
2165 }
2166
2167 // Add a RELATIVE reloc against a local symbol.
2168
2169 void
2170 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2171 unsigned int local_sym_index, unsigned int type,
2172 Output_data* od, Address address, Addend addend,
2173 bool use_plt_offset)
2174 {
2175 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2176 addend, true, true, false,
2177 use_plt_offset));
2178 }
2179
2180 void
2181 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2182 unsigned int local_sym_index, unsigned int type,
2183 Output_data* od, unsigned int shndx, Address address,
2184 Addend addend, bool use_plt_offset)
2185 {
2186 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2187 address, addend, true, true, false,
2188 use_plt_offset));
2189 }
2190
2191 // Add a local relocation which does not use a symbol for the relocation,
2192 // but which gets it's addend from a symbol.
2193
2194 void
2195 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2196 unsigned int local_sym_index, unsigned int type,
2197 Output_data* od, Address address, Addend addend)
2198 {
2199 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2200 addend, false, true, false, false));
2201 }
2202
2203 void
2204 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2205 unsigned int local_sym_index, unsigned int type,
2206 Output_data* od, unsigned int shndx,
2207 Address address, Addend addend)
2208 {
2209 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2210 address, addend, false, true, false,
2211 false));
2212 }
2213
2214 // Add a reloc against a local section symbol. This will be
2215 // converted into a reloc against the STT_SECTION symbol of the
2216 // output section.
2217
2218 void
2219 add_local_section(Sized_relobj<size, big_endian>* relobj,
2220 unsigned int input_shndx, unsigned int type,
2221 Output_data* od, Address address, Addend addend)
2222 {
2223 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2224 addend, false, false, true, false));
2225 }
2226
2227 void
2228 add_local_section(Sized_relobj<size, big_endian>* relobj,
2229 unsigned int input_shndx, unsigned int type,
2230 Output_data* od, unsigned int shndx, Address address,
2231 Addend addend)
2232 {
2233 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2234 address, addend, false, false, true,
2235 false));
2236 }
2237
2238 // A reloc against the STT_SECTION symbol of an output section.
2239
2240 void
2241 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2242 Address address, Addend addend)
2243 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2244
2245 void
2246 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2247 Sized_relobj<size, big_endian>* relobj,
2248 unsigned int shndx, Address address, Addend addend)
2249 {
2250 this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2251 addend, false));
2252 }
2253
2254 void
2255 add_output_section_generic(Output_section* os, unsigned int type,
2256 Output_data* od, uint64_t address,
2257 uint64_t addend)
2258 {
2259 this->add(od, Output_reloc_type(os, type, od,
2260 convert_types<Address, uint64_t>(address),
2261 convert_types<Addend, uint64_t>(addend),
2262 false));
2263 }
2264
2265 void
2266 add_output_section_generic(Output_section* os, unsigned int type,
2267 Output_data* od, Relobj* relobj,
2268 unsigned int shndx, uint64_t address,
2269 uint64_t addend)
2270 {
2271 Sized_relobj<size, big_endian>* sized_relobj =
2272 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2273 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2274 convert_types<Address, uint64_t>(address),
2275 convert_types<Addend, uint64_t>(addend),
2276 false));
2277 }
2278
2279 // As above, but the reloc TYPE is relative
2280
2281 void
2282 add_output_section_relative(Output_section* os, unsigned int type,
2283 Output_data* od, Address address, Addend addend)
2284 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2285
2286 void
2287 add_output_section_relative(Output_section* os, unsigned int type,
2288 Output_data* od,
2289 Sized_relobj<size, big_endian>* relobj,
2290 unsigned int shndx, Address address,
2291 Addend addend)
2292 {
2293 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2294 address, addend, true));
2295 }
2296
2297 // Add an absolute relocation.
2298
2299 void
2300 add_absolute(unsigned int type, Output_data* od, Address address,
2301 Addend addend)
2302 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2303
2304 void
2305 add_absolute(unsigned int type, Output_data* od,
2306 Sized_relobj<size, big_endian>* relobj,
2307 unsigned int shndx, Address address, Addend addend)
2308 {
2309 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2310 false));
2311 }
2312
2313 // Add a relative relocation
2314
2315 void
2316 add_relative(unsigned int type, Output_data* od, Address address,
2317 Addend addend)
2318 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2319
2320 void
2321 add_relative(unsigned int type, Output_data* od,
2322 Sized_relobj<size, big_endian>* relobj,
2323 unsigned int shndx, Address address, Addend addend)
2324 {
2325 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2326 true));
2327 }
2328
2329 // Add a target specific relocation. A target which calls this must
2330 // define the reloc_symbol_index and reloc_addend virtual functions.
2331
2332 void
2333 add_target_specific(unsigned int type, void* arg, Output_data* od,
2334 Address address, Addend addend)
2335 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2336
2337 void
2338 add_target_specific(unsigned int type, void* arg, Output_data* od,
2339 Sized_relobj<size, big_endian>* relobj,
2340 unsigned int shndx, Address address, Addend addend)
2341 {
2342 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2343 addend));
2344 }
2345 };
2346
2347 // Output_relocatable_relocs represents a relocation section in a
2348 // relocatable link. The actual data is written out in the target
2349 // hook relocate_relocs. This just saves space for it.
2350
2351 template<int sh_type, int size, bool big_endian>
2352 class Output_relocatable_relocs : public Output_section_data
2353 {
2354 public:
2355 Output_relocatable_relocs(Relocatable_relocs* rr)
2356 : Output_section_data(Output_data::default_alignment_for_size(size)),
2357 rr_(rr)
2358 { }
2359
2360 void
2361 set_final_data_size();
2362
2363 // Write out the data. There is nothing to do here.
2364 void
2365 do_write(Output_file*)
2366 { }
2367
2368 // Write to a map file.
2369 void
2370 do_print_to_mapfile(Mapfile* mapfile) const
2371 { mapfile->print_output_data(this, _("** relocs")); }
2372
2373 private:
2374 // The relocs associated with this input section.
2375 Relocatable_relocs* rr_;
2376 };
2377
2378 // Handle a GROUP section.
2379
2380 template<int size, bool big_endian>
2381 class Output_data_group : public Output_section_data
2382 {
2383 public:
2384 // The constructor clears *INPUT_SHNDXES.
2385 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2386 section_size_type entry_count,
2387 elfcpp::Elf_Word flags,
2388 std::vector<unsigned int>* input_shndxes);
2389
2390 void
2391 do_write(Output_file*);
2392
2393 // Write to a map file.
2394 void
2395 do_print_to_mapfile(Mapfile* mapfile) const
2396 { mapfile->print_output_data(this, _("** group")); }
2397
2398 // Set final data size.
2399 void
2400 set_final_data_size()
2401 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2402
2403 private:
2404 // The input object.
2405 Sized_relobj_file<size, big_endian>* relobj_;
2406 // The group flag word.
2407 elfcpp::Elf_Word flags_;
2408 // The section indexes of the input sections in this group.
2409 std::vector<unsigned int> input_shndxes_;
2410 };
2411
2412 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2413 // for one symbol--either a global symbol or a local symbol in an
2414 // object. The target specific code adds entries to the GOT as
2415 // needed. The GOT_SIZE template parameter is the size in bits of a
2416 // GOT entry, typically 32 or 64.
2417
2418 class Output_data_got_base : public Output_section_data_build
2419 {
2420 public:
2421 Output_data_got_base(uint64_t align)
2422 : Output_section_data_build(align)
2423 { }
2424
2425 Output_data_got_base(off_t data_size, uint64_t align)
2426 : Output_section_data_build(data_size, align)
2427 { }
2428
2429 // Reserve the slot at index I in the GOT.
2430 void
2431 reserve_slot(unsigned int i)
2432 { this->do_reserve_slot(i); }
2433
2434 protected:
2435 // Reserve the slot at index I in the GOT.
2436 virtual void
2437 do_reserve_slot(unsigned int i) = 0;
2438 };
2439
2440 template<int got_size, bool big_endian>
2441 class Output_data_got : public Output_data_got_base
2442 {
2443 public:
2444 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2445
2446 Output_data_got()
2447 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2448 entries_(), free_list_()
2449 { }
2450
2451 Output_data_got(off_t data_size)
2452 : Output_data_got_base(data_size,
2453 Output_data::default_alignment_for_size(got_size)),
2454 entries_(), free_list_()
2455 {
2456 // For an incremental update, we have an existing GOT section.
2457 // Initialize the list of entries and the free list.
2458 this->entries_.resize(data_size / (got_size / 8));
2459 this->free_list_.init(data_size, false);
2460 }
2461
2462 // Add an entry for a global symbol to the GOT. Return true if this
2463 // is a new GOT entry, false if the symbol was already in the GOT.
2464 bool
2465 add_global(Symbol* gsym, unsigned int got_type);
2466
2467 // Like add_global, but use the PLT offset of the global symbol if
2468 // it has one.
2469 bool
2470 add_global_plt(Symbol* gsym, unsigned int got_type);
2471
2472 // Like add_global, but for a TLS symbol where the value will be
2473 // offset using Target::tls_offset_for_global.
2474 bool
2475 add_global_tls(Symbol* gsym, unsigned int got_type)
2476 { return add_global_plt(gsym, got_type); }
2477
2478 // Add an entry for a global symbol to the GOT, and add a dynamic
2479 // relocation of type R_TYPE for the GOT entry.
2480 void
2481 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2482 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2483
2484 // Add a pair of entries for a global symbol to the GOT, and add
2485 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2486 void
2487 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2488 Output_data_reloc_generic* rel_dyn,
2489 unsigned int r_type_1, unsigned int r_type_2);
2490
2491 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
2492 // true if this is a new GOT entry, false if the symbol already has a GOT
2493 // entry.
2494 bool
2495 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
2496 uint64_t addend = 0);
2497
2498 // Like add_local, but use the PLT offset of the local symbol if it
2499 // has one.
2500 bool
2501 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2502
2503 // Like add_local, but for a TLS symbol where the value will be
2504 // offset using Target::tls_offset_for_local.
2505 bool
2506 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2507 { return add_local_plt(object, sym_index, got_type); }
2508
2509 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
2510 // relocation of type R_TYPE for the GOT entry.
2511 void
2512 add_local_with_rel(Relobj* object, unsigned int sym_index,
2513 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2514 unsigned int r_type, uint64_t addend = 0);
2515
2516 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
2517 // a dynamic relocation of type R_TYPE using the section symbol of
2518 // the output section to which input section SHNDX maps, on the first.
2519 // The first got entry will have a value of zero, the second the
2520 // value of the local symbol.
2521 void
2522 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2523 unsigned int shndx, unsigned int got_type,
2524 Output_data_reloc_generic* rel_dyn,
2525 unsigned int r_type, uint64_t addend = 0);
2526
2527 // Add a pair of entries for a local symbol to the GOT, and add
2528 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2529 // The first got entry will have a value of zero, the second the
2530 // value of the local symbol offset by Target::tls_offset_for_local.
