* powerpc.cc (Target_powerpc::make_plt_section): Add symtab
[binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include "elfcpp.h"
27 #include "parameters.h"
28 #include "reloc.h"
29 #include "powerpc.h"
30 #include "object.h"
31 #include "symtab.h"
32 #include "layout.h"
33 #include "output.h"
34 #include "copy-relocs.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39 #include "errors.h"
40 #include "gc.h"
41
42 namespace
43 {
44
45 using namespace gold;
46
47 template<int size, bool big_endian>
48 class Output_data_plt_powerpc;
49
50 template<int size, bool big_endian>
51 class Output_data_got_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_glink;
55
56 template<int size, bool big_endian>
57 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
58 {
59 public:
60 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
61 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
62 typedef Unordered_map<Address, Section_refs> Access_from;
63
64 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
65 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
66 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
67 special_(0), opd_valid_(false), opd_ent_(), access_from_map_()
68 { }
69
70 ~Powerpc_relobj()
71 { }
72
73 // The .got2 section shndx.
74 unsigned int
75 got2_shndx() const
76 {
77 if (size == 32)
78 return this->special_;
79 else
80 return 0;
81 }
82
83 // The .opd section shndx.
84 unsigned int
85 opd_shndx() const
86 {
87 if (size == 32)
88 return 0;
89 else
90 return this->special_;
91 }
92
93 // Init OPD entry arrays.
94 void
95 init_opd(size_t opd_size)
96 {
97 size_t count = this->opd_ent_ndx(opd_size);
98 this->opd_ent_.resize(count);
99 }
100
101 // Return section and offset of function entry for .opd + R_OFF.
102 unsigned int
103 get_opd_ent(Address r_off, Address* value = NULL) const
104 {
105 size_t ndx = this->opd_ent_ndx(r_off);
106 gold_assert(ndx < this->opd_ent_.size());
107 gold_assert(this->opd_ent_[ndx].shndx != 0);
108 if (value != NULL)
109 *value = this->opd_ent_[ndx].off;
110 return this->opd_ent_[ndx].shndx;
111 }
112
113 // Set section and offset of function entry for .opd + R_OFF.
114 void
115 set_opd_ent(Address r_off, unsigned int shndx, Address value)
116 {
117 size_t ndx = this->opd_ent_ndx(r_off);
118 gold_assert(ndx < this->opd_ent_.size());
119 this->opd_ent_[ndx].shndx = shndx;
120 this->opd_ent_[ndx].off = value;
121 }
122
123 // Return discard flag for .opd + R_OFF.
124 bool
125 get_opd_discard(Address r_off) const
126 {
127 size_t ndx = this->opd_ent_ndx(r_off);
128 gold_assert(ndx < this->opd_ent_.size());
129 return this->opd_ent_[ndx].discard;
130 }
131
132 // Set discard flag for .opd + R_OFF.
133 void
134 set_opd_discard(Address r_off)
135 {
136 size_t ndx = this->opd_ent_ndx(r_off);
137 gold_assert(ndx < this->opd_ent_.size());
138 this->opd_ent_[ndx].discard = true;
139 }
140
141 Access_from*
142 access_from_map()
143 { return &this->access_from_map_; }
144
145 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
146 // section at DST_OFF.
147 void
148 add_reference(Object* src_obj,
149 unsigned int src_indx,
150 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
151 {
152 Section_id src_id(src_obj, src_indx);
153 this->access_from_map_[dst_off].insert(src_id);
154 }
155
156 // Add a reference to the code section specified by the .opd entry
157 // at DST_OFF
158 void
159 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
160 {
161 size_t ndx = this->opd_ent_ndx(dst_off);
162 if (ndx >= this->opd_ent_.size())
163 this->opd_ent_.resize(ndx + 1);
164 this->opd_ent_[ndx].gc_mark = true;
165 }
166
167 void
168 process_gc_mark(Symbol_table* symtab)
169 {
170 for (size_t i = 0; i < this->opd_ent_.size(); i++)
171 if (this->opd_ent_[i].gc_mark)
172 {
173 unsigned int shndx = this->opd_ent_[i].shndx;
174 symtab->gc()->worklist().push(Section_id(this, shndx));
175 }
176 }
177
178 bool
179 opd_valid() const
180 { return this->opd_valid_; }
181
182 void
183 set_opd_valid()
184 { this->opd_valid_ = true; }
185
186 // Examine .rela.opd to build info about function entry points.
187 void
188 scan_opd_relocs(size_t reloc_count,
189 const unsigned char* prelocs,
190 const unsigned char* plocal_syms);
191
192 // Perform the Sized_relobj_file method, then set up opd info from
193 // .opd relocs.
194 void
195 do_read_relocs(Read_relocs_data*);
196
197 // Set up some symbols, then perform Sized_relobj_file method.
198 // Occurs after garbage collection, which is why opd info can't be
199 // set up here.
200 void
201 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
202
203 bool
204 do_find_special_sections(Read_symbols_data* sd);
205
206 // Adjust this local symbol value. Return false if the symbol
207 // should be discarded from the output file.
208 bool
209 do_adjust_local_symbol(Symbol_value<size>* lv) const
210 {
211 if (size == 64 && this->opd_shndx() != 0)
212 {
213 bool is_ordinary;
214 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
215 return true;
216 if (this->get_opd_discard(lv->input_value()))
217 return false;
218 }
219 return true;
220 }
221
222 // Return offset in output GOT section that this object will use
223 // as a TOC pointer. Won't be just a constant with multi-toc support.
224 Address
225 toc_base_offset() const
226 { return 0x8000; }
227
228 private:
229 struct Opd_ent
230 {
231 unsigned int shndx;
232 bool discard : 1;
233 bool gc_mark : 1;
234 Address off;
235 };
236
237 // Return index into opd_ent_ array for .opd entry at OFF.
238 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
239 // apart when the language doesn't use the last 8-byte word, the
240 // environment pointer. Thus dividing the entry section offset by
241 // 16 will give an index into opd_ent_ that works for either layout
242 // of .opd. (It leaves some elements of the vector unused when .opd
243 // entries are spaced 24 bytes apart, but we don't know the spacing
244 // until relocations are processed, and in any case it is possible
245 // for an object to have some entries spaced 16 bytes apart and
246 // others 24 bytes apart.)
247 size_t
248 opd_ent_ndx(size_t off) const
249 { return off >> 4;}
250
251 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
252 unsigned int special_;
253
254 // Set at the start of gc_process_relocs, when we know opd_ent_
255 // vector is valid. The flag could be made atomic and set in
256 // do_read_relocs with memory_order_release and then tested with
257 // memory_order_acquire, potentially resulting in fewer entries in
258 // access_from_map_.
259 bool opd_valid_;
260
261 // The first 8-byte word of an OPD entry gives the address of the
262 // entry point of the function. Relocatable object files have a
263 // relocation on this word. The following vector records the
264 // section and offset specified by these relocations.
265 std::vector<Opd_ent> opd_ent_;
266
267 // References made to this object's .opd section when running
268 // gc_process_relocs for another object, before the opd_ent_ vector
269 // is valid for this object.
270 Access_from access_from_map_;
271 };
272
273 template<int size, bool big_endian>
274 class Target_powerpc : public Sized_target<size, big_endian>
275 {
276 public:
277 typedef
278 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
279 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
280 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
281 static const Address invalid_address = static_cast<Address>(0) - 1;
282 // Offset of tp and dtp pointers from start of TLS block.
283 static const Address tp_offset = 0x7000;
284 static const Address dtp_offset = 0x8000;
285
286 Target_powerpc()
287 : Sized_target<size, big_endian>(&powerpc_info),
288 got_(NULL), plt_(NULL), iplt_(NULL), glink_(NULL), rela_dyn_(NULL),
289 copy_relocs_(elfcpp::R_POWERPC_COPY),
290 dynbss_(NULL), tlsld_got_offset_(-1U)
291 {
292 }
293
294 // Process the relocations to determine unreferenced sections for
295 // garbage collection.
296 void
297 gc_process_relocs(Symbol_table* symtab,
298 Layout* layout,
299 Sized_relobj_file<size, big_endian>* object,
300 unsigned int data_shndx,
301 unsigned int sh_type,
302 const unsigned char* prelocs,
303 size_t reloc_count,
304 Output_section* output_section,
305 bool needs_special_offset_handling,
306 size_t local_symbol_count,
307 const unsigned char* plocal_symbols);
308
309 // Scan the relocations to look for symbol adjustments.
310 void
311 scan_relocs(Symbol_table* symtab,
312 Layout* layout,
313 Sized_relobj_file<size, big_endian>* object,
314 unsigned int data_shndx,
315 unsigned int sh_type,
316 const unsigned char* prelocs,
317 size_t reloc_count,
318 Output_section* output_section,
319 bool needs_special_offset_handling,
320 size_t local_symbol_count,
321 const unsigned char* plocal_symbols);
322
323 // Map input .toc section to output .got section.
324 const char*
325 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
326 {
327 if (size == 64 && strcmp(name, ".toc") == 0)
328 {
329 *plen = 4;
330 return ".got";
331 }
332 return NULL;
333 }
334
335 // Provide linker defined save/restore functions.
336 void
337 define_save_restore_funcs(Layout*, Symbol_table*);
338
339 // Finalize the sections.
340 void
341 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
342
343 // Return the value to use for a dynamic which requires special
344 // treatment.
345 uint64_t
346 do_dynsym_value(const Symbol*) const;
347
348 // Return the PLT address to use for a local symbol.
349 uint64_t
350 do_plt_address_for_local(const Relobj*, unsigned int) const;
351
352 // Return the PLT address to use for a global symbol.
353 uint64_t
354 do_plt_address_for_global(const Symbol*) const;
355
356 // Return the offset to use for the GOT_INDX'th got entry which is
357 // for a local tls symbol specified by OBJECT, SYMNDX.
358 int64_t
359 do_tls_offset_for_local(const Relobj* object,
360 unsigned int symndx,
361 unsigned int got_indx) const;
362
363 // Return the offset to use for the GOT_INDX'th got entry which is
364 // for global tls symbol GSYM.
365 int64_t
366 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
367
368 // Relocate a section.
369 void
370 relocate_section(const Relocate_info<size, big_endian>*,
371 unsigned int sh_type,
372 const unsigned char* prelocs,
373 size_t reloc_count,
374 Output_section* output_section,
375 bool needs_special_offset_handling,
376 unsigned char* view,
377 Address view_address,
378 section_size_type view_size,
379 const Reloc_symbol_changes*);
380
381 // Scan the relocs during a relocatable link.
382 void
383 scan_relocatable_relocs(Symbol_table* symtab,
384 Layout* layout,
385 Sized_relobj_file<size, big_endian>* object,
386 unsigned int data_shndx,
387 unsigned int sh_type,
388 const unsigned char* prelocs,
389 size_t reloc_count,
390 Output_section* output_section,
391 bool needs_special_offset_handling,
392 size_t local_symbol_count,
393 const unsigned char* plocal_symbols,
394 Relocatable_relocs*);
395
396 // Emit relocations for a section.
397 void
398 relocate_relocs(const Relocate_info<size, big_endian>*,
399 unsigned int sh_type,
400 const unsigned char* prelocs,
401 size_t reloc_count,
402 Output_section* output_section,
403 typename elfcpp::Elf_types<size>::Elf_Off
404 offset_in_output_section,
405 const Relocatable_relocs*,
406 unsigned char*,
407 Address view_address,
408 section_size_type,
409 unsigned char* reloc_view,
410 section_size_type reloc_view_size);
411
412 // Return whether SYM is defined by the ABI.
413 bool
414 do_is_defined_by_abi(const Symbol* sym) const
415 {
416 return strcmp(sym->name(), "__tls_get_addr") == 0;
417 }
418
419 // Return the size of the GOT section.
420 section_size_type
421 got_size() const
422 {
423 gold_assert(this->got_ != NULL);
424 return this->got_->data_size();
425 }
426
427 // Get the PLT section.
428 const Output_data_plt_powerpc<size, big_endian>*
429 plt_section() const
430 {
431 gold_assert(this->plt_ != NULL);
432 return this->plt_;
433 }
434
435 // Get the IPLT section.
436 const Output_data_plt_powerpc<size, big_endian>*
437 iplt_section() const
438 {
439 gold_assert(this->iplt_ != NULL);
440 return this->iplt_;
441 }
442
443 // Get the .glink section.
444 const Output_data_glink<size, big_endian>*
445 glink_section() const
446 {
447 gold_assert(this->glink_ != NULL);
448 return this->glink_;
449 }
450
451 // Get the GOT section.
452 const Output_data_got_powerpc<size, big_endian>*
453 got_section() const
454 {
455 gold_assert(this->got_ != NULL);
456 return this->got_;
457 }
458
459 // Get the GOT section, creating it if necessary.
460 Output_data_got_powerpc<size, big_endian>*
461 got_section(Symbol_table*, Layout*);
462
463 Object*
464 do_make_elf_object(const std::string&, Input_file*, off_t,
465 const elfcpp::Ehdr<size, big_endian>&);
466
467 // Return the number of entries in the GOT.
468 unsigned int
469 got_entry_count() const
470 {
471 if (this->got_ == NULL)
472 return 0;
473 return this->got_size() / (size / 8);
474 }
475
476 // Return the number of entries in the PLT.
477 unsigned int
478 plt_entry_count() const;
479
480 // Return the offset of the first non-reserved PLT entry.
481 unsigned int
482 first_plt_entry_offset() const;
483
484 // Return the size of each PLT entry.
485 unsigned int
486 plt_entry_size() const;
487
488 // Add any special sections for this symbol to the gc work list.
489 // For powerpc64, this adds the code section of a function
490 // descriptor.
491 void
492 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
493
494 // Handle target specific gc actions when adding a gc reference from
495 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
496 // and DST_OFF. For powerpc64, this adds a referenc to the code
497 // section of a function descriptor.
498 void
499 do_gc_add_reference(Symbol_table* symtab,
500 Object* src_obj,
501 unsigned int src_shndx,
502 Object* dst_obj,
503 unsigned int dst_shndx,
504 Address dst_off) const;
505
506 private:
507
508 // The class which scans relocations.
509 class Scan
510 {
511 public:
512 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
513
514 Scan()
515 : issued_non_pic_error_(false)
516 { }
517
518 static inline int
519 get_reference_flags(unsigned int r_type);
520
521 inline void
522 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
523 Sized_relobj_file<size, big_endian>* object,
524 unsigned int data_shndx,
525 Output_section* output_section,
526 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
527 const elfcpp::Sym<size, big_endian>& lsym,
528 bool is_discarded);
529
530 inline void
531 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
532 Sized_relobj_file<size, big_endian>* object,
533 unsigned int data_shndx,
534 Output_section* output_section,
535 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
536 Symbol* gsym);
537
538 inline bool
539 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
540 Target_powerpc* ,
541 Sized_relobj_file<size, big_endian>* ,
542 unsigned int ,
543 Output_section* ,
544 const elfcpp::Rela<size, big_endian>& ,
545 unsigned int ,
546 const elfcpp::Sym<size, big_endian>&)
547 { return false; }
548
549 inline bool
550 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
551 Target_powerpc* ,
552 Sized_relobj_file<size, big_endian>* ,
553 unsigned int ,
554 Output_section* ,
555 const elfcpp::Rela<size,
556 big_endian>& ,
557 unsigned int , Symbol*)
558 { return false; }
559
560 private:
561 static void
562 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
563 unsigned int r_type);
564
565 static void
566 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
567 unsigned int r_type, Symbol*);
568
569 static void
570 generate_tls_call(Symbol_table* symtab, Layout* layout,
571 Target_powerpc* target);
572
573 void
574 check_non_pic(Relobj*, unsigned int r_type);
575
576 bool
577 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>* object,
578 unsigned int r_type);
579
580 // Whether we have issued an error about a non-PIC compilation.
581 bool issued_non_pic_error_;
582 };
583
584 Address
585 symval_for_branch(Address value, const Sized_symbol<size>* gsym,
586 Powerpc_relobj<size, big_endian>* object,
587 unsigned int *dest_shndx);
588
589 // The class which implements relocation.
590 class Relocate
591 {
592 public:
593 // Use 'at' branch hints when true, 'y' when false.
594 // FIXME maybe: set this with an option.
595 static const bool is_isa_v2 = true;
596
597 enum skip_tls
598 {
599 CALL_NOT_EXPECTED = 0,
600 CALL_EXPECTED = 1,
601 CALL_SKIP = 2
602 };
603
604 Relocate()
605 : call_tls_get_addr_(CALL_NOT_EXPECTED)
606 { }
607
608 ~Relocate()
609 {
610 if (this->call_tls_get_addr_ != CALL_NOT_EXPECTED)
611 {
612 // FIXME: This needs to specify the location somehow.
613 gold_error(_("missing expected __tls_get_addr call"));
614 }
615 }
616
617 // Do a relocation. Return false if the caller should not issue
618 // any warnings about this relocation.
619 inline bool
620 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
621 Output_section*, size_t relnum,
622 const elfcpp::Rela<size, big_endian>&,
623 unsigned int r_type, const Sized_symbol<size>*,
624 const Symbol_value<size>*,
625 unsigned char*,
626 typename elfcpp::Elf_types<size>::Elf_Addr,
627 section_size_type);
628
629 // This is set if we should skip the next reloc, which should be a
630 // call to __tls_get_addr.
631 enum skip_tls call_tls_get_addr_;
632 };
633
634 class Relocate_comdat_behavior
635 {
636 public:
637 // Decide what the linker should do for relocations that refer to
638 // discarded comdat sections.
639 inline Comdat_behavior
640 get(const char* name)
641 {
642 gold::Default_comdat_behavior default_behavior;
643 Comdat_behavior ret = default_behavior.get(name);
644 if (ret == CB_WARNING)
645 {
646 if (size == 32
647 && (strcmp(name, ".fixup") == 0
648 || strcmp(name, ".got2") == 0))
649 ret = CB_IGNORE;
650 if (size == 64
651 && (strcmp(name, ".opd") == 0
652 || strcmp(name, ".toc") == 0
653 || strcmp(name, ".toc1") == 0))
654 ret = CB_IGNORE;
655 }
656 return ret;
657 }
658 };
659
660 // A class which returns the size required for a relocation type,
661 // used while scanning relocs during a relocatable link.
662 class Relocatable_size_for_reloc
663 {
664 public:
665 unsigned int
666 get_size_for_reloc(unsigned int, Relobj*)
667 {
668 gold_unreachable();
669 return 0;
670 }
671 };
672
673 // Optimize the TLS relocation type based on what we know about the
674 // symbol. IS_FINAL is true if the final address of this symbol is
675 // known at link time.
676
677 tls::Tls_optimization
678 optimize_tls_gd(bool is_final)
679 {
680 // If we are generating a shared library, then we can't do anything
681 // in the linker.
682 if (parameters->options().shared())
683 return tls::TLSOPT_NONE;
684
685 if (!is_final)
686 return tls::TLSOPT_TO_IE;
687 return tls::TLSOPT_TO_LE;
688 }
689
690 tls::Tls_optimization
691 optimize_tls_ld()
692 {
693 if (parameters->options().shared())
694 return tls::TLSOPT_NONE;
695
696 return tls::TLSOPT_TO_LE;
697 }
698
699 tls::Tls_optimization
700 optimize_tls_ie(bool is_final)
701 {
702 if (!is_final || parameters->options().shared())
703 return tls::TLSOPT_NONE;
704
705 return tls::TLSOPT_TO_LE;
706 }
707
708 // Create glink.
709 void
710 make_glink_section(Layout*);
711
712 // Create the PLT section.
713 void
714 make_plt_section(Symbol_table*, Layout*);
715
716 void
717 make_iplt_section(Symbol_table*, Layout*);
718
719 // Create a PLT entry for a global symbol.
720 void
721 make_plt_entry(Symbol_table*, Layout*, Symbol*,
722 const elfcpp::Rela<size, big_endian>&,
723 const Sized_relobj_file<size, big_endian>* object);
724
725 // Create a PLT entry for a local IFUNC symbol.
726 void
727 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
728 const elfcpp::Rela<size, big_endian>&,
729 Sized_relobj_file<size, big_endian>*);
730
731 // Create a GOT entry for local dynamic __tls_get_addr.
732 unsigned int
733 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
734 Sized_relobj_file<size, big_endian>* object);
735
736 unsigned int
737 tlsld_got_offset() const
738 {
739 return this->tlsld_got_offset_;
740 }
741
742 // Get the dynamic reloc section, creating it if necessary.
743 Reloc_section*
744 rela_dyn_section(Layout*);
745
746 // Copy a relocation against a global symbol.
747 void
748 copy_reloc(Symbol_table* symtab, Layout* layout,
749 Sized_relobj_file<size, big_endian>* object,
750 unsigned int shndx, Output_section* output_section,
751 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
752 {
753 this->copy_relocs_.copy_reloc(symtab, layout,
754 symtab->get_sized_symbol<size>(sym),
755 object, shndx, output_section,
756 reloc, this->rela_dyn_section(layout));
757 }
758
759 // Information about this specific target which we pass to the
760 // general Target structure.
761 static Target::Target_info powerpc_info;
762
763 // The types of GOT entries needed for this platform.
764 // These values are exposed to the ABI in an incremental link.
765 // Do not renumber existing values without changing the version
766 // number of the .gnu_incremental_inputs section.
767 enum Got_type
768 {
769 GOT_TYPE_STANDARD,
770 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
771 GOT_TYPE_DTPREL, // entry for @got@dtprel
772 GOT_TYPE_TPREL // entry for @got@tprel
773 };
774
775 // The GOT output section.
776 Output_data_got_powerpc<size, big_endian>* got_;
777 // The PLT output section.
778 Output_data_plt_powerpc<size, big_endian>* plt_;
779 // The IPLT output section.
780 Output_data_plt_powerpc<size, big_endian>* iplt_;
781 // The .glink output section.
782 Output_data_glink<size, big_endian>* glink_;
783 // The dynamic reloc output section.
784 Reloc_section* rela_dyn_;
785 // Relocs saved to avoid a COPY reloc.
786 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
787 // Space for variables copied with a COPY reloc.
