[GOLD] PowerPC relaxation corner case
[binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 inline bool
66 is_branch_reloc(unsigned int r_type);
67
68 template<int size, bool big_endian>
69 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
70 {
71 public:
72 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
73 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
74 typedef Unordered_map<Address, Section_refs> Access_from;
75
76 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
77 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
78 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
79 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
80 opd_ent_(), access_from_map_(), has14_(), stub_table_(),
81 e_flags_(ehdr.get_e_flags()), st_other_()
82 {
83 this->set_abiversion(0);
84 }
85
86 ~Powerpc_relobj()
87 { }
88
89 // Read the symbols then set up st_other vector.
90 void
91 do_read_symbols(Read_symbols_data*);
92
93 // The .got2 section shndx.
94 unsigned int
95 got2_shndx() const
96 {
97 if (size == 32)
98 return this->special_;
99 else
100 return 0;
101 }
102
103 // The .opd section shndx.
104 unsigned int
105 opd_shndx() const
106 {
107 if (size == 32)
108 return 0;
109 else
110 return this->special_;
111 }
112
113 // Init OPD entry arrays.
114 void
115 init_opd(size_t opd_size)
116 {
117 size_t count = this->opd_ent_ndx(opd_size);
118 this->opd_ent_.resize(count);
119 }
120
121 // Return section and offset of function entry for .opd + R_OFF.
122 unsigned int
123 get_opd_ent(Address r_off, Address* value = NULL) const
124 {
125 size_t ndx = this->opd_ent_ndx(r_off);
126 gold_assert(ndx < this->opd_ent_.size());
127 gold_assert(this->opd_ent_[ndx].shndx != 0);
128 if (value != NULL)
129 *value = this->opd_ent_[ndx].off;
130 return this->opd_ent_[ndx].shndx;
131 }
132
133 // Set section and offset of function entry for .opd + R_OFF.
134 void
135 set_opd_ent(Address r_off, unsigned int shndx, Address value)
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 this->opd_ent_[ndx].shndx = shndx;
140 this->opd_ent_[ndx].off = value;
141 }
142
143 // Return discard flag for .opd + R_OFF.
144 bool
145 get_opd_discard(Address r_off) const
146 {
147 size_t ndx = this->opd_ent_ndx(r_off);
148 gold_assert(ndx < this->opd_ent_.size());
149 return this->opd_ent_[ndx].discard;
150 }
151
152 // Set discard flag for .opd + R_OFF.
153 void
154 set_opd_discard(Address r_off)
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 this->opd_ent_[ndx].discard = true;
159 }
160
161 bool
162 opd_valid() const
163 { return this->opd_valid_; }
164
165 void
166 set_opd_valid()
167 { this->opd_valid_ = true; }
168
169 // Examine .rela.opd to build info about function entry points.
170 void
171 scan_opd_relocs(size_t reloc_count,
172 const unsigned char* prelocs,
173 const unsigned char* plocal_syms);
174
175 // Perform the Sized_relobj_file method, then set up opd info from
176 // .opd relocs.
177 void
178 do_read_relocs(Read_relocs_data*);
179
180 bool
181 do_find_special_sections(Read_symbols_data* sd);
182
183 // Adjust this local symbol value. Return false if the symbol
184 // should be discarded from the output file.
185 bool
186 do_adjust_local_symbol(Symbol_value<size>* lv) const
187 {
188 if (size == 64 && this->opd_shndx() != 0)
189 {
190 bool is_ordinary;
191 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
192 return true;
193 if (this->get_opd_discard(lv->input_value()))
194 return false;
195 }
196 return true;
197 }
198
199 Access_from*
200 access_from_map()
201 { return &this->access_from_map_; }
202
203 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
204 // section at DST_OFF.
205 void
206 add_reference(Object* src_obj,
207 unsigned int src_indx,
208 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
209 {
210 Section_id src_id(src_obj, src_indx);
211 this->access_from_map_[dst_off].insert(src_id);
212 }
213
214 // Add a reference to the code section specified by the .opd entry
215 // at DST_OFF
216 void
217 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 size_t ndx = this->opd_ent_ndx(dst_off);
220 if (ndx >= this->opd_ent_.size())
221 this->opd_ent_.resize(ndx + 1);
222 this->opd_ent_[ndx].gc_mark = true;
223 }
224
225 void
226 process_gc_mark(Symbol_table* symtab)
227 {
228 for (size_t i = 0; i < this->opd_ent_.size(); i++)
229 if (this->opd_ent_[i].gc_mark)
230 {
231 unsigned int shndx = this->opd_ent_[i].shndx;
232 symtab->gc()->worklist().push(Section_id(this, shndx));
233 }
234 }
235
236 // Return offset in output GOT section that this object will use
237 // as a TOC pointer. Won't be just a constant with multi-toc support.
238 Address
239 toc_base_offset() const
240 { return 0x8000; }
241
242 void
243 set_has_small_toc_reloc()
244 { has_small_toc_reloc_ = true; }
245
246 bool
247 has_small_toc_reloc() const
248 { return has_small_toc_reloc_; }
249
250 void
251 set_has_14bit_branch(unsigned int shndx)
252 {
253 if (shndx >= this->has14_.size())
254 this->has14_.resize(shndx + 1);
255 this->has14_[shndx] = true;
256 }
257
258 bool
259 has_14bit_branch(unsigned int shndx) const
260 { return shndx < this->has14_.size() && this->has14_[shndx]; }
261
262 void
263 set_stub_table(unsigned int shndx, Stub_table<size, big_endian>* stub_table)
264 {
265 if (shndx >= this->stub_table_.size())
266 this->stub_table_.resize(shndx + 1);
267 this->stub_table_[shndx] = stub_table;
268 }
269
270 Stub_table<size, big_endian>*
271 stub_table(unsigned int shndx)
272 {
273 if (shndx < this->stub_table_.size())
274 return this->stub_table_[shndx];
275 return NULL;
276 }
277
278 int
279 abiversion() const
280 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
281
282 // Set ABI version for input and output
283 void
284 set_abiversion(int ver);
285
286 unsigned int
287 ppc64_local_entry_offset(const Symbol* sym) const
288 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
289
290 unsigned int
291 ppc64_local_entry_offset(unsigned int symndx) const
292 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
293
294 private:
295 struct Opd_ent
296 {
297 unsigned int shndx;
298 bool discard : 1;
299 bool gc_mark : 1;
300 Address off;
301 };
302
303 // Return index into opd_ent_ array for .opd entry at OFF.
304 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
305 // apart when the language doesn't use the last 8-byte word, the
306 // environment pointer. Thus dividing the entry section offset by
307 // 16 will give an index into opd_ent_ that works for either layout
308 // of .opd. (It leaves some elements of the vector unused when .opd
309 // entries are spaced 24 bytes apart, but we don't know the spacing
310 // until relocations are processed, and in any case it is possible
311 // for an object to have some entries spaced 16 bytes apart and
312 // others 24 bytes apart.)
313 size_t
314 opd_ent_ndx(size_t off) const
315 { return off >> 4;}
316
317 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
318 unsigned int special_;
319
320 // For 64-bit, whether this object uses small model relocs to access
321 // the toc.
322 bool has_small_toc_reloc_;
323
324 // Set at the start of gc_process_relocs, when we know opd_ent_
325 // vector is valid. The flag could be made atomic and set in
326 // do_read_relocs with memory_order_release and then tested with
327 // memory_order_acquire, potentially resulting in fewer entries in
328 // access_from_map_.
329 bool opd_valid_;
330
331 // The first 8-byte word of an OPD entry gives the address of the
332 // entry point of the function. Relocatable object files have a
333 // relocation on this word. The following vector records the
334 // section and offset specified by these relocations.
335 std::vector<Opd_ent> opd_ent_;
336
337 // References made to this object's .opd section when running
338 // gc_process_relocs for another object, before the opd_ent_ vector
339 // is valid for this object.
340 Access_from access_from_map_;
341
342 // Whether input section has a 14-bit branch reloc.
343 std::vector<bool> has14_;
344
345 // The stub table to use for a given input section.
346 std::vector<Stub_table<size, big_endian>*> stub_table_;
347
348 // Header e_flags
349 elfcpp::Elf_Word e_flags_;
350
351 // ELF st_other field for local symbols.
352 std::vector<unsigned char> st_other_;
353 };
354
355 template<int size, bool big_endian>
356 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
357 {
358 public:
359 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
360
361 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
362 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
363 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
364 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
365 {
366 this->set_abiversion(0);
367 }
368
369 ~Powerpc_dynobj()
370 { }
371
372 // Call Sized_dynobj::do_read_symbols to read the symbols then
373 // read .opd from a dynamic object, filling in opd_ent_ vector,
374 void
375 do_read_symbols(Read_symbols_data*);
376
377 // The .opd section shndx.