2531 void
2532 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2533 unsigned int got_type,
2534 Output_data_reloc_generic* rel_dyn,
2535 unsigned int r_type);
2536
2537 // Add a constant to the GOT. This returns the offset of the new
2538 // entry from the start of the GOT.
2539 unsigned int
2540 add_constant(Valtype constant)
2541 { return this->add_got_entry(Got_entry(constant)); }
2542
2543 // Add a pair of constants to the GOT. This returns the offset of
2544 // the new entry from the start of the GOT.
2545 unsigned int
2546 add_constant_pair(Valtype c1, Valtype c2)
2547 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2548
2549 // Replace GOT entry I with a new constant.
2550 void
2551 replace_constant(unsigned int i, Valtype constant)
2552 {
2553 this->replace_got_entry(i, Got_entry(constant));
2554 }
2555
2556 // Reserve a slot in the GOT for a local symbol.
2557 void
2558 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2559 unsigned int got_type);
2560
2561 // Reserve a slot in the GOT for a global symbol.
2562 void
2563 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2564
2565 protected:
2566 // Write out the GOT table.
2567 void
2568 do_write(Output_file*);
2569
2570 // Write to a map file.
2571 void
2572 do_print_to_mapfile(Mapfile* mapfile) const
2573 { mapfile->print_output_data(this, _("** GOT")); }
2574
2575 // Reserve the slot at index I in the GOT.
2576 virtual void
2577 do_reserve_slot(unsigned int i)
2578 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2579
2580 // Return the number of words in the GOT.
2581 unsigned int
2582 num_entries () const
2583 { return this->entries_.size(); }
2584
2585 // Return the offset into the GOT of GOT entry I.
2586 unsigned int
2587 got_offset(unsigned int i) const
2588 { return i * (got_size / 8); }
2589
2590 private:
2591 // This POD class holds a single GOT entry.
2592 class Got_entry
2593 {
2594 public:
2595 // Create a zero entry.
2596 Got_entry()
2597 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
2598 addend_(0)
2599 { this->u_.constant = 0; }
2600
2601 // Create a global symbol entry.
2602 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2603 : local_sym_index_(GSYM_CODE),
2604 use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
2605 { this->u_.gsym = gsym; }
2606
2607 // Create a local symbol entry.
2608 Got_entry(Relobj* object, unsigned int local_sym_index,
2609 bool use_plt_or_tls_offset)
2610 : local_sym_index_(local_sym_index),
2611 use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
2612 {
2613 gold_assert(local_sym_index != GSYM_CODE
2614 && local_sym_index != CONSTANT_CODE
2615 && local_sym_index != RESERVED_CODE
2616 && local_sym_index == this->local_sym_index_);
2617 this->u_.object = object;
2618 }
2619
2620 // Create a local symbol entry plus addend.
2621 Got_entry(Relobj* object, unsigned int local_sym_index,
2622 bool use_plt_or_tls_offset, uint64_t addend)
2623 : local_sym_index_(local_sym_index),
2624 use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
2625 {
2626 gold_assert(local_sym_index != GSYM_CODE
2627 && local_sym_index != CONSTANT_CODE
2628 && local_sym_index != RESERVED_CODE
2629 && local_sym_index == this->local_sym_index_);
2630 this->u_.object = object;
2631 }
2632
2633 // Create a constant entry. The constant is a host value--it will
2634 // be swapped, if necessary, when it is written out.
2635 explicit Got_entry(Valtype constant)
2636 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2637 { this->u_.constant = constant; }
2638
2639 // Write the GOT entry to an output view.
2640 void
2641 write(unsigned int got_indx, unsigned char* pov) const;
2642
2643 private:
2644 enum
2645 {
2646 GSYM_CODE = 0x7fffffff,
2647 CONSTANT_CODE = 0x7ffffffe,
2648 RESERVED_CODE = 0x7ffffffd
2649 };
2650
2651 union
2652 {
2653 // For a local symbol, the object.
2654 Relobj* object;
2655 // For a global symbol, the symbol.
2656 Symbol* gsym;
2657 // For a constant, the constant.
2658 Valtype constant;
2659 } u_;
2660 // For a local symbol, the local symbol index. This is GSYM_CODE
2661 // for a global symbol, or CONSTANT_CODE for a constant.
2662 unsigned int local_sym_index_ : 31;
2663 // Whether to use the PLT offset of the symbol if it has one.
2664 // For TLS symbols, whether to offset the symbol value.
2665 bool use_plt_or_tls_offset_ : 1;
2666 // The addend.
2667 uint64_t addend_;
2668 };
2669
2670 typedef std::vector<Got_entry> Got_entries;
2671
2672 // Create a new GOT entry and return its offset.
2673 unsigned int
2674 add_got_entry(Got_entry got_entry);
2675
2676 // Create a pair of new GOT entries and return the offset of the first.
2677 unsigned int
2678 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2679
2680 // Replace GOT entry I with a new value.
2681 void
2682 replace_got_entry(unsigned int i, Got_entry got_entry);
2683
2684 // Return the offset into the GOT of the last entry added.
2685 unsigned int
2686 last_got_offset() const
2687 { return this->got_offset(this->num_entries() - 1); }
2688
2689 // Set the size of the section.
2690 void
2691 set_got_size()
2692 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2693
2694 // The list of GOT entries.
2695 Got_entries entries_;
2696
2697 // List of available regions within the section, for incremental
2698 // update links.
2699 Free_list free_list_;
2700 };
2701
2702 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2703 // section.
2704
2705 class Output_data_dynamic : public Output_section_data
2706 {
2707 public:
2708 Output_data_dynamic(Stringpool* pool)
2709 : Output_section_data(Output_data::default_alignment()),
2710 entries_(), pool_(pool)
2711 { }
2712
2713 // Add a new dynamic entry with a fixed numeric value.
2714 void
2715 add_constant(elfcpp::DT tag, unsigned int val)
2716 { this->add_entry(Dynamic_entry(tag, val)); }
2717
2718 // Add a new dynamic entry with the address of output data.
2719 void
2720 add_section_address(elfcpp::DT tag, const Output_data* od)
2721 { this->add_entry(Dynamic_entry(tag, od, false)); }
2722
2723 // Add a new dynamic entry with the address of output data
2724 // plus a constant offset.
2725 void
2726 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2727 unsigned int offset)
2728 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2729
2730 // Add a new dynamic entry with the size of output data.
2731 void
2732 add_section_size(elfcpp::DT tag, const Output_data* od)
2733 { this->add_entry(Dynamic_entry(tag, od, true)); }
2734
2735 // Add a new dynamic entry with the total size of two output datas.
2736 void
2737 add_section_size(elfcpp::DT tag, const Output_data* od,
2738 const Output_data* od2)
2739 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2740
2741 // Add a new dynamic entry with the address of a symbol.
2742 void
2743 add_symbol(elfcpp::DT tag, const Symbol* sym)
2744 { this->add_entry(Dynamic_entry(tag, sym)); }
2745
2746 // Add a new dynamic entry with a string.
2747 void
2748 add_string(elfcpp::DT tag, const char* str)
2749 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2750
2751 void
2752 add_string(elfcpp::DT tag, const std::string& str)
2753 { this->add_string(tag, str.c_str()); }
2754
2755 // Add a new dynamic entry with custom value.
2756 void
2757 add_custom(elfcpp::DT tag)
2758 { this->add_entry(Dynamic_entry(tag)); }
2759
2760 // Get a dynamic entry offset.
2761 unsigned int
2762 get_entry_offset(elfcpp::DT tag) const;
2763
2764 protected:
2765 // Adjust the output section to set the entry size.
2766 void
2767 do_adjust_output_section(Output_section*);
2768
2769 // Set the final data size.
2770 void
2771 set_final_data_size();
2772
2773 // Write out the dynamic entries.
2774 void
2775 do_write(Output_file*);
2776
2777 // Write to a map file.
2778 void
2779 do_print_to_mapfile(Mapfile* mapfile) const
2780 { mapfile->print_output_data(this, _("** dynamic")); }
2781
2782 private:
2783 // This POD class holds a single dynamic entry.
2784 class Dynamic_entry
2785 {
2786 public:
2787 // Create an entry with a fixed numeric value.
2788 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2789 : tag_(tag), offset_(DYNAMIC_NUMBER)
2790 { this->u_.val = val; }
2791
2792 // Create an entry with the size or address of a section.
2793 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2794 : tag_(tag),
2795 offset_(section_size
2796 ? DYNAMIC_SECTION_SIZE
2797 : DYNAMIC_SECTION_ADDRESS)
2798 {
2799 this->u_.od = od;
2800 this->od2 = NULL;
2801 }
2802
2803 // Create an entry with the size of two sections.
2804 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2805 : tag_(tag),
2806 offset_(DYNAMIC_SECTION_SIZE)
2807 {
2808 this->u_.od = od;
2809 this->od2 = od2;
2810 }
2811
2812 // Create an entry with the address of a section plus a constant offset.
2813 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2814 : tag_(tag),
2815 offset_(offset)
2816 { this->u_.od = od; }
2817
2818 // Create an entry with the address of a symbol.
2819 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2820 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2821 { this->u_.sym = sym; }
2822
2823 // Create an entry with a string.
2824 Dynamic_entry(elfcpp::DT tag, const char* str)
2825 : tag_(tag), offset_(DYNAMIC_STRING)
2826 { this->u_.str = str; }
2827
2828 // Create an entry with a custom value.
2829 Dynamic_entry(elfcpp::DT tag)
2830 : tag_(tag), offset_(DYNAMIC_CUSTOM)
2831 { }
2832
2833 // Return the tag of this entry.
2834 elfcpp::DT
2835 tag() const
2836 { return this->tag_; }
2837
2838 // Write the dynamic entry to an output view.
2839 template<int size, bool big_endian>
2840 void
2841 write(unsigned char* pov, const Stringpool*) const;
2842
2843 private:
2844 // Classification is encoded in the OFFSET field.
2845 enum Classification
2846 {
2847 // Section address.
2848 DYNAMIC_SECTION_ADDRESS = 0,
2849 // Number.
2850 DYNAMIC_NUMBER = -1U,
2851 // Section size.
2852 DYNAMIC_SECTION_SIZE = -2U,
2853 // Symbol address.
2854 DYNAMIC_SYMBOL = -3U,
2855 // String.
2856 DYNAMIC_STRING = -4U,
2857 // Custom value.
2858 DYNAMIC_CUSTOM = -5U
2859 // Any other value indicates a section address plus OFFSET.
2860 };
2861
2862 union
2863 {
2864 // For DYNAMIC_NUMBER.