788 Output_data_space* dynbss_;
789 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
790 unsigned int tlsld_got_offset_;
791 };
792
793 template<>
794 Target::Target_info Target_powerpc<32, true>::powerpc_info =
795 {
796 32, // size
797 true, // is_big_endian
798 elfcpp::EM_PPC, // machine_code
799 false, // has_make_symbol
800 false, // has_resolve
801 false, // has_code_fill
802 true, // is_default_stack_executable
803 false, // can_icf_inline_merge_sections
804 '\0', // wrap_char
805 "/usr/lib/ld.so.1", // dynamic_linker
806 0x10000000, // default_text_segment_address
807 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
808 4 * 1024, // common_pagesize (overridable by -z common-page-size)
809 false, // isolate_execinstr
810 0, // rosegment_gap
811 elfcpp::SHN_UNDEF, // small_common_shndx
812 elfcpp::SHN_UNDEF, // large_common_shndx
813 0, // small_common_section_flags
814 0, // large_common_section_flags
815 NULL, // attributes_section
816 NULL // attributes_vendor
817 };
818
819 template<>
820 Target::Target_info Target_powerpc<32, false>::powerpc_info =
821 {
822 32, // size
823 false, // is_big_endian
824 elfcpp::EM_PPC, // machine_code
825 false, // has_make_symbol
826 false, // has_resolve
827 false, // has_code_fill
828 true, // is_default_stack_executable
829 false, // can_icf_inline_merge_sections
830 '\0', // wrap_char
831 "/usr/lib/ld.so.1", // dynamic_linker
832 0x10000000, // default_text_segment_address
833 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
834 4 * 1024, // common_pagesize (overridable by -z common-page-size)
835 false, // isolate_execinstr
836 0, // rosegment_gap
837 elfcpp::SHN_UNDEF, // small_common_shndx
838 elfcpp::SHN_UNDEF, // large_common_shndx
839 0, // small_common_section_flags
840 0, // large_common_section_flags
841 NULL, // attributes_section
842 NULL // attributes_vendor
843 };
844
845 template<>
846 Target::Target_info Target_powerpc<64, true>::powerpc_info =
847 {
848 64, // size
849 true, // is_big_endian
850 elfcpp::EM_PPC64, // machine_code
851 false, // has_make_symbol
852 false, // has_resolve
853 false, // has_code_fill
854 true, // is_default_stack_executable
855 false, // can_icf_inline_merge_sections
856 '\0', // wrap_char
857 "/usr/lib/ld.so.1", // dynamic_linker
858 0x10000000, // default_text_segment_address
859 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
860 4 * 1024, // common_pagesize (overridable by -z common-page-size)
861 false, // isolate_execinstr
862 0, // rosegment_gap
863 elfcpp::SHN_UNDEF, // small_common_shndx
864 elfcpp::SHN_UNDEF, // large_common_shndx
865 0, // small_common_section_flags
866 0, // large_common_section_flags
867 NULL, // attributes_section
868 NULL // attributes_vendor
869 };
870
871 template<>
872 Target::Target_info Target_powerpc<64, false>::powerpc_info =
873 {
874 64, // size
875 false, // is_big_endian
876 elfcpp::EM_PPC64, // machine_code
877 false, // has_make_symbol
878 false, // has_resolve
879 false, // has_code_fill
880 true, // is_default_stack_executable
881 false, // can_icf_inline_merge_sections
882 '\0', // wrap_char
883 "/usr/lib/ld.so.1", // dynamic_linker
884 0x10000000, // default_text_segment_address
885 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
886 4 * 1024, // common_pagesize (overridable by -z common-page-size)
887 false, // isolate_execinstr
888 0, // rosegment_gap
889 elfcpp::SHN_UNDEF, // small_common_shndx
890 elfcpp::SHN_UNDEF, // large_common_shndx
891 0, // small_common_section_flags
892 0, // large_common_section_flags
893 NULL, // attributes_section
894 NULL // attributes_vendor
895 };
896
897 inline bool
898 is_branch_reloc(unsigned int r_type)
899 {
900 return (r_type == elfcpp::R_POWERPC_REL24
901 || r_type == elfcpp::R_PPC_PLTREL24
902 || r_type == elfcpp::R_PPC_LOCAL24PC
903 || r_type == elfcpp::R_POWERPC_REL14
904 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
905 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
906 || r_type == elfcpp::R_POWERPC_ADDR24
907 || r_type == elfcpp::R_POWERPC_ADDR14
908 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
909 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
910 }
911
912 // If INSN is an opcode that may be used with an @tls operand, return
913 // the transformed insn for TLS optimisation, otherwise return 0. If
914 // REG is non-zero only match an insn with RB or RA equal to REG.
915 uint32_t
916 at_tls_transform(uint32_t insn, unsigned int reg)
917 {
918 if ((insn & (0x3f << 26)) != 31 << 26)
919 return 0;
920
921 unsigned int rtra;
922 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
923 rtra = insn & ((1 << 26) - (1 << 16));
924 else if (((insn >> 16) & 0x1f) == reg)
925 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
926 else
927 return 0;
928
929 if ((insn & (0x3ff << 1)) == 266 << 1)
930 // add -> addi
931 insn = 14 << 26;
932 else if ((insn & (0x1f << 1)) == 23 << 1
933 && ((insn & (0x1f << 6)) < 14 << 6
934 || ((insn & (0x1f << 6)) >= 16 << 6
935 && (insn & (0x1f << 6)) < 24 << 6)))
936 // load and store indexed -> dform
937 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
938 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
939 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
940 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
941 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
942 // lwax -> lwa
943 insn = (58 << 26) | 2;
944 else
945 return 0;
946 insn |= rtra;
947 return insn;
948 }
949
950 // Modified version of symtab.h class Symbol member
951 // Given a direct absolute or pc-relative static relocation against
952 // the global symbol, this function returns whether a dynamic relocation
953 // is needed.
954
955 template<int size>
956 bool
957 needs_dynamic_reloc(const Symbol* gsym, int flags)
958 {
959 // No dynamic relocations in a static link!
960 if (parameters->doing_static_link())
961 return false;
962
963 // A reference to an undefined symbol from an executable should be
964 // statically resolved to 0, and does not need a dynamic relocation.
965 // This matches gnu ld behavior.
966 if (gsym->is_undefined() && !parameters->options().shared())
967 return false;
968
969 // A reference to an absolute symbol does not need a dynamic relocation.
970 if (gsym->is_absolute())
971 return false;
972
973 // An absolute reference within a position-independent output file
974 // will need a dynamic relocation.
975 if ((flags & Symbol::ABSOLUTE_REF)
976 && parameters->options().output_is_position_independent())
977 return true;
978
979 // A function call that can branch to a local PLT entry does not need
980 // a dynamic relocation.
981 if ((flags & Symbol::FUNCTION_CALL) && gsym->has_plt_offset())
982 return false;
983
984 // A reference to any PLT entry in a non-position-independent executable
985 // does not need a dynamic relocation.
986 // Except due to having function descriptors on powerpc64 we don't define
987 // functions to their plt code in an executable, so this doesn't apply.
988 if (size == 32
989 && !parameters->options().output_is_position_independent()
990 && gsym->has_plt_offset())
991 return false;
992
993 // A reference to a symbol defined in a dynamic object or to a
994 // symbol that is preemptible will need a dynamic relocation.
995 if (gsym->is_from_dynobj()
996 || gsym->is_undefined()
997 || gsym->is_preemptible())
998 return true;
999
1000 // For all other cases, return FALSE.
1001 return false;
1002 }
1003
1004 // Modified version of symtab.h class Symbol member
1005 // Whether we should use the PLT offset associated with a symbol for
1006 // a relocation. FLAGS is a set of Reference_flags.
1007
1008 template<int size>
1009 bool
1010 use_plt_offset(const Symbol* gsym, int flags)
1011 {
1012 // If the symbol doesn't have a PLT offset, then naturally we
1013 // don't want to use it.
1014 if (!gsym->has_plt_offset())
1015 return false;
1016
1017 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
1018 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
1019 return true;
1020
1021 // If we are going to generate a dynamic relocation, then we will
1022 // wind up using that, so no need to use the PLT entry.
1023 if (needs_dynamic_reloc<size>(gsym, flags))
1024 return false;
1025
1026 // If the symbol is from a dynamic object, we need to use the PLT
1027 // entry.
1028 if (gsym->is_from_dynobj())
1029 return true;
1030
1031 // If we are generating a shared object, and gsym symbol is
1032 // undefined or preemptible, we need to use the PLT entry.
1033 if (parameters->options().shared()
1034 && (gsym->is_undefined() || gsym->is_preemptible()))
1035 return true;
1036
1037 // If gsym is a call to a weak undefined symbol, we need to use
1038 // the PLT entry; the symbol may be defined by a library loaded
1039 // at runtime.
1040 if ((flags & Symbol::FUNCTION_CALL) && gsym->is_weak_undefined())
1041 return true;
1042
1043 // Otherwise we can use the regular definition.
1044 return false;
1045 }
1046
1047 template<int size, bool big_endian>
1048 class Powerpc_relocate_functions
1049 {
1050 public:
1051 enum Overflow_check
1052 {
1053 CHECK_NONE,
1054 CHECK_SIGNED,
1055 CHECK_BITFIELD
1056 };
1057
1058 enum Status
1059 {
1060 STATUS_OK,
1061 STATUS_OVERFLOW
1062 };
1063
1064 private:
1065 typedef Powerpc_relocate_functions<size, big_endian> This;
1066 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1067
1068 template<int valsize>
1069 static inline bool
1070 has_overflow_signed(Address value)
1071 {
1072 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1073 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1074 limit <<= ((valsize - 1) >> 1);
1075 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1076 return value + limit > (limit << 1) - 1;
1077 }
1078
1079 template<int valsize>
1080 static inline bool
1081 has_overflow_bitfield(Address value)
1082 {
1083 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1084 limit <<= ((valsize - 1) >> 1);
1085 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1086 return value > (limit << 1) - 1 && value + limit > (limit << 1) - 1;
1087 }
1088
1089 template<int valsize>
1090 static inline Status
1091 overflowed(Address value, Overflow_check overflow)
1092 {
1093 if (overflow == CHECK_SIGNED)
1094 {
1095 if (has_overflow_signed<valsize>(value))
1096 return STATUS_OVERFLOW;
1097 }
1098 else if (overflow == CHECK_BITFIELD)
1099 {
1100 if (has_overflow_bitfield<valsize>(value))
1101 return STATUS_OVERFLOW;
1102 }
1103 return STATUS_OK;
1104 }
1105
1106 // Do a simple RELA relocation
1107 template<int valsize>
1108 static inline Status
1109 rela(unsigned char* view, Address value, Overflow_check overflow)
1110 {
1111 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1112 Valtype* wv = reinterpret_cast<Valtype*>(view);
1113 elfcpp::Swap<valsize, big_endian>::writeval(wv, value);
1114 return overflowed<valsize>(value, overflow);
1115 }
1116
1117 template<int valsize>
1118 static inline Status
1119 rela(unsigned char* view,
1120 unsigned int right_shift,
1121 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1122 Address value,
1123 Overflow_check overflow)
1124 {
1125 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
1126 Valtype* wv = reinterpret_cast<Valtype*>(view);
1127 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
1128 Valtype reloc = value >> right_shift;
1129 val &= ~dst_mask;
1130 reloc &= dst_mask;
1131 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
1132 return overflowed<valsize>(value >> right_shift, overflow);
1133 }
1134
1135 // Do a simple RELA relocation, unaligned.
1136 template<int valsize>
1137 static inline Status
1138 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1139 {
1140 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, value);
1141 return overflowed<valsize>(value, overflow);
1142 }
1143
1144 template<int valsize>
1145 static inline Status
1146 rela_ua(unsigned char* view,
1147 unsigned int right_shift,
1148 typename elfcpp::Valtype_base<valsize>::Valtype dst_mask,
1149 Address value,
1150 Overflow_check overflow)
1151 {
1152 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
1153 Valtype;
1154 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(view);
1155 Valtype reloc = value >> right_shift;
1156 val &= ~dst_mask;
1157 reloc &= dst_mask;
1158 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view, val | reloc);
1159 return overflowed<valsize>(value >> right_shift, overflow);
1160 }
1161
1162 public:
1163 // R_PPC64_ADDR64: (Symbol + Addend)
1164 static inline void
1165 addr64(unsigned char* view, Address value)
1166 { This::template rela<64>(view, value, CHECK_NONE); }
1167
1168 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1169 static inline void
1170 addr64_u(unsigned char* view, Address value)
1171 { This::template rela_ua<64>(view, value, CHECK_NONE); }
1172
1173 // R_POWERPC_ADDR32: (Symbol + Addend)
1174 static inline Status
1175 addr32(unsigned char* view, Address value, Overflow_check overflow)
1176 { return This::template rela<32>(view, value, overflow); }
1177
1178 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1179 static inline Status
1180 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1181 { return This::template rela_ua<32>(view, value, overflow); }
1182
1183 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1184 static inline Status
1185 addr24(unsigned char* view, Address value, Overflow_check overflow)
1186 {
1187 Status stat = This::template rela<32>(view, 0, 0x03fffffc, value, overflow);
1188 if (overflow != CHECK_NONE && (value & 3) != 0)
1189 stat = STATUS_OVERFLOW;
1190 return stat;
1191 }
1192
1193 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1194 static inline Status
1195 addr16(unsigned char* view, Address value, Overflow_check overflow)
1196 { return This::template rela<16>(view, value, overflow); }
1197
1198 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1199 static inline Status
1200 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1201 { return This::template rela_ua<16>(view, value, overflow); }
1202
1203 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1204 static inline Status
1205 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1206 {
1207 Status stat = This::template rela<16>(view, 0, 0xfffc, value, overflow);
1208 if (overflow != CHECK_NONE && (value & 3) != 0)
1209 stat = STATUS_OVERFLOW;
1210 return stat;
1211 }
1212
1213 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1214 static inline void
1215 addr16_hi(unsigned char* view, Address value)
1216 { This::template rela<16>(view, 16, 0xffff, value, CHECK_NONE); }
1217
1218 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1219 static inline void
1220 addr16_ha(unsigned char* view, Address value)
1221 { This::addr16_hi(view, value + 0x8000); }
1222
1223 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1224 static inline void
1225 addr16_hi2(unsigned char* view, Address value)
1226 { This::template rela<16>(view, 32, 0xffff, value, CHECK_NONE); }
1227
1228 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1229 static inline void
1230 addr16_ha2(unsigned char* view, Address value)
1231 { This::addr16_hi2(view, value + 0x8000); }
1232
1233 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1234 static inline void
1235 addr16_hi3(unsigned char* view, Address value)
1236 { This::template rela<16>(view, 48, 0xffff, value, CHECK_NONE); }
1237
1238 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1239 static inline void
1240 addr16_ha3(unsigned char* view, Address value)
1241 { This::addr16_hi3(view, value + 0x8000); }
1242
1243 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1244 static inline Status
1245 addr14(unsigned char* view, Address value, Overflow_check overflow)
1246 {
1247 Status stat = This::template rela<32>(view, 0, 0xfffc, value, overflow);
1248 if (overflow != CHECK_NONE && (value & 3) != 0)
1249 stat = STATUS_OVERFLOW;
1250 return stat;
1251 }
1252 };
1253
1254 // Stash away the index of .got2 or .opd in a relocatable object, if
1255 // such a section exists.
1256
1257 template<int size, bool big_endian>
1258 bool
1259 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1260 Read_symbols_data* sd)
1261 {
1262 const unsigned char* const pshdrs = sd->section_headers->data();
1263 const unsigned char* namesu = sd->section_names->data();
1264 const char* names = reinterpret_cast<const char*>(namesu);
1265 section_size_type names_size = sd->section_names_size;
1266 const unsigned char* s;
1267
1268 s = this->find_shdr(pshdrs, size == 32 ? ".got2" : ".opd",
1269 names, names_size, NULL);
1270 if (s != NULL)
1271 {
1272 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1273 this->special_ = ndx;
1274 }
1275 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1276 }
1277
1278 // Examine .rela.opd to build info about function entry points.
1279
1280 template<int size, bool big_endian>
1281 void
1282 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1283 size_t reloc_count,
1284 const unsigned char* prelocs,
1285 const unsigned char* plocal_syms)
1286 {
1287 if (size == 64)
1288 {
1289 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1290 Reltype;
1291 const int reloc_size
1292 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1293 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1294 Address expected_off = 0;
1295 bool regular = true;
1296 unsigned int opd_ent_size = 0;
1297
1298 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1299 {
1300 Reltype reloc(prelocs);
1301 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1302 = reloc.get_r_info();
1303 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1304 if (r_type == elfcpp::R_PPC64_ADDR64)
1305 {
1306 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1307 typename elfcpp::Elf_types<size>::Elf_Addr value;
1308 bool is_ordinary;
1309 unsigned int shndx;
1310 if (r_sym < this->local_symbol_count())
1311 {
1312 typename elfcpp::Sym<size, big_endian>
1313 lsym(plocal_syms + r_sym * sym_size);
1314 shndx = lsym.get_st_shndx();
1315 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1316 value = lsym.get_st_value();
1317 }
1318 else
1319 shndx = this->symbol_section_and_value(r_sym, &value,
1320 &is_ordinary);
1321 this->set_opd_ent(reloc.get_r_offset(), shndx,
1322 value + reloc.get_r_addend());
1323 if (i == 2)
1324 {
1325 expected_off = reloc.get_r_offset();
1326 opd_ent_size = expected_off;
1327 }
1328 else if (expected_off != reloc.get_r_offset())
1329 regular = false;
1330 expected_off += opd_ent_size;
1331 }
1332 else if (r_type == elfcpp::R_PPC64_TOC)
1333 {
1334 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1335 regular = false;
1336 }
1337 else
1338 {
1339 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1340 this->name().c_str(), r_type);
1341 regular = false;
1342 }
1343 }
1344 if (reloc_count <= 2)
1345 opd_ent_size = this->section_size(this->opd_shndx());
1346 if (opd_ent_size != 24 && opd_ent_size != 16)
1347 regular = false;
1348 if (!regular)
1349 {
1350 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1351 this->name().c_str());
1352 opd_ent_size = 0;
1353 }
1354 }
1355 }
1356
1357 template<int size, bool big_endian>
1358 void
1359 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1360 {
1361 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1362 if (size == 64)
1363 {
1364 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1365 p != rd->relocs.end();
1366 ++p)
1367 {
1368 if (p->data_shndx == this->opd_shndx())
1369 {
1370 uint64_t opd_size = this->section_size(this->opd_shndx());
1371 gold_assert(opd_size == static_cast<size_t>(opd_size));
1372 if (opd_size != 0)
1373 {
1374 this->init_opd(opd_size);
1375 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1376 rd->local_symbols->data());
1377 }
1378 break;
1379 }
1380 }
1381 }
1382 }
1383
1384 // Set up some symbols, then perform Sized_relobj_file method.
1385
1386 template<int size, bool big_endian>
1387 void
1388 Powerpc_relobj<size, big_endian>::do_scan_relocs(Symbol_table* symtab,
1389 Layout* layout,
1390 Read_relocs_data* rd)
1391 {
1392 if (size == 32)
1393 {
1394 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
1395 // undefined when scanning relocs (and thus requires
1396 // non-relative dynamic relocs). The proper value will be
1397 // updated later.
1398 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1399 if (gotsym != NULL && gotsym->is_undefined())
1400 {
1401 Target_powerpc<size, big_endian>* target =
1402 static_cast<Target_powerpc<size, big_endian>*>(
1403 parameters->sized_target<size, big_endian>());
1404 Output_data_got_powerpc<size, big_endian>* got
1405 = target->got_section(symtab, layout);
1406 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1407 Symbol_table::PREDEFINED,
1408 got, 0, 0,
1409 elfcpp::STT_OBJECT,
1410 elfcpp::STB_LOCAL,
1411 elfcpp::STV_HIDDEN, 0,
1412 false, false);
1413 }
1414
1415 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
1416 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
1417 if (sdasym != NULL && sdasym->is_undefined())
1418 {
1419 Output_data_space* sdata = new Output_data_space(4, "** sdata");
1420 Output_section* os
1421 = layout->add_output_section_data(".sdata", 0,
1422 elfcpp::SHF_ALLOC
1423 | elfcpp::SHF_WRITE,
1424 sdata, ORDER_SMALL_DATA, false);
1425 symtab->define_in_output_data("_SDA_BASE_", NULL,
1426 Symbol_table::PREDEFINED,
1427 os, 32768, 0, elfcpp::STT_OBJECT,
1428 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
1429 0, false, false);
1430 }
1431 }
1432 Sized_relobj_file<size, big_endian>::do_scan_relocs(symtab, layout, rd);
1433 }
1434
1435 // Set up PowerPC target specific relobj.
1436
1437 template<int size, bool big_endian>
1438 Object*
1439 Target_powerpc<size, big_endian>::do_make_elf_object(
1440 const std::string& name,
1441 Input_file* input_file,
1442 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1443 {
1444 int et = ehdr.get_e_type();
1445 // ET_EXEC files are valid input for --just-symbols/-R,
1446 // and we treat them as relocatable objects.
1447 if (et == elfcpp::ET_REL
1448 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
1449 {
1450 Powerpc_relobj<size, big_endian>* obj =
1451 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
1452 obj->setup();
1453 return obj;
1454 }
1455 else if (et == elfcpp::ET_DYN)
1456 {
1457 Sized_dynobj<size, big_endian>* obj =
1458 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1459 obj->setup();
1460 return obj;
1461 }
1462 else
1463 {
1464 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
1465 return NULL;
1466 }
1467 }
1468
1469 template<int size, bool big_endian>
1470 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
1471 {
1472 public:
1473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1474 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1475
1476 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
1477 : Output_data_got<size, big_endian>(),
1478 symtab_(symtab), layout_(layout),
1479 header_ent_cnt_(size == 32 ? 3 : 1),
1480 header_index_(size == 32 ? 0x2000 : 0)
1481 {}
1482
1483 class Got_entry;
1484
1485 // Create a new GOT entry and return its offset.
1486 unsigned int
1487 add_got_entry(Got_entry got_entry)
1488 {
1489 this->reserve_ent();
1490 return Output_data_got<size, big_endian>::add_got_entry(got_entry);
1491 }
1492
1493 // Create a pair of new GOT entries and return the offset of the first.
1494 unsigned int
1495 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2)
1496 {
1497 this->reserve_ent(2);
1498 return Output_data_got<size, big_endian>::add_got_entry_pair(got_entry_1,
1499 got_entry_2);
1500 }
1501
1502 unsigned int
1503 add_constant_pair(Valtype c1, Valtype c2)
1504 {
1505 this->reserve_ent(2);
1506 unsigned int got_offset = this->add_constant(c1);
1507 this->add_constant(c2);
1508 return got_offset;
1509 }
1510
1511 // Offset of _GLOBAL_OFFSET_TABLE_.
1512 unsigned int
1513 g_o_t() const
1514 {
1515 return this->got_offset(this->header_index_);
1516 }
1517
1518 // Offset of base used to access the GOT/TOC.
1519 // The got/toc pointer reg will be set to this value.
1520 Valtype
1521 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
1522 {
1523 if (size == 32)
1524 return this->g_o_t();
1525 else
1526 return (this->output_section()->address()
1527 + object->toc_base_offset()
1528 - this->address());
1529 }
1530
1531 // Ensure our GOT has a header.
1532 void
1533 set_final_data_size()
1534 {
1535 if (this->header_ent_cnt_ != 0)
1536 this->make_header();
1537 Output_data_got<size, big_endian>::set_final_data_size();
1538 }
1539
1540 // First word of GOT header needs some values that are not
1541 // handled by Output_data_got so poke them in here.
1542 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
1543 void
1544 do_write(Output_file* of)
1545 {
1546 Valtype val = 0;
1547 if (size == 32 && this->layout_->dynamic_data() != NULL)
1548 val = this->layout_->dynamic_section()->address();
1549 if (size == 64)
1550 val = this->output_section()->address() + 0x8000;
1551 this->replace_constant(this->header_index_, val);
1552 Output_data_got<size, big_endian>::do_write(of);
1553 }
1554
1555 private:
1556 void
1557 reserve_ent(unsigned int cnt = 1)
1558 {
1559 if (this->header_ent_cnt_ == 0)
1560 return;
1561 if (this->num_entries() + cnt > this->header_index_)
1562 this->make_header();
1563 }
1564
1565 void
1566 make_header()
1567 {
1568 this->header_ent_cnt_ = 0;
1569 this->header_index_ = this->num_entries();
1570 if (size == 32)
1571 {
1572 Output_data_got<size, big_endian>::add_constant(0);
1573 Output_data_got<size, big_endian>::add_constant(0);
1574 Output_data_got<size, big_endian>::add_constant(0);
1575
1576 // Define _GLOBAL_OFFSET_TABLE_ at the header
1577 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
1578 if (gotsym != NULL)
1579 {
1580 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
1581 sym->set_value(this->g_o_t());
1582 }
1583 else
1584 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1585 Symbol_table::PREDEFINED,
1586 this, this->g_o_t(), 0,
1587 elfcpp::STT_OBJECT,
1588 elfcpp::STB_LOCAL,
1589 elfcpp::STV_HIDDEN, 0,
1590 false, false);
1591 }
1592 else
1593 Output_data_got<size, big_endian>::add_constant(0);
1594 }
1595
1596 // Stashed pointers.