378 unsigned int
379 opd_shndx() const
380 {
381 return this->opd_shndx_;
382 }
383
384 // The .opd section address.
385 Address
386 opd_address() const
387 {
388 return this->opd_address_;
389 }
390
391 // Init OPD entry arrays.
392 void
393 init_opd(size_t opd_size)
394 {
395 size_t count = this->opd_ent_ndx(opd_size);
396 this->opd_ent_.resize(count);
397 }
398
399 // Return section and offset of function entry for .opd + R_OFF.
400 unsigned int
401 get_opd_ent(Address r_off, Address* value = NULL) const
402 {
403 size_t ndx = this->opd_ent_ndx(r_off);
404 gold_assert(ndx < this->opd_ent_.size());
405 gold_assert(this->opd_ent_[ndx].shndx != 0);
406 if (value != NULL)
407 *value = this->opd_ent_[ndx].off;
408 return this->opd_ent_[ndx].shndx;
409 }
410
411 // Set section and offset of function entry for .opd + R_OFF.
412 void
413 set_opd_ent(Address r_off, unsigned int shndx, Address value)
414 {
415 size_t ndx = this->opd_ent_ndx(r_off);
416 gold_assert(ndx < this->opd_ent_.size());
417 this->opd_ent_[ndx].shndx = shndx;
418 this->opd_ent_[ndx].off = value;
419 }
420
421 int
422 abiversion() const
423 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
424
425 // Set ABI version for input and output.
426 void
427 set_abiversion(int ver);
428
429 private:
430 // Used to specify extent of executable sections.
431 struct Sec_info
432 {
433 Sec_info(Address start_, Address len_, unsigned int shndx_)
434 : start(start_), len(len_), shndx(shndx_)
435 { }
436
437 bool
438 operator<(const Sec_info& that) const
439 { return this->start < that.start; }
440
441 Address start;
442 Address len;
443 unsigned int shndx;
444 };
445
446 struct Opd_ent
447 {
448 unsigned int shndx;
449 Address off;
450 };
451
452 // Return index into opd_ent_ array for .opd entry at OFF.
453 size_t
454 opd_ent_ndx(size_t off) const
455 { return off >> 4;}
456
457 // For 64-bit the .opd section shndx and address.
458 unsigned int opd_shndx_;
459 Address opd_address_;
460
461 // The first 8-byte word of an OPD entry gives the address of the
462 // entry point of the function. Records the section and offset
463 // corresponding to the address. Note that in dynamic objects,
464 // offset is *not* relative to the section.
465 std::vector<Opd_ent> opd_ent_;
466
467 // Header e_flags
468 elfcpp::Elf_Word e_flags_;
469 };
470
471 template<int size, bool big_endian>
472 class Target_powerpc : public Sized_target<size, big_endian>
473 {
474 public:
475 typedef
476 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
479 static const Address invalid_address = static_cast<Address>(0) - 1;
480 // Offset of tp and dtp pointers from start of TLS block.
481 static const Address tp_offset = 0x7000;
482 static const Address dtp_offset = 0x8000;
483
484 Target_powerpc()
485 : Sized_target<size, big_endian>(&powerpc_info),
486 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
487 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
488 tlsld_got_offset_(-1U),
489 stub_tables_(), branch_lookup_table_(), branch_info_(),
490 plt_thread_safe_(false)
491 {
492 }
493
494 // Process the relocations to determine unreferenced sections for
495 // garbage collection.
496 void
497 gc_process_relocs(Symbol_table* symtab,
498 Layout* layout,
499 Sized_relobj_file<size, big_endian>* object,
500 unsigned int data_shndx,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 size_t local_symbol_count,
507 const unsigned char* plocal_symbols);
508
509 // Scan the relocations to look for symbol adjustments.
510 void
511 scan_relocs(Symbol_table* symtab,
512 Layout* layout,
513 Sized_relobj_file<size, big_endian>* object,
514 unsigned int data_shndx,
515 unsigned int sh_type,
516 const unsigned char* prelocs,
517 size_t reloc_count,
518 Output_section* output_section,
519 bool needs_special_offset_handling,
520 size_t local_symbol_count,
521 const unsigned char* plocal_symbols);
522
523 // Map input .toc section to output .got section.
524 const char*
525 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
526 {
527 if (size == 64 && strcmp(name, ".toc") == 0)
528 {
529 *plen = 4;
530 return ".got";
531 }
532 return NULL;
533 }
534
535 // Provide linker defined save/restore functions.
536 void
537 define_save_restore_funcs(Layout*, Symbol_table*);
538
539 // No stubs unless a final link.
540 bool
541 do_may_relax() const
542 { return !parameters->options().relocatable(); }
543
544 bool
545 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
546
547 void
548 do_plt_fde_location(const Output_data*, unsigned char*,
549 uint64_t*, off_t*) const;
550
551 // Stash info about branches, for stub generation.
552 void
553 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
554 unsigned int data_shndx, Address r_offset,
555 unsigned int r_type, unsigned int r_sym, Address addend)
556 {
557 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
558 this->branch_info_.push_back(info);
559 if (r_type == elfcpp::R_POWERPC_REL14
560 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
561 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
562 ppc_object->set_has_14bit_branch(data_shndx);
563 }
564
565 Stub_table<size, big_endian>*
566 new_stub_table();
567
568 void
569 do_define_standard_symbols(Symbol_table*, Layout*);
570
571 // Finalize the sections.
572 void
573 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
574
575 // Return the value to use for a dynamic which requires special
576 // treatment.
577 uint64_t
578 do_dynsym_value(const Symbol*) const;
579
580 // Return the PLT address to use for a local symbol.
581 uint64_t
582 do_plt_address_for_local(const Relobj*, unsigned int) const;
583
584 // Return the PLT address to use for a global symbol.
585 uint64_t
586 do_plt_address_for_global(const Symbol*) const;
587
588 // Return the offset to use for the GOT_INDX'th got entry which is
589 // for a local tls symbol specified by OBJECT, SYMNDX.
590 int64_t
591 do_tls_offset_for_local(const Relobj* object,
592 unsigned int symndx,
593 unsigned int got_indx) const;
594
595 // Return the offset to use for the GOT_INDX'th got entry which is
596 // for global tls symbol GSYM.
597 int64_t
598 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
599
600 void
601 do_function_location(Symbol_location*) const;
602
603 bool
604 do_can_check_for_function_pointers() const
605 { return true; }
606
607 // Relocate a section.
608 void
609 relocate_section(const Relocate_info<size, big_endian>*,
610 unsigned int sh_type,
611 const unsigned char* prelocs,
612 size_t reloc_count,
613 Output_section* output_section,
614 bool needs_special_offset_handling,
615 unsigned char* view,
616 Address view_address,
617 section_size_type view_size,
618 const Reloc_symbol_changes*);
619
620 // Scan the relocs during a relocatable link.
621 void
622 scan_relocatable_relocs(Symbol_table* symtab,
623 Layout* layout,
624 Sized_relobj_file<size, big_endian>* object,
625 unsigned int data_shndx,
626 unsigned int sh_type,
627 const unsigned char* prelocs,
628 size_t reloc_count,
629 Output_section* output_section,
630 bool needs_special_offset_handling,
631 size_t local_symbol_count,
632 const unsigned char* plocal_symbols,
633 Relocatable_relocs*);
634
635 // Emit relocations for a section.
636 void
637 relocate_relocs(const Relocate_info<size, big_endian>*,
638 unsigned int sh_type,
639 const unsigned char* prelocs,
640 size_t reloc_count,
641 Output_section* output_section,
642 typename elfcpp::Elf_types<size>::Elf_Off
643 offset_in_output_section,
644 const Relocatable_relocs*,
645 unsigned char*,
646 Address view_address,
647 section_size_type,
648 unsigned char* reloc_view,
649 section_size_type reloc_view_size);
650
651 // Return whether SYM is defined by the ABI.
652 bool
653 do_is_defined_by_abi(const Symbol* sym) const
654 {
655 return strcmp(sym->name(), "__tls_get_addr") == 0;
656 }
657
658 // Return the size of the GOT section.
659 section_size_type
660 got_size() const
661 {
662 gold_assert(this->got_ != NULL);
663 return this->got_->data_size();
664 }
665
666 // Get the PLT section.
667 const Output_data_plt_powerpc<size, big_endian>*
668 plt_section() const
669 {
670 gold_assert(this->plt_ != NULL);
671 return this->plt_;
672 }
673
674 // Get the IPLT section.
675 const Output_data_plt_powerpc<size, big_endian>*
676 iplt_section() const
677 {
678 gold_assert(this->iplt_ != NULL);
679 return this->iplt_;
680 }
681
682 // Get the .glink section.