2865 unsigned int val;
2866 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2867 const Output_data* od;
2868 // For DYNAMIC_SYMBOL.
2869 const Symbol* sym;
2870 // For DYNAMIC_STRING.
2871 const char* str;
2872 } u_;
2873 // For DYNAMIC_SYMBOL with two sections.
2874 const Output_data* od2;
2875 // The dynamic tag.
2876 elfcpp::DT tag_;
2877 // The type of entry (Classification) or offset within a section.
2878 unsigned int offset_;
2879 };
2880
2881 // Add an entry to the list.
2882 void
2883 add_entry(const Dynamic_entry& entry)
2884 { this->entries_.push_back(entry); }
2885
2886 // Sized version of write function.
2887 template<int size, bool big_endian>
2888 void
2889 sized_write(Output_file* of);
2890
2891 // The type of the list of entries.
2892 typedef std::vector<Dynamic_entry> Dynamic_entries;
2893
2894 // The entries.
2895 Dynamic_entries entries_;
2896 // The pool used for strings.
2897 Stringpool* pool_;
2898 };
2899
2900 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2901 // which may be required if the object file has more than
2902 // SHN_LORESERVE sections.
2903
2904 class Output_symtab_xindex : public Output_section_data
2905 {
2906 public:
2907 Output_symtab_xindex(size_t symcount)
2908 : Output_section_data(symcount * 4, 4, true),
2909 entries_()
2910 { }
2911
2912 // Add an entry: symbol number SYMNDX has section SHNDX.
2913 void
2914 add(unsigned int symndx, unsigned int shndx)
2915 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2916
2917 protected:
2918 void
2919 do_write(Output_file*);
2920
2921 // Write to a map file.
2922 void
2923 do_print_to_mapfile(Mapfile* mapfile) const
2924 { mapfile->print_output_data(this, _("** symtab xindex")); }
2925
2926 private:
2927 template<bool big_endian>
2928 void
2929 endian_do_write(unsigned char*);
2930
2931 // It is likely that most symbols will not require entries. Rather
2932 // than keep a vector for all symbols, we keep pairs of symbol index
2933 // and section index.
2934 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2935
2936 // The entries we need.
2937 Xindex_entries entries_;
2938 };
2939
2940 // A relaxed input section.
2941 class Output_relaxed_input_section : public Output_section_data_build
2942 {
2943 public:
2944 // We would like to call relobj->section_addralign(shndx) to get the
2945 // alignment but we do not want the constructor to fail. So callers
2946 // are repsonsible for ensuring that.
2947 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2948 uint64_t addralign)
2949 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2950 { }
2951
2952 // Return the Relobj of this relaxed input section.
2953 Relobj*
2954 relobj() const
2955 { return this->relobj_; }
2956
2957 // Return the section index of this relaxed input section.
2958 unsigned int
2959 shndx() const
2960 { return this->shndx_; }
2961
2962 protected:
2963 void
2964 set_relobj(Relobj* relobj)
2965 { this->relobj_ = relobj; }
2966
2967 void
2968 set_shndx(unsigned int shndx)
2969 { this->shndx_ = shndx; }
2970
2971 private:
2972 Relobj* relobj_;
2973 unsigned int shndx_;
2974 };
2975
2976 // This class describes properties of merge data sections. It is used
2977 // as a key type for maps.
2978 class Merge_section_properties
2979 {
2980 public:
2981 Merge_section_properties(bool is_string, uint64_t entsize,
2982 uint64_t addralign)
2983 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2984 { }
2985
2986 // Whether this equals to another Merge_section_properties MSP.
2987 bool
2988 eq(const Merge_section_properties& msp) const
2989 {
2990 return ((this->is_string_ == msp.is_string_)
2991 && (this->entsize_ == msp.entsize_)
2992 && (this->addralign_ == msp.addralign_));
2993 }
2994
2995 // Compute a hash value for this using 64-bit FNV-1a hash.
2996 size_t
2997 hash_value() const
2998 {
2999 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3000 uint64_t prime = 1099511628211ULL;
3001 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3002 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3003 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3004 return h;
3005 }
3006
3007 // Functors for associative containers.
3008 struct equal_to
3009 {
3010 bool
3011 operator()(const Merge_section_properties& msp1,
3012 const Merge_section_properties& msp2) const
3013 { return msp1.eq(msp2); }
3014 };
3015
3016 struct hash
3017 {
3018 size_t
3019 operator()(const Merge_section_properties& msp) const
3020 { return msp.hash_value(); }
3021 };
3022
3023 private:
3024 // Whether this merge data section is for strings.
3025 bool is_string_;
3026 // Entsize of this merge data section.
3027 uint64_t entsize_;
3028 // Address alignment.
3029 uint64_t addralign_;
3030 };
3031
3032 // This class is used to speed up look up of special input sections in an
3033 // Output_section.
3034
3035 class Output_section_lookup_maps
3036 {
3037 public:
3038 Output_section_lookup_maps()
3039 : is_valid_(true), merge_sections_by_properties_(),
3040 relaxed_input_sections_by_id_()
3041 { }
3042
3043 // Whether the maps are valid.
3044 bool
3045 is_valid() const
3046 { return this->is_valid_; }
3047
3048 // Invalidate the maps.
3049 void
3050 invalidate()
3051 { this->is_valid_ = false; }
3052
3053 // Clear the maps.
3054 void
3055 clear()
3056 {
3057 this->merge_sections_by_properties_.clear();
3058 this->relaxed_input_sections_by_id_.clear();
3059 // A cleared map is valid.
3060 this->is_valid_ = true;
3061 }
3062
3063 // Find a merge section by merge section properties. Return NULL if none
3064 // is found.
3065 Output_merge_base*
3066 find_merge_section(const Merge_section_properties& msp) const
3067 {
3068 gold_assert(this->is_valid_);
3069 Merge_sections_by_properties::const_iterator p =
3070 this->merge_sections_by_properties_.find(msp);
3071 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
3072 }
3073
3074 // Add a merge section pointed by POMB with properties MSP.
3075 void
3076 add_merge_section(const Merge_section_properties& msp,
3077 Output_merge_base* pomb)
3078 {
3079 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
3080 std::pair<Merge_sections_by_properties::iterator, bool> result =
3081 this->merge_sections_by_properties_.insert(value);
3082 gold_assert(result.second);
3083 }
3084
3085 // Find a relaxed input section of OBJECT with index SHNDX.
3086 Output_relaxed_input_section*
3087 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
3088 {
3089 gold_assert(this->is_valid_);
3090 Relaxed_input_sections_by_id::const_iterator p =
3091 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
3092 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
3093 }
3094
3095 // Add a relaxed input section pointed by POMB and whose original input
3096 // section is in OBJECT with index SHNDX.
3097 void
3098 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
3099 Output_relaxed_input_section* poris)
3100 {
3101 Const_section_id csid(relobj, shndx);
3102 std::pair<Const_section_id, Output_relaxed_input_section*>
3103 value(csid, poris);
3104 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
3105 this->relaxed_input_sections_by_id_.insert(value);
3106 gold_assert(result.second);
3107 }
3108
3109 private:
3110 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3111 Merge_section_properties::hash,
3112 Merge_section_properties::equal_to>
3113 Merge_sections_by_properties;
3114
3115 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
3116 Const_section_id_hash>
3117 Relaxed_input_sections_by_id;
3118
3119 // Whether this is valid
3120 bool is_valid_;
3121 // Merge sections by merge section properties.
3122 Merge_sections_by_properties merge_sections_by_properties_;
3123 // Relaxed sections by section IDs.
3124 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
3125 };
3126
3127 // This abstract base class defines the interface for the
3128 // types of methods used to fill free space left in an output
3129 // section during an incremental link. These methods are used
3130 // to insert dummy compilation units into debug info so that
3131 // debug info consumers can scan the debug info serially.
3132
3133 class Output_fill
3134 {
3135 public:
3136 Output_fill()
3137 : is_big_endian_(parameters->target().is_big_endian())
3138 { }
3139
3140 virtual
3141 ~Output_fill()
3142 { }
3143
3144 // Return the smallest size chunk of free space that can be
3145 // filled with a dummy compilation unit.
3146 size_t
3147 minimum_hole_size() const
3148 { return this->do_minimum_hole_size(); }
3149
3150 // Write a fill pattern of length LEN at offset OFF in the file.
3151 void
3152 write(Output_file* of, off_t off, size_t len) const
3153 { this->do_write(of, off, len); }
3154
3155 protected:
3156 virtual size_t
3157 do_minimum_hole_size() const = 0;
3158
3159 virtual void
3160 do_write(Output_file* of, off_t off, size_t len) const = 0;
3161
3162 bool
3163 is_big_endian() const
3164 { return this->is_big_endian_; }
3165
3166 private:
3167 bool is_big_endian_;
3168 };
3169
3170 // Fill method that introduces a dummy compilation unit in
3171 // a .debug_info or .debug_types section.
3172
3173 class Output_fill_debug_info : public Output_fill
3174 {
3175 public:
3176 Output_fill_debug_info(bool is_debug_types)
3177 : is_debug_types_(is_debug_types)
3178 { }
3179
3180 protected:
3181 virtual size_t
3182 do_minimum_hole_size() const;
3183
3184 virtual void
3185 do_write(Output_file* of, off_t off, size_t len) const;
3186
3187 private:
3188 // Version of the header.
3189 static const int version = 4;
3190 // True if this is a .debug_types section.
3191 bool is_debug_types_;
3192 };
3193
3194 // Fill method that introduces a dummy compilation unit in
3195 // a .debug_line section.
3196
3197 class Output_fill_debug_line : public Output_fill
3198 {
3199 public:
3200 Output_fill_debug_line()
3201 { }
3202
3203 protected:
3204 virtual size_t
3205 do_minimum_hole_size() const;
3206
3207 virtual void
3208 do_write(Output_file* of, off_t off, size_t len) const;
3209
3210 private:
3211 // Version of the header. We write a DWARF-3 header because it's smaller
3212 // and many tools have not yet been updated to understand the DWARF-4 header.
3213 static const int version = 3;
3214 // Length of the portion of the header that follows the header_length
3215 // field. This includes the following fields:
3216 // minimum_instruction_length, default_is_stmt, line_base, line_range,
3217 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3218 // The standard_opcode_lengths array is 12 bytes long, and the
3219 // include_directories and filenames fields each contain only a single
3220 // null byte.
3221 static const size_t header_length = 19;
3222 };
3223
3224 // An output section. We don't expect to have too many output
3225 // sections, so we don't bother to do a template on the size.
3226
3227 class Output_section : public Output_data
3228 {
3229 public:
3230 // Create an output section, giving the name, type, and flags.