1597 Symbol_table* symtab_;
1598 Layout* layout_;
1599
1600 // GOT header size.
1601 unsigned int header_ent_cnt_;
1602 // GOT header index.
1603 unsigned int header_index_;
1604 };
1605
1606 // Get the GOT section, creating it if necessary.
1607
1608 template<int size, bool big_endian>
1609 Output_data_got_powerpc<size, big_endian>*
1610 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
1611 Layout* layout)
1612 {
1613 if (this->got_ == NULL)
1614 {
1615 gold_assert(symtab != NULL && layout != NULL);
1616
1617 this->got_
1618 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
1619
1620 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1621 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1622 this->got_, ORDER_DATA, false);
1623 }
1624
1625 return this->got_;
1626 }
1627
1628 // Get the dynamic reloc section, creating it if necessary.
1629
1630 template<int size, bool big_endian>
1631 typename Target_powerpc<size, big_endian>::Reloc_section*
1632 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
1633 {
1634 if (this->rela_dyn_ == NULL)
1635 {
1636 gold_assert(layout != NULL);
1637 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1638 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1639 elfcpp::SHF_ALLOC, this->rela_dyn_,
1640 ORDER_DYNAMIC_RELOCS, false);
1641 }
1642 return this->rela_dyn_;
1643 }
1644
1645 // A class to handle the PLT data.
1646
1647 template<int size, bool big_endian>
1648 class Output_data_plt_powerpc : public Output_section_data_build
1649 {
1650 public:
1651 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
1652 size, big_endian> Reloc_section;
1653
1654 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
1655 Reloc_section* plt_rel,
1656 unsigned int reserved_size,
1657 const char* name)
1658 : Output_section_data_build(size == 32 ? 4 : 8),
1659 rel_(plt_rel),
1660 targ_(targ),
1661 initial_plt_entry_size_(reserved_size),
1662 name_(name)
1663 { }
1664
1665 // Add an entry to the PLT.
1666 void
1667 add_entry(Symbol*);
1668
1669 void
1670 add_ifunc_entry(Symbol*);
1671
1672 void
1673 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
1674
1675 // Return the .rela.plt section data.
1676 Reloc_section*
1677 rel_plt() const
1678 {
1679 return this->rel_;
1680 }
1681
1682 // Return the number of PLT entries.
1683 unsigned int
1684 entry_count() const
1685 {
1686 return ((this->current_data_size() - this->initial_plt_entry_size_)
1687 / plt_entry_size);
1688 }
1689
1690 // Return the offset of the first non-reserved PLT entry.
1691 unsigned int
1692 first_plt_entry_offset()
1693 { return this->initial_plt_entry_size_; }
1694
1695 // Return the size of a PLT entry.
1696 static unsigned int
1697 get_plt_entry_size()
1698 { return plt_entry_size; }
1699
1700 protected:
1701 void
1702 do_adjust_output_section(Output_section* os)
1703 {
1704 os->set_entsize(0);
1705 }
1706
1707 // Write to a map file.
1708 void
1709 do_print_to_mapfile(Mapfile* mapfile) const
1710 { mapfile->print_output_data(this, this->name_); }
1711
1712 private:
1713 // The size of an entry in the PLT.
1714 static const int plt_entry_size = size == 32 ? 4 : 24;
1715
1716 // Write out the PLT data.
1717 void
1718 do_write(Output_file*);
1719
1720 // The reloc section.
1721 Reloc_section* rel_;
1722 // Allows access to .glink for do_write.
1723 Target_powerpc<size, big_endian>* targ_;
1724 // The size of the first reserved entry.
1725 int initial_plt_entry_size_;
1726 // What to report in map file.
1727 const char *name_;
1728 };
1729
1730 // Add an entry to the PLT.
1731
1732 template<int size, bool big_endian>
1733 void
1734 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
1735 {
1736 if (!gsym->has_plt_offset())
1737 {
1738 off_t off = this->current_data_size();
1739 if (off == 0)
1740 off += this->first_plt_entry_offset();
1741 gsym->set_plt_offset(off);
1742 gsym->set_needs_dynsym_entry();
1743 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
1744 this->rel_->add_global(gsym, dynrel, this, off, 0);
1745 off += plt_entry_size;
1746 this->set_current_data_size(off);
1747 }
1748 }
1749
1750 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
1751
1752 template<int size, bool big_endian>
1753 void
1754 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
1755 {
1756 if (!gsym->has_plt_offset())
1757 {
1758 off_t off = this->current_data_size();
1759 gsym->set_plt_offset(off);
1760 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
1761 if (size == 64)
1762 dynrel = elfcpp::R_PPC64_JMP_IREL;
1763 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
1764 off += plt_entry_size;
1765 this->set_current_data_size(off);
1766 }
1767 }
1768
1769 // Add an entry for a local ifunc symbol to the IPLT.
1770
1771 template<int size, bool big_endian>
1772 void
1773 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
1774 Sized_relobj_file<size, big_endian>* relobj,
1775 unsigned int local_sym_index)
1776 {
1777 if (!relobj->local_has_plt_offset(local_sym_index))
1778 {
1779 off_t off = this->current_data_size();
1780 relobj->set_local_plt_offset(local_sym_index, off);
1781 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
1782 if (size == 64)
1783 dynrel = elfcpp::R_PPC64_JMP_IREL;
1784 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
1785 this, off, 0);
1786 off += plt_entry_size;
1787 this->set_current_data_size(off);
1788 }
1789 }
1790
1791 static const uint32_t add_0_11_11 = 0x7c0b5a14;
1792 static const uint32_t add_3_3_2 = 0x7c631214;
1793 static const uint32_t add_3_3_13 = 0x7c636a14;
1794 static const uint32_t add_11_0_11 = 0x7d605a14;
1795 static const uint32_t add_12_2_11 = 0x7d825a14;
1796 static const uint32_t addi_11_11 = 0x396b0000;
1797 static const uint32_t addi_12_12 = 0x398c0000;
1798 static const uint32_t addi_2_2 = 0x38420000;
1799 static const uint32_t addi_3_2 = 0x38620000;
1800 static const uint32_t addi_3_3 = 0x38630000;
1801 static const uint32_t addis_0_2 = 0x3c020000;
1802 static const uint32_t addis_0_13 = 0x3c0d0000;
1803 static const uint32_t addis_11_11 = 0x3d6b0000;
1804 static const uint32_t addis_11_30 = 0x3d7e0000;
1805 static const uint32_t addis_12_12 = 0x3d8c0000;
1806 static const uint32_t addis_12_2 = 0x3d820000;
1807 static const uint32_t addis_3_2 = 0x3c620000;
1808 static const uint32_t addis_3_13 = 0x3c6d0000;
1809 static const uint32_t b = 0x48000000;
1810 static const uint32_t bcl_20_31 = 0x429f0005;
1811 static const uint32_t bctr = 0x4e800420;
1812 static const uint32_t blr = 0x4e800020;
1813 static const uint32_t blrl = 0x4e800021;
1814 static const uint32_t cror_15_15_15 = 0x4def7b82;
1815 static const uint32_t cror_31_31_31 = 0x4ffffb82;
1816 static const uint32_t ld_0_1 = 0xe8010000;
1817 static const uint32_t ld_0_12 = 0xe80c0000;
1818 static const uint32_t ld_11_12 = 0xe96c0000;
1819 static const uint32_t ld_11_2 = 0xe9620000;
1820 static const uint32_t ld_2_1 = 0xe8410000;
1821 static const uint32_t ld_2_11 = 0xe84b0000;
1822 static const uint32_t ld_2_12 = 0xe84c0000;
1823 static const uint32_t ld_2_2 = 0xe8420000;
1824 static const uint32_t lfd_0_1 = 0xc8010000;
1825 static const uint32_t li_0_0 = 0x38000000;
1826 static const uint32_t li_12_0 = 0x39800000;
1827 static const uint32_t lis_0_0 = 0x3c000000;
1828 static const uint32_t lis_11 = 0x3d600000;
1829 static const uint32_t lis_12 = 0x3d800000;
1830 static const uint32_t lwz_0_12 = 0x800c0000;
1831 static const uint32_t lwz_11_11 = 0x816b0000;
1832 static const uint32_t lwz_11_30 = 0x817e0000;
1833 static const uint32_t lwz_12_12 = 0x818c0000;
1834 static const uint32_t lwzu_0_12 = 0x840c0000;
1835 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
1836 static const uint32_t mflr_0 = 0x7c0802a6;
1837 static const uint32_t mflr_11 = 0x7d6802a6;
1838 static const uint32_t mflr_12 = 0x7d8802a6;
1839 static const uint32_t mtctr_0 = 0x7c0903a6;
1840 static const uint32_t mtctr_11 = 0x7d6903a6;
1841 static const uint32_t mtlr_0 = 0x7c0803a6;
1842 static const uint32_t mtlr_12 = 0x7d8803a6;
1843 static const uint32_t nop = 0x60000000;
1844 static const uint32_t ori_0_0_0 = 0x60000000;
1845 static const uint32_t std_0_1 = 0xf8010000;
1846 static const uint32_t std_0_12 = 0xf80c0000;
1847 static const uint32_t std_2_1 = 0xf8410000;
1848 static const uint32_t stfd_0_1 = 0xd8010000;
1849 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
1850 static const uint32_t sub_11_11_12 = 0x7d6c5850;
1851
1852 // Write out the PLT.
1853
1854 template<int size, bool big_endian>
1855 void
1856 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
1857 {
1858 if (size == 32)
1859 {
1860 const off_t offset = this->offset();
1861 const section_size_type oview_size
1862 = convert_to_section_size_type(this->data_size());
1863 unsigned char* const oview = of->get_output_view(offset, oview_size);
1864 unsigned char* pov = oview;
1865 unsigned char* endpov = oview + oview_size;
1866
1867 // The address of the .glink branch table
1868 const Output_data_glink<size, big_endian>* glink
1869 = this->targ_->glink_section();
1870 elfcpp::Elf_types<32>::Elf_Addr branch_tab
1871 = glink->address() + glink->pltresolve();
1872
1873 while (pov < endpov)
1874 {
1875 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
1876 pov += 4;
1877 branch_tab += 4;
1878 }
1879
1880 of->write_output_view(offset, oview_size, oview);
1881 }
1882 }
1883
1884 // Create the PLT section.
1885
1886 template<int size, bool big_endian>
1887 void
1888 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
1889 Layout* layout)
1890 {
1891 if (this->plt_ == NULL)
1892 {
1893 if (this->got_ == NULL)
1894 this->got_section(symtab, layout);
1895
1896 if (this->glink_ == NULL)
1897 make_glink_section(layout);
1898
1899 // Ensure that .rela.dyn always appears before .rela.plt This is
1900 // necessary due to how, on PowerPC and some other targets, .rela.dyn
1901 // needs to include .rela.plt in it's range.
1902 this->rela_dyn_section(layout);
1903
1904 Reloc_section* plt_rel = new Reloc_section(false);
1905 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1906 elfcpp::SHF_ALLOC, plt_rel,
1907 ORDER_DYNAMIC_PLT_RELOCS, false);
1908 this->plt_
1909 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
1910 size == 32 ? 0 : 24,
1911 "** PLT");
1912 layout->add_output_section_data(".plt",
1913 (size == 32
1914 ? elfcpp::SHT_PROGBITS
1915 : elfcpp::SHT_NOBITS),
1916 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1917 this->plt_,
1918 (size == 32
1919 ? ORDER_SMALL_DATA
1920 : ORDER_SMALL_BSS),
1921 false);
1922 }
1923 }
1924
1925 // Create the IPLT section.
1926
1927 template<int size, bool big_endian>
1928 void
1929 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
1930 Layout* layout)
1931 {
1932 if (this->iplt_ == NULL)
1933 {
1934 this->make_plt_section(symtab, layout);
1935
1936 Reloc_section* iplt_rel = new Reloc_section(false);
1937 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
1938 this->iplt_
1939 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
1940 0, "** IPLT");
1941 this->plt_->output_section()->add_output_section_data(this->iplt_);
1942 }
1943 }
1944
1945 // A class to handle .glink.
1946
1947 template<int size, bool big_endian>
1948 class Output_data_glink : public Output_section_data
1949 {
1950 public:
1951 static const int pltresolve_size = 16*4;
1952
1953 Output_data_glink(Target_powerpc<size, big_endian>*);
1954
1955 // Add an entry
1956 void
1957 add_entry(const Sized_relobj_file<size, big_endian>*,
1958 const Symbol*,
1959 const elfcpp::Rela<size, big_endian>&);
1960
1961 void
1962 add_entry(const Sized_relobj_file<size, big_endian>*,
1963 unsigned int,
1964 const elfcpp::Rela<size, big_endian>&);
1965
1966 unsigned int
1967 find_entry(const Symbol*) const;
1968
1969 unsigned int
1970 find_entry(const Sized_relobj_file<size, big_endian>*, unsigned int) const;
1971
1972 unsigned int
1973 find_entry(const Sized_relobj_file<size, big_endian>*,
1974 const Symbol*,
1975 const elfcpp::Rela<size, big_endian>&) const;
1976
1977 unsigned int
1978 find_entry(const Sized_relobj_file<size, big_endian>*,
1979 unsigned int,
1980 const elfcpp::Rela<size, big_endian>&) const;
1981
1982 unsigned int
1983 glink_entry_size() const
1984 {
1985 if (size == 32)
1986 return 4 * 4;
1987 else
1988 // FIXME: We should be using multiple glink sections for
1989 // stubs to support > 33M applications.
1990 return 8 * 4;
1991 }
1992
1993 off_t
1994 pltresolve() const
1995 {
1996 return this->pltresolve_;
1997 }
1998
1999 protected:
2000 // Write to a map file.
2001 void
2002 do_print_to_mapfile(Mapfile* mapfile) const
2003 { mapfile->print_output_data(this, _("** glink")); }
2004
2005 private:
2006 void
2007 set_final_data_size();
2008
2009 // Write out .glink
2010 void
2011 do_write(Output_file*);
2012
2013 class Glink_sym_ent
2014 {
2015 public:
2016 Glink_sym_ent(const Symbol* sym)
2017 : sym_(sym), object_(0), addend_(0), locsym_(0)
2018 { }
2019
2020 Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
2021 unsigned int locsym_index)
2022 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
2023 { }
2024
2025 Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
2026 const Symbol* sym,
2027 const elfcpp::Rela<size, big_endian>& reloc)
2028 : sym_(sym), object_(0), addend_(0), locsym_(0)
2029 {
2030 if (size != 32)
2031 this->addend_ = reloc.get_r_addend();
2032 else if (parameters->options().output_is_position_independent()
2033 && (elfcpp::elf_r_type<size>(reloc.get_r_info())
2034 == elfcpp::R_PPC_PLTREL24))
2035 {
2036 this->addend_ = reloc.get_r_addend();
2037 if (this->addend_ >= 32768)
2038 this->object_ = object;
2039 }
2040 }
2041
2042 Glink_sym_ent(const Sized_relobj_file<size, big_endian>* object,
2043 unsigned int locsym_index,
2044 const elfcpp::Rela<size, big_endian>& reloc)
2045 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
2046 {
2047 if (size != 32)
2048 this->addend_ = reloc.get_r_addend();
2049 else if (parameters->options().output_is_position_independent()
2050 && (elfcpp::elf_r_type<size>(reloc.get_r_info())
2051 == elfcpp::R_PPC_PLTREL24))
2052 this->addend_ = reloc.get_r_addend();
2053 }
2054
2055 bool operator==(const Glink_sym_ent& that) const
2056 {
2057 return (this->sym_ == that.sym_
2058 && this->object_ == that.object_
2059 && this->addend_ == that.addend_
2060 && this->locsym_ == that.locsym_);
2061 }
2062
2063 const Symbol* sym_;
2064 const Sized_relobj_file<size, big_endian>* object_;
2065 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
2066 unsigned int locsym_;
2067 };
2068
2069 class Glink_sym_ent_hash
2070 {
2071 public:
2072 size_t operator()(const Glink_sym_ent& ent) const
2073 {
2074 return (reinterpret_cast<uintptr_t>(ent.sym_)
2075 ^ reinterpret_cast<uintptr_t>(ent.object_)
2076 ^ ent.addend_
2077 ^ ent.locsym_);
2078 }
2079 };
2080
2081 // Map sym/object/addend to index.
2082 typedef Unordered_map<Glink_sym_ent, unsigned int,
2083 Glink_sym_ent_hash> Glink_entries;
2084 Glink_entries glink_entries_;
2085
2086 // Offset of pltresolve stub (actually, branch table for 32-bit)
2087 off_t pltresolve_;
2088
2089 // Allows access to .got and .plt for do_write.
2090 Target_powerpc<size, big_endian>* targ_;
2091 };
2092
2093 // Create the glink section.
2094
2095 template<int size, bool big_endian>
2096 Output_data_glink<size, big_endian>::Output_data_glink(
2097 Target_powerpc<size, big_endian>* targ)
2098 : Output_section_data(16),
2099 pltresolve_(0), targ_(targ)
2100 {
2101 }
2102
2103 // Add an entry to glink, if we do not already have one for this
2104 // sym/object/addend combo.
2105
2106 template<int size, bool big_endian>
2107 void
2108 Output_data_glink<size, big_endian>::add_entry(
2109 const Sized_relobj_file<size, big_endian>* object,
2110 const Symbol* gsym,
2111 const elfcpp::Rela<size, big_endian>& reloc)
2112 {
2113 Glink_sym_ent ent(object, gsym, reloc);
2114 unsigned int indx = this->glink_entries_.size();
2115 this->glink_entries_.insert(std::make_pair(ent, indx));
2116 }
2117
2118 template<int size, bool big_endian>
2119 void
2120 Output_data_glink<size, big_endian>::add_entry(
2121 const Sized_relobj_file<size, big_endian>* object,
2122 unsigned int locsym_index,
2123 const elfcpp::Rela<size, big_endian>& reloc)
2124 {
2125 Glink_sym_ent ent(object, locsym_index, reloc);
2126 unsigned int indx = this->glink_entries_.size();
2127 this->glink_entries_.insert(std::make_pair(ent, indx));
2128 }
2129
2130 template<int size, bool big_endian>
2131 unsigned int
2132 Output_data_glink<size, big_endian>::find_entry(
2133 const Sized_relobj_file<size, big_endian>* object,
2134 const Symbol* gsym,
2135 const elfcpp::Rela<size, big_endian>& reloc) const
2136 {
2137 Glink_sym_ent ent(object, gsym, reloc);
2138 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2139 gold_assert(p != this->glink_entries_.end());
2140 return p->second;
2141 }
2142
2143 template<int size, bool big_endian>
2144 unsigned int
2145 Output_data_glink<size, big_endian>::find_entry(const Symbol* gsym) const
2146 {
2147 Glink_sym_ent ent(gsym);
2148 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2149 gold_assert(p != this->glink_entries_.end());
2150 return p->second;
2151 }
2152
2153 template<int size, bool big_endian>
2154 unsigned int
2155 Output_data_glink<size, big_endian>::find_entry(
2156 const Sized_relobj_file<size, big_endian>* object,
2157 unsigned int locsym_index,
2158 const elfcpp::Rela<size, big_endian>& reloc) const
2159 {
2160 Glink_sym_ent ent(object, locsym_index, reloc);
2161 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2162 gold_assert(p != this->glink_entries_.end());
2163 return p->second;
2164 }
2165
2166 template<int size, bool big_endian>
2167 unsigned int
2168 Output_data_glink<size, big_endian>::find_entry(
2169 const Sized_relobj_file<size, big_endian>* object,
2170 unsigned int locsym_index) const
2171 {
2172 Glink_sym_ent ent(object, locsym_index);
2173 typename Glink_entries::const_iterator p = this->glink_entries_.find(ent);
2174 gold_assert(p != this->glink_entries_.end());
2175 return p->second;
2176 }
2177
2178 template<int size, bool big_endian>
2179 void
2180 Output_data_glink<size, big_endian>::set_final_data_size()
2181 {
2182 unsigned int count = this->glink_entries_.size();
2183 off_t total = count;
2184
2185 if (count != 0)
2186 {
2187 if (size == 32)
2188 {
2189 total *= 16;
2190 this->pltresolve_ = total;
2191
2192 // space for branch table
2193 total += 4 * (count - 1);
2194
2195 total += -total & 15;
2196 total += this->pltresolve_size;
2197 }
2198 else
2199 {
2200 total *= 32;
2201 this->pltresolve_ = total;
2202 total += this->pltresolve_size;
2203
2204 // space for branch table
2205 total += 8 * count;
2206 if (count > 0x8000)
2207 total += 4 * (count - 0x8000);
2208 }
2209 }
2210
2211 this->set_data_size(total);
2212 }
2213
2214 static inline uint32_t
2215 l(uint32_t a)
2216 {
2217 return a & 0xffff;
2218 }
2219
2220 static inline uint32_t
2221 hi(uint32_t a)
2222 {
2223 return l(a >> 16);
2224 }
2225
2226 static inline uint32_t
2227 ha(uint32_t a)
2228 {
2229 return hi(a + 0x8000);
2230 }
2231
2232 template<bool big_endian>
2233 static inline void
2234 write_insn(unsigned char* p, uint32_t v)
2235 {
2236 elfcpp::Swap<32, big_endian>::writeval(p, v);
2237 }
2238
2239 // Write out .glink.
2240
2241 template<int size, bool big_endian>
2242 void
2243 Output_data_glink<size, big_endian>::do_write(Output_file* of)
2244 {
2245 const off_t off = this->offset();
2246 const section_size_type oview_size =
2247 convert_to_section_size_type(this->data_size());
2248 unsigned char* const oview = of->get_output_view(off, oview_size);
2249 unsigned char* p;
2250
2251 // The base address of the .plt section.
2252 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2253 static const Address invalid_address = static_cast<Address>(0) - 1;
2254 Address plt_base = this->targ_->plt_section()->address();
2255 Address iplt_base = invalid_address;
2256
2257 const Output_data_got_powerpc<size, big_endian>* got
2258 = this->targ_->got_section();
2259
2260 if (size == 64)
2261 {
2262 Address got_os_addr = got->output_section()->address();
2263
2264 // Write out call stubs.