683 const Output_data_glink<size, big_endian>*
684 glink_section() const
685 {
686 gold_assert(this->glink_ != NULL);
687 return this->glink_;
688 }
689
690 Output_data_glink<size, big_endian>*
691 glink_section()
692 {
693 gold_assert(this->glink_ != NULL);
694 return this->glink_;
695 }
696
697 bool has_glink() const
698 { return this->glink_ != NULL; }
699
700 // Get the GOT section.
701 const Output_data_got_powerpc<size, big_endian>*
702 got_section() const
703 {
704 gold_assert(this->got_ != NULL);
705 return this->got_;
706 }
707
708 // Get the GOT section, creating it if necessary.
709 Output_data_got_powerpc<size, big_endian>*
710 got_section(Symbol_table*, Layout*);
711
712 Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<size, big_endian>&);
715
716 // Return the number of entries in the GOT.
717 unsigned int
718 got_entry_count() const
719 {
720 if (this->got_ == NULL)
721 return 0;
722 return this->got_size() / (size / 8);
723 }
724
725 // Return the number of entries in the PLT.
726 unsigned int
727 plt_entry_count() const;
728
729 // Return the offset of the first non-reserved PLT entry.
730 unsigned int
731 first_plt_entry_offset() const
732 {
733 if (size == 32)
734 return 0;
735 if (this->abiversion() >= 2)
736 return 16;
737 return 24;
738 }
739
740 // Return the size of each PLT entry.
741 unsigned int
742 plt_entry_size() const
743 {
744 if (size == 32)
745 return 4;
746 if (this->abiversion() >= 2)
747 return 8;
748 return 24;
749 }
750
751 // Add any special sections for this symbol to the gc work list.
752 // For powerpc64, this adds the code section of a function
753 // descriptor.
754 void
755 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
756
757 // Handle target specific gc actions when adding a gc reference from
758 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
759 // and DST_OFF. For powerpc64, this adds a referenc to the code
760 // section of a function descriptor.
761 void
762 do_gc_add_reference(Symbol_table* symtab,
763 Object* src_obj,
764 unsigned int src_shndx,
765 Object* dst_obj,
766 unsigned int dst_shndx,
767 Address dst_off) const;
768
769 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
770 const Stub_tables&
771 stub_tables() const
772 { return this->stub_tables_; }
773
774 const Output_data_brlt_powerpc<size, big_endian>*
775 brlt_section() const
776 { return this->brlt_section_; }
777
778 void
779 add_branch_lookup_table(Address to)
780 {
781 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
782 this->branch_lookup_table_.insert(std::make_pair(to, off));
783 }
784
785 Address
786 find_branch_lookup_table(Address to)
787 {
788 typename Branch_lookup_table::const_iterator p
789 = this->branch_lookup_table_.find(to);
790 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
791 }
792
793 void
794 write_branch_lookup_table(unsigned char *oview)
795 {
796 for (typename Branch_lookup_table::const_iterator p
797 = this->branch_lookup_table_.begin();
798 p != this->branch_lookup_table_.end();
799 ++p)
800 {
801 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
802 }
803 }
804
805 bool
806 plt_thread_safe() const
807 { return this->plt_thread_safe_; }
808
809 int
810 abiversion () const
811 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
812
813 void
814 set_abiversion (int ver)
815 {
816 elfcpp::Elf_Word flags = this->processor_specific_flags();
817 flags &= ~elfcpp::EF_PPC64_ABI;
818 flags |= ver & elfcpp::EF_PPC64_ABI;
819 this->set_processor_specific_flags(flags);
820 }
821
822 // Offset to to save stack slot
823 int
824 stk_toc () const
825 { return this->abiversion() < 2 ? 40 : 24; }
826
827 private:
828
829 class Track_tls
830 {
831 public:
832 enum Tls_get_addr
833 {
834 NOT_EXPECTED = 0,
835 EXPECTED = 1,
836 SKIP = 2,
837 NORMAL = 3
838 };
839
840 Track_tls()
841 : tls_get_addr_(NOT_EXPECTED),
842 relinfo_(NULL), relnum_(0), r_offset_(0)
843 { }
844
845 ~Track_tls()
846 {
847 if (this->tls_get_addr_ != NOT_EXPECTED)
848 this->missing();
849 }
850
851 void
852 missing(void)
853 {
854 if (this->relinfo_ != NULL)
855 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
856 _("missing expected __tls_get_addr call"));
857 }
858
859 void
860 expect_tls_get_addr_call(
861 const Relocate_info<size, big_endian>* relinfo,
862 size_t relnum,
863 Address r_offset)
864 {
865 this->tls_get_addr_ = EXPECTED;
866 this->relinfo_ = relinfo;
867 this->relnum_ = relnum;
868 this->r_offset_ = r_offset;
869 }
870
871 void
872 expect_tls_get_addr_call()
873 { this->tls_get_addr_ = EXPECTED; }
874
875 void
876 skip_next_tls_get_addr_call()
877 {this->tls_get_addr_ = SKIP; }
878
879 Tls_get_addr
880 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
881 {
882 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
883 || r_type == elfcpp::R_PPC_PLTREL24)
884 && gsym != NULL
885 && strcmp(gsym->name(), "__tls_get_addr") == 0);
886 Tls_get_addr last_tls = this->tls_get_addr_;
887 this->tls_get_addr_ = NOT_EXPECTED;
888 if (is_tls_call && last_tls != EXPECTED)
889 return last_tls;
890 else if (!is_tls_call && last_tls != NOT_EXPECTED)
891 {
892 this->missing();
893 return EXPECTED;
894 }
895 return NORMAL;
896 }
897
898 private:
899 // What we're up to regarding calls to __tls_get_addr.
900 // On powerpc, the branch and link insn making a call to
901 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
902 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
903 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
904 // The marker relocation always comes first, and has the same
905 // symbol as the reloc on the insn setting up the __tls_get_addr
906 // argument. This ties the arg setup insn with the call insn,
907 // allowing ld to safely optimize away the call. We check that
908 // every call to __tls_get_addr has a marker relocation, and that
909 // every marker relocation is on a call to __tls_get_addr.
910 Tls_get_addr tls_get_addr_;
911 // Info about the last reloc for error message.
912 const Relocate_info<size, big_endian>* relinfo_;
913 size_t relnum_;
914 Address r_offset_;
915 };
916
917 // The class which scans relocations.
918 class Scan : protected Track_tls
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
922
923 Scan()
924 : Track_tls(), issued_non_pic_error_(false)
925 { }
926
927 static inline int
928 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
929
930 inline void
931 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
932 Sized_relobj_file<size, big_endian>* object,
933 unsigned int data_shndx,
934 Output_section* output_section,
935 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
936 const elfcpp::Sym<size, big_endian>& lsym,
937 bool is_discarded);
938
939 inline void
940 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
941 Sized_relobj_file<size, big_endian>* object,
942 unsigned int data_shndx,
943 Output_section* output_section,
944 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
945 Symbol* gsym);
946
947 inline bool
948 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
949 Target_powerpc* ,
950 Sized_relobj_file<size, big_endian>* relobj,
951 unsigned int ,
952 Output_section* ,
953 const elfcpp::Rela<size, big_endian>& ,
954 unsigned int r_type,
955 const elfcpp::Sym<size, big_endian>&)
956 {
957 // PowerPC64 .opd is not folded, so any identical function text
958 // may be folded and we'll still keep function addresses distinct.
959 // That means no reloc is of concern here.
960 if (size == 64)
961 {
962 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
963 <Powerpc_relobj<size, big_endian>*>(relobj);
964 if (ppcobj->abiversion() == 1)
965 return false;
966 }
967 // For 32-bit and ELFv2, conservatively assume anything but calls to
968 // function code might be taking the address of the function.
969 return !is_branch_reloc(r_type);
970 }
971
972 inline bool
973 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
974 Target_powerpc* ,
975 Sized_relobj_file<size, big_endian>* relobj,
976 unsigned int ,
977 Output_section* ,
978 const elfcpp::Rela<size, big_endian>& ,
979 unsigned int r_type,
980 Symbol*)
981 {
982 // As above.
983 if (size == 64)
984 {
985 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
986 <Powerpc_relobj<size, big_endian>*>(relobj);
987 if (ppcobj->abiversion() == 1)
988 return false;
989 }
990 return !is_branch_reloc(r_type);
991 }
992
993 static bool
994 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
995 Sized_relobj_file<size, big_endian>* object,
996 unsigned int r_type, bool report_err);
997
998 private:
999 static void
1000 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1001 unsigned int r_type);
1002
1003 static void
1004 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1005 unsigned int r_type, Symbol*);
1006
1007 static void
1008 generate_tls_call(Symbol_table* symtab, Layout* layout,
1009 Target_powerpc* target);
1010
1011 void
1012 check_non_pic(Relobj*, unsigned int r_type);
1013
1014 // Whether we have issued an error about a non-PIC compilation.