3231 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3232 virtual ~Output_section();
3233
3234 // Add a new input section SHNDX, named NAME, with header SHDR, from
3235 // object OBJECT. RELOC_SHNDX is the index of a relocation section
3236 // which applies to this section, or 0 if none, or -1 if more than
3237 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3238 // in a linker script; in that case we need to keep track of input
3239 // sections associated with an output section. Return the offset
3240 // within the output section.
3241 template<int size, bool big_endian>
3242 off_t
3243 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3244 unsigned int shndx, const char* name,
3245 const elfcpp::Shdr<size, big_endian>& shdr,
3246 unsigned int reloc_shndx, bool have_sections_script);
3247
3248 // Add generated data POSD to this output section.
3249 void
3250 add_output_section_data(Output_section_data* posd);
3251
3252 // Add a relaxed input section PORIS called NAME to this output section
3253 // with LAYOUT.
3254 void
3255 add_relaxed_input_section(Layout* layout,
3256 Output_relaxed_input_section* poris,
3257 const std::string& name);
3258
3259 // Return the section name.
3260 const char*
3261 name() const
3262 { return this->name_; }
3263
3264 // Return the section type.
3265 elfcpp::Elf_Word
3266 type() const
3267 { return this->type_; }
3268
3269 // Return the section flags.
3270 elfcpp::Elf_Xword
3271 flags() const
3272 { return this->flags_; }
3273
3274 typedef std::map<Section_id, unsigned int> Section_layout_order;
3275
3276 void
3277 update_section_layout(const Section_layout_order* order_map);
3278
3279 // Update the output section flags based on input section flags.
3280 void
3281 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3282
3283 // Set the output section flags.
3284 void
3285 set_flags(elfcpp::Elf_Xword flags)
3286 { this->flags_ = flags; }
3287
3288 // Return the entsize field.
3289 uint64_t
3290 entsize() const
3291 { return this->entsize_; }
3292
3293 // Set the entsize field.
3294 void
3295 set_entsize(uint64_t v);
3296
3297 // Set the load address.
3298 void
3299 set_load_address(uint64_t load_address)
3300 {
3301 this->load_address_ = load_address;
3302 this->has_load_address_ = true;
3303 }
3304
3305 // Set the link field to the output section index of a section.
3306 void
3307 set_link_section(const Output_data* od)
3308 {
3309 gold_assert(this->link_ == 0
3310 && !this->should_link_to_symtab_
3311 && !this->should_link_to_dynsym_);
3312 this->link_section_ = od;
3313 }
3314
3315 // Set the link field to a constant.
3316 void
3317 set_link(unsigned int v)
3318 {
3319 gold_assert(this->link_section_ == NULL
3320 && !this->should_link_to_symtab_
3321 && !this->should_link_to_dynsym_);
3322 this->link_ = v;
3323 }
3324
3325 // Record that this section should link to the normal symbol table.
3326 void
3327 set_should_link_to_symtab()
3328 {
3329 gold_assert(this->link_section_ == NULL
3330 && this->link_ == 0
3331 && !this->should_link_to_dynsym_);
3332 this->should_link_to_symtab_ = true;
3333 }
3334
3335 // Record that this section should link to the dynamic symbol table.
3336 void
3337 set_should_link_to_dynsym()
3338 {
3339 gold_assert(this->link_section_ == NULL
3340 && this->link_ == 0
3341 && !this->should_link_to_symtab_);
3342 this->should_link_to_dynsym_ = true;
3343 }
3344
3345 // Return the info field.
3346 unsigned int
3347 info() const
3348 {
3349 gold_assert(this->info_section_ == NULL
3350 && this->info_symndx_ == NULL);
3351 return this->info_;
3352 }
3353
3354 // Set the info field to the output section index of a section.
3355 void
3356 set_info_section(const Output_section* os)
3357 {
3358 gold_assert((this->info_section_ == NULL
3359 || (this->info_section_ == os
3360 && this->info_uses_section_index_))
3361 && this->info_symndx_ == NULL
3362 && this->info_ == 0);
3363 this->info_section_ = os;
3364 this->info_uses_section_index_= true;
3365 }
3366
3367 // Set the info field to the symbol table index of a symbol.
3368 void
3369 set_info_symndx(const Symbol* sym)
3370 {
3371 gold_assert(this->info_section_ == NULL
3372 && (this->info_symndx_ == NULL
3373 || this->info_symndx_ == sym)
3374 && this->info_ == 0);
3375 this->info_symndx_ = sym;
3376 }
3377
3378 // Set the info field to the symbol table index of a section symbol.
3379 void
3380 set_info_section_symndx(const Output_section* os)
3381 {
3382 gold_assert((this->info_section_ == NULL
3383 || (this->info_section_ == os
3384 && !this->info_uses_section_index_))
3385 && this->info_symndx_ == NULL
3386 && this->info_ == 0);
3387 this->info_section_ = os;
3388 this->info_uses_section_index_ = false;
3389 }
3390
3391 // Set the info field to a constant.
3392 void
3393 set_info(unsigned int v)
3394 {
3395 gold_assert(this->info_section_ == NULL
3396 && this->info_symndx_ == NULL
3397 && (this->info_ == 0
3398 || this->info_ == v));
3399 this->info_ = v;
3400 }
3401
3402 // Set the addralign field.
3403 void
3404 set_addralign(uint64_t v)
3405 { this->addralign_ = v; }
3406
3407 void
3408 checkpoint_set_addralign(uint64_t val)
3409 {
3410 if (this->checkpoint_ != NULL)
3411 this->checkpoint_->set_addralign(val);
3412 }
3413
3414 // Whether the output section index has been set.
3415 bool
3416 has_out_shndx() const
3417 { return this->out_shndx_ != -1U; }
3418
3419 // Indicate that we need a symtab index.
3420 void
3421 set_needs_symtab_index()
3422 { this->needs_symtab_index_ = true; }
3423
3424 // Return whether we need a symtab index.
3425 bool
3426 needs_symtab_index() const
3427 { return this->needs_symtab_index_; }
3428
3429 // Get the symtab index.
3430 unsigned int
3431 symtab_index() const
3432 {
3433 gold_assert(this->symtab_index_ != 0);
3434 return this->symtab_index_;
3435 }
3436
3437 // Set the symtab index.
3438 void
3439 set_symtab_index(unsigned int index)
3440 {
3441 gold_assert(index != 0);
3442 this->symtab_index_ = index;
3443 }
3444
3445 // Indicate that we need a dynsym index.
3446 void
3447 set_needs_dynsym_index()
3448 { this->needs_dynsym_index_ = true; }
3449
3450 // Return whether we need a dynsym index.
3451 bool
3452 needs_dynsym_index() const
3453 { return this->needs_dynsym_index_; }
3454
3455 // Get the dynsym index.
3456 unsigned int
3457 dynsym_index() const
3458 {
3459 gold_assert(this->dynsym_index_ != 0);
3460 return this->dynsym_index_;
3461 }
3462
3463 // Set the dynsym index.
3464 void
3465 set_dynsym_index(unsigned int index)
3466 {
3467 gold_assert(index != 0);
3468 this->dynsym_index_ = index;
3469 }
3470
3471 // Sort the attached input sections.
3472 void
3473 sort_attached_input_sections();
3474
3475 // Return whether the input sections sections attachd to this output
3476 // section may require sorting. This is used to handle constructor
3477 // priorities compatibly with GNU ld.
3478 bool
3479 may_sort_attached_input_sections() const
3480 { return this->may_sort_attached_input_sections_; }
3481
3482 // Record that the input sections attached to this output section
3483 // may require sorting.
3484 void
3485 set_may_sort_attached_input_sections()
3486 { this->may_sort_attached_input_sections_ = true; }
3487
3488 // Returns true if input sections must be sorted according to the
3489 // order in which their name appear in the --section-ordering-file.
3490 bool
3491 input_section_order_specified()
3492 { return this->input_section_order_specified_; }
3493
3494 // Record that input sections must be sorted as some of their names
3495 // match the patterns specified through --section-ordering-file.
3496 void
3497 set_input_section_order_specified()
3498 { this->input_section_order_specified_ = true; }
3499
3500 // Return whether the input sections attached to this output section
3501 // require sorting. This is used to handle constructor priorities
3502 // compatibly with GNU ld.
3503 bool
3504 must_sort_attached_input_sections() const
3505 { return this->must_sort_attached_input_sections_; }
3506
3507 // Record that the input sections attached to this output section
3508 // require sorting.
3509 void
3510 set_must_sort_attached_input_sections()
3511 { this->must_sort_attached_input_sections_ = true; }
3512
3513 // Get the order in which this section appears in the PT_LOAD output
3514 // segment.
3515 Output_section_order
3516 order() const
3517 { return this->order_; }
3518
3519 // Set the order for this section.
3520 void
3521 set_order(Output_section_order order)
3522 { this->order_ = order; }
3523
3524 // Return whether this section holds relro data--data which has
3525 // dynamic relocations but which may be marked read-only after the
3526 // dynamic relocations have been completed.
3527 bool
3528 is_relro() const
3529 { return this->is_relro_; }
3530
3531 // Record that this section holds relro data.
3532 void
3533 set_is_relro()
3534 { this->is_relro_ = true; }
3535
3536 // Record that this section does not hold relro data.
3537 void
3538 clear_is_relro()
3539 { this->is_relro_ = false; }
3540
3541 // True if this is a small section: a section which holds small
3542 // variables.
3543 bool
3544 is_small_section() const
3545 { return this->is_small_section_; }
3546
3547 // Record that this is a small section.
3548 void
3549 set_is_small_section()
3550 { this->is_small_section_ = true; }
3551
3552 // True if this is a large section: a section which holds large
3553 // variables.
3554 bool
3555 is_large_section() const
3556 { return this->is_large_section_; }
3557
3558 // Record that this is a large section.
3559 void
3560 set_is_large_section()
3561 { this->is_large_section_ = true; }
3562
3563 // True if this is a large data (not BSS) section.
3564 bool
3565 is_large_data_section()
3566 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3567
3568 // Return whether this section should be written after all the input
3569 // sections are complete.
3570 bool
3571 after_input_sections() const
3572 { return this->after_input_sections_; }
3573
3574 // Record that this section should be written after all the input
3575 // sections are complete.
3576 void
3577 set_after_input_sections()
3578 { this->after_input_sections_ = true; }
3579
3580 // Return whether this section requires postprocessing after all
3581 // relocations have been applied.
3582 bool
3583 requires_postprocessing() const
3584 { return this->requires_postprocessing_; }
3585
3586 bool
3587 is_unique_segment() const
3588 { return this->is_unique_segment_; }
3589
3590 void
3591 set_is_unique_segment()
3592 { this->is_unique_segment_ = true; }
3593
3594 uint64_t extra_segment_flags() const
3595 { return this->extra_segment_flags_; }
3596
3597 void
3598 set_extra_segment_flags(uint64_t flags)
3599 { this->extra_segment_flags_ = flags; }
3600
3601 uint64_t segment_alignment() const
3602 { return this->segment_alignment_; }
3603
3604 void
3605 set_segment_alignment(uint64_t align)
3606 { this->segment_alignment_ = align; }
3607
3608 // If a section requires postprocessing, return the buffer to use.