2265 typename Glink_entries::const_iterator g;
2266 for (g = this->glink_entries_.begin();
2267 g != this->glink_entries_.end();
2268 ++g)
2269 {
2270 Address plt_addr;
2271 bool is_ifunc;
2272 const Symbol* gsym = g->first.sym_;
2273 if (gsym != NULL)
2274 {
2275 is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
2276 && gsym->can_use_relative_reloc(false));
2277 plt_addr = gsym->plt_offset();
2278 }
2279 else
2280 {
2281 is_ifunc = true;
2282 const Sized_relobj_file<size, big_endian>* relobj
2283 = g->first.object_;
2284 unsigned int local_sym_index = g->first.locsym_;
2285 plt_addr = relobj->local_plt_offset(local_sym_index);
2286 }
2287 if (is_ifunc)
2288 {
2289 if (iplt_base == invalid_address)
2290 iplt_base = this->targ_->iplt_section()->address();
2291 plt_addr += iplt_base;
2292 }
2293 else
2294 plt_addr += plt_base;
2295 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2296 <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
2297 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
2298 Address pltoff = plt_addr - got_addr;
2299
2300 if (pltoff + 0x80008000 > 0xffffffff || (pltoff & 7) != 0)
2301 gold_error(_("%s: linkage table error against `%s'"),
2302 g->first.object_->name().c_str(),
2303 g->first.sym_->demangled_name().c_str());
2304
2305 p = oview + g->second * this->glink_entry_size();
2306 if (ha(pltoff) != 0)
2307 {
2308 write_insn<big_endian>(p, addis_12_2 + ha(pltoff)), p += 4;
2309 write_insn<big_endian>(p, std_2_1 + 40), p += 4;
2310 write_insn<big_endian>(p, ld_11_12 + l(pltoff)), p += 4;
2311 if (ha(pltoff + 16) != ha(pltoff))
2312 {
2313 write_insn<big_endian>(p, addi_12_12 + l(pltoff)), p += 4;
2314 pltoff = 0;
2315 }
2316 write_insn<big_endian>(p, mtctr_11), p += 4;
2317 write_insn<big_endian>(p, ld_2_12 + l(pltoff + 8)), p += 4;
2318 write_insn<big_endian>(p, ld_11_12 + l(pltoff + 16)), p += 4;
2319 write_insn<big_endian>(p, bctr), p += 4;
2320 }
2321 else
2322 {
2323 write_insn<big_endian>(p, std_2_1 + 40), p += 4;
2324 write_insn<big_endian>(p, ld_11_2 + l(pltoff)), p += 4;
2325 if (ha(pltoff + 16) != ha(pltoff))
2326 {
2327 write_insn<big_endian>(p, addi_2_2 + l(pltoff)), p += 4;
2328 pltoff = 0;
2329 }
2330 write_insn<big_endian>(p, mtctr_11), p += 4;
2331 write_insn<big_endian>(p, ld_11_2 + l(pltoff + 16)), p += 4;
2332 write_insn<big_endian>(p, ld_2_2 + l(pltoff + 8)), p += 4;
2333 write_insn<big_endian>(p, bctr), p += 4;
2334 }
2335 }
2336
2337 // Write pltresolve stub.
2338 p = oview + this->pltresolve_;
2339 Address after_bcl = this->address() + this->pltresolve_ + 16;
2340 Address pltoff = plt_base - after_bcl;
2341
2342 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
2343
2344 write_insn<big_endian>(p, mflr_12), p += 4;
2345 write_insn<big_endian>(p, bcl_20_31), p += 4;
2346 write_insn<big_endian>(p, mflr_11), p += 4;
2347 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
2348 write_insn<big_endian>(p, mtlr_12), p += 4;
2349 write_insn<big_endian>(p, add_12_2_11), p += 4;
2350 write_insn<big_endian>(p, ld_11_12 + 0), p += 4;
2351 write_insn<big_endian>(p, ld_2_12 + 8), p += 4;
2352 write_insn<big_endian>(p, mtctr_11), p += 4;
2353 write_insn<big_endian>(p, ld_11_12 + 16), p += 4;
2354 write_insn<big_endian>(p, bctr), p += 4;
2355 while (p < oview + this->pltresolve_ + this->pltresolve_size)
2356 write_insn<big_endian>(p, nop), p += 4;
2357
2358 // Write lazy link call stubs.
2359 uint32_t indx = 0;
2360 while (p < oview + oview_size)
2361 {
2362 if (indx < 0x8000)
2363 {
2364 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
2365 }
2366 else
2367 {
2368 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
2369 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
2370 }
2371 uint32_t branch_off = this->pltresolve_ + 8 - (p - oview);
2372 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
2373 indx++;
2374 }
2375 }
2376 else
2377 {
2378 // The address of _GLOBAL_OFFSET_TABLE_.
2379 Address g_o_t = got->address() + got->g_o_t();
2380
2381 // Write out call stubs.
2382 typename Glink_entries::const_iterator g;
2383 for (g = this->glink_entries_.begin();
2384 g != this->glink_entries_.end();
2385 ++g)
2386 {
2387 Address plt_addr;
2388 bool is_ifunc;
2389 const Symbol* gsym = g->first.sym_;
2390 if (gsym != NULL)
2391 {
2392 is_ifunc = (gsym->type() == elfcpp::STT_GNU_IFUNC
2393 && gsym->can_use_relative_reloc(false));
2394 plt_addr = gsym->plt_offset();
2395 }
2396 else
2397 {
2398 is_ifunc = true;
2399 const Sized_relobj_file<size, big_endian>* relobj
2400 = g->first.object_;
2401 unsigned int local_sym_index = g->first.locsym_;
2402 plt_addr = relobj->local_plt_offset(local_sym_index);
2403 }
2404 if (is_ifunc)
2405 {
2406 if (iplt_base == invalid_address)
2407 iplt_base = this->targ_->iplt_section()->address();
2408 plt_addr += iplt_base;
2409 }
2410 else
2411 plt_addr += plt_base;
2412
2413 p = oview + g->second * this->glink_entry_size();
2414 if (parameters->options().output_is_position_independent())
2415 {
2416 Address got_addr;
2417 const Powerpc_relobj<size, big_endian>* object = static_cast
2418 <const Powerpc_relobj<size, big_endian>*>(g->first.object_);
2419 if (object != NULL && g->first.addend_ >= 32768)
2420 {
2421 unsigned int got2 = object->got2_shndx();
2422 got_addr = g->first.object_->get_output_section_offset(got2);
2423 gold_assert(got_addr != invalid_address);
2424 got_addr += (g->first.object_->output_section(got2)->address()
2425 + g->first.addend_);
2426 }
2427 else
2428 got_addr = g_o_t;
2429
2430 Address pltoff = plt_addr - got_addr;
2431 if (ha(pltoff) == 0)
2432 {
2433 write_insn<big_endian>(p + 0, lwz_11_30 + l(pltoff));
2434 write_insn<big_endian>(p + 4, mtctr_11);
2435 write_insn<big_endian>(p + 8, bctr);
2436 }
2437 else
2438 {
2439 write_insn<big_endian>(p + 0, addis_11_30 + ha(pltoff));
2440 write_insn<big_endian>(p + 4, lwz_11_11 + l(pltoff));
2441 write_insn<big_endian>(p + 8, mtctr_11);
2442 write_insn<big_endian>(p + 12, bctr);
2443 }
2444 }
2445 else
2446 {
2447 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
2448 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
2449 write_insn<big_endian>(p + 8, mtctr_11);
2450 write_insn<big_endian>(p + 12, bctr);
2451 }
2452 }
2453
2454 // Write out pltresolve branch table.
2455 p = oview + this->pltresolve_;
2456 unsigned int the_end = oview_size - this->pltresolve_size;
2457 unsigned char* end_p = oview + the_end;
2458 while (p < end_p - 8 * 4)
2459 write_insn<big_endian>(p, b + end_p - p), p += 4;
2460 while (p < end_p)
2461 write_insn<big_endian>(p, nop), p += 4;
2462
2463 // Write out pltresolve call stub.
2464 if (parameters->options().output_is_position_independent())
2465 {
2466 Address res0_off = this->pltresolve_;
2467 Address after_bcl_off = the_end + 12;
2468 Address bcl_res0 = after_bcl_off - res0_off;
2469
2470 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
2471 write_insn<big_endian>(p + 4, mflr_0);
2472 write_insn<big_endian>(p + 8, bcl_20_31);
2473 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
2474 write_insn<big_endian>(p + 16, mflr_12);
2475 write_insn<big_endian>(p + 20, mtlr_0);
2476 write_insn<big_endian>(p + 24, sub_11_11_12);
2477
2478 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
2479
2480 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
2481 if (ha(got_bcl) == ha(got_bcl + 4))
2482 {
2483 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
2484 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
2485 }
2486 else
2487 {
2488 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
2489 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
2490 }
2491 write_insn<big_endian>(p + 40, mtctr_0);
2492 write_insn<big_endian>(p + 44, add_0_11_11);
2493 write_insn<big_endian>(p + 48, add_11_0_11);
2494 write_insn<big_endian>(p + 52, bctr);
2495 write_insn<big_endian>(p + 56, nop);
2496 write_insn<big_endian>(p + 60, nop);
2497 }
2498 else
2499 {
2500 Address res0 = this->pltresolve_ + this->address();
2501
2502 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
2503 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
2504 if (ha(g_o_t + 4) == ha(g_o_t + 8))
2505 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
2506 else
2507 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
2508 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
2509 write_insn<big_endian>(p + 16, mtctr_0);
2510 write_insn<big_endian>(p + 20, add_0_11_11);
2511 if (ha(g_o_t + 4) == ha(g_o_t + 8))
2512 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
2513 else
2514 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
2515 write_insn<big_endian>(p + 28, add_11_0_11);
2516 write_insn<big_endian>(p + 32, bctr);
2517 write_insn<big_endian>(p + 36, nop);
2518 write_insn<big_endian>(p + 40, nop);
2519 write_insn<big_endian>(p + 44, nop);
2520 write_insn<big_endian>(p + 48, nop);
2521 write_insn<big_endian>(p + 52, nop);
2522 write_insn<big_endian>(p + 56, nop);
2523 write_insn<big_endian>(p + 60, nop);
2524 }
2525 p += 64;
2526 }
2527
2528 of->write_output_view(off, oview_size, oview);
2529 }
2530
2531
2532 // A class to handle linker generated save/restore functions.
2533
2534 template<int size, bool big_endian>
2535 class Output_data_save_res : public Output_section_data_build
2536 {
2537 public:
2538 Output_data_save_res(Symbol_table* symtab);
2539
2540 protected:
2541 // Write to a map file.
2542 void
2543 do_print_to_mapfile(Mapfile* mapfile) const
2544 { mapfile->print_output_data(this, _("** save/restore")); }
2545
2546 void
2547 do_write(Output_file*);
2548
2549 private:
2550 // The maximum size of save/restore contents.
2551 static const unsigned int savres_max = 218*4;
2552
2553 void
2554 savres_define(Symbol_table* symtab,
2555 const char *name,
2556 unsigned int lo, unsigned int hi,
2557 unsigned char* write_ent(unsigned char*, int),
2558 unsigned char* write_tail(unsigned char*, int));
2559
2560 unsigned char *contents_;
2561 };
2562
2563 template<bool big_endian>
2564 static unsigned char*
2565 savegpr0(unsigned char* p, int r)
2566 {
2567 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2568 write_insn<big_endian>(p, insn);
2569 return p + 4;
2570 }
2571
2572 template<bool big_endian>
2573 static unsigned char*
2574 savegpr0_tail(unsigned char* p, int r)
2575 {
2576 p = savegpr0<big_endian>(p, r);
2577 uint32_t insn = std_0_1 + 16;
2578 write_insn<big_endian>(p, insn);
2579 p = p + 4;
2580 write_insn<big_endian>(p, blr);
2581 return p + 4;
2582 }
2583
2584 template<bool big_endian>
2585 static unsigned char*
2586 restgpr0(unsigned char* p, int r)
2587 {
2588 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2589 write_insn<big_endian>(p, insn);
2590 return p + 4;
2591 }
2592
2593 template<bool big_endian>
2594 static unsigned char*
2595 restgpr0_tail(unsigned char* p, int r)
2596 {
2597 uint32_t insn = ld_0_1 + 16;
2598 write_insn<big_endian>(p, insn);
2599 p = p + 4;
2600 p = restgpr0<big_endian>(p, r);
2601 write_insn<big_endian>(p, mtlr_0);
2602 p = p + 4;
2603 if (r == 29)
2604 {
2605 p = restgpr0<big_endian>(p, 30);
2606 p = restgpr0<big_endian>(p, 31);
2607 }
2608 write_insn<big_endian>(p, blr);
2609 return p + 4;
2610 }
2611
2612 template<bool big_endian>
2613 static unsigned char*
2614 savegpr1(unsigned char* p, int r)
2615 {
2616 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
2617 write_insn<big_endian>(p, insn);
2618 return p + 4;
2619 }
2620
2621 template<bool big_endian>
2622 static unsigned char*
2623 savegpr1_tail(unsigned char* p, int r)
2624 {
2625 p = savegpr1<big_endian>(p, r);
2626 write_insn<big_endian>(p, blr);
2627 return p + 4;
2628 }
2629
2630 template<bool big_endian>
2631 static unsigned char*
2632 restgpr1(unsigned char* p, int r)
2633 {
2634 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
2635 write_insn<big_endian>(p, insn);
2636 return p + 4;
2637 }
2638
2639 template<bool big_endian>
2640 static unsigned char*
2641 restgpr1_tail(unsigned char* p, int r)
2642 {
2643 p = restgpr1<big_endian>(p, r);
2644 write_insn<big_endian>(p, blr);
2645 return p + 4;
2646 }
2647
2648 template<bool big_endian>
2649 static unsigned char*
2650 savefpr(unsigned char* p, int r)
2651 {
2652 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2653 write_insn<big_endian>(p, insn);
2654 return p + 4;
2655 }
2656
2657 template<bool big_endian>
2658 static unsigned char*
2659 savefpr0_tail(unsigned char* p, int r)
2660 {
2661 p = savefpr<big_endian>(p, r);
2662 write_insn<big_endian>(p, std_0_1 + 16);
2663 p = p + 4;
2664 write_insn<big_endian>(p, blr);
2665 return p + 4;
2666 }
2667
2668 template<bool big_endian>
2669 static unsigned char*
2670 restfpr(unsigned char* p, int r)
2671 {
2672 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
2673 write_insn<big_endian>(p, insn);
2674 return p + 4;
2675 }
2676
2677 template<bool big_endian>
2678 static unsigned char*
2679 restfpr0_tail(unsigned char* p, int r)
2680 {
2681 write_insn<big_endian>(p, ld_0_1 + 16);
2682 p = p + 4;
2683 p = restfpr<big_endian>(p, r);
2684 write_insn<big_endian>(p, mtlr_0);
2685 p = p + 4;
2686 if (r == 29)
2687 {
2688 p = restfpr<big_endian>(p, 30);
2689 p = restfpr<big_endian>(p, 31);
2690 }
2691 write_insn<big_endian>(p, blr);
2692 return p + 4;
2693 }
2694
2695 template<bool big_endian>
2696 static unsigned char*
2697 savefpr1_tail(unsigned char* p, int r)
2698 {
2699 p = savefpr<big_endian>(p, r);
2700 write_insn<big_endian>(p, blr);
2701 return p + 4;
2702 }
2703
2704 template<bool big_endian>
2705 static unsigned char*
2706 restfpr1_tail(unsigned char* p, int r)
2707 {
2708 p = restfpr<big_endian>(p, r);
2709 write_insn<big_endian>(p, blr);
2710 return p + 4;
2711 }
2712
2713 template<bool big_endian>
2714 static unsigned char*
2715 savevr(unsigned char* p, int r)
2716 {
2717 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
2718 write_insn<big_endian>(p, insn);
2719 p = p + 4;
2720 insn = stvx_0_12_0 + (r << 21);
2721 write_insn<big_endian>(p, insn);
2722 return p + 4;
2723 }
2724
2725 template<bool big_endian>
2726 static unsigned char*
2727 savevr_tail(unsigned char* p, int r)
2728 {
2729 p = savevr<big_endian>(p, r);
2730 write_insn<big_endian>(p, blr);
2731 return p + 4;
2732 }
2733
2734 template<bool big_endian>
2735 static unsigned char*
2736 restvr(unsigned char* p, int r)
2737 {
2738 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
2739 write_insn<big_endian>(p, insn);
2740 p = p + 4;
2741 insn = lvx_0_12_0 + (r << 21);
2742 write_insn<big_endian>(p, insn);
2743 return p + 4;
2744 }
2745
2746 template<bool big_endian>
2747 static unsigned char*
2748 restvr_tail(unsigned char* p, int r)
2749 {
2750 p = restvr<big_endian>(p, r);
2751 write_insn<big_endian>(p, blr);
2752 return p + 4;
2753 }
2754
2755
2756 template<int size, bool big_endian>
2757 Output_data_save_res<size, big_endian>::Output_data_save_res(
2758 Symbol_table* symtab)
2759 : Output_section_data_build(4),
2760 contents_(NULL)
2761 {
2762 this->savres_define(symtab,
2763 "_savegpr0_", 14, 31,
2764 savegpr0<big_endian>, savegpr0_tail<big_endian>);
2765 this->savres_define(symtab,
2766 "_restgpr0_", 14, 29,
2767 restgpr0<big_endian>, restgpr0_tail<big_endian>);
2768 this->savres_define(symtab,
2769 "_restgpr0_", 30, 31,
2770 restgpr0<big_endian>, restgpr0_tail<big_endian>);
2771 this->savres_define(symtab,
2772 "_savegpr1_", 14, 31,
2773 savegpr1<big_endian>, savegpr1_tail<big_endian>);
2774 this->savres_define(symtab,
2775 "_restgpr1_", 14, 31,
2776 restgpr1<big_endian>, restgpr1_tail<big_endian>);
2777 this->savres_define(symtab,
2778 "_savefpr_", 14, 31,
2779 savefpr<big_endian>, savefpr0_tail<big_endian>);
2780 this->savres_define(symtab,
2781 "_restfpr_", 14, 29,
2782 restfpr<big_endian>, restfpr0_tail<big_endian>);
2783 this->savres_define(symtab,
2784 "_restfpr_", 30, 31,
2785 restfpr<big_endian>, restfpr0_tail<big_endian>);
2786 this->savres_define(symtab,
2787 "._savef", 14, 31,
2788 savefpr<big_endian>, savefpr1_tail<big_endian>);
2789 this->savres_define(symtab,
2790 "._restf", 14, 31,
2791 restfpr<big_endian>, restfpr1_tail<big_endian>);
2792 this->savres_define(symtab,
2793 "_savevr_", 20, 31,
2794 savevr<big_endian>, savevr_tail<big_endian>);
2795 this->savres_define(symtab,
2796 "_restvr_", 20, 31,
2797 restvr<big_endian>, restvr_tail<big_endian>);
2798 }
2799
2800 template<int size, bool big_endian>
2801 void
2802 Output_data_save_res<size, big_endian>::savres_define(
2803 Symbol_table* symtab,
2804 const char *name,
2805 unsigned int lo, unsigned int hi,
2806 unsigned char* write_ent(unsigned char*, int),
2807 unsigned char* write_tail(unsigned char*, int))
2808 {
2809 size_t len = strlen(name);
2810 bool writing = false;
2811 char sym[16];
2812
2813 memcpy(sym, name, len);
2814 sym[len + 2] = 0;
2815
2816 for (unsigned int i = lo; i <= hi; i++)
2817 {
2818 sym[len + 0] = i / 10 + '0';
2819 sym[len + 1] = i % 10 + '0';
2820 Symbol* gsym = symtab->lookup(sym);
2821 bool refd = gsym != NULL && gsym->is_undefined();
2822 writing = writing || refd;
2823 if (writing)
2824 {
2825 if (this->contents_ == NULL)
2826 this->contents_ = new unsigned char[this->savres_max];
2827
2828 off_t value = this->current_data_size();
2829 unsigned char* p = this->contents_ + value;
2830 if (i != hi)
2831 p = write_ent(p, i);
2832 else
2833 p = write_tail(p, i);
2834 off_t cur_size = p - this->contents_;
2835 this->set_current_data_size(cur_size);
2836 if (refd)
2837 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
2838 this, value, cur_size - value,
2839 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
2840 elfcpp::STV_HIDDEN, 0, false, false);
2841 }
2842 }
2843 }
2844
2845 // Write out save/restore.
2846
2847 template<int size, bool big_endian>
2848 void
2849 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
2850 {
2851 const off_t off = this->offset();
2852 const section_size_type oview_size =
2853 convert_to_section_size_type(this->data_size());
2854 unsigned char* const oview = of->get_output_view(off, oview_size);
2855 memcpy(oview, this->contents_, oview_size);
2856 of->write_output_view(off, oview_size, oview);
2857 }
2858
2859
2860 // Create the glink section.
2861
2862 template<int size, bool big_endian>
2863 void
2864 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
2865 {
2866 if (this->glink_ == NULL)
2867 {
2868 this->glink_ = new Output_data_glink<size, big_endian>(this);
2869 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
2870 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2871 this->glink_, ORDER_TEXT, false);
2872 }
2873 }
2874
2875 // Create a PLT entry for a global symbol.
2876
2877 template<int size, bool big_endian>
2878 void
2879 Target_powerpc<size, big_endian>::make_plt_entry(
2880 Symbol_table* symtab,
2881 Layout* layout,
2882 Symbol* gsym,
2883 const elfcpp::Rela<size, big_endian>& reloc,
2884 const Sized_relobj_file<size, big_endian>* object)
2885 {
2886 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2887 && gsym->can_use_relative_reloc(false))
2888 {
2889 if (this->iplt_ == NULL)
2890 this->make_iplt_section(symtab, layout);
2891 this->iplt_->add_ifunc_entry(gsym);
2892 }
2893 else
2894 {
2895 if (this->plt_ == NULL)
2896 this->make_plt_section(symtab, layout);
2897 this->plt_->add_entry(gsym);
2898 }
2899 this->glink_->add_entry(object, gsym, reloc);
2900 }
2901
2902 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2903
2904 template<int size, bool big_endian>
2905 void
2906 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
2907 Symbol_table* symtab,
2908 Layout* layout,
2909 const elfcpp::Rela<size, big_endian>& reloc,
2910 Sized_relobj_file<size, big_endian>* relobj)
2911 {
2912 if (this->iplt_ == NULL)
2913 this->make_iplt_section(symtab, layout);
2914 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2915 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
2916 this->glink_->add_entry(relobj, r_sym, reloc);
2917 }
2918
2919 // Return the number of entries in the PLT.
2920
2921 template<int size, bool big_endian>
2922 unsigned int
2923 Target_powerpc<size, big_endian>::plt_entry_count() const
2924 {
2925 if (this->plt_ == NULL)
2926 return 0;
2927 unsigned int count = this->plt_->entry_count();
2928 if (this->iplt_ != NULL)
2929 count += this->iplt_->entry_count();
2930 return count;
2931 }
2932
2933 // Return the offset of the first non-reserved PLT entry.
2934
2935 template<int size, bool big_endian>
2936 unsigned int
2937 Target_powerpc<size, big_endian>::first_plt_entry_offset() const
2938 {
2939 return this->plt_->first_plt_entry_offset();
2940 }
2941
2942 // Return the size of each PLT entry.
2943
2944 template<int size, bool big_endian>
2945 unsigned int
2946 Target_powerpc<size, big_endian>::plt_entry_size() const
2947 {
2948 return Output_data_plt_powerpc<size, big_endian>::get_plt_entry_size();
2949 }
2950
2951 // Create a GOT entry for local dynamic __tls_get_addr calls.