1015 bool issued_non_pic_error_;
1016 };
1017
1018 Address
1019 symval_for_branch(const Symbol_table* symtab, Address value,
1020 const Sized_symbol<size>* gsym,
1021 Powerpc_relobj<size, big_endian>* object,
1022 unsigned int *dest_shndx);
1023
1024 // The class which implements relocation.
1025 class Relocate : protected Track_tls
1026 {
1027 public:
1028 // Use 'at' branch hints when true, 'y' when false.
1029 // FIXME maybe: set this with an option.
1030 static const bool is_isa_v2 = true;
1031
1032 Relocate()
1033 : Track_tls()
1034 { }
1035
1036 // Do a relocation. Return false if the caller should not issue
1037 // any warnings about this relocation.
1038 inline bool
1039 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1040 Output_section*, size_t relnum,
1041 const elfcpp::Rela<size, big_endian>&,
1042 unsigned int r_type, const Sized_symbol<size>*,
1043 const Symbol_value<size>*,
1044 unsigned char*,
1045 typename elfcpp::Elf_types<size>::Elf_Addr,
1046 section_size_type);
1047 };
1048
1049 class Relocate_comdat_behavior
1050 {
1051 public:
1052 // Decide what the linker should do for relocations that refer to
1053 // discarded comdat sections.
1054 inline Comdat_behavior
1055 get(const char* name)
1056 {
1057 gold::Default_comdat_behavior default_behavior;
1058 Comdat_behavior ret = default_behavior.get(name);
1059 if (ret == CB_WARNING)
1060 {
1061 if (size == 32
1062 && (strcmp(name, ".fixup") == 0
1063 || strcmp(name, ".got2") == 0))
1064 ret = CB_IGNORE;
1065 if (size == 64
1066 && (strcmp(name, ".opd") == 0
1067 || strcmp(name, ".toc") == 0
1068 || strcmp(name, ".toc1") == 0))
1069 ret = CB_IGNORE;
1070 }
1071 return ret;
1072 }
1073 };
1074
1075 // A class which returns the size required for a relocation type,
1076 // used while scanning relocs during a relocatable link.
1077 class Relocatable_size_for_reloc
1078 {
1079 public:
1080 unsigned int
1081 get_size_for_reloc(unsigned int, Relobj*)
1082 {
1083 gold_unreachable();
1084 return 0;
1085 }
1086 };
1087
1088 // Optimize the TLS relocation type based on what we know about the
1089 // symbol. IS_FINAL is true if the final address of this symbol is
1090 // known at link time.
1091
1092 tls::Tls_optimization
1093 optimize_tls_gd(bool is_final)
1094 {
1095 // If we are generating a shared library, then we can't do anything
1096 // in the linker.
1097 if (parameters->options().shared())
1098 return tls::TLSOPT_NONE;
1099
1100 if (!is_final)
1101 return tls::TLSOPT_TO_IE;
1102 return tls::TLSOPT_TO_LE;
1103 }
1104
1105 tls::Tls_optimization
1106 optimize_tls_ld()
1107 {
1108 if (parameters->options().shared())
1109 return tls::TLSOPT_NONE;
1110
1111 return tls::TLSOPT_TO_LE;
1112 }
1113
1114 tls::Tls_optimization
1115 optimize_tls_ie(bool is_final)
1116 {
1117 if (!is_final || parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1119
1120 return tls::TLSOPT_TO_LE;
1121 }
1122
1123 // Create glink.
1124 void
1125 make_glink_section(Layout*);
1126
1127 // Create the PLT section.
1128 void
1129 make_plt_section(Symbol_table*, Layout*);
1130
1131 void
1132 make_iplt_section(Symbol_table*, Layout*);
1133
1134 void
1135 make_brlt_section(Layout*);
1136
1137 // Create a PLT entry for a global symbol.
1138 void
1139 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1140
1141 // Create a PLT entry for a local IFUNC symbol.
1142 void
1143 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1144 Sized_relobj_file<size, big_endian>*,
1145 unsigned int);
1146
1147
1148 // Create a GOT entry for local dynamic __tls_get_addr.
1149 unsigned int
1150 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1151 Sized_relobj_file<size, big_endian>* object);
1152
1153 unsigned int
1154 tlsld_got_offset() const
1155 {
1156 return this->tlsld_got_offset_;
1157 }
1158
1159 // Get the dynamic reloc section, creating it if necessary.
1160 Reloc_section*
1161 rela_dyn_section(Layout*);
1162
1163 // Similarly, but for ifunc symbols get the one for ifunc.
1164 Reloc_section*
1165 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1166
1167 // Copy a relocation against a global symbol.
1168 void
1169 copy_reloc(Symbol_table* symtab, Layout* layout,
1170 Sized_relobj_file<size, big_endian>* object,
1171 unsigned int shndx, Output_section* output_section,
1172 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1173 {
1174 this->copy_relocs_.copy_reloc(symtab, layout,
1175 symtab->get_sized_symbol<size>(sym),
1176 object, shndx, output_section,
1177 reloc, this->rela_dyn_section(layout));
1178 }
1179
1180 // Look over all the input sections, deciding where to place stubs.
1181 void
1182 group_sections(Layout*, const Task*);
1183
1184 // Sort output sections by address.
1185 struct Sort_sections
1186 {
1187 bool
1188 operator()(const Output_section* sec1, const Output_section* sec2)
1189 { return sec1->address() < sec2->address(); }
1190 };
1191
1192 class Branch_info
1193 {
1194 public:
1195 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1196 unsigned int data_shndx,
1197 Address r_offset,
1198 unsigned int r_type,
1199 unsigned int r_sym,
1200 Address addend)
1201 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1202 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1203 { }
1204
1205 ~Branch_info()
1206 { }
1207
1208 // If this branch needs a plt call stub, or a long branch stub, make one.
1209 void
1210 make_stub(Stub_table<size, big_endian>*,
1211 Stub_table<size, big_endian>*,
1212 Symbol_table*) const;
1213
1214 private:
1215 // The branch location..
1216 Powerpc_relobj<size, big_endian>* object_;
1217 unsigned int shndx_;
1218 Address offset_;
1219 // ..and the branch type and destination.
1220 unsigned int r_type_;
1221 unsigned int r_sym_;
1222 Address addend_;
1223 };
1224
1225 // Information about this specific target which we pass to the
1226 // general Target structure.
1227 static Target::Target_info powerpc_info;
1228
1229 // The types of GOT entries needed for this platform.
1230 // These values are exposed to the ABI in an incremental link.
1231 // Do not renumber existing values without changing the version
1232 // number of the .gnu_incremental_inputs section.
1233 enum Got_type
1234 {
1235 GOT_TYPE_STANDARD,
1236 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1237 GOT_TYPE_DTPREL, // entry for @got@dtprel
1238 GOT_TYPE_TPREL // entry for @got@tprel
1239 };
1240
1241 // The GOT section.
1242 Output_data_got_powerpc<size, big_endian>* got_;
1243 // The PLT section. This is a container for a table of addresses,
1244 // and their relocations. Each address in the PLT has a dynamic
1245 // relocation (R_*_JMP_SLOT) and each address will have a
1246 // corresponding entry in .glink for lazy resolution of the PLT.
1247 // ppc32 initialises the PLT to point at the .glink entry, while
1248 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1249 // linker adds a stub that loads the PLT entry into ctr then
1250 // branches to ctr. There may be more than one stub for each PLT
1251 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1252 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1253 Output_data_plt_powerpc<size, big_endian>* plt_;
1254 // The IPLT section. Like plt_, this is a container for a table of
1255 // addresses and their relocations, specifically for STT_GNU_IFUNC
1256 // functions that resolve locally (STT_GNU_IFUNC functions that
1257 // don't resolve locally go in PLT). Unlike plt_, these have no
1258 // entry in .glink for lazy resolution, and the relocation section
1259 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1260 // the relocation section may contain relocations against
1261 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1262 // relocation section will appear at the end of other dynamic
1263 // relocations, so that ld.so applies these relocations after other
1264 // dynamic relocations. In a static executable, the relocation
1265 // section is emitted and marked with __rela_iplt_start and
1266 // __rela_iplt_end symbols.
1267 Output_data_plt_powerpc<size, big_endian>* iplt_;
1268 // Section holding long branch destinations.
1269 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1270 // The .glink section.
1271 Output_data_glink<size, big_endian>* glink_;
1272 // The dynamic reloc section.
1273 Reloc_section* rela_dyn_;
1274 // Relocs saved to avoid a COPY reloc.