3609 unsigned char*
3610 postprocessing_buffer() const
3611 {
3612 gold_assert(this->postprocessing_buffer_ != NULL);
3613 return this->postprocessing_buffer_;
3614 }
3615
3616 // If a section requires postprocessing, create the buffer to use.
3617 void
3618 create_postprocessing_buffer();
3619
3620 // If a section requires postprocessing, this is the size of the
3621 // buffer to which relocations should be applied.
3622 off_t
3623 postprocessing_buffer_size() const
3624 { return this->current_data_size_for_child(); }
3625
3626 // Modify the section name. This is only permitted for an
3627 // unallocated section, and only before the size has been finalized.
3628 // Otherwise the name will not get into Layout::namepool_.
3629 void
3630 set_name(const char* newname)
3631 {
3632 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3633 gold_assert(!this->is_data_size_valid());
3634 this->name_ = newname;
3635 }
3636
3637 // Return whether the offset OFFSET in the input section SHNDX in
3638 // object OBJECT is being included in the link.
3639 bool
3640 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3641 off_t offset) const;
3642
3643 // Return the offset within the output section of OFFSET relative to
3644 // the start of input section SHNDX in object OBJECT.
3645 section_offset_type
3646 output_offset(const Relobj* object, unsigned int shndx,
3647 section_offset_type offset) const;
3648
3649 // Return the output virtual address of OFFSET relative to the start
3650 // of input section SHNDX in object OBJECT.
3651 uint64_t
3652 output_address(const Relobj* object, unsigned int shndx,
3653 off_t offset) const;
3654
3655 // Look for the merged section for input section SHNDX in object
3656 // OBJECT. If found, return true, and set *ADDR to the address of
3657 // the start of the merged section. This is not necessary the
3658 // output offset corresponding to input offset 0 in the section,
3659 // since the section may be mapped arbitrarily.
3660 bool
3661 find_starting_output_address(const Relobj* object, unsigned int shndx,
3662 uint64_t* addr) const;
3663
3664 // Record that this output section was found in the SECTIONS clause
3665 // of a linker script.
3666 void
3667 set_found_in_sections_clause()
3668 { this->found_in_sections_clause_ = true; }
3669
3670 // Return whether this output section was found in the SECTIONS
3671 // clause of a linker script.
3672 bool
3673 found_in_sections_clause() const
3674 { return this->found_in_sections_clause_; }
3675
3676 // Write the section header into *OPHDR.
3677 template<int size, bool big_endian>
3678 void
3679 write_header(const Layout*, const Stringpool*,
3680 elfcpp::Shdr_write<size, big_endian>*) const;
3681
3682 // The next few calls are for linker script support.
3683
3684 // In some cases we need to keep a list of the input sections
3685 // associated with this output section. We only need the list if we
3686 // might have to change the offsets of the input section within the
3687 // output section after we add the input section. The ordinary
3688 // input sections will be written out when we process the object
3689 // file, and as such we don't need to track them here. We do need
3690 // to track Output_section_data objects here. We store instances of
3691 // this structure in a std::vector, so it must be a POD. There can
3692 // be many instances of this structure, so we use a union to save
3693 // some space.
3694 class Input_section
3695 {
3696 public:
3697 Input_section()
3698 : shndx_(0), p2align_(0)
3699 {
3700 this->u1_.data_size = 0;
3701 this->u2_.object = NULL;
3702 }
3703
3704 // For an ordinary input section.
3705 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3706 uint64_t addralign)
3707 : shndx_(shndx),
3708 p2align_(ffsll(static_cast<long long>(addralign))),
3709 section_order_index_(0)
3710 {
3711 gold_assert(shndx != OUTPUT_SECTION_CODE
3712 && shndx != MERGE_DATA_SECTION_CODE
3713 && shndx != MERGE_STRING_SECTION_CODE
3714 && shndx != RELAXED_INPUT_SECTION_CODE);
3715 this->u1_.data_size = data_size;
3716 this->u2_.object = object;
3717 }
3718
3719 // For a non-merge output section.
3720 Input_section(Output_section_data* posd)
3721 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3722 section_order_index_(0)
3723 {
3724 this->u1_.data_size = 0;
3725 this->u2_.posd = posd;
3726 }
3727
3728 // For a merge section.
3729 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3730 : shndx_(is_string
3731 ? MERGE_STRING_SECTION_CODE
3732 : MERGE_DATA_SECTION_CODE),
3733 p2align_(0),
3734 section_order_index_(0)
3735 {
3736 this->u1_.entsize = entsize;
3737 this->u2_.posd = posd;
3738 }
3739
3740 // For a relaxed input section.
3741 Input_section(Output_relaxed_input_section* psection)
3742 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3743 section_order_index_(0)
3744 {
3745 this->u1_.data_size = 0;
3746 this->u2_.poris = psection;
3747 }
3748
3749 unsigned int
3750 section_order_index() const
3751 {
3752 return this->section_order_index_;
3753 }
3754
3755 void
3756 set_section_order_index(unsigned int number)
3757 {
3758 this->section_order_index_ = number;
3759 }
3760
3761 // The required alignment.
3762 uint64_t
3763 addralign() const
3764 {
3765 if (this->p2align_ != 0)
3766 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3767 else if (!this->is_input_section())
3768 return this->u2_.posd->addralign();
3769 else
3770 return 0;
3771 }
3772
3773 // Set the required alignment, which must be either 0 or a power of 2.
3774 // For input sections that are sub-classes of Output_section_data, a
3775 // alignment of zero means asking the underlying object for alignment.
3776 void
3777 set_addralign(uint64_t addralign)
3778 {
3779 if (addralign == 0)
3780 this->p2align_ = 0;
3781 else
3782 {
3783 gold_assert((addralign & (addralign - 1)) == 0);
3784 this->p2align_ = ffsll(static_cast<long long>(addralign));
3785 }
3786 }
3787
3788 // Return the current required size, without finalization.
3789 off_t
3790 current_data_size() const;
3791
3792 // Return the required size.
3793 off_t
3794 data_size() const;
3795
3796 // Whether this is an input section.
3797 bool
3798 is_input_section() const
3799 {
3800 return (this->shndx_ != OUTPUT_SECTION_CODE
3801 && this->shndx_ != MERGE_DATA_SECTION_CODE
3802 && this->shndx_ != MERGE_STRING_SECTION_CODE
3803 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3804 }
3805
3806 // Return whether this is a merge section which matches the
3807 // parameters.
3808 bool
3809 is_merge_section(bool is_string, uint64_t entsize,
3810 uint64_t addralign) const
3811 {
3812 return (this->shndx_ == (is_string
3813 ? MERGE_STRING_SECTION_CODE
3814 : MERGE_DATA_SECTION_CODE)
3815 && this->u1_.entsize == entsize
3816 && this->addralign() == addralign);
3817 }
3818
3819 // Return whether this is a merge section for some input section.
3820 bool
3821 is_merge_section() const
3822 {
3823 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3824 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3825 }
3826
3827 // Return whether this is a relaxed input section.
3828 bool
3829 is_relaxed_input_section() const
3830 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3831
3832 // Return whether this is a generic Output_section_data.
3833 bool
3834 is_output_section_data() const
3835 {
3836 return this->shndx_ == OUTPUT_SECTION_CODE;
3837 }
3838
3839 // Return the object for an input section.
3840 Relobj*
3841 relobj() const;
3842
3843 // Return the input section index for an input section.
3844 unsigned int
3845 shndx() const;
3846
3847 // For non-input-sections, return the associated Output_section_data
3848 // object.
3849 Output_section_data*
3850 output_section_data() const
3851 {
3852 gold_assert(!this->is_input_section());
3853 return this->u2_.posd;
3854 }
3855
3856 // For a merge section, return the Output_merge_base pointer.
3857 Output_merge_base*
3858 output_merge_base() const
3859 {
3860 gold_assert(this->is_merge_section());
3861 return this->u2_.pomb;
3862 }
3863
3864 // Return the Output_relaxed_input_section object.
3865 Output_relaxed_input_section*
3866 relaxed_input_section() const
3867 {
3868 gold_assert(this->is_relaxed_input_section());
3869 return this->u2_.poris;
3870 }
3871
3872 // Set the output section.
3873 void
3874 set_output_section(Output_section* os)
3875 {
3876 gold_assert(!this->is_input_section());
3877 Output_section_data* posd =
3878 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3879 posd->set_output_section(os);
3880 }
3881
3882 // Set the address and file offset. This is called during
3883 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3884 // the enclosing section.
3885 void
3886 set_address_and_file_offset(uint64_t address, off_t file_offset,
3887 off_t section_file_offset);
3888
3889 // Reset the address and file offset.
3890 void
3891 reset_address_and_file_offset();
3892
3893 // Finalize the data size.
3894 void
3895 finalize_data_size();
3896
3897 // Add an input section, for SHF_MERGE sections.
3898 bool
3899 add_input_section(Relobj* object, unsigned int shndx)
3900 {
3901 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3902 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3903 return this->u2_.posd->add_input_section(object, shndx);
3904 }
3905
3906 // Given an input OBJECT, an input section index SHNDX within that
3907 // object, and an OFFSET relative to the start of that input
3908 // section, return whether or not the output offset is known. If
3909 // this function returns true, it sets *POUTPUT to the offset in
3910 // the output section, relative to the start of the input section
3911 // in the output section. *POUTPUT may be different from OFFSET
3912 // for a merged section.
3913 bool
3914 output_offset(const Relobj* object, unsigned int shndx,
3915 section_offset_type offset,
3916 section_offset_type* poutput) const;
3917
3918 // Write out the data. This does nothing for an input section.
3919 void
3920 write(Output_file*);
3921
3922 // Write the data to a buffer. This does nothing for an input
3923 // section.
3924 void
3925 write_to_buffer(unsigned char*);
3926
3927 // Print to a map file.
3928 void
3929 print_to_mapfile(Mapfile*) const;
3930
3931 // Print statistics about merge sections to stderr.
3932 void
3933 print_merge_stats(const char* section_name)
3934 {
3935 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3936 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3937 this->u2_.posd->print_merge_stats(section_name);
3938 }
3939
3940 private:
3941 // Code values which appear in shndx_. If the value is not one of
3942 // these codes, it is the input section index in the object file.
3943 enum
3944 {
3945 // An Output_section_data.
3946 OUTPUT_SECTION_CODE = -1U,
3947 // An Output_section_data for an SHF_MERGE section with
3948 // SHF_STRINGS not set.