2952
2953 template<int size, bool big_endian>
2954 unsigned int
2955 Target_powerpc<size, big_endian>::tlsld_got_offset(
2956 Symbol_table* symtab,
2957 Layout* layout,
2958 Sized_relobj_file<size, big_endian>* object)
2959 {
2960 if (this->tlsld_got_offset_ == -1U)
2961 {
2962 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2963 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2964 Output_data_got_powerpc<size, big_endian>* got
2965 = this->got_section(symtab, layout);
2966 unsigned int got_offset = got->add_constant_pair(0, 0);
2967 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
2968 got_offset, 0);
2969 this->tlsld_got_offset_ = got_offset;
2970 }
2971 return this->tlsld_got_offset_;
2972 }
2973
2974 // Get the Reference_flags for a particular relocation.
2975
2976 template<int size, bool big_endian>
2977 int
2978 Target_powerpc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
2979 {
2980 switch (r_type)
2981 {
2982 case elfcpp::R_POWERPC_NONE:
2983 case elfcpp::R_POWERPC_GNU_VTINHERIT:
2984 case elfcpp::R_POWERPC_GNU_VTENTRY:
2985 case elfcpp::R_PPC64_TOC:
2986 // No symbol reference.
2987 return 0;
2988
2989 case elfcpp::R_PPC64_ADDR64:
2990 case elfcpp::R_PPC64_UADDR64:
2991 case elfcpp::R_POWERPC_ADDR32:
2992 case elfcpp::R_POWERPC_UADDR32:
2993 case elfcpp::R_POWERPC_ADDR16:
2994 case elfcpp::R_POWERPC_UADDR16:
2995 case elfcpp::R_POWERPC_ADDR16_LO:
2996 case elfcpp::R_POWERPC_ADDR16_HI:
2997 case elfcpp::R_POWERPC_ADDR16_HA:
2998 return Symbol::ABSOLUTE_REF;
2999
3000 case elfcpp::R_POWERPC_ADDR24:
3001 case elfcpp::R_POWERPC_ADDR14:
3002 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3003 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3004 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
3005
3006 case elfcpp::R_PPC64_REL64:
3007 case elfcpp::R_POWERPC_REL32:
3008 case elfcpp::R_PPC_LOCAL24PC:
3009 case elfcpp::R_POWERPC_REL16:
3010 case elfcpp::R_POWERPC_REL16_LO:
3011 case elfcpp::R_POWERPC_REL16_HI:
3012 case elfcpp::R_POWERPC_REL16_HA:
3013 return Symbol::RELATIVE_REF;
3014
3015 case elfcpp::R_POWERPC_REL24:
3016 case elfcpp::R_PPC_PLTREL24:
3017 case elfcpp::R_POWERPC_REL14:
3018 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3019 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3020 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3021
3022 case elfcpp::R_POWERPC_GOT16:
3023 case elfcpp::R_POWERPC_GOT16_LO:
3024 case elfcpp::R_POWERPC_GOT16_HI:
3025 case elfcpp::R_POWERPC_GOT16_HA:
3026 case elfcpp::R_PPC64_GOT16_DS:
3027 case elfcpp::R_PPC64_GOT16_LO_DS:
3028 case elfcpp::R_PPC64_TOC16:
3029 case elfcpp::R_PPC64_TOC16_LO:
3030 case elfcpp::R_PPC64_TOC16_HI:
3031 case elfcpp::R_PPC64_TOC16_HA:
3032 case elfcpp::R_PPC64_TOC16_DS:
3033 case elfcpp::R_PPC64_TOC16_LO_DS:
3034 // Absolute in GOT.
3035 return Symbol::ABSOLUTE_REF;
3036
3037 case elfcpp::R_POWERPC_GOT_TPREL16:
3038 case elfcpp::R_POWERPC_TLS:
3039 return Symbol::TLS_REF;
3040
3041 case elfcpp::R_POWERPC_COPY:
3042 case elfcpp::R_POWERPC_GLOB_DAT:
3043 case elfcpp::R_POWERPC_JMP_SLOT:
3044 case elfcpp::R_POWERPC_RELATIVE:
3045 case elfcpp::R_POWERPC_DTPMOD:
3046 default:
3047 // Not expected. We will give an error later.
3048 return 0;
3049 }
3050 }
3051
3052 // Report an unsupported relocation against a local symbol.
3053
3054 template<int size, bool big_endian>
3055 void
3056 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
3057 Sized_relobj_file<size, big_endian>* object,
3058 unsigned int r_type)
3059 {
3060 gold_error(_("%s: unsupported reloc %u against local symbol"),
3061 object->name().c_str(), r_type);
3062 }
3063
3064 // We are about to emit a dynamic relocation of type R_TYPE. If the
3065 // dynamic linker does not support it, issue an error.
3066
3067 template<int size, bool big_endian>
3068 void
3069 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
3070 unsigned int r_type)
3071 {
3072 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
3073
3074 // These are the relocation types supported by glibc for both 32-bit
3075 // and 64-bit powerpc.
3076 switch (r_type)
3077 {
3078 case elfcpp::R_POWERPC_NONE:
3079 case elfcpp::R_POWERPC_RELATIVE:
3080 case elfcpp::R_POWERPC_GLOB_DAT:
3081 case elfcpp::R_POWERPC_DTPMOD:
3082 case elfcpp::R_POWERPC_DTPREL:
3083 case elfcpp::R_POWERPC_TPREL:
3084 case elfcpp::R_POWERPC_JMP_SLOT:
3085 case elfcpp::R_POWERPC_COPY:
3086 case elfcpp::R_POWERPC_IRELATIVE:
3087 case elfcpp::R_POWERPC_ADDR32:
3088 case elfcpp::R_POWERPC_UADDR32:
3089 case elfcpp::R_POWERPC_ADDR24:
3090 case elfcpp::R_POWERPC_ADDR16:
3091 case elfcpp::R_POWERPC_UADDR16:
3092 case elfcpp::R_POWERPC_ADDR16_LO:
3093 case elfcpp::R_POWERPC_ADDR16_HI:
3094 case elfcpp::R_POWERPC_ADDR16_HA:
3095 case elfcpp::R_POWERPC_ADDR14:
3096 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3097 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3098 case elfcpp::R_POWERPC_REL32:
3099 case elfcpp::R_POWERPC_REL24:
3100 case elfcpp::R_POWERPC_TPREL16:
3101 case elfcpp::R_POWERPC_TPREL16_LO:
3102 case elfcpp::R_POWERPC_TPREL16_HI:
3103 case elfcpp::R_POWERPC_TPREL16_HA:
3104 return;
3105
3106 default:
3107 break;
3108 }
3109
3110 if (size == 64)
3111 {
3112 switch (r_type)
3113 {
3114 // These are the relocation types supported only on 64-bit.
3115 case elfcpp::R_PPC64_ADDR64:
3116 case elfcpp::R_PPC64_UADDR64:
3117 case elfcpp::R_PPC64_JMP_IREL:
3118 case elfcpp::R_PPC64_ADDR16_DS:
3119 case elfcpp::R_PPC64_ADDR16_LO_DS:
3120 case elfcpp::R_PPC64_ADDR16_HIGHER:
3121 case elfcpp::R_PPC64_ADDR16_HIGHEST:
3122 case elfcpp::R_PPC64_ADDR16_HIGHERA:
3123 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3124 case elfcpp::R_PPC64_REL64:
3125 case elfcpp::R_POWERPC_ADDR30:
3126 case elfcpp::R_PPC64_TPREL16_DS:
3127 case elfcpp::R_PPC64_TPREL16_LO_DS:
3128 case elfcpp::R_PPC64_TPREL16_HIGHER:
3129 case elfcpp::R_PPC64_TPREL16_HIGHEST:
3130 case elfcpp::R_PPC64_TPREL16_HIGHERA:
3131 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3132 return;
3133
3134 default:
3135 break;
3136 }
3137 }
3138 else
3139 {
3140 switch (r_type)
3141 {
3142 // These are the relocation types supported only on 32-bit.
3143 // ??? glibc ld.so doesn't need to support these.
3144 case elfcpp::R_POWERPC_DTPREL16:
3145 case elfcpp::R_POWERPC_DTPREL16_LO:
3146 case elfcpp::R_POWERPC_DTPREL16_HI:
3147 case elfcpp::R_POWERPC_DTPREL16_HA:
3148 return;
3149
3150 default:
3151 break;
3152 }
3153 }
3154
3155 // This prevents us from issuing more than one error per reloc
3156 // section. But we can still wind up issuing more than one
3157 // error per object file.
3158 if (this->issued_non_pic_error_)
3159 return;
3160 gold_assert(parameters->options().output_is_position_independent());
3161 object->error(_("requires unsupported dynamic reloc; "
3162 "recompile with -fPIC"));
3163 this->issued_non_pic_error_ = true;
3164 return;
3165 }
3166
3167 // Return whether we need to make a PLT entry for a relocation of the
3168 // given type against a STT_GNU_IFUNC symbol.
3169
3170 template<int size, bool big_endian>
3171 bool
3172 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
3173 Sized_relobj_file<size, big_endian>* object,
3174 unsigned int r_type)
3175 {
3176 // In non-pic code any reference will resolve to the plt call stub
3177 // for the ifunc symbol.
3178 if (size == 32 && !parameters->options().output_is_position_independent())
3179 return true;
3180
3181 switch (r_type)
3182 {
3183 // Word size refs from data sections are OK.
3184 case elfcpp::R_POWERPC_ADDR32:
3185 case elfcpp::R_POWERPC_UADDR32:
3186 if (size == 32)
3187 return true;
3188 break;
3189
3190 case elfcpp::R_PPC64_ADDR64:
3191 case elfcpp::R_PPC64_UADDR64:
3192 if (size == 64)
3193 return true;
3194 break;
3195
3196 // GOT refs are good.
3197 case elfcpp::R_POWERPC_GOT16:
3198 case elfcpp::R_POWERPC_GOT16_LO:
3199 case elfcpp::R_POWERPC_GOT16_HI:
3200 case elfcpp::R_POWERPC_GOT16_HA:
3201 case elfcpp::R_PPC64_GOT16_DS:
3202 case elfcpp::R_PPC64_GOT16_LO_DS:
3203 return true;
3204
3205 // So are function calls.
3206 case elfcpp::R_POWERPC_ADDR24:
3207 case elfcpp::R_POWERPC_ADDR14:
3208 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3209 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3210 case elfcpp::R_POWERPC_REL24:
3211 case elfcpp::R_PPC_PLTREL24:
3212 case elfcpp::R_POWERPC_REL14:
3213 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3214 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3215 return true;
3216
3217 default:
3218 break;
3219 }
3220
3221 // Anything else is a problem.
3222 // If we are building a static executable, the libc startup function
3223 // responsible for applying indirect function relocations is going
3224 // to complain about the reloc type.
3225 // If we are building a dynamic executable, we will have a text
3226 // relocation. The dynamic loader will set the text segment
3227 // writable and non-executable to apply text relocations. So we'll
3228 // segfault when trying to run the indirection function to resolve
3229 // the reloc.
3230 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
3231 object->name().c_str(), r_type);
3232 return false;
3233 }
3234
3235 // Scan a relocation for a local symbol.
3236
3237 template<int size, bool big_endian>
3238 inline void
3239 Target_powerpc<size, big_endian>::Scan::local(
3240 Symbol_table* symtab,
3241 Layout* layout,
3242 Target_powerpc<size, big_endian>* target,
3243 Sized_relobj_file<size, big_endian>* object,
3244 unsigned int data_shndx,
3245 Output_section* output_section,
3246 const elfcpp::Rela<size, big_endian>& reloc,
3247 unsigned int r_type,
3248 const elfcpp::Sym<size, big_endian>& lsym,
3249 bool is_discarded)
3250 {
3251 Powerpc_relobj<size, big_endian>* ppc_object
3252 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3253
3254 if (is_discarded)
3255 {
3256 if (size == 64
3257 && data_shndx == ppc_object->opd_shndx()
3258 && r_type == elfcpp::R_PPC64_ADDR64)
3259 ppc_object->set_opd_discard(reloc.get_r_offset());
3260 return;
3261 }
3262
3263 // A local STT_GNU_IFUNC symbol may require a PLT entry.
3264 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3265 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3266 {
3267 target->make_local_ifunc_plt_entry(symtab, layout, reloc, object);
3268 }
3269
3270 switch (r_type)
3271 {
3272 case elfcpp::R_POWERPC_NONE:
3273 case elfcpp::R_POWERPC_GNU_VTINHERIT:
3274 case elfcpp::R_POWERPC_GNU_VTENTRY:
3275 case elfcpp::R_PPC64_TOCSAVE:
3276 case elfcpp::R_PPC_EMB_MRKREF:
3277 case elfcpp::R_POWERPC_TLS:
3278 break;
3279
3280 case elfcpp::R_PPC64_TOC:
3281 {
3282 Output_data_got_powerpc<size, big_endian>* got
3283 = target->got_section(symtab, layout);
3284 if (parameters->options().output_is_position_independent())
3285 {
3286 Address off = reloc.get_r_offset();
3287 if (size == 64
3288 && data_shndx == ppc_object->opd_shndx()
3289 && ppc_object->get_opd_discard(off - 8))
3290 break;
3291
3292 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3293 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
3294 rela_dyn->add_output_section_relative(got->output_section(),
3295 elfcpp::R_POWERPC_RELATIVE,
3296 output_section,
3297 object, data_shndx, off,
3298 symobj->toc_base_offset());
3299 }
3300 }
3301 break;
3302
3303 case elfcpp::R_PPC64_ADDR64:
3304 case elfcpp::R_PPC64_UADDR64:
3305 case elfcpp::R_POWERPC_ADDR32:
3306 case elfcpp::R_POWERPC_UADDR32:
3307 case elfcpp::R_POWERPC_ADDR24:
3308 case elfcpp::R_POWERPC_ADDR16:
3309 case elfcpp::R_POWERPC_ADDR16_LO:
3310 case elfcpp::R_POWERPC_ADDR16_HI:
3311 case elfcpp::R_POWERPC_ADDR16_HA:
3312 case elfcpp::R_POWERPC_UADDR16:
3313 case elfcpp::R_PPC64_ADDR16_HIGHER:
3314 case elfcpp::R_PPC64_ADDR16_HIGHERA:
3315 case elfcpp::R_PPC64_ADDR16_HIGHEST:
3316 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3317 case elfcpp::R_PPC64_ADDR16_DS:
3318 case elfcpp::R_PPC64_ADDR16_LO_DS:
3319 case elfcpp::R_POWERPC_ADDR14:
3320 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3321 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3322 // If building a shared library (or a position-independent
3323 // executable), we need to create a dynamic relocation for
3324 // this location.
3325 if (parameters->options().output_is_position_independent()
3326 || (size == 64 && is_ifunc))
3327 {
3328 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3329
3330 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
3331 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
3332 {
3333 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3334 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3335 if (is_ifunc)
3336 {
3337 rela_dyn = target->iplt_section()->rel_plt();
3338 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3339 }
3340 rela_dyn->add_local_relative(object, r_sym, dynrel,
3341 output_section, data_shndx,
3342 reloc.get_r_offset(),
3343 reloc.get_r_addend(), false);
3344 }
3345 else
3346 {
3347 check_non_pic(object, r_type);
3348 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3349 rela_dyn->add_local(object, r_sym, r_type, output_section,
3350 data_shndx, reloc.get_r_offset(),
3351 reloc.get_r_addend());
3352 }
3353 }
3354 break;
3355
3356 case elfcpp::R_PPC64_REL64:
3357 case elfcpp::R_POWERPC_REL32:
3358 case elfcpp::R_POWERPC_REL24:
3359 case elfcpp::R_PPC_PLTREL24:
3360 case elfcpp::R_PPC_LOCAL24PC:
3361 case elfcpp::R_POWERPC_REL16:
3362 case elfcpp::R_POWERPC_REL16_LO:
3363 case elfcpp::R_POWERPC_REL16_HI:
3364 case elfcpp::R_POWERPC_REL16_HA:
3365 case elfcpp::R_POWERPC_REL14:
3366 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3367 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3368 case elfcpp::R_POWERPC_SECTOFF:
3369 case elfcpp::R_POWERPC_TPREL16:
3370 case elfcpp::R_POWERPC_DTPREL16:
3371 case elfcpp::R_POWERPC_SECTOFF_LO:
3372 case elfcpp::R_POWERPC_TPREL16_LO:
3373 case elfcpp::R_POWERPC_DTPREL16_LO:
3374 case elfcpp::R_POWERPC_SECTOFF_HI:
3375 case elfcpp::R_POWERPC_TPREL16_HI:
3376 case elfcpp::R_POWERPC_DTPREL16_HI:
3377 case elfcpp::R_POWERPC_SECTOFF_HA:
3378 case elfcpp::R_POWERPC_TPREL16_HA:
3379 case elfcpp::R_POWERPC_DTPREL16_HA:
3380 case elfcpp::R_PPC64_DTPREL16_HIGHER:
3381 case elfcpp::R_PPC64_TPREL16_HIGHER:
3382 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3383 case elfcpp::R_PPC64_TPREL16_HIGHERA:
3384 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3385 case elfcpp::R_PPC64_TPREL16_HIGHEST:
3386 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3387 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3388 case elfcpp::R_PPC64_TPREL16_DS:
3389 case elfcpp::R_PPC64_TPREL16_LO_DS:
3390 case elfcpp::R_PPC64_DTPREL16_DS:
3391 case elfcpp::R_PPC64_DTPREL16_LO_DS:
3392 case elfcpp::R_PPC64_SECTOFF_DS:
3393 case elfcpp::R_PPC64_SECTOFF_LO_DS:
3394 case elfcpp::R_PPC64_TLSGD:
3395 case elfcpp::R_PPC64_TLSLD:
3396 break;
3397
3398 case elfcpp::R_POWERPC_GOT16:
3399 case elfcpp::R_POWERPC_GOT16_LO:
3400 case elfcpp::R_POWERPC_GOT16_HI:
3401 case elfcpp::R_POWERPC_GOT16_HA:
3402 case elfcpp::R_PPC64_GOT16_DS:
3403 case elfcpp::R_PPC64_GOT16_LO_DS:
3404 {
3405 // The symbol requires a GOT entry.
3406 Output_data_got_powerpc<size, big_endian>* got
3407 = target->got_section(symtab, layout);
3408 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3409
3410 if (!parameters->options().output_is_position_independent())
3411 {
3412 if (size == 32 && is_ifunc)
3413 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3414 else
3415 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3416 }
3417 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
3418 {
3419 // If we are generating a shared object or a pie, this
3420 // symbol's GOT entry will be set by a dynamic relocation.
3421 unsigned int off;
3422 off = got->add_constant(0);
3423 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
3424
3425 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3426 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3427 if (is_ifunc)
3428 {
3429 rela_dyn = target->iplt_section()->rel_plt();
3430 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3431 }
3432 rela_dyn->add_local_relative(object, r_sym, dynrel,
3433 got, off, 0, false);
3434 }
3435 }
3436 break;
3437
3438 case elfcpp::R_PPC64_TOC16:
3439 case elfcpp::R_PPC64_TOC16_LO:
3440 case elfcpp::R_PPC64_TOC16_HI:
3441 case elfcpp::R_PPC64_TOC16_HA:
3442 case elfcpp::R_PPC64_TOC16_DS:
3443 case elfcpp::R_PPC64_TOC16_LO_DS:
3444 // We need a GOT section.
3445 target->got_section(symtab, layout);
3446 break;
3447
3448 case elfcpp::R_POWERPC_GOT_TLSGD16:
3449 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
3450 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
3451 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
3452 {
3453 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
3454 if (tls_type == tls::TLSOPT_NONE)
3455 {
3456 Output_data_got_powerpc<size, big_endian>* got
3457 = target->got_section(symtab, layout);
3458 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3459 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3460 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
3461 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
3462 }
3463 else if (tls_type == tls::TLSOPT_TO_LE)
3464 {
3465 // no GOT relocs needed for Local Exec.
3466 }
3467 else
3468 gold_unreachable();
3469 }
3470 break;
3471
3472 case elfcpp::R_POWERPC_GOT_TLSLD16:
3473 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3474 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3475 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3476 {
3477 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3478 if (tls_type == tls::TLSOPT_NONE)
3479 target->tlsld_got_offset(symtab, layout, object);
3480 else if (tls_type == tls::TLSOPT_TO_LE)
3481 {
3482 // no GOT relocs needed for Local Exec.
3483 if (parameters->options().emit_relocs())
3484 {
3485 Output_section* os = layout->tls_segment()->first_section();
3486 gold_assert(os != NULL);
3487 os->set_needs_symtab_index();
3488 }
3489 }
3490 else
3491 gold_unreachable();
3492 }
3493 break;
3494
3495 case elfcpp::R_POWERPC_GOT_DTPREL16:
3496 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3497 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3498 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3499 {
3500 Output_data_got_powerpc<size, big_endian>* got
3501 = target->got_section(symtab, layout);
3502 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3503 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
3504 }
3505 break;
3506
3507 case elfcpp::R_POWERPC_GOT_TPREL16:
3508 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3509 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3510 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3511 {
3512 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
3513 if (tls_type == tls::TLSOPT_NONE)
3514 {
3515 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3516 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
3517 {
3518 Output_data_got_powerpc<size, big_endian>* got
3519 = target->got_section(symtab, layout);
3520 unsigned int off = got->add_constant(0);
3521 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
3522
3523 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3524 rela_dyn->add_symbolless_local_addend(object, r_sym,
3525 elfcpp::R_POWERPC_TPREL,
3526 got, off, 0);
3527 }
3528 }
3529 else if (tls_type == tls::TLSOPT_TO_LE)
3530 {
3531 // no GOT relocs needed for Local Exec.
3532 }
3533 else
3534 gold_unreachable();
3535 }
3536 break;
3537
3538 default:
3539 unsupported_reloc_local(object, r_type);
3540 break;
3541 }
3542 }
3543
3544 // Report an unsupported relocation against a global symbol.
3545
3546 template<int size, bool big_endian>
3547 void
3548 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
3549 Sized_relobj_file<size, big_endian>* object,
3550 unsigned int r_type,
3551 Symbol* gsym)
3552 {
3553 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3554 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3555 }
3556
3557 // Scan a relocation for a global symbol.
3558
3559 template<int size, bool big_endian>
3560 inline void
3561 Target_powerpc<size, big_endian>::Scan::global(
3562 Symbol_table* symtab,
3563 Layout* layout,
3564 Target_powerpc<size, big_endian>* target,
3565 Sized_relobj_file<size, big_endian>* object,
3566 unsigned int data_shndx,
3567 Output_section* output_section,
3568 const elfcpp::Rela<size, big_endian>& reloc,
3569 unsigned int r_type,
3570 Symbol* gsym)
3571 {
3572 Powerpc_relobj<size, big_endian>* ppc_object
3573 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3574
3575 // A STT_GNU_IFUNC symbol may require a PLT entry.