1275 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1276 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1277 unsigned int tlsld_got_offset_;
1278
1279 Stub_tables stub_tables_;
1280 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1281 Branch_lookup_table branch_lookup_table_;
1282
1283 typedef std::vector<Branch_info> Branches;
1284 Branches branch_info_;
1285
1286 bool plt_thread_safe_;
1287 };
1288
1289 template<>
1290 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1291 {
1292 32, // size
1293 true, // is_big_endian
1294 elfcpp::EM_PPC, // machine_code
1295 false, // has_make_symbol
1296 false, // has_resolve
1297 false, // has_code_fill
1298 true, // is_default_stack_executable
1299 false, // can_icf_inline_merge_sections
1300 '\0', // wrap_char
1301 "/usr/lib/ld.so.1", // dynamic_linker
1302 0x10000000, // default_text_segment_address
1303 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1304 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1305 false, // isolate_execinstr
1306 0, // rosegment_gap
1307 elfcpp::SHN_UNDEF, // small_common_shndx
1308 elfcpp::SHN_UNDEF, // large_common_shndx
1309 0, // small_common_section_flags
1310 0, // large_common_section_flags
1311 NULL, // attributes_section
1312 NULL, // attributes_vendor
1313 "_start" // entry_symbol_name
1314 };
1315
1316 template<>
1317 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1318 {
1319 32, // size
1320 false, // is_big_endian
1321 elfcpp::EM_PPC, // machine_code
1322 false, // has_make_symbol
1323 false, // has_resolve
1324 false, // has_code_fill
1325 true, // is_default_stack_executable
1326 false, // can_icf_inline_merge_sections
1327 '\0', // wrap_char
1328 "/usr/lib/ld.so.1", // dynamic_linker
1329 0x10000000, // default_text_segment_address
1330 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1331 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1332 false, // isolate_execinstr
1333 0, // rosegment_gap
1334 elfcpp::SHN_UNDEF, // small_common_shndx
1335 elfcpp::SHN_UNDEF, // large_common_shndx
1336 0, // small_common_section_flags
1337 0, // large_common_section_flags
1338 NULL, // attributes_section
1339 NULL, // attributes_vendor
1340 "_start" // entry_symbol_name
1341 };
1342
1343 template<>
1344 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1345 {
1346 64, // size
1347 true, // is_big_endian
1348 elfcpp::EM_PPC64, // machine_code
1349 false, // has_make_symbol
1350 false, // has_resolve
1351 false, // has_code_fill
1352 true, // is_default_stack_executable
1353 false, // can_icf_inline_merge_sections
1354 '\0', // wrap_char
1355 "/usr/lib/ld.so.1", // dynamic_linker
1356 0x10000000, // default_text_segment_address
1357 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1358 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1359 false, // isolate_execinstr
1360 0, // rosegment_gap
1361 elfcpp::SHN_UNDEF, // small_common_shndx
1362 elfcpp::SHN_UNDEF, // large_common_shndx
1363 0, // small_common_section_flags
1364 0, // large_common_section_flags
1365 NULL, // attributes_section
1366 NULL, // attributes_vendor
1367 "_start" // entry_symbol_name
1368 };
1369
1370 template<>
1371 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1372 {
1373 64, // size
1374 false, // is_big_endian
1375 elfcpp::EM_PPC64, // machine_code
1376 false, // has_make_symbol
1377 false, // has_resolve
1378 false, // has_code_fill
1379 true, // is_default_stack_executable
1380 false, // can_icf_inline_merge_sections
1381 '\0', // wrap_char
1382 "/usr/lib/ld.so.1", // dynamic_linker
1383 0x10000000, // default_text_segment_address
1384 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1385 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1386 false, // isolate_execinstr
1387 0, // rosegment_gap
1388 elfcpp::SHN_UNDEF, // small_common_shndx
1389 elfcpp::SHN_UNDEF, // large_common_shndx
1390 0, // small_common_section_flags
1391 0, // large_common_section_flags
1392 NULL, // attributes_section
1393 NULL, // attributes_vendor
1394 "_start" // entry_symbol_name
1395 };
1396
1397 inline bool
1398 is_branch_reloc(unsigned int r_type)
1399 {
1400 return (r_type == elfcpp::R_POWERPC_REL24
1401 || r_type == elfcpp::R_PPC_PLTREL24
1402 || r_type == elfcpp::R_PPC_LOCAL24PC
1403 || r_type == elfcpp::R_POWERPC_REL14
1404 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1405 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1406 || r_type == elfcpp::R_POWERPC_ADDR24
1407 || r_type == elfcpp::R_POWERPC_ADDR14
1408 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1409 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1410 }
1411
1412 // If INSN is an opcode that may be used with an @tls operand, return
1413 // the transformed insn for TLS optimisation, otherwise return 0. If
1414 // REG is non-zero only match an insn with RB or RA equal to REG.
1415 uint32_t
1416 at_tls_transform(uint32_t insn, unsigned int reg)
1417 {
1418 if ((insn & (0x3f << 26)) != 31 << 26)
1419 return 0;
1420
1421 unsigned int rtra;
1422 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1423 rtra = insn & ((1 << 26) - (1 << 16));
1424 else if (((insn >> 16) & 0x1f) == reg)
1425 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1426 else
1427 return 0;
1428
1429 if ((insn & (0x3ff << 1)) == 266 << 1)
1430 // add -> addi
1431 insn = 14 << 26;
1432 else if ((insn & (0x1f << 1)) == 23 << 1
1433 && ((insn & (0x1f << 6)) < 14 << 6
1434 || ((insn & (0x1f << 6)) >= 16 << 6
1435 && (insn & (0x1f << 6)) < 24 << 6)))
1436 // load and store indexed -> dform
1437 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1438 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1439 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1440 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1441 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1442 // lwax -> lwa
1443 insn = (58 << 26) | 2;
1444 else
1445 return 0;
1446 insn |= rtra;
1447 return insn;
1448 }
1449
1450
1451 template<int size, bool big_endian>
1452 class Powerpc_relocate_functions
1453 {
1454 public:
1455 enum Overflow_check
1456 {
1457 CHECK_NONE,
1458 CHECK_SIGNED,
1459 CHECK_UNSIGNED,
1460 CHECK_BITFIELD,
1461 CHECK_LOW_INSN,
1462 CHECK_HIGH_INSN
1463 };
1464
1465 enum Status
1466 {
1467 STATUS_OK,
1468 STATUS_OVERFLOW
1469 };
1470
1471 private:
1472 typedef Powerpc_relocate_functions<size, big_endian> This;
1473 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1474
1475 template<int valsize>
1476 static inline bool
1477 has_overflow_signed(Address value)
1478 {
1479 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1480 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1481 limit <<= ((valsize - 1) >> 1);
1482 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1483 return value + limit > (limit << 1) - 1;
1484 }
1485
1486 template<int valsize>
1487 static inline bool
1488 has_overflow_unsigned(Address value)
1489 {
1490 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1491 limit <<= ((valsize - 1) >> 1);
1492 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1493 return value > (limit << 1) - 1;
1494 }
1495
1496 template<int valsize>
1497 static inline bool
1498 has_overflow_bitfield(Address value)
1499 {
1500 return (has_overflow_unsigned<valsize>(value)
1501 && has_overflow_signed<valsize>(value));
1502 }
1503
1504 template<int valsize>
1505 static inline Status
1506 overflowed(Address value, Overflow_check overflow)
1507 {
1508 if (overflow == CHECK_SIGNED)
1509 {
1510 if (has_overflow_signed<valsize>(value))
1511 return STATUS_OVERFLOW;
1512 }
1513 else if (overflow == CHECK_UNSIGNED)
1514 {
1515 if (has_overflow_unsigned<valsize>(value))
1516 return STATUS_OVERFLOW;
1517 }
1518 else if (overflow == CHECK_BITFIELD)
1519 {
1520 if (has_overflow_bitfield<valsize>(value))
1521 return STATUS_OVERFLOW;
1522 }
1523 return STATUS_OK;
1524 }
1525
1526 // Do a simple RELA relocation
1527 template<int fieldsize, int valsize>
1528 static inline Status
1529 rela(unsigned char* view, Address value, Overflow_check overflow)
1530 {
1531 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1532 Valtype* wv = reinterpret_cast<Valtype*>(view);
1533 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1534 return overflowed<valsize>(value, overflow);
1535 }
1536
1537 template<int fieldsize, int valsize>
1538 static inline Status
1539 rela(unsigned char* view,
1540 unsigned int right_shift,
1541 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1542 Address value,
1543 Overflow_check overflow)
1544 {
1545 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1546 Valtype* wv = reinterpret_cast<Valtype*>(view);
1547 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1548 Valtype reloc = value >> right_shift;
1549 val &= ~dst_mask;
1550 reloc &= dst_mask;
1551 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1552 return overflowed<valsize>(value >> right_shift, overflow);
1553 }
1554
1555 // Do a simple RELA relocation, unaligned.