3949 MERGE_DATA_SECTION_CODE = -2U,
3950 // An Output_section_data for an SHF_MERGE section with
3951 // SHF_STRINGS set.
3952 MERGE_STRING_SECTION_CODE = -3U,
3953 // An Output_section_data for a relaxed input section.
3954 RELAXED_INPUT_SECTION_CODE = -4U
3955 };
3956
3957 // For an ordinary input section, this is the section index in the
3958 // input file. For an Output_section_data, this is
3959 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3960 // MERGE_STRING_SECTION_CODE.
3961 unsigned int shndx_;
3962 // The required alignment, stored as a power of 2.
3963 unsigned int p2align_;
3964 union
3965 {
3966 // For an ordinary input section, the section size.
3967 off_t data_size;
3968 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3969 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3970 // entity size.
3971 uint64_t entsize;
3972 } u1_;
3973 union
3974 {
3975 // For an ordinary input section, the object which holds the
3976 // input section.
3977 Relobj* object;
3978 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3979 // MERGE_STRING_SECTION_CODE, the data.
3980 Output_section_data* posd;
3981 Output_merge_base* pomb;
3982 // For RELAXED_INPUT_SECTION_CODE, the data.
3983 Output_relaxed_input_section* poris;
3984 } u2_;
3985 // The line number of the pattern it matches in the --section-ordering-file
3986 // file. It is 0 if does not match any pattern.
3987 unsigned int section_order_index_;
3988 };
3989
3990 // Store the list of input sections for this Output_section into the
3991 // list passed in. This removes the input sections, leaving only
3992 // any Output_section_data elements. This returns the size of those
3993 // Output_section_data elements. ADDRESS is the address of this
3994 // output section. FILL is the fill value to use, in case there are
3995 // any spaces between the remaining Output_section_data elements.
3996 uint64_t
3997 get_input_sections(uint64_t address, const std::string& fill,
3998 std::list<Input_section>*);
3999
4000 // Add a script input section. A script input section can either be
4001 // a plain input section or a sub-class of Output_section_data.
4002 void
4003 add_script_input_section(const Input_section& input_section);
4004
4005 // Set the current size of the output section.
4006 void
4007 set_current_data_size(off_t size)
4008 { this->set_current_data_size_for_child(size); }
4009
4010 // End of linker script support.
4011
4012 // Save states before doing section layout.
4013 // This is used for relaxation.
4014 void
4015 save_states();
4016
4017 // Restore states prior to section layout.
4018 void
4019 restore_states();
4020
4021 // Discard states.
4022 void
4023 discard_states();
4024
4025 // Convert existing input sections to relaxed input sections.
4026 void
4027 convert_input_sections_to_relaxed_sections(
4028 const std::vector<Output_relaxed_input_section*>& sections);
4029
4030 // Find a relaxed input section to an input section in OBJECT
4031 // with index SHNDX. Return NULL if none is found.
4032 const Output_relaxed_input_section*
4033 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
4034
4035 // Whether section offsets need adjustment due to relaxation.
4036 bool
4037 section_offsets_need_adjustment() const
4038 { return this->section_offsets_need_adjustment_; }
4039
4040 // Set section_offsets_need_adjustment to be true.
4041 void
4042 set_section_offsets_need_adjustment()
4043 { this->section_offsets_need_adjustment_ = true; }
4044
4045 // Set section_offsets_need_adjustment to be false.
4046 void
4047 clear_section_offsets_need_adjustment()
4048 { this->section_offsets_need_adjustment_ = false; }
4049
4050 // Adjust section offsets of input sections in this. This is
4051 // requires if relaxation caused some input sections to change sizes.
4052 void
4053 adjust_section_offsets();
4054
4055 // Whether this is a NOLOAD section.
4056 bool
4057 is_noload() const
4058 { return this->is_noload_; }
4059
4060 // Set NOLOAD flag.
4061 void
4062 set_is_noload()
4063 { this->is_noload_ = true; }
4064
4065 // Print merge statistics to stderr.
4066 void
4067 print_merge_stats();
4068
4069 // Set a fixed layout for the section. Used for incremental update links.
4070 void
4071 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
4072 uint64_t sh_addralign);
4073
4074 // Return TRUE if the section has a fixed layout.
4075 bool
4076 has_fixed_layout() const
4077 { return this->has_fixed_layout_; }
4078
4079 // Set flag to allow patch space for this section. Used for full
4080 // incremental links.
4081 void
4082 set_is_patch_space_allowed()
4083 { this->is_patch_space_allowed_ = true; }
4084
4085 // Set a fill method to use for free space left in the output section
4086 // during incremental links.
4087 void
4088 set_free_space_fill(Output_fill* free_space_fill)
4089 {
4090 this->free_space_fill_ = free_space_fill;
4091 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
4092 }
4093
4094 // Reserve space within the fixed layout for the section. Used for
4095 // incremental update links.
4096 void
4097 reserve(uint64_t sh_offset, uint64_t sh_size);
4098
4099 // Allocate space from the free list for the section. Used for
4100 // incremental update links.
4101 off_t
4102 allocate(off_t len, uint64_t addralign);
4103
4104 typedef std::vector<Input_section> Input_section_list;
4105
4106 // Allow access to the input sections.
4107 const Input_section_list&
4108 input_sections() const
4109 { return this->input_sections_; }
4110
4111 Input_section_list&
4112 input_sections()
4113 { return this->input_sections_; }
4114
4115 // For -r and --emit-relocs, we need to keep track of the associated
4116 // relocation section.
4117 Output_section*
4118 reloc_section() const
4119 { return this->reloc_section_; }
4120
4121 void
4122 set_reloc_section(Output_section* os)
4123 { this->reloc_section_ = os; }
4124
4125 protected:
4126 // Return the output section--i.e., the object itself.
4127 Output_section*
4128 do_output_section()
4129 { return this; }
4130
4131 const Output_section*
4132 do_output_section() const
4133 { return this; }
4134
4135 // Return the section index in the output file.
4136 unsigned int
4137 do_out_shndx() const
4138 {
4139 gold_assert(this->out_shndx_ != -1U);
4140 return this->out_shndx_;
4141 }
4142
4143 // Set the output section index.
4144 void
4145 do_set_out_shndx(unsigned int shndx)
4146 {
4147 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
4148 this->out_shndx_ = shndx;
4149 }
4150
4151 // Update the data size of the Output_section. For a typical
4152 // Output_section, there is nothing to do, but if there are any
4153 // Output_section_data objects we need to do a trial layout
4154 // here.
4155 virtual void
4156 update_data_size();
4157
4158 // Set the final data size of the Output_section. For a typical
4159 // Output_section, there is nothing to do, but if there are any
4160 // Output_section_data objects we need to set their final addresses
4161 // here.
4162 virtual void
4163 set_final_data_size();
4164
4165 // Reset the address and file offset.
4166 void
4167 do_reset_address_and_file_offset();
4168
4169 // Return true if address and file offset already have reset values. In
4170 // other words, calling reset_address_and_file_offset will not change them.
4171 bool
4172 do_address_and_file_offset_have_reset_values() const;
4173
4174 // Write the data to the file. For a typical Output_section, this
4175 // does nothing: the data is written out by calling Object::Relocate
4176 // on each input object. But if there are any Output_section_data
4177 // objects we do need to write them out here.
4178 virtual void
4179 do_write(Output_file*);
4180
4181 // Return the address alignment--function required by parent class.
4182 uint64_t
4183 do_addralign() const
4184 { return this->addralign_; }
4185
4186 // Return whether there is a load address.
4187 bool
4188 do_has_load_address() const
4189 { return this->has_load_address_; }
4190
4191 // Return the load address.
4192 uint64_t
4193 do_load_address() const
4194 {
4195 gold_assert(this->has_load_address_);
4196 return this->load_address_;
4197 }
4198
4199 // Return whether this is an Output_section.
4200 bool
4201 do_is_section() const
4202 { return true; }
4203
4204 // Return whether this is a section of the specified type.
4205 bool
4206 do_is_section_type(elfcpp::Elf_Word type) const
4207 { return this->type_ == type; }
4208
4209 // Return whether the specified section flag is set.
4210 bool
4211 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4212 { return (this->flags_ & flag) != 0; }
4213
4214 // Set the TLS offset. Called only for SHT_TLS sections.
4215 void
4216 do_set_tls_offset(uint64_t tls_base);
4217
4218 // Return the TLS offset, relative to the base of the TLS segment.
4219 // Valid only for SHT_TLS sections.
4220 uint64_t
4221 do_tls_offset() const
4222 { return this->tls_offset_; }
4223
4224 // This may be implemented by a child class.
4225 virtual void
4226 do_finalize_name(Layout*)
4227 { }
4228
4229 // Print to the map file.
4230 virtual void
4231 do_print_to_mapfile(Mapfile*) const;
4232
4233 // Record that this section requires postprocessing after all
4234 // relocations have been applied. This is called by a child class.
4235 void
4236 set_requires_postprocessing()
4237 {
4238 this->requires_postprocessing_ = true;
4239 this->after_input_sections_ = true;
4240 }
4241
4242 // Write all the data of an Output_section into the postprocessing
4243 // buffer.
4244 void
4245 write_to_postprocessing_buffer();
4246
4247 // Whether this always keeps an input section list
4248 bool
4249 always_keeps_input_sections() const
4250 { return this->always_keeps_input_sections_; }
4251
4252 // Always keep an input section list.
4253 void
4254 set_always_keeps_input_sections()
4255 {
4256 gold_assert(this->current_data_size_for_child() == 0);
4257 this->always_keeps_input_sections_ = true;
4258 }
4259
4260 private:
4261 // We only save enough information to undo the effects of section layout.
4262 class Checkpoint_output_section
4263 {
4264 public:
4265 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4266 const Input_section_list& input_sections,
4267 off_t first_input_offset,
4268 bool attached_input_sections_are_sorted)
4269 : addralign_(addralign), flags_(flags),
4270 input_sections_(input_sections),
4271 input_sections_size_(input_sections_.size()),
4272 input_sections_copy_(), first_input_offset_(first_input_offset),
4273 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4274 { }
4275
4276 virtual
4277 ~Checkpoint_output_section()
4278 { }
4279
4280 // Return the address alignment.
4281 uint64_t
4282 addralign() const
4283 { return this->addralign_; }
4284
4285 void
4286 set_addralign(uint64_t val)
4287 { this->addralign_ = val; }
4288
4289 // Return the section flags.
4290 elfcpp::Elf_Xword
4291 flags() const
4292 { return this->flags_; }
4293
4294 // Return a reference to the input section list copy.
4295 Input_section_list*
4296 input_sections()
4297 { return &this->input_sections_copy_; }
4298
4299 // Return the size of input_sections at the time when checkpoint is
4300 // taken.
4301 size_t
4302 input_sections_size() const
4303 { return this->input_sections_size_; }
4304
4305 // Whether input sections are copied.