3576 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3577 && this->reloc_needs_plt_for_ifunc(object, r_type))
3578 target->make_plt_entry(symtab, layout, gsym, reloc, object);
3579
3580 switch (r_type)
3581 {
3582 case elfcpp::R_POWERPC_NONE:
3583 case elfcpp::R_POWERPC_GNU_VTINHERIT:
3584 case elfcpp::R_POWERPC_GNU_VTENTRY:
3585 case elfcpp::R_PPC_LOCAL24PC:
3586 case elfcpp::R_PPC_EMB_MRKREF:
3587 case elfcpp::R_POWERPC_TLS:
3588 break;
3589
3590 case elfcpp::R_PPC64_TOC:
3591 {
3592 Output_data_got_powerpc<size, big_endian>* got
3593 = target->got_section(symtab, layout);
3594 if (parameters->options().output_is_position_independent())
3595 {
3596 Address off = reloc.get_r_offset();
3597 if (size == 64
3598 && data_shndx == ppc_object->opd_shndx()
3599 && ppc_object->get_opd_discard(off - 8))
3600 break;
3601
3602 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3603 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
3604 if (data_shndx != ppc_object->opd_shndx())
3605 symobj = static_cast
3606 <Powerpc_relobj<size, big_endian>*>(gsym->object());
3607 rela_dyn->add_output_section_relative(got->output_section(),
3608 elfcpp::R_POWERPC_RELATIVE,
3609 output_section,
3610 object, data_shndx, off,
3611 symobj->toc_base_offset());
3612 }
3613 }
3614 break;
3615
3616 case elfcpp::R_PPC64_ADDR64:
3617 if (size == 64
3618 && data_shndx == ppc_object->opd_shndx()
3619 && (gsym->is_defined_in_discarded_section()
3620 || gsym->object() != object))
3621 {
3622 ppc_object->set_opd_discard(reloc.get_r_offset());
3623 break;
3624 }
3625 // Fall thru
3626 case elfcpp::R_PPC64_UADDR64:
3627 case elfcpp::R_POWERPC_ADDR32:
3628 case elfcpp::R_POWERPC_UADDR32:
3629 case elfcpp::R_POWERPC_ADDR24:
3630 case elfcpp::R_POWERPC_ADDR16:
3631 case elfcpp::R_POWERPC_ADDR16_LO:
3632 case elfcpp::R_POWERPC_ADDR16_HI:
3633 case elfcpp::R_POWERPC_ADDR16_HA:
3634 case elfcpp::R_POWERPC_UADDR16:
3635 case elfcpp::R_PPC64_ADDR16_HIGHER:
3636 case elfcpp::R_PPC64_ADDR16_HIGHERA:
3637 case elfcpp::R_PPC64_ADDR16_HIGHEST:
3638 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
3639 case elfcpp::R_PPC64_ADDR16_DS:
3640 case elfcpp::R_PPC64_ADDR16_LO_DS:
3641 case elfcpp::R_POWERPC_ADDR14:
3642 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
3643 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
3644 {
3645 // Make a PLT entry if necessary.
3646 if (gsym->needs_plt_entry())
3647 {
3648 target->make_plt_entry(symtab, layout, gsym, reloc, 0);
3649 // Since this is not a PC-relative relocation, we may be
3650 // taking the address of a function. In that case we need to
3651 // set the entry in the dynamic symbol table to the address of
3652 // the PLT call stub.
3653 if (size == 32
3654 && gsym->is_from_dynobj()
3655 && !parameters->options().output_is_position_independent())
3656 gsym->set_needs_dynsym_value();
3657 }
3658 // Make a dynamic relocation if necessary.
3659 if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type))
3660 || (size == 64 && gsym->type() == elfcpp::STT_GNU_IFUNC))
3661 {
3662 if (gsym->may_need_copy_reloc())
3663 {
3664 target->copy_reloc(symtab, layout, object,
3665 data_shndx, output_section, gsym, reloc);
3666 }
3667 else if (((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
3668 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
3669 && (gsym->can_use_relative_reloc(false)
3670 || (size == 64
3671 && data_shndx == ppc_object->opd_shndx())))
3672 {
3673 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3674 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3675 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3676 {
3677 rela_dyn = target->iplt_section()->rel_plt();
3678 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3679 }
3680 rela_dyn->add_symbolless_global_addend(
3681 gsym, dynrel, output_section, object, data_shndx,
3682 reloc.get_r_offset(), reloc.get_r_addend());
3683 }
3684 else
3685 {
3686 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3687 check_non_pic(object, r_type);
3688 rela_dyn->add_global(gsym, r_type, output_section,
3689 object, data_shndx,
3690 reloc.get_r_offset(),
3691 reloc.get_r_addend());
3692 }
3693 }
3694 }
3695 break;
3696
3697 case elfcpp::R_PPC_PLTREL24:
3698 case elfcpp::R_POWERPC_REL24:
3699 if (gsym->needs_plt_entry()
3700 || (!gsym->final_value_is_known()
3701 && (gsym->is_undefined()
3702 || gsym->is_from_dynobj()
3703 || gsym->is_preemptible())))
3704 target->make_plt_entry(symtab, layout, gsym, reloc, object);
3705 // Fall thru
3706
3707 case elfcpp::R_PPC64_REL64:
3708 case elfcpp::R_POWERPC_REL32:
3709 // Make a dynamic relocation if necessary.
3710 if (needs_dynamic_reloc<size>(gsym, Scan::get_reference_flags(r_type)))
3711 {
3712 if (gsym->may_need_copy_reloc())
3713 {
3714 target->copy_reloc(symtab, layout, object,
3715 data_shndx, output_section, gsym,
3716 reloc);
3717 }
3718 else
3719 {
3720 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3721 check_non_pic(object, r_type);
3722 rela_dyn->add_global(gsym, r_type, output_section, object,
3723 data_shndx, reloc.get_r_offset(),
3724 reloc.get_r_addend());
3725 }
3726 }
3727 break;
3728
3729 case elfcpp::R_POWERPC_REL16:
3730 case elfcpp::R_POWERPC_REL16_LO:
3731 case elfcpp::R_POWERPC_REL16_HI:
3732 case elfcpp::R_POWERPC_REL16_HA:
3733 case elfcpp::R_POWERPC_REL14:
3734 case elfcpp::R_POWERPC_REL14_BRTAKEN:
3735 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
3736 case elfcpp::R_POWERPC_SECTOFF:
3737 case elfcpp::R_POWERPC_TPREL16:
3738 case elfcpp::R_POWERPC_DTPREL16:
3739 case elfcpp::R_POWERPC_SECTOFF_LO:
3740 case elfcpp::R_POWERPC_TPREL16_LO:
3741 case elfcpp::R_POWERPC_DTPREL16_LO:
3742 case elfcpp::R_POWERPC_SECTOFF_HI:
3743 case elfcpp::R_POWERPC_TPREL16_HI:
3744 case elfcpp::R_POWERPC_DTPREL16_HI:
3745 case elfcpp::R_POWERPC_SECTOFF_HA:
3746 case elfcpp::R_POWERPC_TPREL16_HA:
3747 case elfcpp::R_POWERPC_DTPREL16_HA:
3748 case elfcpp::R_PPC64_DTPREL16_HIGHER:
3749 case elfcpp::R_PPC64_TPREL16_HIGHER:
3750 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
3751 case elfcpp::R_PPC64_TPREL16_HIGHERA:
3752 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
3753 case elfcpp::R_PPC64_TPREL16_HIGHEST:
3754 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
3755 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
3756 case elfcpp::R_PPC64_TPREL16_DS:
3757 case elfcpp::R_PPC64_TPREL16_LO_DS:
3758 case elfcpp::R_PPC64_DTPREL16_DS:
3759 case elfcpp::R_PPC64_DTPREL16_LO_DS:
3760 case elfcpp::R_PPC64_SECTOFF_DS:
3761 case elfcpp::R_PPC64_SECTOFF_LO_DS:
3762 case elfcpp::R_PPC64_TLSGD:
3763 case elfcpp::R_PPC64_TLSLD:
3764 break;
3765
3766 case elfcpp::R_POWERPC_GOT16:
3767 case elfcpp::R_POWERPC_GOT16_LO:
3768 case elfcpp::R_POWERPC_GOT16_HI:
3769 case elfcpp::R_POWERPC_GOT16_HA:
3770 case elfcpp::R_PPC64_GOT16_DS:
3771 case elfcpp::R_PPC64_GOT16_LO_DS:
3772 {
3773 // The symbol requires a GOT entry.
3774 Output_data_got_powerpc<size, big_endian>* got;
3775
3776 got = target->got_section(symtab, layout);
3777 if (gsym->final_value_is_known())
3778 {
3779 if (size == 32 && gsym->type() == elfcpp::STT_GNU_IFUNC)
3780 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3781 else
3782 got->add_global(gsym, GOT_TYPE_STANDARD);
3783 }
3784 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
3785 {
3786 // If we are generating a shared object or a pie, this
3787 // symbol's GOT entry will be set by a dynamic relocation.
3788 unsigned int off = got->add_constant(0);
3789 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
3790
3791 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3792 if (gsym->can_use_relative_reloc(false)
3793 && !(size == 32
3794 && gsym->visibility() == elfcpp::STV_PROTECTED
3795 && parameters->options().shared()))
3796 {
3797 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3798 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3799 {
3800 rela_dyn = target->iplt_section()->rel_plt();
3801 dynrel = elfcpp::R_POWERPC_IRELATIVE;
3802 }
3803 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
3804 }
3805 else
3806 {
3807 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
3808 rela_dyn->add_global(gsym, dynrel, got, off, 0);
3809 }
3810 }
3811 }
3812 break;
3813
3814 case elfcpp::R_PPC64_TOC16:
3815 case elfcpp::R_PPC64_TOC16_LO:
3816 case elfcpp::R_PPC64_TOC16_HI:
3817 case elfcpp::R_PPC64_TOC16_HA:
3818 case elfcpp::R_PPC64_TOC16_DS:
3819 case elfcpp::R_PPC64_TOC16_LO_DS:
3820 // We need a GOT section.
3821 target->got_section(symtab, layout);
3822 break;
3823
3824 case elfcpp::R_POWERPC_GOT_TLSGD16:
3825 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
3826 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
3827 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
3828 {
3829 const bool final = gsym->final_value_is_known();
3830 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
3831 if (tls_type == tls::TLSOPT_NONE)
3832 {
3833 Output_data_got_powerpc<size, big_endian>* got
3834 = target->got_section(symtab, layout);
3835 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD,
3836 target->rela_dyn_section(layout),
3837 elfcpp::R_POWERPC_DTPMOD,
3838 elfcpp::R_POWERPC_DTPREL);
3839 }
3840 else if (tls_type == tls::TLSOPT_TO_IE)
3841 {
3842 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
3843 {
3844 Output_data_got_powerpc<size, big_endian>* got
3845 = target->got_section(symtab, layout);
3846 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3847 if (gsym->is_undefined()
3848 || gsym->is_from_dynobj())
3849 {
3850 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
3851 elfcpp::R_POWERPC_TPREL);
3852 }
3853 else
3854 {
3855 unsigned int off = got->add_constant(0);
3856 gsym->set_got_offset(GOT_TYPE_TPREL, off);
3857 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
3858 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
3859 got, off, 0);
3860 }
3861 }
3862 }
3863 else if (tls_type == tls::TLSOPT_TO_LE)
3864 {
3865 // no GOT relocs needed for Local Exec.
3866 }
3867 else
3868 gold_unreachable();
3869 }
3870 break;
3871
3872 case elfcpp::R_POWERPC_GOT_TLSLD16:
3873 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
3874 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
3875 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
3876 {
3877 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
3878 if (tls_type == tls::TLSOPT_NONE)
3879 target->tlsld_got_offset(symtab, layout, object);
3880 else if (tls_type == tls::TLSOPT_TO_LE)
3881 {
3882 // no GOT relocs needed for Local Exec.
3883 if (parameters->options().emit_relocs())
3884 {
3885 Output_section* os = layout->tls_segment()->first_section();
3886 gold_assert(os != NULL);
3887 os->set_needs_symtab_index();
3888 }
3889 }
3890 else
3891 gold_unreachable();
3892 }
3893 break;
3894
3895 case elfcpp::R_POWERPC_GOT_DTPREL16:
3896 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
3897 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
3898 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
3899 {
3900 Output_data_got_powerpc<size, big_endian>* got
3901 = target->got_section(symtab, layout);
3902 if (!gsym->final_value_is_known()
3903 && (gsym->is_from_dynobj()
3904 || gsym->is_undefined()
3905 || gsym->is_preemptible()))
3906 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
3907 target->rela_dyn_section(layout),
3908 elfcpp::R_POWERPC_DTPREL);
3909 else
3910 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
3911 }
3912 break;
3913
3914 case elfcpp::R_POWERPC_GOT_TPREL16:
3915 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
3916 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
3917 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
3918 {
3919 const bool final = gsym->final_value_is_known();
3920 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
3921 if (tls_type == tls::TLSOPT_NONE)
3922 {
3923 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
3924 {
3925 Output_data_got_powerpc<size, big_endian>* got
3926 = target->got_section(symtab, layout);
3927 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3928 if (gsym->is_undefined()
3929 || gsym->is_from_dynobj())
3930 {
3931 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
3932 elfcpp::R_POWERPC_TPREL);
3933 }
3934 else
3935 {
3936 unsigned int off = got->add_constant(0);
3937 gsym->set_got_offset(GOT_TYPE_TPREL, off);
3938 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
3939 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
3940 got, off, 0);
3941 }
3942 }
3943 }
3944 else if (tls_type == tls::TLSOPT_TO_LE)
3945 {
3946 // no GOT relocs needed for Local Exec.
3947 }
3948 else
3949 gold_unreachable();
3950 }
3951 break;
3952
3953 default:
3954 unsupported_reloc_global(object, r_type, gsym);
3955 break;
3956 }
3957 }
3958
3959 // Process relocations for gc.
3960
3961 template<int size, bool big_endian>
3962 void
3963 Target_powerpc<size, big_endian>::gc_process_relocs(
3964 Symbol_table* symtab,
3965 Layout* layout,
3966 Sized_relobj_file<size, big_endian>* object,
3967 unsigned int data_shndx,
3968 unsigned int,
3969 const unsigned char* prelocs,
3970 size_t reloc_count,
3971 Output_section* output_section,
3972 bool needs_special_offset_handling,
3973 size_t local_symbol_count,
3974 const unsigned char* plocal_symbols)
3975 {
3976 typedef Target_powerpc<size, big_endian> Powerpc;
3977 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
3978 Powerpc_relobj<size, big_endian>* ppc_object
3979 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
3980 if (size == 64)
3981 ppc_object->set_opd_valid();
3982 if (size == 64 && data_shndx == ppc_object->opd_shndx())
3983 {
3984 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
3985 for (p = ppc_object->access_from_map()->begin();
3986 p != ppc_object->access_from_map()->end();
3987 ++p)
3988 {
3989 Address dst_off = p->first;
3990 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
3991 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
3992 for (s = p->second.begin(); s != p->second.end(); ++s)
3993 {
3994 Object* src_obj = s->first;
3995 unsigned int src_indx = s->second;
3996 symtab->gc()->add_reference(src_obj, src_indx,
3997 ppc_object, dst_indx);
3998 }
3999 p->second.clear();
4000 }
4001 ppc_object->access_from_map()->clear();
4002 ppc_object->process_gc_mark(symtab);
4003 // Don't look at .opd relocs as .opd will reference everything.
4004 return;
4005 }
4006
4007 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
4008 typename Target_powerpc::Relocatable_size_for_reloc>(
4009 symtab,
4010 layout,
4011 this,
4012 object,
4013 data_shndx,
4014 prelocs,
4015 reloc_count,
4016 output_section,
4017 needs_special_offset_handling,
4018 local_symbol_count,
4019 plocal_symbols);
4020 }
4021
4022 // Handle target specific gc actions when adding a gc reference from
4023 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
4024 // and DST_OFF. For powerpc64, this adds a referenc to the code
4025 // section of a function descriptor.
4026
4027 template<int size, bool big_endian>
4028 void
4029 Target_powerpc<size, big_endian>::do_gc_add_reference(
4030 Symbol_table* symtab,
4031 Object* src_obj,
4032 unsigned int src_shndx,
4033 Object* dst_obj,
4034 unsigned int dst_shndx,
4035 Address dst_off) const
4036 {
4037 Powerpc_relobj<size, big_endian>* ppc_object
4038 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
4039 if (size == 64
4040 && !ppc_object->is_dynamic()
4041 && dst_shndx == ppc_object->opd_shndx())
4042 {
4043 if (ppc_object->opd_valid())
4044 {
4045 dst_shndx = ppc_object->get_opd_ent(dst_off);
4046 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
4047 }
4048 else
4049 {
4050 // If we haven't run scan_opd_relocs, we must delay
4051 // processing this function descriptor reference.
4052 ppc_object->add_reference(src_obj, src_shndx, dst_off);
4053 }
4054 }
4055 }
4056
4057 // Add any special sections for this symbol to the gc work list.
4058 // For powerpc64, this adds the code section of a function
4059 // descriptor.
4060
4061 template<int size, bool big_endian>
4062 void
4063 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
4064 Symbol_table* symtab,
4065 Symbol* sym) const
4066 {
4067 if (size == 64)
4068 {
4069 Powerpc_relobj<size, big_endian>* ppc_object
4070 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
4071 bool is_ordinary;
4072 unsigned int shndx = sym->shndx(&is_ordinary);
4073 if (is_ordinary && shndx == ppc_object->opd_shndx())
4074 {
4075 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
4076 Address dst_off = gsym->value();
4077 if (ppc_object->opd_valid())
4078 {
4079 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
4080 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
4081 }
4082 else
4083 ppc_object->add_gc_mark(dst_off);
4084 }
4085 }
4086 }
4087
4088 // Scan relocations for a section.
4089
4090 template<int size, bool big_endian>
4091 void
4092 Target_powerpc<size, big_endian>::scan_relocs(
4093 Symbol_table* symtab,
4094 Layout* layout,
4095 Sized_relobj_file<size, big_endian>* object,
4096 unsigned int data_shndx,
4097 unsigned int sh_type,
4098 const unsigned char* prelocs,
4099 size_t reloc_count,
4100 Output_section* output_section,
4101 bool needs_special_offset_handling,
4102 size_t local_symbol_count,
4103 const unsigned char* plocal_symbols)
4104 {
4105 typedef Target_powerpc<size, big_endian> Powerpc;
4106 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
4107
4108 if (sh_type == elfcpp::SHT_REL)
4109 {
4110 gold_error(_("%s: unsupported REL reloc section"),
4111 object->name().c_str());
4112 return;
4113 }
4114
4115 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
4116 symtab,
4117 layout,
4118 this,
4119 object,
4120 data_shndx,
4121 prelocs,
4122 reloc_count,
4123 output_section,
4124 needs_special_offset_handling,
4125 local_symbol_count,
4126 plocal_symbols);
4127 }
4128
4129 // Functor class for processing the global symbol table.
4130 // Removes symbols defined on discarded opd entries.
4131
4132 template<bool big_endian>
4133 class Global_symbol_visitor_opd
4134 {
4135 public:
4136 Global_symbol_visitor_opd()
4137 { }
4138
4139 void
4140 operator()(Sized_symbol<64>* sym)
4141 {
4142 if (sym->has_symtab_index()
4143 || sym->source() != Symbol::FROM_OBJECT
4144 || !sym->in_real_elf())
4145 return;
4146
4147 Powerpc_relobj<64, big_endian>* symobj
4148 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
4149 if (symobj->is_dynamic()
4150 || symobj->opd_shndx() == 0)
4151 return;
4152
4153 bool is_ordinary;
4154 unsigned int shndx = sym->shndx(&is_ordinary);
4155 if (shndx == symobj->opd_shndx()
4156 && symobj->get_opd_discard(sym->value()))
4157 sym->set_symtab_index(-1U);
4158 }
4159 };
4160
4161 template<int size, bool big_endian>
4162 void
4163 Target_powerpc<size, big_endian>::define_save_restore_funcs(
4164 Layout* layout,
4165 Symbol_table* symtab)
4166 {
4167 if (size == 64)
4168 {
4169 Output_data_save_res<64, big_endian>* savres
4170 = new Output_data_save_res<64, big_endian>(symtab);
4171 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
4172 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
4173 savres, ORDER_TEXT, false);
4174 }
4175 }
4176
4177 // Finalize the sections.
4178
4179 template<int size, bool big_endian>
4180 void
4181 Target_powerpc<size, big_endian>::do_finalize_sections(
4182 Layout* layout,
4183 const Input_objects*,
4184 Symbol_table* symtab)
4185 {
4186 if (parameters->doing_static_link())
4187 {
4188 // At least some versions of glibc elf-init.o have a strong
4189 // reference to __rela_iplt marker syms. A weak ref would be
4190 // better..
4191 if (this->iplt_ != NULL)
4192 {
4193 Reloc_section* rel = this->iplt_->rel_plt();
4194 symtab->define_in_output_data("__rela_iplt_start", NULL,
4195 Symbol_table::PREDEFINED, rel, 0, 0,
4196 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4197 elfcpp::STV_HIDDEN, 0, false, true);
4198 symtab->define_in_output_data("__rela_iplt_end", NULL,
4199 Symbol_table::PREDEFINED, rel, 0, 0,
4200 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4201 elfcpp::STV_HIDDEN, 0, true, true);
4202 }
4203 else
4204 {
4205 symtab->define_as_constant("__rela_iplt_start", NULL,
4206 Symbol_table::PREDEFINED, 0, 0,
4207 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4208 elfcpp::STV_HIDDEN, 0, true, false);
4209 symtab->define_as_constant("__rela_iplt_end", NULL,
4210 Symbol_table::PREDEFINED, 0, 0,
4211 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4212 elfcpp::STV_HIDDEN, 0, true, false);
4213 }
4214 }
4215
4216 if (size == 64)
4217 {
4218 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
4219 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
4220 this->define_save_restore_funcs(layout, symtab);
4221 }
4222
4223 // Fill in some more dynamic tags.
4224 Output_data_dynamic* odyn = layout->dynamic_data();
4225 if (odyn != NULL)
4226 {
4227 const Reloc_section* rel_plt = (this->plt_ == NULL
4228 ? NULL
4229 : this->plt_->rel_plt());
4230 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
4231 this->rela_dyn_, true, size == 32);
4232
4233 if (size == 32)
4234 {
4235 if (this->got_ != NULL)
4236 {
4237 this->got_->finalize_data_size();
4238 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
4239 this->got_, this->got_->g_o_t());
4240 }
4241 }
4242 else
4243 {
4244 if (this->glink_ != NULL)
4245 {
4246 this->glink_->finalize_data_size();
4247 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
4248 this->glink_,
4249 (this->glink_->pltresolve()
4250 + this->glink_->pltresolve_size
4251 - 32));
4252 }
4253 }
4254 }
4255
4256 // Emit any relocs we saved in an attempt to avoid generating COPY
4257 // relocs.
4258 if (this->copy_relocs_.any_saved_relocs())
4259 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4260 }
4261
4262 // Return the value to use for a branch relocation.
4263
4264 template<int size, bool big_endian>
4265 typename elfcpp::Elf_types<size>::Elf_Addr
4266 Target_powerpc<size, big_endian>::symval_for_branch(
4267 Address value,
4268 const Sized_symbol<size>* gsym,
4269 Powerpc_relobj<size, big_endian>* object,
4270 unsigned int *dest_shndx)
4271 {
4272 *dest_shndx = 0;
4273 if (size == 32)
4274 return value;
4275
4276 // If the symbol is defined in an opd section, ie. is a function
4277 // descriptor, use the function descriptor code entry address
4278 Powerpc_relobj<size, big_endian>* symobj = object;
4279 if (gsym != NULL
4280 && gsym->source() != Symbol::FROM_OBJECT)
4281 return value;
4282 if (gsym != NULL)
4283 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
4284 unsigned int shndx = symobj->opd_shndx();
4285 if (shndx == 0)
4286 return value;
4287 Address opd_addr = symobj->get_output_section_offset(shndx);
4288 gold_assert(opd_addr != invalid_address);
4289 opd_addr += symobj->output_section(shndx)->address();
4290 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
4291 {
4292 Address sec_off;
4293 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
4294 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
4295 gold_assert(sec_addr != invalid_address);
4296 sec_addr += symobj->output_section(*dest_shndx)->address();
4297 value = sec_addr + sec_off;
4298 }
4299 return value;
4300 }
4301
4302 // Perform a relocation.