1556 template<int fieldsize, int valsize>
1557 static inline Status
1558 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1559 {
1560 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1561 return overflowed<valsize>(value, overflow);
1562 }
1563
1564 template<int fieldsize, int valsize>
1565 static inline Status
1566 rela_ua(unsigned char* view,
1567 unsigned int right_shift,
1568 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1569 Address value,
1570 Overflow_check overflow)
1571 {
1572 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1573 Valtype;
1574 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1575 Valtype reloc = value >> right_shift;
1576 val &= ~dst_mask;
1577 reloc &= dst_mask;
1578 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1579 return overflowed<valsize>(value >> right_shift, overflow);
1580 }
1581
1582 public:
1583 // R_PPC64_ADDR64: (Symbol + Addend)
1584 static inline void
1585 addr64(unsigned char* view, Address value)
1586 { This::template rela<64,64>(view, value, CHECK_NONE); }
1587
1588 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1589 static inline void
1590 addr64_u(unsigned char* view, Address value)
1591 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1592
1593 // R_POWERPC_ADDR32: (Symbol + Addend)
1594 static inline Status
1595 addr32(unsigned char* view, Address value, Overflow_check overflow)
1596 { return This::template rela<32,32>(view, value, overflow); }
1597
1598 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1599 static inline Status
1600 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1601 { return This::template rela_ua<32,32>(view, value, overflow); }
1602
1603 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1604 static inline Status
1605 addr24(unsigned char* view, Address value, Overflow_check overflow)
1606 {
1607 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1608 value, overflow);
1609 if (overflow != CHECK_NONE && (value & 3) != 0)
1610 stat = STATUS_OVERFLOW;
1611 return stat;
1612 }
1613
1614 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1615 static inline Status
1616 addr16(unsigned char* view, Address value, Overflow_check overflow)
1617 { return This::template rela<16,16>(view, value, overflow); }
1618
1619 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1620 static inline Status
1621 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1622 { return This::template rela_ua<16,16>(view, value, overflow); }
1623
1624 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1625 static inline Status
1626 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1627 {
1628 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1629 if (overflow != CHECK_NONE && (value & 3) != 0)
1630 stat = STATUS_OVERFLOW;
1631 return stat;
1632 }
1633
1634 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1635 static inline void
1636 addr16_hi(unsigned char* view, Address value)
1637 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1638
1639 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1640 static inline void
1641 addr16_ha(unsigned char* view, Address value)
1642 { This::addr16_hi(view, value + 0x8000); }
1643
1644 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1645 static inline void
1646 addr16_hi2(unsigned char* view, Address value)
1647 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1648
1649 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1650 static inline void
1651 addr16_ha2(unsigned char* view, Address value)
1652 { This::addr16_hi2(view, value + 0x8000); }
1653
1654 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1655 static inline void
1656 addr16_hi3(unsigned char* view, Address value)
1657 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1658
1659 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1660 static inline void
1661 addr16_ha3(unsigned char* view, Address value)
1662 { This::addr16_hi3(view, value + 0x8000); }
1663
1664 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1665 static inline Status
1666 addr14(unsigned char* view, Address value, Overflow_check overflow)
1667 {
1668 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1669 if (overflow != CHECK_NONE && (value & 3) != 0)
1670 stat = STATUS_OVERFLOW;
1671 return stat;
1672 }
1673 };
1674
1675 // Set ABI version for input and output.
1676
1677 template<int size, bool big_endian>
1678 void
1679 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1680 {
1681 this->e_flags_ |= ver;
1682 if (this->abiversion() != 0)
1683 {
1684 Target_powerpc<size, big_endian>* target =
1685 static_cast<Target_powerpc<size, big_endian>*>(
1686 parameters->sized_target<size, big_endian>());
1687 if (target->abiversion() == 0)
1688 target->set_abiversion(this->abiversion());
1689 else if (target->abiversion() != this->abiversion())
1690 gold_error(_("%s: ABI version %d is not compatible "
1691 "with ABI version %d output"),
1692 this->name().c_str(),
1693 this->abiversion(), target->abiversion());
1694
1695 }
1696 }
1697
1698 // Stash away the index of .got2 or .opd in a relocatable object, if
1699 // such a section exists.
1700
1701 template<int size, bool big_endian>
1702 bool
1703 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1704 Read_symbols_data* sd)
1705 {
1706 const unsigned char* const pshdrs = sd->section_headers->data();
1707 const unsigned char* namesu = sd->section_names->data();
1708 const char* names = reinterpret_cast<const char*>(namesu);
1709 section_size_type names_size = sd->section_names_size;
1710 const unsigned char* s;
1711
1712 s = this->template find_shdr<size, big_endian>(pshdrs,
1713 size == 32 ? ".got2" : ".opd",
1714 names, names_size, NULL);
1715 if (s != NULL)
1716 {
1717 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1718 this->special_ = ndx;
1719 if (size == 64)
1720 {
1721 if (this->abiversion() == 0)
1722 this->set_abiversion(1);
1723 else if (this->abiversion() > 1)
1724 gold_error(_("%s: .opd invalid in abiv%d"),
1725 this->name().c_str(), this->abiversion());
1726 }
1727 }
1728 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1729 }
1730
1731 // Examine .rela.opd to build info about function entry points.
1732
1733 template<int size, bool big_endian>
1734 void
1735 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1736 size_t reloc_count,
1737 const unsigned char* prelocs,
1738 const unsigned char* plocal_syms)
1739 {
1740 if (size == 64)
1741 {
1742 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1743 Reltype;
1744 const int reloc_size
1745 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1746 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1747 Address expected_off = 0;
1748 bool regular = true;
1749 unsigned int opd_ent_size = 0;
1750
1751 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1752 {
1753 Reltype reloc(prelocs);
1754 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1755 = reloc.get_r_info();
1756 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1757 if (r_type == elfcpp::R_PPC64_ADDR64)
1758 {
1759 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1760 typename elfcpp::Elf_types<size>::Elf_Addr value;
1761 bool is_ordinary;
1762 unsigned int shndx;
1763 if (r_sym < this->local_symbol_count())
1764 {
1765 typename elfcpp::Sym<size, big_endian>
1766 lsym(plocal_syms + r_sym * sym_size);
1767 shndx = lsym.get_st_shndx();
1768 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1769 value = lsym.get_st_value();
1770 }
1771 else
1772 shndx = this->symbol_section_and_value(r_sym, &value,
1773 &is_ordinary);
1774 this->set_opd_ent(reloc.get_r_offset(), shndx,
1775 value + reloc.get_r_addend());
1776 if (i == 2)
1777 {
1778 expected_off = reloc.get_r_offset();
1779 opd_ent_size = expected_off;
1780 }
1781 else if (expected_off != reloc.get_r_offset())
1782 regular = false;
1783 expected_off += opd_ent_size;
1784 }
1785 else if (r_type == elfcpp::R_PPC64_TOC)
1786 {
1787 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1788 regular = false;
1789 }
1790 else
1791 {
1792 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1793 this->name().c_str(), r_type);
1794 regular = false;
1795 }
1796 }
1797 if (reloc_count <= 2)
1798 opd_ent_size = this->section_size(this->opd_shndx());
1799 if (opd_ent_size != 24 && opd_ent_size != 16)
1800 regular = false;
1801 if (!regular)
1802 {
1803 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1804 this->name().c_str());
1805 opd_ent_size = 0;
1806 }
1807 }
1808 }
1809
1810 template<int size, bool big_endian>
1811 void
1812 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1813 {
1814 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1815 if (size == 64)
1816 {
1817 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1818 p != rd->relocs.end();
1819 ++p)
1820 {
1821 if (p->data_shndx == this->opd_shndx())
1822 {
1823 uint64_t opd_size = this->section_size(this->opd_shndx());
1824 gold_assert(opd_size == static_cast<size_t>(opd_size));
1825 if (opd_size != 0)
1826 {
1827 this->init_opd(opd_size);
1828 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1829 rd->local_symbols->data());
1830 }
1831 break;
1832 }
1833 }
1834 }
1835 }
1836
1837 // Read the symbols then set up st_other vector.