4306 bool
4307 input_sections_saved() const
4308 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4309
4310 off_t
4311 first_input_offset() const
4312 { return this->first_input_offset_; }
4313
4314 bool
4315 attached_input_sections_are_sorted() const
4316 { return this->attached_input_sections_are_sorted_; }
4317
4318 // Save input sections.
4319 void
4320 save_input_sections()
4321 {
4322 this->input_sections_copy_.reserve(this->input_sections_size_);
4323 this->input_sections_copy_.clear();
4324 Input_section_list::const_iterator p = this->input_sections_.begin();
4325 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4326 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4327 this->input_sections_copy_.push_back(*p);
4328 }
4329
4330 private:
4331 // The section alignment.
4332 uint64_t addralign_;
4333 // The section flags.
4334 elfcpp::Elf_Xword flags_;
4335 // Reference to the input sections to be checkpointed.
4336 const Input_section_list& input_sections_;
4337 // Size of the checkpointed portion of input_sections_;
4338 size_t input_sections_size_;
4339 // Copy of input sections.
4340 Input_section_list input_sections_copy_;
4341 // The offset of the first entry in input_sections_.
4342 off_t first_input_offset_;
4343 // True if the input sections attached to this output section have
4344 // already been sorted.
4345 bool attached_input_sections_are_sorted_;
4346 };
4347
4348 // This class is used to sort the input sections.
4349 class Input_section_sort_entry;
4350
4351 // This is the sort comparison function for ctors and dtors.
4352 struct Input_section_sort_compare
4353 {
4354 bool
4355 operator()(const Input_section_sort_entry&,
4356 const Input_section_sort_entry&) const;
4357 };
4358
4359 // This is the sort comparison function for .init_array and .fini_array.
4360 struct Input_section_sort_init_fini_compare
4361 {
4362 bool
4363 operator()(const Input_section_sort_entry&,
4364 const Input_section_sort_entry&) const;
4365 };
4366
4367 // This is the sort comparison function when a section order is specified
4368 // from an input file.
4369 struct Input_section_sort_section_order_index_compare
4370 {
4371 bool
4372 operator()(const Input_section_sort_entry&,
4373 const Input_section_sort_entry&) const;
4374 };
4375
4376 // This is the sort comparison function for .text to sort sections with
4377 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4378 struct Input_section_sort_section_prefix_special_ordering_compare
4379 {
4380 bool
4381 operator()(const Input_section_sort_entry&,
4382 const Input_section_sort_entry&) const;
4383 };
4384
4385 // This is the sort comparison function for sorting sections by name.
4386 struct Input_section_sort_section_name_compare
4387 {
4388 bool
4389 operator()(const Input_section_sort_entry&,
4390 const Input_section_sort_entry&) const;
4391 };
4392
4393 // Fill data. This is used to fill in data between input sections.
4394 // It is also used for data statements (BYTE, WORD, etc.) in linker
4395 // scripts. When we have to keep track of the input sections, we
4396 // can use an Output_data_const, but we don't want to have to keep
4397 // track of input sections just to implement fills.
4398 class Fill
4399 {
4400 public:
4401 Fill(off_t section_offset, off_t length)
4402 : section_offset_(section_offset),
4403 length_(convert_to_section_size_type(length))
4404 { }
4405
4406 // Return section offset.
4407 off_t
4408 section_offset() const
4409 { return this->section_offset_; }
4410
4411 // Return fill length.
4412 section_size_type
4413 length() const
4414 { return this->length_; }
4415
4416 private:
4417 // The offset within the output section.
4418 off_t section_offset_;
4419 // The length of the space to fill.
4420 section_size_type length_;
4421 };
4422
4423 typedef std::vector<Fill> Fill_list;
4424
4425 // Map used during relaxation of existing sections. This map
4426 // a section id an input section list index. We assume that
4427 // Input_section_list is a vector.
4428 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4429
4430 // Add a new output section by Input_section.
4431 void
4432 add_output_section_data(Input_section*);
4433
4434 // Add an SHF_MERGE input section. Returns true if the section was
4435 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4436 // stores information about the merged input sections.
4437 bool
4438 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4439 uint64_t entsize, uint64_t addralign,
4440 bool keeps_input_sections);
4441
4442 // Add an output SHF_MERGE section POSD to this output section.
4443 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4444 // ENTSIZE is the entity size. This returns the entry added to
4445 // input_sections_.
4446 void
4447 add_output_merge_section(Output_section_data* posd, bool is_string,
4448 uint64_t entsize);
4449
4450 // Find the merge section into which an input section with index SHNDX in
4451 // OBJECT has been added. Return NULL if none found.
4452 const Output_section_data*
4453 find_merge_section(const Relobj* object, unsigned int shndx) const;
4454
4455 // Build a relaxation map.
4456 void
4457 build_relaxation_map(
4458 const Input_section_list& input_sections,
4459 size_t limit,
4460 Relaxation_map* map) const;
4461
4462 // Convert input sections in an input section list into relaxed sections.
4463 void
4464 convert_input_sections_in_list_to_relaxed_sections(
4465 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4466 const Relaxation_map& map,
4467 Input_section_list* input_sections);
4468
4469 // Build the lookup maps for merge and relaxed input sections.
4470 void
4471 build_lookup_maps() const;
4472
4473 // Most of these fields are only valid after layout.
4474
4475 // The name of the section. This will point into a Stringpool.
4476 const char* name_;
4477 // The section address is in the parent class.
4478 // The section alignment.
4479 uint64_t addralign_;
4480 // The section entry size.
4481 uint64_t entsize_;
4482 // The load address. This is only used when using a linker script
4483 // with a SECTIONS clause. The has_load_address_ field indicates
4484 // whether this field is valid.
4485 uint64_t load_address_;
4486 // The file offset is in the parent class.
4487 // Set the section link field to the index of this section.
4488 const Output_data* link_section_;
4489 // If link_section_ is NULL, this is the link field.
4490 unsigned int link_;
4491 // Set the section info field to the index of this section.
4492 const Output_section* info_section_;
4493 // If info_section_ is NULL, set the info field to the symbol table
4494 // index of this symbol.
4495 const Symbol* info_symndx_;
4496 // If info_section_ and info_symndx_ are NULL, this is the section
4497 // info field.
4498 unsigned int info_;
4499 // The section type.
4500 const elfcpp::Elf_Word type_;
4501 // The section flags.
4502 elfcpp::Elf_Xword flags_;
4503 // The order of this section in the output segment.
4504 Output_section_order order_;
4505 // The section index.
4506 unsigned int out_shndx_;
4507 // If there is a STT_SECTION for this output section in the normal
4508 // symbol table, this is the symbol index. This starts out as zero.
4509 // It is initialized in Layout::finalize() to be the index, or -1U
4510 // if there isn't one.
4511 unsigned int symtab_index_;
4512 // If there is a STT_SECTION for this output section in the dynamic
4513 // symbol table, this is the symbol index. This starts out as zero.
4514 // It is initialized in Layout::finalize() to be the index, or -1U
4515 // if there isn't one.
4516 unsigned int dynsym_index_;
4517 // The input sections. This will be empty in cases where we don't
4518 // need to keep track of them.
4519 Input_section_list input_sections_;
4520 // The offset of the first entry in input_sections_.
4521 off_t first_input_offset_;
4522 // The fill data. This is separate from input_sections_ because we
4523 // often will need fill sections without needing to keep track of
4524 // input sections.
4525 Fill_list fills_;
4526 // If the section requires postprocessing, this buffer holds the
4527 // section contents during relocation.
4528 unsigned char* postprocessing_buffer_;
4529 // Whether this output section needs a STT_SECTION symbol in the
4530 // normal symbol table. This will be true if there is a relocation
4531 // which needs it.
4532 bool needs_symtab_index_ : 1;
4533 // Whether this output section needs a STT_SECTION symbol in the
4534 // dynamic symbol table. This will be true if there is a dynamic
4535 // relocation which needs it.
4536 bool needs_dynsym_index_ : 1;
4537 // Whether the link field of this output section should point to the
4538 // normal symbol table.
4539 bool should_link_to_symtab_ : 1;
4540 // Whether the link field of this output section should point to the
4541 // dynamic symbol table.
4542 bool should_link_to_dynsym_ : 1;
4543 // Whether this section should be written after all the input
4544 // sections are complete.
4545 bool after_input_sections_ : 1;
4546 // Whether this section requires post processing after all
4547 // relocations have been applied.
4548 bool requires_postprocessing_ : 1;
4549 // Whether an input section was mapped to this output section
4550 // because of a SECTIONS clause in a linker script.
4551 bool found_in_sections_clause_ : 1;
4552 // Whether this section has an explicitly specified load address.
4553 bool has_load_address_ : 1;
4554 // True if the info_section_ field means the section index of the
4555 // section, false if it means the symbol index of the corresponding
4556 // section symbol.
4557 bool info_uses_section_index_ : 1;
4558 // True if input sections attached to this output section have to be
4559 // sorted according to a specified order.
4560 bool input_section_order_specified_ : 1;
4561 // True if the input sections attached to this output section may
4562 // need sorting.
4563 bool may_sort_attached_input_sections_ : 1;
4564 // True if the input sections attached to this output section must
4565 // be sorted.
4566 bool must_sort_attached_input_sections_ : 1;
4567 // True if the input sections attached to this output section have
4568 // already been sorted.
4569 bool attached_input_sections_are_sorted_ : 1;
4570 // True if this section holds relro data.
4571 bool is_relro_ : 1;
4572 // True if this is a small section.
4573 bool is_small_section_ : 1;
4574 // True if this is a large section.
4575 bool is_large_section_ : 1;
4576 // Whether code-fills are generated at write.
4577 bool generate_code_fills_at_write_ : 1;
4578 // Whether the entry size field should be zero.
4579 bool is_entsize_zero_ : 1;
4580 // Whether section offsets need adjustment due to relaxation.
4581 bool section_offsets_need_adjustment_ : 1;
4582 // Whether this is a NOLOAD section.
4583 bool is_noload_ : 1;
4584 // Whether this always keeps input section.
4585 bool always_keeps_input_sections_ : 1;
4586 // Whether this section has a fixed layout, for incremental update links.
4587 bool has_fixed_layout_ : 1;
4588 // True if we can add patch space to this section.
4589 bool is_patch_space_allowed_ : 1;
4590 // True if this output section goes into a unique segment.
4591 bool is_unique_segment_ : 1;
4592 // For SHT_TLS sections, the offset of this section relative to the base
4593 // of the TLS segment.
4594 uint64_t tls_offset_;
4595 // Additional segment flags, specified via linker plugin, when mapping some
4596 // input sections to unique segments.
4597 uint64_t extra_segment_flags_;
4598 // Segment alignment specified via linker plugin, when mapping some
4599 // input sections to unique segments.