4303
4304 template<int size, bool big_endian>
4305 inline bool
4306 Target_powerpc<size, big_endian>::Relocate::relocate(
4307 const Relocate_info<size, big_endian>* relinfo,
4308 Target_powerpc* target,
4309 Output_section* os,
4310 size_t relnum,
4311 const elfcpp::Rela<size, big_endian>& rela,
4312 unsigned int r_type,
4313 const Sized_symbol<size>* gsym,
4314 const Symbol_value<size>* psymval,
4315 unsigned char* view,
4316 Address address,
4317 section_size_type view_size)
4318 {
4319
4320 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
4321 || r_type == elfcpp::R_PPC_PLTREL24)
4322 && gsym != NULL
4323 && strcmp(gsym->name(), "__tls_get_addr") == 0);
4324 enum skip_tls last_tls = this->call_tls_get_addr_;
4325 this->call_tls_get_addr_ = CALL_NOT_EXPECTED;
4326 if (is_tls_call)
4327 {
4328 if (last_tls == CALL_NOT_EXPECTED)
4329 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4330 _("__tls_get_addr call lacks marker reloc"));
4331 else if (last_tls == CALL_SKIP)
4332 return false;
4333 }
4334 else if (last_tls != CALL_NOT_EXPECTED)
4335 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4336 _("missing expected __tls_get_addr call"));
4337
4338 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
4339 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
4340 Powerpc_relobj<size, big_endian>* const object
4341 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
4342 Address value = 0;
4343 bool has_plt_value = false;
4344 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4345 if (gsym != NULL
4346 ? use_plt_offset<size>(gsym, Scan::get_reference_flags(r_type))
4347 : object->local_has_plt_offset(r_sym))
4348 {
4349 const Output_data_glink<size, big_endian>* glink
4350 = target->glink_section();
4351 unsigned int glink_index;
4352 if (gsym != NULL)
4353 glink_index = glink->find_entry(object, gsym, rela);
4354 else
4355 glink_index = glink->find_entry(object, r_sym, rela);
4356 value = glink->address() + glink_index * glink->glink_entry_size();
4357 has_plt_value = true;
4358 }
4359
4360 if (r_type == elfcpp::R_POWERPC_GOT16
4361 || r_type == elfcpp::R_POWERPC_GOT16_LO
4362 || r_type == elfcpp::R_POWERPC_GOT16_HI
4363 || r_type == elfcpp::R_POWERPC_GOT16_HA
4364 || r_type == elfcpp::R_PPC64_GOT16_DS
4365 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
4366 {
4367 if (gsym != NULL)
4368 {
4369 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4370 value = gsym->got_offset(GOT_TYPE_STANDARD);
4371 }
4372 else
4373 {
4374 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4375 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4376 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
4377 }
4378 value -= target->got_section()->got_base_offset(object);
4379 }
4380 else if (r_type == elfcpp::R_PPC64_TOC)
4381 {
4382 value = (target->got_section()->output_section()->address()
4383 + object->toc_base_offset());
4384 }
4385 else if (gsym != NULL
4386 && (r_type == elfcpp::R_POWERPC_REL24
4387 || r_type == elfcpp::R_PPC_PLTREL24)
4388 && has_plt_value)
4389 {
4390 if (size == 64)
4391 {
4392 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4393 Valtype* wv = reinterpret_cast<Valtype*>(view);
4394 bool can_plt_call = false;
4395 if (rela.get_r_offset() + 8 <= view_size)
4396 {
4397 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
4398 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
4399 if ((insn & 1) != 0
4400 && (insn2 == nop
4401 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
4402 {
4403 elfcpp::Swap<32, big_endian>::writeval(wv + 1, ld_2_1 + 40);
4404 can_plt_call = true;
4405 }
4406 }
4407 if (!can_plt_call)
4408 {
4409 // If we don't have a branch and link followed by a nop,
4410 // we can't go via the plt because there is no place to
4411 // put a toc restoring instruction.
4412 // Unless we know we won't be returning.
4413 if (strcmp(gsym->name(), "__libc_start_main") == 0)
4414 can_plt_call = true;
4415 }
4416 if (!can_plt_call)
4417 {
4418 // This is not an error in one special case: A self
4419 // call. It isn't possible to cheaply verify we have
4420 // such a call so just check for a call to the same
4421 // section.
4422 bool ok = false;
4423 Address code = value;
4424 if (gsym->source() == Symbol::FROM_OBJECT
4425 && gsym->object() == object)
4426 {
4427 Address addend = rela.get_r_addend();
4428 unsigned int dest_shndx;
4429 Address opdent = psymval->value(object, addend);
4430 code = target->symval_for_branch(opdent, gsym, object,
4431 &dest_shndx);
4432 bool is_ordinary;
4433 if (dest_shndx == 0)
4434 dest_shndx = gsym->shndx(&is_ordinary);
4435 ok = dest_shndx == relinfo->data_shndx;
4436 }
4437 if (!ok)
4438 {
4439 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4440 _("call lacks nop, can't restore toc; "
4441 "recompile with -fPIC"));
4442 value = code;
4443 }
4444 }
4445 }
4446 }
4447 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4448 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
4449 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
4450 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
4451 {
4452 // First instruction of a global dynamic sequence, arg setup insn.
4453 const bool final = gsym == NULL || gsym->final_value_is_known();
4454 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
4455 enum Got_type got_type = GOT_TYPE_STANDARD;
4456 if (tls_type == tls::TLSOPT_NONE)
4457 got_type = GOT_TYPE_TLSGD;
4458 else if (tls_type == tls::TLSOPT_TO_IE)
4459 got_type = GOT_TYPE_TPREL;
4460 if (got_type != GOT_TYPE_STANDARD)
4461 {
4462 if (gsym != NULL)
4463 {
4464 gold_assert(gsym->has_got_offset(got_type));
4465 value = gsym->got_offset(got_type);
4466 }
4467 else
4468 {
4469 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4470 gold_assert(object->local_has_got_offset(r_sym, got_type));
4471 value = object->local_got_offset(r_sym, got_type);
4472 }
4473 value -= target->got_section()->got_base_offset(object);
4474 }
4475 if (tls_type == tls::TLSOPT_TO_IE)
4476 {
4477 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4478 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
4479 {
4480 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4481 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4482 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
4483 if (size == 32)
4484 insn |= 32 << 26; // lwz
4485 else
4486 insn |= 58 << 26; // ld
4487 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4488 }
4489 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
4490 - elfcpp::R_POWERPC_GOT_TLSGD16);
4491 }
4492 else if (tls_type == tls::TLSOPT_TO_LE)
4493 {
4494 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
4495 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
4496 {
4497 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4498 Insn insn = addis_3_13;
4499 if (size == 32)
4500 insn = addis_3_2;
4501 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4502 r_type = elfcpp::R_POWERPC_TPREL16_HA;
4503 value = psymval->value(object, rela.get_r_addend());
4504 }
4505 else
4506 {
4507 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4508 Insn insn = nop;
4509 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4510 r_type = elfcpp::R_POWERPC_NONE;
4511 }
4512 }
4513 }
4514 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4515 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
4516 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
4517 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
4518 {
4519 // First instruction of a local dynamic sequence, arg setup insn.
4520 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4521 if (tls_type == tls::TLSOPT_NONE)
4522 {
4523 value = target->tlsld_got_offset();
4524 value -= target->got_section()->got_base_offset(object);
4525 }
4526 else
4527 {
4528 gold_assert(tls_type == tls::TLSOPT_TO_LE);
4529 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
4530 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
4531 {
4532 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4533 Insn insn = addis_3_13;
4534 if (size == 32)
4535 insn = addis_3_2;
4536 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4537 r_type = elfcpp::R_POWERPC_TPREL16_HA;
4538 value = dtp_offset;
4539 }
4540 else
4541 {
4542 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4543 Insn insn = nop;
4544 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4545 r_type = elfcpp::R_POWERPC_NONE;
4546 }
4547 }
4548 }
4549 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
4550 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
4551 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
4552 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
4553 {
4554 // Accesses relative to a local dynamic sequence address,
4555 // no optimisation here.
4556 if (gsym != NULL)
4557 {
4558 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
4559 value = gsym->got_offset(GOT_TYPE_DTPREL);
4560 }
4561 else
4562 {
4563 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4564 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
4565 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
4566 }
4567 value -= target->got_section()->got_base_offset(object);
4568 }
4569 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4570 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
4571 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
4572 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
4573 {
4574 // First instruction of initial exec sequence.
4575 const bool final = gsym == NULL || gsym->final_value_is_known();
4576 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
4577 if (tls_type == tls::TLSOPT_NONE)
4578 {
4579 if (gsym != NULL)
4580 {
4581 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
4582 value = gsym->got_offset(GOT_TYPE_TPREL);
4583 }
4584 else
4585 {
4586 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4587 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
4588 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
4589 }
4590 value -= target->got_section()->got_base_offset(object);
4591 }
4592 else
4593 {
4594 gold_assert(tls_type == tls::TLSOPT_TO_LE);
4595 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
4596 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
4597 {
4598 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4599 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4600 insn &= (1 << 26) - (1 << 21); // extract rt from ld
4601 if (size == 32)
4602 insn |= addis_0_2;
4603 else
4604 insn |= addis_0_13;
4605 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4606 r_type = elfcpp::R_POWERPC_TPREL16_HA;
4607 value = psymval->value(object, rela.get_r_addend());
4608 }
4609 else
4610 {
4611 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
4612 Insn insn = nop;
4613 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4614 r_type = elfcpp::R_POWERPC_NONE;
4615 }
4616 }
4617 }
4618 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
4619 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
4620 {
4621 // Second instruction of a global dynamic sequence,
4622 // the __tls_get_addr call
4623 this->call_tls_get_addr_ = CALL_EXPECTED;
4624 const bool final = gsym == NULL || gsym->final_value_is_known();
4625 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
4626 if (tls_type != tls::TLSOPT_NONE)
4627 {
4628 if (tls_type == tls::TLSOPT_TO_IE)
4629 {
4630 Insn* iview = reinterpret_cast<Insn*>(view);
4631 Insn insn = add_3_3_13;
4632 if (size == 32)
4633 insn = add_3_3_2;
4634 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4635 r_type = elfcpp::R_POWERPC_NONE;
4636 }
4637 else
4638 {
4639 Insn* iview = reinterpret_cast<Insn*>(view);
4640 Insn insn = addi_3_3;
4641 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4642 r_type = elfcpp::R_POWERPC_TPREL16_LO;
4643 view += 2 * big_endian;
4644 value = psymval->value(object, rela.get_r_addend());
4645 }
4646 this->call_tls_get_addr_ = CALL_SKIP;
4647 }
4648 }
4649 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
4650 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
4651 {
4652 // Second instruction of a local dynamic sequence,
4653 // the __tls_get_addr call
4654 this->call_tls_get_addr_ = CALL_EXPECTED;
4655 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
4656 if (tls_type == tls::TLSOPT_TO_LE)
4657 {
4658 Insn* iview = reinterpret_cast<Insn*>(view);
4659 Insn insn = addi_3_3;
4660 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4661 this->call_tls_get_addr_ = CALL_SKIP;
4662 r_type = elfcpp::R_POWERPC_TPREL16_LO;
4663 view += 2 * big_endian;
4664 value = dtp_offset;
4665 }
4666 }
4667 else if (r_type == elfcpp::R_POWERPC_TLS)
4668 {
4669 // Second instruction of an initial exec sequence
4670 const bool final = gsym == NULL || gsym->final_value_is_known();
4671 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
4672 if (tls_type == tls::TLSOPT_TO_LE)
4673 {
4674 Insn* iview = reinterpret_cast<Insn*>(view);
4675 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4676 unsigned int reg = size == 32 ? 2 : 13;
4677 insn = at_tls_transform(insn, reg);
4678 gold_assert(insn != 0);
4679 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4680 r_type = elfcpp::R_POWERPC_TPREL16_LO;
4681 view += 2 * big_endian;
4682 value = psymval->value(object, rela.get_r_addend());
4683 }
4684 }
4685 else if (!has_plt_value)
4686 {
4687 Address addend = 0;
4688 unsigned int dest_shndx;
4689 if (r_type != elfcpp::R_PPC_PLTREL24)
4690 addend = rela.get_r_addend();
4691 value = psymval->value(object, addend);
4692 if (size == 64 && is_branch_reloc(r_type))
4693 value = target->symval_for_branch(value, gsym, object, &dest_shndx);
4694 }
4695
4696 switch (r_type)
4697 {
4698 case elfcpp::R_PPC64_REL64:
4699 case elfcpp::R_POWERPC_REL32:
4700 case elfcpp::R_POWERPC_REL24:
4701 case elfcpp::R_PPC_PLTREL24:
4702 case elfcpp::R_PPC_LOCAL24PC:
4703 case elfcpp::R_POWERPC_REL16:
4704 case elfcpp::R_POWERPC_REL16_LO:
4705 case elfcpp::R_POWERPC_REL16_HI:
4706 case elfcpp::R_POWERPC_REL16_HA:
4707 case elfcpp::R_POWERPC_REL14:
4708 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4709 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4710 value -= address;
4711 break;
4712
4713 case elfcpp::R_PPC64_TOC16:
4714 case elfcpp::R_PPC64_TOC16_LO:
4715 case elfcpp::R_PPC64_TOC16_HI:
4716 case elfcpp::R_PPC64_TOC16_HA:
4717 case elfcpp::R_PPC64_TOC16_DS:
4718 case elfcpp::R_PPC64_TOC16_LO_DS:
4719 // Subtract the TOC base address.
4720 value -= (target->got_section()->output_section()->address()
4721 + object->toc_base_offset());
4722 break;
4723
4724 case elfcpp::R_POWERPC_SECTOFF:
4725 case elfcpp::R_POWERPC_SECTOFF_LO:
4726 case elfcpp::R_POWERPC_SECTOFF_HI:
4727 case elfcpp::R_POWERPC_SECTOFF_HA:
4728 case elfcpp::R_PPC64_SECTOFF_DS:
4729 case elfcpp::R_PPC64_SECTOFF_LO_DS:
4730 if (os != NULL)
4731 value -= os->address();
4732 break;
4733
4734 case elfcpp::R_PPC64_TPREL16_DS:
4735 case elfcpp::R_PPC64_TPREL16_LO_DS:
4736 if (size != 64)
4737 // R_PPC_TLSGD and R_PPC_TLSLD
4738 break;
4739 case elfcpp::R_POWERPC_TPREL16:
4740 case elfcpp::R_POWERPC_TPREL16_LO:
4741 case elfcpp::R_POWERPC_TPREL16_HI:
4742 case elfcpp::R_POWERPC_TPREL16_HA:
4743 case elfcpp::R_POWERPC_TPREL:
4744 case elfcpp::R_PPC64_TPREL16_HIGHER:
4745 case elfcpp::R_PPC64_TPREL16_HIGHERA:
4746 case elfcpp::R_PPC64_TPREL16_HIGHEST:
4747 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
4748 // tls symbol values are relative to tls_segment()->vaddr()
4749 value -= tp_offset;
4750 break;
4751
4752 case elfcpp::R_PPC64_DTPREL16_DS:
4753 case elfcpp::R_PPC64_DTPREL16_LO_DS:
4754 case elfcpp::R_PPC64_DTPREL16_HIGHER:
4755 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4756 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4757 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4758 if (size != 64)
4759 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
4760 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
4761 break;
4762 case elfcpp::R_POWERPC_DTPREL16:
4763 case elfcpp::R_POWERPC_DTPREL16_LO:
4764 case elfcpp::R_POWERPC_DTPREL16_HI:
4765 case elfcpp::R_POWERPC_DTPREL16_HA:
4766 case elfcpp::R_POWERPC_DTPREL:
4767 // tls symbol values are relative to tls_segment()->vaddr()
4768 value -= dtp_offset;
4769 break;
4770
4771 default:
4772 break;
4773 }
4774
4775 Insn branch_bit = 0;
4776 switch (r_type)
4777 {
4778 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4779 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4780 branch_bit = 1 << 21;
4781 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4782 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4783 {
4784 Insn* iview = reinterpret_cast<Insn*>(view);
4785 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
4786 insn &= ~(1 << 21);
4787 insn |= branch_bit;
4788 if (this->is_isa_v2)
4789 {
4790 // Set 'a' bit. This is 0b00010 in BO field for branch
4791 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
4792 // for branch on CTR insns (BO == 1a00t or 1a01t).
4793 if ((insn & (0x14 << 21)) == (0x04 << 21))
4794 insn |= 0x02 << 21;
4795 else if ((insn & (0x14 << 21)) == (0x10 << 21))
4796 insn |= 0x08 << 21;
4797 else
4798 break;
4799 }
4800 else
4801 {
4802 // Invert 'y' bit if not the default.
4803 if (static_cast<Signed_address>(value) < 0)
4804 insn ^= 1 << 21;
4805 }
4806 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
4807 }
4808 break;
4809
4810 default:
4811 break;
4812 }
4813
4814 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
4815 switch (r_type)
4816 {
4817 case elfcpp::R_POWERPC_ADDR32:
4818 case elfcpp::R_POWERPC_UADDR32:
4819 if (size == 64)
4820 overflow = Reloc::CHECK_BITFIELD;
4821 break;
4822
4823 case elfcpp::R_POWERPC_REL32:
4824 if (size == 64)
4825 overflow = Reloc::CHECK_SIGNED;
4826 break;
4827
4828 case elfcpp::R_POWERPC_ADDR24:
4829 case elfcpp::R_POWERPC_ADDR16:
4830 case elfcpp::R_POWERPC_UADDR16:
4831 case elfcpp::R_PPC64_ADDR16_DS:
4832 case elfcpp::R_POWERPC_ADDR14:
4833 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
4834 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
4835 overflow = Reloc::CHECK_BITFIELD;
4836 break;
4837
4838 case elfcpp::R_POWERPC_REL24:
4839 case elfcpp::R_PPC_PLTREL24:
4840 case elfcpp::R_PPC_LOCAL24PC:
4841 case elfcpp::R_POWERPC_REL16:
4842 case elfcpp::R_PPC64_TOC16:
4843 case elfcpp::R_POWERPC_GOT16:
4844 case elfcpp::R_POWERPC_SECTOFF:
4845 case elfcpp::R_POWERPC_TPREL16:
4846 case elfcpp::R_POWERPC_DTPREL16:
4847 case elfcpp::R_PPC64_TPREL16_DS:
4848 case elfcpp::R_PPC64_DTPREL16_DS:
4849 case elfcpp::R_PPC64_TOC16_DS:
4850 case elfcpp::R_PPC64_GOT16_DS:
4851 case elfcpp::R_PPC64_SECTOFF_DS:
4852 case elfcpp::R_POWERPC_REL14:
4853 case elfcpp::R_POWERPC_REL14_BRTAKEN:
4854 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
4855 case elfcpp::R_POWERPC_GOT_TLSGD16:
4856 case elfcpp::R_POWERPC_GOT_TLSLD16:
4857 case elfcpp::R_POWERPC_GOT_TPREL16:
4858 case elfcpp::R_POWERPC_GOT_DTPREL16:
4859 overflow = Reloc::CHECK_SIGNED;
4860 break;
4861 }
4862
4863 typename Powerpc_relocate_functions<size, big_endian>::Status status
4864 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
4865 switch (r_type)
4866 {
4867 case elfcpp::R_POWERPC_NONE:
4868 case elfcpp::R_POWERPC_TLS:
4869 case elfcpp::R_POWERPC_GNU_VTINHERIT:
4870 case elfcpp::R_POWERPC_GNU_VTENTRY:
4871 case elfcpp::R_PPC_EMB_MRKREF:
4872 break;
4873
4874 case elfcpp::R_PPC64_ADDR64:
4875 case elfcpp::R_PPC64_REL64:
4876 case elfcpp::R_PPC64_TOC:
4877 Reloc::addr64(view, value);
4878 break;
4879
4880 case elfcpp::R_POWERPC_TPREL:
4881 case elfcpp::R_POWERPC_DTPREL:
4882 if (size == 64)
4883 Reloc::addr64(view, value);
4884 else
4885 status = Reloc::addr32(view, value, overflow);
4886 break;
4887
4888 case elfcpp::R_PPC64_UADDR64:
4889 Reloc::addr64_u(view, value);
4890 break;
4891
4892 case elfcpp::R_POWERPC_ADDR32:
4893 status = Reloc::addr32(view, value, overflow);
4894 break;
4895
4896 case elfcpp::R_POWERPC_REL32:
4897 case elfcpp::R_POWERPC_UADDR32:
4898 status = Reloc::addr32_u(view, value, overflow);
4899 break;
4900
4901 case elfcpp::R_POWERPC_ADDR24:
4902 case elfcpp::R_POWERPC_REL24:
4903 case elfcpp::R_PPC_PLTREL24:
4904 case elfcpp::R_PPC_LOCAL24PC:
4905 status = Reloc::addr24(view, value, overflow);
4906 break;
4907
4908 case elfcpp::R_POWERPC_GOT_DTPREL16:
4909 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
4910 if (size == 64)
4911 {
4912 status = Reloc::addr16_ds(view, value, overflow);
4913 break;
4914 }
4915 case elfcpp::R_POWERPC_ADDR16:
4916 case elfcpp::R_POWERPC_REL16:
4917 case elfcpp::R_PPC64_TOC16:
4918 case elfcpp::R_POWERPC_GOT16:
4919 case elfcpp::R_POWERPC_SECTOFF:
4920 case elfcpp::R_POWERPC_TPREL16:
4921 case elfcpp::R_POWERPC_DTPREL16:
4922 case elfcpp::R_POWERPC_GOT_TLSGD16:
4923 case elfcpp::R_POWERPC_GOT_TLSLD16:
4924 case elfcpp::R_POWERPC_GOT_TPREL16:
4925 case elfcpp::R_POWERPC_ADDR16_LO:
4926 case elfcpp::R_POWERPC_REL16_LO:
4927 case elfcpp::R_PPC64_TOC16_LO:
4928 case elfcpp::R_POWERPC_GOT16_LO:
4929 case elfcpp::R_POWERPC_SECTOFF_LO:
4930 case elfcpp::R_POWERPC_TPREL16_LO:
4931 case elfcpp::R_POWERPC_DTPREL16_LO:
4932 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
4933 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
4934 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
4935 status = Reloc::addr16(view, value, overflow);
4936 break;
4937
4938 case elfcpp::R_POWERPC_UADDR16:
4939 status = Reloc::addr16_u(view, value, overflow);
4940 break;
4941
4942 case elfcpp::R_POWERPC_ADDR16_HI:
4943 case elfcpp::R_POWERPC_REL16_HI:
4944 case elfcpp::R_PPC64_TOC16_HI:
4945 case elfcpp::R_POWERPC_GOT16_HI:
4946 case elfcpp::R_POWERPC_SECTOFF_HI:
4947 case elfcpp::R_POWERPC_TPREL16_HI:
4948 case elfcpp::R_POWERPC_DTPREL16_HI:
4949 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
4950 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
4951 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
4952 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
4953 Reloc::addr16_hi(view, value);
4954 break;
4955
4956 case elfcpp::R_POWERPC_ADDR16_HA:
4957 case elfcpp::R_POWERPC_REL16_HA:
4958 case elfcpp::R_PPC64_TOC16_HA:
4959 case elfcpp::R_POWERPC_GOT16_HA:
4960 case elfcpp::R_POWERPC_SECTOFF_HA:
4961 case elfcpp::R_POWERPC_TPREL16_HA:
4962 case elfcpp::R_POWERPC_DTPREL16_HA:
4963 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
4964 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
4965 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
4966 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
4967 Reloc::addr16_ha(view, value);
4968 break;
4969
4970 case elfcpp::R_PPC64_DTPREL16_HIGHER:
4971 if (size == 32)
4972 // R_PPC_EMB_NADDR16_LO
4973 goto unsupp;
4974 case elfcpp::R_PPC64_ADDR16_HIGHER:
4975 case elfcpp::R_PPC64_TPREL16_HIGHER:
4976 Reloc::addr16_hi2(view, value);
4977 break;
4978
4979 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
4980 if (size == 32)
4981 // R_PPC_EMB_NADDR16_HI
4982 goto unsupp;
4983 case elfcpp::R_PPC64_ADDR16_HIGHERA:
4984 case elfcpp::R_PPC64_TPREL16_HIGHERA:
4985 Reloc::addr16_ha2(view, value);
4986 break;
4987
4988 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
4989 if (size == 32)
4990 // R_PPC_EMB_NADDR16_HA
4991 goto unsupp;
4992 case elfcpp::R_PPC64_ADDR16_HIGHEST:
4993 case elfcpp::R_PPC64_TPREL16_HIGHEST:
4994 Reloc::addr16_hi3(view, value);
4995 break;
4996
4997 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
4998 if (size == 32)
4999 // R_PPC_EMB_SDAI16
5000 goto unsupp;
5001 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5002 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5003 Reloc::addr16_ha3(view, value);
5004 break;
5005
5006 case elfcpp::R_PPC64_DTPREL16_DS:
5007 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5008 if (size == 32)
5009 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
5010 goto unsupp;
5011 case elfcpp::R_PPC64_TPREL16_DS:
5012 case elfcpp::R_PPC64_TPREL16_LO_DS:
5013 if (size == 32)
5014 // R_PPC_TLSGD, R_PPC_TLSLD
5015 break;
5016 case elfcpp::R_PPC64_ADDR16_DS:
5017 case elfcpp::R_PPC64_ADDR16_LO_DS:
5018 case elfcpp::R_PPC64_TOC16_DS:
5019 case elfcpp::R_PPC64_TOC16_LO_DS:
5020 case elfcpp::R_PPC64_GOT16_DS:
5021 case elfcpp::R_PPC64_GOT16_LO_DS:
5022 case elfcpp::R_PPC64_SECTOFF_DS:
5023 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5024 status = Reloc::addr16_ds(view, value, overflow);
5025 break;
5026
5027 case elfcpp::R_POWERPC_ADDR14:
5028 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5029 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5030 case elfcpp::R_POWERPC_REL14:
5031 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5032 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5033 status = Reloc::addr14(view, value, overflow);
5034 break;
5035
5036 case elfcpp::R_POWERPC_COPY:
5037 case elfcpp::R_POWERPC_GLOB_DAT:
5038 case elfcpp::R_POWERPC_JMP_SLOT:
5039 case elfcpp::R_POWERPC_RELATIVE:
5040 case elfcpp::R_POWERPC_DTPMOD:
5041 case elfcpp::R_PPC64_JMP_IREL:
5042 case elfcpp::R_POWERPC_IRELATIVE:
5043 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5044 _("unexpected reloc %u in object file"),
5045 r_type);
5046 break;
5047
5048 case elfcpp::R_PPC_EMB_SDA21:
5049 if (size == 32)
5050 goto unsupp;
5051 else
5052 {
5053 // R_PPC64_TOCSAVE. For the time being this can be ignored.