1838
1839 template<int size, bool big_endian>
1840 void
1841 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1842 {
1843 this->base_read_symbols(sd);
1844 if (size == 64)
1845 {
1846 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1847 const unsigned char* const pshdrs = sd->section_headers->data();
1848 const unsigned int loccount = this->do_local_symbol_count();
1849 if (loccount != 0)
1850 {
1851 this->st_other_.resize(loccount);
1852 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1853 off_t locsize = loccount * sym_size;
1854 const unsigned int symtab_shndx = this->symtab_shndx();
1855 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1856 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1857 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1858 locsize, true, false);
1859 psyms += sym_size;
1860 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1861 {
1862 elfcpp::Sym<size, big_endian> sym(psyms);
1863 unsigned char st_other = sym.get_st_other();
1864 this->st_other_[i] = st_other;
1865 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1866 {
1867 if (this->abiversion() == 0)
1868 this->set_abiversion(2);
1869 else if (this->abiversion() < 2)
1870 gold_error(_("%s: local symbol %d has invalid st_other"
1871 " for ABI version 1"),
1872 this->name().c_str(), i);
1873 }
1874 }
1875 }
1876 }
1877 }
1878
1879 template<int size, bool big_endian>
1880 void
1881 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1882 {
1883 this->e_flags_ |= ver;
1884 if (this->abiversion() != 0)
1885 {
1886 Target_powerpc<size, big_endian>* target =
1887 static_cast<Target_powerpc<size, big_endian>*>(
1888 parameters->sized_target<size, big_endian>());
1889 if (target->abiversion() == 0)
1890 target->set_abiversion(this->abiversion());
1891 else if (target->abiversion() != this->abiversion())
1892 gold_error(_("%s: ABI version %d is not compatible "
1893 "with ABI version %d output"),
1894 this->name().c_str(),
1895 this->abiversion(), target->abiversion());
1896
1897 }
1898 }
1899
1900 // Call Sized_dynobj::base_read_symbols to read the symbols then
1901 // read .opd from a dynamic object, filling in opd_ent_ vector,
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1906 {
1907 this->base_read_symbols(sd);
1908 if (size == 64)
1909 {
1910 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1911 const unsigned char* const pshdrs = sd->section_headers->data();
1912 const unsigned char* namesu = sd->section_names->data();
1913 const char* names = reinterpret_cast<const char*>(namesu);
1914 const unsigned char* s = NULL;
1915 const unsigned char* opd;
1916 section_size_type opd_size;
1917
1918 // Find and read .opd section.
1919 while (1)
1920 {
1921 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1922 sd->section_names_size,
1923 s);
1924 if (s == NULL)
1925 return;
1926
1927 typename elfcpp::Shdr<size, big_endian> shdr(s);
1928 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1929 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1930 {
1931 if (this->abiversion() == 0)
1932 this->set_abiversion(1);
1933 else if (this->abiversion() > 1)
1934 gold_error(_("%s: .opd invalid in abiv%d"),
1935 this->name().c_str(), this->abiversion());
1936
1937 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1938 this->opd_address_ = shdr.get_sh_addr();
1939 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1940 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1941 true, false);
1942 break;
1943 }
1944 }
1945
1946 // Build set of executable sections.
1947 // Using a set is probably overkill. There is likely to be only
1948 // a few executable sections, typically .init, .text and .fini,
1949 // and they are generally grouped together.
1950 typedef std::set<Sec_info> Exec_sections;
1951 Exec_sections exec_sections;
1952 s = pshdrs;
1953 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1954 {
1955 typename elfcpp::Shdr<size, big_endian> shdr(s);
1956 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1957 && ((shdr.get_sh_flags()
1958 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1959 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1960 && shdr.get_sh_size() != 0)
1961 {
1962 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1963 shdr.get_sh_size(), i));
1964 }
1965 }
1966 if (exec_sections.empty())
1967 return;
1968
1969 // Look over the OPD entries. This is complicated by the fact
1970 // that some binaries will use two-word entries while others
1971 // will use the standard three-word entries. In most cases
1972 // the third word (the environment pointer for languages like
1973 // Pascal) is unused and will be zero. If the third word is
1974 // used it should not be pointing into executable sections,
1975 // I think.
1976 this->init_opd(opd_size);
1977 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
1978 {
1979 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1980 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
1981 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
1982 if (val == 0)
1983 // Chances are that this is the third word of an OPD entry.
1984 continue;
1985 typename Exec_sections::const_iterator e
1986 = exec_sections.upper_bound(Sec_info(val, 0, 0));
1987 if (e != exec_sections.begin())
1988 {
1989 --e;
1990 if (e->start <= val && val < e->start + e->len)
1991 {
1992 // We have an address in an executable section.
1993 // VAL ought to be the function entry, set it up.
1994 this->set_opd_ent(p - opd, e->shndx, val);
1995 // Skip second word of OPD entry, the TOC pointer.
1996 p += 8;
1997 }
1998 }
1999 // If we didn't match any executable sections, we likely
2000 // have a non-zero third word in the OPD entry.
2001 }
2002 }
2003 }
2004
2005 // Set up some symbols.
2006
2007 template<int size, bool big_endian>
2008 void
2009 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2010 Symbol_table* symtab,
2011 Layout* layout)
2012 {
2013 if (size == 32)
2014 {
2015 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2016 // undefined when scanning relocs (and thus requires
2017 // non-relative dynamic relocs). The proper value will be
2018 // updated later.
2019 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2020 if (gotsym != NULL && gotsym->is_undefined())
2021 {
2022 Target_powerpc<size, big_endian>* target =
2023 static_cast<Target_powerpc<size, big_endian>*>(
2024 parameters->sized_target<size, big_endian>());
2025 Output_data_got_powerpc<size, big_endian>* got
2026 = target->got_section(symtab, layout);
2027 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2028 Symbol_table::PREDEFINED,
2029 got, 0, 0,
2030 elfcpp::STT_OBJECT,
2031 elfcpp::STB_LOCAL,
2032 elfcpp::STV_HIDDEN, 0,
2033 false, false);
2034 }
2035
2036 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2037 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2038 if (sdasym != NULL && sdasym->is_undefined())
2039 {
2040 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2041 Output_section* os
2042 = layout->add_output_section_data(".sdata", 0,
2043 elfcpp::SHF_ALLOC
2044 | elfcpp::SHF_WRITE,
2045 sdata, ORDER_SMALL_DATA, false);
2046 symtab->define_in_output_data("_SDA_BASE_", NULL,
2047 Symbol_table::PREDEFINED,
2048 os, 32768, 0, elfcpp::STT_OBJECT,
2049 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2050 0, false, false);
2051 }
2052 }
2053 else
2054 {
2055 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2056 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2057 if (gotsym != NULL && gotsym->is_undefined())
2058 {
2059 Target_powerpc<size, big_endian>* target =
2060 static_cast<Target_powerpc<size, big_endian>*>(
2061 parameters->sized_target<size, big_endian>());
2062 Output_data_got_powerpc<size, big_endian>* got
2063 = target->got_section(symtab, layout);
2064 symtab->define_in_output_data(".TOC.", NULL,
2065 Symbol_table::PREDEFINED,
2066 got, 0x8000, 0,
2067 elfcpp::STT_OBJECT,
2068 elfcpp::STB_LOCAL,
2069 elfcpp::STV_HIDDEN, 0,
2070 false, false);
2071 }
2072 }
2073 }
2074
2075 // Set up PowerPC target specific relobj.
2076
2077 template<int size, bool big_endian>
2078 Object*
2079 Target_powerpc<size, big_endian>::do_make_elf_object(
2080 const std::string& name,
2081 Input_file* input_file,
2082 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2083 {
2084 int et = ehdr.get_e_type();
2085 // ET_EXEC files are valid input for --just-symbols/-R,
2086 // and we treat them as relocatable objects.
2087 if (et == elfcpp::ET_REL
2088 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2089 {
2090 Powerpc_relobj<size, big_endian>* obj =
2091 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2092 obj->setup();
2093 return obj;
2094 }
2095 else if (et == elfcpp::ET_DYN)
2096 {
2097 Powerpc_dynobj<size, big_endian>* obj =
2098 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2099 obj->setup();
2100 return obj;
2101 }
2102 else
2103 {
2104 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2105 return NULL;
2106 }
2107 }
2108
2109 template<int size, bool big_endian>
2110 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2111 {
2112 public:
2113 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2114 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2115
2116 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2117 : Output_data_got<size, big_endian>(),
2118 symtab_(symtab), layout_(layout),
2119 header_ent_cnt_(size == 32 ? 3 : 1),
2120 header_index_(size == 32 ? 0x2000 : 0)
2121 { }
2122
2123 // Override all the Output_data_got methods we use so as to first call
2124 // reserve_ent().