4600 uint64_t segment_alignment_;
4601 // Saved checkpoint.
4602 Checkpoint_output_section* checkpoint_;
4603 // Fast lookup maps for merged and relaxed input sections.
4604 Output_section_lookup_maps* lookup_maps_;
4605 // List of available regions within the section, for incremental
4606 // update links.
4607 Free_list free_list_;
4608 // Method for filling chunks of free space.
4609 Output_fill* free_space_fill_;
4610 // Amount added as patch space for incremental linking.
4611 off_t patch_space_;
4612 // Associated relocation section, when emitting relocations.
4613 Output_section* reloc_section_;
4614 };
4615
4616 // An output segment. PT_LOAD segments are built from collections of
4617 // output sections. Other segments typically point within PT_LOAD
4618 // segments, and are built directly as needed.
4619 //
4620 // NOTE: We want to use the copy constructor for this class. During
4621 // relaxation, we may try built the segments multiple times. We do
4622 // that by copying the original segment list before lay-out, doing
4623 // a trial lay-out and roll-back to the saved copied if we need to
4624 // to the lay-out again.
4625
4626 class Output_segment
4627 {
4628 public:
4629 // Create an output segment, specifying the type and flags.
4630 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4631
4632 // Return the virtual address.
4633 uint64_t
4634 vaddr() const
4635 { return this->vaddr_; }
4636
4637 // Return the physical address.
4638 uint64_t
4639 paddr() const
4640 { return this->paddr_; }
4641
4642 // Return the segment type.
4643 elfcpp::Elf_Word
4644 type() const
4645 { return this->type_; }
4646
4647 // Return the segment flags.
4648 elfcpp::Elf_Word
4649 flags() const
4650 { return this->flags_; }
4651
4652 // Return the memory size.
4653 uint64_t
4654 memsz() const
4655 { return this->memsz_; }
4656
4657 // Return the file size.
4658 off_t
4659 filesz() const
4660 { return this->filesz_; }
4661
4662 // Return the file offset.
4663 off_t
4664 offset() const
4665 { return this->offset_; }
4666
4667 // Return the segment alignment.
4668 uint64_t
4669 align() const
4670 { return this->align_; }
4671
4672 // Set the segment alignment.
4673 void
4674 set_align(uint64_t align)
4675 { this->align_ = align; }
4676
4677 // Whether this is a segment created to hold large data sections.
4678 bool
4679 is_large_data_segment() const
4680 { return this->is_large_data_segment_; }
4681
4682 // Record that this is a segment created to hold large data
4683 // sections.
4684 void
4685 set_is_large_data_segment()
4686 { this->is_large_data_segment_ = true; }
4687
4688 bool
4689 is_unique_segment() const
4690 { return this->is_unique_segment_; }
4691
4692 // Mark segment as unique, happens when linker plugins request that
4693 // certain input sections be mapped to unique segments.
4694 void
4695 set_is_unique_segment()
4696 { this->is_unique_segment_ = true; }
4697
4698 // Return the maximum alignment of the Output_data.
4699 uint64_t
4700 maximum_alignment();
4701
4702 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4703 // the segment flags to use.
4704 void
4705 add_output_section_to_load(Layout* layout, Output_section* os,
4706 elfcpp::Elf_Word seg_flags);
4707
4708 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4709 // is the segment flags to use.
4710 void
4711 add_output_section_to_nonload(Output_section* os,
4712 elfcpp::Elf_Word seg_flags);
4713
4714 // Remove an Output_section from this segment. It is an error if it
4715 // is not present.
4716 void
4717 remove_output_section(Output_section* os);
4718
4719 // Add an Output_data (which need not be an Output_section) to the
4720 // start of this segment.
4721 void
4722 add_initial_output_data(Output_data*);
4723
4724 // Return true if this segment has any sections which hold actual
4725 // data, rather than being a BSS section.
4726 bool
4727 has_any_data_sections() const;
4728
4729 // Whether this segment has a dynamic relocs.
4730 bool
4731 has_dynamic_reloc() const;
4732
4733 // Return the first section.
4734 Output_section*
4735 first_section() const;
4736
4737 // Return the address of the first section.
4738 uint64_t
4739 first_section_load_address() const
4740 {
4741 const Output_section* os = this->first_section();
4742 gold_assert(os != NULL);
4743 return os->has_load_address() ? os->load_address() : os->address();
4744 }
4745
4746 // Return whether the addresses have been set already.
4747 bool
4748 are_addresses_set() const
4749 { return this->are_addresses_set_; }
4750
4751 // Set the addresses.
4752 void
4753 set_addresses(uint64_t vaddr, uint64_t paddr)
4754 {
4755 this->vaddr_ = vaddr;
4756 this->paddr_ = paddr;
4757 this->are_addresses_set_ = true;
4758 }
4759
4760 // Update the flags for the flags of an output section added to this
4761 // segment.
4762 void
4763 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4764 {
4765 // The ELF ABI specifies that a PT_TLS segment should always have
4766 // PF_R as the flags.
4767 if (this->type() != elfcpp::PT_TLS)
4768 this->flags_ |= flags;
4769 }
4770
4771 // Set the segment flags. This is only used if we have a PHDRS
4772 // clause which explicitly specifies the flags.
4773 void
4774 set_flags(elfcpp::Elf_Word flags)
4775 { this->flags_ = flags; }
4776
4777 // Set the address of the segment to ADDR and the offset to *POFF
4778 // and set the addresses and offsets of all contained output
4779 // sections accordingly. Set the section indexes of all contained
4780 // output sections starting with *PSHNDX. If RESET is true, first
4781 // reset the addresses of the contained sections. Return the
4782 // address of the immediately following segment. Update *POFF and
4783 // *PSHNDX. This should only be called for a PT_LOAD segment.
4784 uint64_t
4785 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4786 unsigned int* increase_relro, bool* has_relro,
4787 off_t* poff, unsigned int* pshndx);
4788
4789 // Set the minimum alignment of this segment. This may be adjusted
4790 // upward based on the section alignments.
4791 void
4792 set_minimum_p_align(uint64_t align)
4793 {
4794 if (align > this->min_p_align_)
4795 this->min_p_align_ = align;
4796 }
4797
4798 // Set the memory size of this segment.
4799 void
4800 set_size(uint64_t size)
4801 {
4802 this->memsz_ = size;
4803 }
4804
4805 // Set the offset of this segment based on the section. This should
4806 // only be called for a non-PT_LOAD segment.
4807 void
4808 set_offset(unsigned int increase);
4809
4810 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4811 void
4812 set_tls_offsets();
4813
4814 // Return the number of output sections.
4815 unsigned int
4816 output_section_count() const;
4817
4818 // Return the section attached to the list segment with the lowest
4819 // load address. This is used when handling a PHDRS clause in a
4820 // linker script.
4821 Output_section*
4822 section_with_lowest_load_address() const;
4823
4824 // Write the segment header into *OPHDR.
4825 template<int size, bool big_endian>
4826 void
4827 write_header(elfcpp::Phdr_write<size, big_endian>*);
4828
4829 // Write the section headers of associated sections into V.
4830 template<int size, bool big_endian>
4831 unsigned char*
4832 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4833 unsigned int* pshndx) const;
4834
4835 // Print the output sections in the map file.
4836 void
4837 print_sections_to_mapfile(Mapfile*) const;
4838
4839 private:
4840 typedef std::vector<Output_data*> Output_data_list;
4841
4842 // Find the maximum alignment in an Output_data_list.
4843 static uint64_t
4844 maximum_alignment_list(const Output_data_list*);
4845
4846 // Return whether the first data section is a relro section.
4847 bool
4848 is_first_section_relro() const;
4849
4850 // Set the section addresses in an Output_data_list.
4851 uint64_t
4852 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4853 uint64_t addr, off_t* poff, off_t* fpoff,
4854 unsigned int* pshndx, bool* in_tls);
4855
4856 // Return the number of Output_sections in an Output_data_list.
4857 unsigned int
4858 output_section_count_list(const Output_data_list*) const;
4859
4860 // Return whether an Output_data_list has a dynamic reloc.
4861 bool
4862 has_dynamic_reloc_list(const Output_data_list*) const;
4863
4864 // Find the section with the lowest load address in an
4865 // Output_data_list.
4866 void
4867 lowest_load_address_in_list(const Output_data_list* pdl,
4868 Output_section** found,
4869 uint64_t* found_lma) const;
4870
4871 // Find the first and last entries by address.
4872 void
4873 find_first_and_last_list(const Output_data_list* pdl,
4874 const Output_data** pfirst,
4875 const Output_data** plast) const;
4876
4877 // Write the section headers in the list into V.
4878 template<int size, bool big_endian>
4879 unsigned char*
4880 write_section_headers_list(const Layout*, const Stringpool*,
4881 const Output_data_list*, unsigned char* v,
4882 unsigned int* pshdx) const;
4883
4884 // Print a section list to the mapfile.
4885 void
4886 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4887
4888 // NOTE: We want to use the copy constructor. Currently, shallow copy
4889 // works for us so we do not need to write our own copy constructor.
4890
4891 // The list of output data attached to this segment.
4892 Output_data_list output_lists_[ORDER_MAX];
4893 // The segment virtual address.
4894 uint64_t vaddr_;
4895 // The segment physical address.
4896 uint64_t paddr_;
4897 // The size of the segment in memory.
4898 uint64_t memsz_;
4899 // The segment alignment.
4900 uint64_t align_;
4901 // The maximum section alignment. The is_max_align_known_ field
4902 // indicates whether this has been finalized.
4903 uint64_t max_align_;
4904 // The required minimum value for the p_align field. This is used
4905 // for PT_LOAD segments. Note that this does not mean that
4906 // addresses should be aligned to this value; it means the p_paddr
4907 // and p_vaddr fields must be congruent modulo this value. For
4908 // non-PT_LOAD segments, the dynamic linker works more efficiently
4909 // if the p_align field has the more conventional value, although it
4910 // can align as needed.
4911 uint64_t min_p_align_;
4912 // The offset of the segment data within the file.
4913 off_t offset_;
4914 // The size of the segment data in the file.
4915 off_t filesz_;
4916 // The segment type;
4917 elfcpp::Elf_Word type_;
4918 // The segment flags.
4919 elfcpp::Elf_Word flags_;
4920 // Whether we have finalized max_align_.
4921 bool is_max_align_known_ : 1;
4922 // Whether vaddr and paddr were set by a linker script.
4923 bool are_addresses_set_ : 1;
4924 // Whether this segment holds large data sections.
4925 bool is_large_data_segment_ : 1;
4926 // Whether this was marked as a unique segment via a linker plugin.
4927 bool is_unique_segment_ : 1;
4928 };
4929
4930 } // End namespace gold.
4931
4932 #endif // !defined(GOLD_OUTPUT_H)