5054 }
5055 break;
5056
5057 case elfcpp::R_PPC_EMB_SDA2I16:
5058 case elfcpp::R_PPC_EMB_SDA2REL:
5059 if (size == 32)
5060 goto unsupp;
5061 // R_PPC64_TLSGD, R_PPC64_TLSLD
5062 break;
5063
5064 case elfcpp::R_POWERPC_PLT32:
5065 case elfcpp::R_POWERPC_PLTREL32:
5066 case elfcpp::R_POWERPC_PLT16_LO:
5067 case elfcpp::R_POWERPC_PLT16_HI:
5068 case elfcpp::R_POWERPC_PLT16_HA:
5069 case elfcpp::R_PPC_SDAREL16:
5070 case elfcpp::R_POWERPC_ADDR30:
5071 case elfcpp::R_PPC64_PLT64:
5072 case elfcpp::R_PPC64_PLTREL64:
5073 case elfcpp::R_PPC64_PLTGOT16:
5074 case elfcpp::R_PPC64_PLTGOT16_LO:
5075 case elfcpp::R_PPC64_PLTGOT16_HI:
5076 case elfcpp::R_PPC64_PLTGOT16_HA:
5077 case elfcpp::R_PPC64_PLT16_LO_DS:
5078 case elfcpp::R_PPC64_PLTGOT16_DS:
5079 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
5080 case elfcpp::R_PPC_EMB_RELSEC16:
5081 case elfcpp::R_PPC_EMB_RELST_LO:
5082 case elfcpp::R_PPC_EMB_RELST_HI:
5083 case elfcpp::R_PPC_EMB_RELST_HA:
5084 case elfcpp::R_PPC_EMB_BIT_FLD:
5085 case elfcpp::R_PPC_EMB_RELSDA:
5086 case elfcpp::R_PPC_TOC16:
5087 default:
5088 unsupp:
5089 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5090 _("unsupported reloc %u"),
5091 r_type);
5092 break;
5093 }
5094 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK)
5095 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5096 _("relocation overflow"));
5097
5098 return true;
5099 }
5100
5101 // Relocate section data.
5102
5103 template<int size, bool big_endian>
5104 void
5105 Target_powerpc<size, big_endian>::relocate_section(
5106 const Relocate_info<size, big_endian>* relinfo,
5107 unsigned int sh_type,
5108 const unsigned char* prelocs,
5109 size_t reloc_count,
5110 Output_section* output_section,
5111 bool needs_special_offset_handling,
5112 unsigned char* view,
5113 Address address,
5114 section_size_type view_size,
5115 const Reloc_symbol_changes* reloc_symbol_changes)
5116 {
5117 typedef Target_powerpc<size, big_endian> Powerpc;
5118 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
5119 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
5120 Powerpc_comdat_behavior;
5121
5122 gold_assert(sh_type == elfcpp::SHT_RELA);
5123
5124 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
5125 Powerpc_relocate, Powerpc_comdat_behavior>(
5126 relinfo,
5127 this,
5128 prelocs,
5129 reloc_count,
5130 output_section,
5131 needs_special_offset_handling,
5132 view,
5133 address,
5134 view_size,
5135 reloc_symbol_changes);
5136 }
5137
5138 class Powerpc_scan_relocatable_reloc
5139 {
5140 public:
5141 // Return the strategy to use for a local symbol which is not a
5142 // section symbol, given the relocation type.
5143 inline Relocatable_relocs::Reloc_strategy
5144 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
5145 {
5146 if (r_type == 0 && r_sym == 0)
5147 return Relocatable_relocs::RELOC_DISCARD;
5148 return Relocatable_relocs::RELOC_COPY;
5149 }
5150
5151 // Return the strategy to use for a local symbol which is a section
5152 // symbol, given the relocation type.
5153 inline Relocatable_relocs::Reloc_strategy
5154 local_section_strategy(unsigned int, Relobj*)
5155 {
5156 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
5157 }
5158
5159 // Return the strategy to use for a global symbol, given the
5160 // relocation type, the object, and the symbol index.
5161 inline Relocatable_relocs::Reloc_strategy
5162 global_strategy(unsigned int r_type, Relobj*, unsigned int)
5163 {
5164 if (r_type == elfcpp::R_PPC_PLTREL24)
5165 return Relocatable_relocs::RELOC_SPECIAL;
5166 return Relocatable_relocs::RELOC_COPY;
5167 }
5168 };
5169
5170 // Scan the relocs during a relocatable link.
5171
5172 template<int size, bool big_endian>
5173 void
5174 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
5175 Symbol_table* symtab,
5176 Layout* layout,
5177 Sized_relobj_file<size, big_endian>* object,
5178 unsigned int data_shndx,
5179 unsigned int sh_type,
5180 const unsigned char* prelocs,
5181 size_t reloc_count,
5182 Output_section* output_section,
5183 bool needs_special_offset_handling,
5184 size_t local_symbol_count,
5185 const unsigned char* plocal_symbols,
5186 Relocatable_relocs* rr)
5187 {
5188 gold_assert(sh_type == elfcpp::SHT_RELA);
5189
5190 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
5191 Powerpc_scan_relocatable_reloc>(
5192 symtab,
5193 layout,
5194 object,
5195 data_shndx,
5196 prelocs,
5197 reloc_count,
5198 output_section,
5199 needs_special_offset_handling,
5200 local_symbol_count,
5201 plocal_symbols,
5202 rr);
5203 }
5204
5205 // Emit relocations for a section.
5206 // This is a modified version of the function by the same name in
5207 // target-reloc.h. Using relocate_special_relocatable for
5208 // R_PPC_PLTREL24 would require duplication of the entire body of the
5209 // loop, so we may as well duplicate the whole thing.
5210
5211 template<int size, bool big_endian>
5212 void
5213 Target_powerpc<size, big_endian>::relocate_relocs(
5214 const Relocate_info<size, big_endian>* relinfo,
5215 unsigned int sh_type,
5216 const unsigned char* prelocs,
5217 size_t reloc_count,
5218 Output_section* output_section,
5219 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5220 const Relocatable_relocs* rr,
5221 unsigned char*,
5222 Address view_address,
5223 section_size_type,
5224 unsigned char* reloc_view,
5225 section_size_type reloc_view_size)
5226 {
5227 gold_assert(sh_type == elfcpp::SHT_RELA);
5228
5229 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
5230 Reltype;
5231 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
5232 Reltype_write;
5233 const int reloc_size
5234 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
5235
5236 Powerpc_relobj<size, big_endian>* const object
5237 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
5238 const unsigned int local_count = object->local_symbol_count();
5239 unsigned int got2_shndx = object->got2_shndx();
5240 Address got2_addend = 0;
5241 if (got2_shndx != 0)
5242 {
5243 got2_addend = object->get_output_section_offset(got2_shndx);
5244 gold_assert(got2_addend != invalid_address);
5245 }
5246
5247 unsigned char* pwrite = reloc_view;
5248 bool zap_next = false;
5249 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
5250 {
5251 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
5252 if (strategy == Relocatable_relocs::RELOC_DISCARD)
5253 continue;
5254
5255 Reltype reloc(prelocs);
5256 Reltype_write reloc_write(pwrite);
5257
5258 Address offset = reloc.get_r_offset();
5259 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
5260 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
5261 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
5262 const unsigned int orig_r_sym = r_sym;
5263 typename elfcpp::Elf_types<size>::Elf_Swxword addend
5264 = reloc.get_r_addend();
5265 const Symbol* gsym = NULL;
5266
5267 if (zap_next)
5268 {
5269 // We could arrange to discard these and other relocs for
5270 // tls optimised sequences in the strategy methods, but for
5271 // now do as BFD ld does.
5272 r_type = elfcpp::R_POWERPC_NONE;
5273 zap_next = false;
5274 }
5275
5276 // Get the new symbol index.
5277 if (r_sym < local_count)
5278 {
5279 switch (strategy)
5280 {
5281 case Relocatable_relocs::RELOC_COPY:
5282 case Relocatable_relocs::RELOC_SPECIAL:
5283 if (r_sym != 0)
5284 {
5285 r_sym = object->symtab_index(r_sym);
5286 gold_assert(r_sym != -1U);
5287 }
5288 break;
5289
5290 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
5291 {
5292 // We are adjusting a section symbol. We need to find
5293 // the symbol table index of the section symbol for
5294 // the output section corresponding to input section
5295 // in which this symbol is defined.
5296 gold_assert(r_sym < local_count);
5297 bool is_ordinary;
5298 unsigned int shndx =
5299 object->local_symbol_input_shndx(r_sym, &is_ordinary);
5300 gold_assert(is_ordinary);
5301 Output_section* os = object->output_section(shndx);
5302 gold_assert(os != NULL);
5303 gold_assert(os->needs_symtab_index());
5304 r_sym = os->symtab_index();
5305 }
5306 break;
5307
5308 default:
5309 gold_unreachable();
5310 }
5311 }
5312 else
5313 {
5314 gsym = object->global_symbol(r_sym);
5315 gold_assert(gsym != NULL);
5316 if (gsym->is_forwarder())
5317 gsym = relinfo->symtab->resolve_forwards(gsym);
5318
5319 gold_assert(gsym->has_symtab_index());
5320 r_sym = gsym->symtab_index();
5321 }
5322
5323 // Get the new offset--the location in the output section where
5324 // this relocation should be applied.
5325 if (static_cast<Address>(offset_in_output_section) != invalid_address)
5326 offset += offset_in_output_section;
5327 else
5328 {
5329 section_offset_type sot_offset =
5330 convert_types<section_offset_type, Address>(offset);
5331 section_offset_type new_sot_offset =
5332 output_section->output_offset(object, relinfo->data_shndx,
5333 sot_offset);
5334 gold_assert(new_sot_offset != -1);
5335 offset = new_sot_offset;
5336 }
5337
5338 // In an object file, r_offset is an offset within the section.
5339 // In an executable or dynamic object, generated by
5340 // --emit-relocs, r_offset is an absolute address.
5341 if (!parameters->options().relocatable())
5342 {
5343 offset += view_address;
5344 if (static_cast<Address>(offset_in_output_section) != invalid_address)
5345 offset -= offset_in_output_section;
5346 }
5347
5348 // Handle the reloc addend based on the strategy.
5349 if (strategy == Relocatable_relocs::RELOC_COPY)
5350 ;
5351 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
5352 {
5353 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
5354 addend = psymval->value(object, addend);
5355 }
5356 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
5357 {
5358 if (addend >= 32768)
5359 addend += got2_addend;
5360 }
5361 else
5362 gold_unreachable();
5363
5364 if (!parameters->options().relocatable())
5365 {
5366 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5367 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
5368 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
5369 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
5370 {
5371 // First instruction of a global dynamic sequence,
5372 // arg setup insn.
5373 const bool final = gsym == NULL || gsym->final_value_is_known();
5374 switch (this->optimize_tls_gd(final))
5375 {
5376 case tls::TLSOPT_TO_IE:
5377 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
5378 - elfcpp::R_POWERPC_GOT_TLSGD16);
5379 break;
5380 case tls::TLSOPT_TO_LE:
5381 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
5382 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
5383 r_type = elfcpp::R_POWERPC_TPREL16_HA;
5384 else
5385 {
5386 r_type = elfcpp::R_POWERPC_NONE;
5387 offset -= 2 * big_endian;
5388 }
5389 break;
5390 default:
5391 break;
5392 }
5393 }
5394 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
5395 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
5396 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
5397 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
5398 {
5399 // First instruction of a local dynamic sequence,
5400 // arg setup insn.
5401 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
5402 {
5403 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
5404 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
5405 {
5406 r_type = elfcpp::R_POWERPC_TPREL16_HA;
5407 const Output_section* os = relinfo->layout->tls_segment()
5408 ->first_section();
5409 gold_assert(os != NULL);
5410 gold_assert(os->needs_symtab_index());
5411 r_sym = os->symtab_index();
5412 addend = dtp_offset;
5413 }
5414 else
5415 {
5416 r_type = elfcpp::R_POWERPC_NONE;
5417 offset -= 2 * big_endian;
5418 }
5419 }
5420 }
5421 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
5422 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
5423 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
5424 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
5425 {
5426 // First instruction of initial exec sequence.
5427 const bool final = gsym == NULL || gsym->final_value_is_known();
5428 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
5429 {
5430 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
5431 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
5432 r_type = elfcpp::R_POWERPC_TPREL16_HA;
5433 else
5434 {
5435 r_type = elfcpp::R_POWERPC_NONE;
5436 offset -= 2 * big_endian;
5437 }
5438 }
5439 }
5440 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5441 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5442 {
5443 // Second instruction of a global dynamic sequence,
5444 // the __tls_get_addr call
5445 const bool final = gsym == NULL || gsym->final_value_is_known();
5446 switch (this->optimize_tls_gd(final))
5447 {
5448 case tls::TLSOPT_TO_IE:
5449 r_type = elfcpp::R_POWERPC_NONE;
5450 zap_next = true;
5451 break;
5452 case tls::TLSOPT_TO_LE:
5453 r_type = elfcpp::R_POWERPC_TPREL16_LO;
5454 offset += 2 * big_endian;
5455 zap_next = true;
5456 break;
5457 default:
5458 break;
5459 }
5460 }
5461 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5462 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5463 {
5464 // Second instruction of a local dynamic sequence,
5465 // the __tls_get_addr call
5466 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
5467 {
5468 const Output_section* os = relinfo->layout->tls_segment()
5469 ->first_section();
5470 gold_assert(os != NULL);
5471 gold_assert(os->needs_symtab_index());
5472 r_sym = os->symtab_index();
5473 addend = dtp_offset;
5474 r_type = elfcpp::R_POWERPC_TPREL16_LO;
5475 offset += 2 * big_endian;
5476 zap_next = true;
5477 }
5478 }
5479 else if (r_type == elfcpp::R_POWERPC_TLS)
5480 {
5481 // Second instruction of an initial exec sequence
5482 const bool final = gsym == NULL || gsym->final_value_is_known();
5483 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
5484 {
5485 r_type = elfcpp::R_POWERPC_TPREL16_LO;
5486 offset += 2 * big_endian;
5487 }
5488 }
5489 }
5490
5491 reloc_write.put_r_offset(offset);
5492 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
5493 reloc_write.put_r_addend(addend);
5494
5495 pwrite += reloc_size;
5496 }
5497
5498 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
5499 == reloc_view_size);
5500 }
5501
5502 // Return the value to use for a dynamic which requires special
5503 // treatment. This is how we support equality comparisons of function
5504 // pointers across shared library boundaries, as described in the
5505 // processor specific ABI supplement.
5506
5507 template<int size, bool big_endian>
5508 uint64_t
5509 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
5510 {
5511 if (size == 32)
5512 {
5513 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5514 const Output_data_glink<size, big_endian>* glink = this->glink_section();
5515 unsigned int glink_index = glink->find_entry(gsym);
5516 return glink->address() + glink_index * glink->glink_entry_size();
5517 }
5518 else
5519 gold_unreachable();
5520 }
5521
5522 // Return the PLT address to use for a local symbol.
5523 template<int size, bool big_endian>
5524 uint64_t
5525 Target_powerpc<size, big_endian>::do_plt_address_for_local(
5526 const Relobj* object,
5527 unsigned int symndx) const
5528 {
5529 if (size == 32)
5530 {
5531 const Sized_relobj<size, big_endian>* relobj
5532 = static_cast<const Sized_relobj<size, big_endian>*>(object);
5533 const Output_data_glink<size, big_endian>* glink = this->glink_section();
5534 unsigned int glink_index = glink->find_entry(relobj->sized_relobj(),
5535 symndx);
5536 return glink->address() + glink_index * glink->glink_entry_size();
5537 }
5538 else
5539 gold_unreachable();
5540 }
5541
5542 // Return the PLT address to use for a global symbol.
5543 template<int size, bool big_endian>
5544 uint64_t
5545 Target_powerpc<size, big_endian>::do_plt_address_for_global(
5546 const Symbol* gsym) const
5547 {
5548 if (size == 32)
5549 {
5550 const Output_data_glink<size, big_endian>* glink = this->glink_section();
5551 unsigned int glink_index = glink->find_entry(gsym);
5552 return glink->address() + glink_index * glink->glink_entry_size();
5553 }
5554 else
5555 gold_unreachable();
5556 }
5557
5558 // Return the offset to use for the GOT_INDX'th got entry which is
5559 // for a local tls symbol specified by OBJECT, SYMNDX.
5560 template<int size, bool big_endian>
5561 int64_t
5562 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
5563 const Relobj* object,
5564 unsigned int symndx,
5565 unsigned int got_indx) const
5566 {
5567 const Powerpc_relobj<size, big_endian>* ppc_object
5568 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
5569 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
5570 {
5571 for (Got_type got_type = GOT_TYPE_TLSGD;
5572 got_type <= GOT_TYPE_TPREL;
5573 got_type = Got_type(got_type + 1))
5574 if (ppc_object->local_has_got_offset(symndx, got_type))
5575 {
5576 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
5577 if (got_type == GOT_TYPE_TLSGD)
5578 off += size / 8;
5579 if (off == got_indx * (size / 8))
5580 {
5581 if (got_type == GOT_TYPE_TPREL)
5582 return -tp_offset;
5583 else
5584 return -dtp_offset;
5585 }
5586 }
5587 }
5588 gold_unreachable();
5589 }
5590
5591 // Return the offset to use for the GOT_INDX'th got entry which is
5592 // for global tls symbol GSYM.
5593 template<int size, bool big_endian>
5594 int64_t
5595 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
5596 Symbol* gsym,
5597 unsigned int got_indx) const
5598 {
5599 if (gsym->type() == elfcpp::STT_TLS)
5600 {
5601 for (Got_type got_type = GOT_TYPE_TLSGD;
5602 got_type <= GOT_TYPE_TPREL;
5603 got_type = Got_type(got_type + 1))
5604 if (gsym->has_got_offset(got_type))
5605 {
5606 unsigned int off = gsym->got_offset(got_type);
5607 if (got_type == GOT_TYPE_TLSGD)
5608 off += size / 8;
5609 if (off == got_indx * (size / 8))
5610 {
5611 if (got_type == GOT_TYPE_TPREL)
5612 return -tp_offset;
5613 else
5614 return -dtp_offset;
5615 }
5616 }
5617 }
5618 gold_unreachable();
5619 }
5620
5621 // The selector for powerpc object files.
5622
5623 template<int size, bool big_endian>
5624 class Target_selector_powerpc : public Target_selector
5625 {
5626 public:
5627 Target_selector_powerpc()
5628 : Target_selector(elfcpp::EM_NONE, size, big_endian,
5629 (size == 64
5630 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
5631 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
5632 (size == 64
5633 ? (big_endian ? "elf64ppc" : "elf64lppc")
5634 : (big_endian ? "elf32ppc" : "elf32lppc")))
5635 { }
5636
5637 virtual Target*
5638 do_recognize(Input_file*, off_t, int machine, int, int)
5639 {
5640 switch (size)
5641 {
5642 case 64:
5643 if (machine != elfcpp::EM_PPC64)
5644 return NULL;
5645 break;
5646
5647 case 32:
5648 if (machine != elfcpp::EM_PPC)
5649 return NULL;
5650 break;
5651
5652 default:
5653 return NULL;
5654 }
5655
5656 return this->instantiate_target();
5657 }
5658
5659 virtual Target*
5660 do_instantiate_target()
5661 { return new Target_powerpc<size, big_endian>(); }
5662 };
5663
5664 Target_selector_powerpc<32, true> target_selector_ppc32;
5665 Target_selector_powerpc<32, false> target_selector_ppc32le;
5666 Target_selector_powerpc<64, true> target_selector_ppc64;
5667 Target_selector_powerpc<64, false> target_selector_ppc64le;
5668
5669 } // End anonymous namespace.