2125 bool
2126 add_global(Symbol* gsym, unsigned int got_type)
2127 {
2128 this->reserve_ent();
2129 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2130 }
2131
2132 bool
2133 add_global_plt(Symbol* gsym, unsigned int got_type)
2134 {
2135 this->reserve_ent();
2136 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2137 }
2138
2139 bool
2140 add_global_tls(Symbol* gsym, unsigned int got_type)
2141 { return this->add_global_plt(gsym, got_type); }
2142
2143 void
2144 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2145 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2146 {
2147 this->reserve_ent();
2148 Output_data_got<size, big_endian>::
2149 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2150 }
2151
2152 void
2153 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2154 Output_data_reloc_generic* rel_dyn,
2155 unsigned int r_type_1, unsigned int r_type_2)
2156 {
2157 this->reserve_ent(2);
2158 Output_data_got<size, big_endian>::
2159 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2160 }
2161
2162 bool
2163 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2164 {
2165 this->reserve_ent();
2166 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2167 got_type);
2168 }
2169
2170 bool
2171 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2172 {
2173 this->reserve_ent();
2174 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2175 got_type);
2176 }
2177
2178 bool
2179 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2180 { return this->add_local_plt(object, sym_index, got_type); }
2181
2182 void
2183 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2184 unsigned int got_type,
2185 Output_data_reloc_generic* rel_dyn,
2186 unsigned int r_type)
2187 {
2188 this->reserve_ent(2);
2189 Output_data_got<size, big_endian>::
2190 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2191 }
2192
2193 unsigned int
2194 add_constant(Valtype constant)
2195 {
2196 this->reserve_ent();
2197 return Output_data_got<size, big_endian>::add_constant(constant);
2198 }
2199
2200 unsigned int
2201 add_constant_pair(Valtype c1, Valtype c2)
2202 {
2203 this->reserve_ent(2);
2204 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2205 }
2206
2207 // Offset of _GLOBAL_OFFSET_TABLE_.
2208 unsigned int
2209 g_o_t() const
2210 {
2211 return this->got_offset(this->header_index_);
2212 }
2213
2214 // Offset of base used to access the GOT/TOC.
2215 // The got/toc pointer reg will be set to this value.
2216 Valtype
2217 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2218 {
2219 if (size == 32)
2220 return this->g_o_t();
2221 else
2222 return (this->output_section()->address()
2223 + object->toc_base_offset()
2224 - this->address());
2225 }
2226
2227 // Ensure our GOT has a header.
2228 void
2229 set_final_data_size()
2230 {
2231 if (this->header_ent_cnt_ != 0)
2232 this->make_header();
2233 Output_data_got<size, big_endian>::set_final_data_size();
2234 }
2235
2236 // First word of GOT header needs some values that are not
2237 // handled by Output_data_got so poke them in here.
2238 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2239 void
2240 do_write(Output_file* of)
2241 {
2242 Valtype val = 0;
2243 if (size == 32 && this->layout_->dynamic_data() != NULL)
2244 val = this->layout_->dynamic_section()->address();
2245 if (size == 64)
2246 val = this->output_section()->address() + 0x8000;
2247 this->replace_constant(this->header_index_, val);
2248 Output_data_got<size, big_endian>::do_write(of);
2249 }
2250
2251 private:
2252 void
2253 reserve_ent(unsigned int cnt = 1)
2254 {
2255 if (this->header_ent_cnt_ == 0)
2256 return;
2257 if (this->num_entries() + cnt > this->header_index_)
2258 this->make_header();
2259 }
2260
2261 void
2262 make_header()
2263 {
2264 this->header_ent_cnt_ = 0;
2265 this->header_index_ = this->num_entries();
2266 if (size == 32)
2267 {
2268 Output_data_got<size, big_endian>::add_constant(0);
2269 Output_data_got<size, big_endian>::add_constant(0);
2270 Output_data_got<size, big_endian>::add_constant(0);
2271
2272 // Define _GLOBAL_OFFSET_TABLE_ at the header
2273 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2274 if (gotsym != NULL)
2275 {
2276 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2277 sym->set_value(this->g_o_t());
2278 }
2279 else
2280 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2281 Symbol_table::PREDEFINED,
2282 this, this->g_o_t(), 0,
2283 elfcpp::STT_OBJECT,
2284 elfcpp::STB_LOCAL,
2285 elfcpp::STV_HIDDEN, 0,
2286 false, false);
2287 }
2288 else
2289 Output_data_got<size, big_endian>::add_constant(0);
2290 }
2291
2292 // Stashed pointers.
2293 Symbol_table* symtab_;
2294 Layout* layout_;
2295
2296 // GOT header size.
2297 unsigned int header_ent_cnt_;
2298 // GOT header index.
2299 unsigned int header_index_;
2300 };
2301
2302 // Get the GOT section, creating it if necessary.
2303
2304 template<int size, bool big_endian>
2305 Output_data_got_powerpc<size, big_endian>*
2306 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2307 Layout* layout)
2308 {
2309 if (this->got_ == NULL)
2310 {
2311 gold_assert(symtab != NULL && layout != NULL);
2312
2313 this->got_
2314 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2315
2316 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2317 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2318 this->got_, ORDER_DATA, false);
2319 }
2320
2321 return this->got_;
2322 }
2323
2324 // Get the dynamic reloc section, creating it if necessary.
2325
2326 template<int size, bool big_endian>
2327 typename Target_powerpc<size, big_endian>::Reloc_section*
2328 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2329 {
2330 if (this->rela_dyn_ == NULL)
2331 {
2332 gold_assert(layout != NULL);
2333 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2334 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2335 elfcpp::SHF_ALLOC, this->rela_dyn_,
2336 ORDER_DYNAMIC_RELOCS, false);
2337 }
2338 return this->rela_dyn_;
2339 }
2340
2341 // Similarly, but for ifunc symbols get the one for ifunc.
2342
2343 template<int size, bool big_endian>
2344 typename Target_powerpc<size, big_endian>::Reloc_section*
2345 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2346 Layout* layout,
2347 bool for_ifunc)
2348 {
2349 if (!for_ifunc)
2350 return this->rela_dyn_section(layout);
2351
2352 if (this->iplt_ == NULL)
2353 this->make_iplt_section(symtab, layout);
2354 return this->iplt_->rel_plt();
2355 }
2356
2357 class Stub_control
2358 {
2359 public:
2360 // Determine the stub group size. The group size is the absolute
2361 // value of the parameter --stub-group-size. If --stub-group-size
2362 // is passed a negative value, we restrict stubs to be always before
2363 // the stubbed branches.
2364 Stub_control(int32_t size)
2365 : state_(NO_GROUP), stub_group_size_(abs(size)),
2366 stub14_group_size_(abs(size) >> 10),
2367 stubs_always_before_branch_(size < 0), suppress_size_errors_(false),
2368 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2369 {
2370 if (stub_group_size_ == 1)
2371 {
2372 // Default values.
2373 if (stubs_always_before_branch_)
2374 {
2375 stub_group_size_ = 0x1e00000;
2376 stub14_group_size_ = 0x7800;
2377 }
2378 else
2379 {
2380 stub_group_size_ = 0x1c00000;
2381 stub14_group_size_ = 0x7000;
2382 }
2383 suppress_size_errors_ = true;
2384 }
2385 }
2386
2387 // Return true iff input section can be handled by current stub
2388 // group.
2389 bool
2390 can_add_to_stub_group(Output_section* o,
2391 const Output_section::Input_section* i,
2392 bool has14);
2393
2394 const Output_section::Input_section*
2395 owner()
2396 { return owner_; }
2397
2398 Output_section*
2399 output_section()
2400 { return output_section_; }
2401
2402 void
2403 set_output_and_owner(Output_section* o,
2404 const Output_section::Input_section* i)
2405 {
2406 this->output_section_ = o;
2407 this->owner_ = i;
2408 }
2409
2410 private:
2411 typedef enum
2412 {
2413 NO_GROUP,
2414 FINDING_STUB_SECTION,
2415 HAS_STUB_SECTION
2416 } State;
2417
2418 State state_;
2419 uint32_t stub_group_size_;
2420 uint32_t stub14_group_size_;
2421 bool stubs_always_before_branch_;
2422 bool suppress_size_errors_;
2423 uint64_t group_end_addr_;
2424 const Output_section::Input_section* owner_;
2425 Output_section* output_section_;
2426 };
2427
2428 // Return true iff input section can be handled by current stub
2429 // group.
2430
2431 bool
2432 Stub_control::can_add_to_stub_group(Output_section* o,
2433 const Output_section::Input_section* i,
2434 bool has14)
2435 {
2436 uint32_t group_size
2437 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2438 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2439 uint64_t this_size;
2440 uint64_t start_addr = o->address();
2441
2442 if (whole_sec)
2443 // .init and .fini sections are pasted together to form a single
2444 // function. We can't be adding stubs in the middle of the function.
2445 this_size = o->data_size();
2446 else
2447 {
2448 start_addr += i->relobj()->output_section_offset(i->shndx());
2449 this_size = i->data_size();
2450 }
2451 uint64_t end_addr = start_addr + this_size;
2452 bool toobig = this_size > group_size;
2453
2454 if (toobig && !this->suppress_size_errors_)
2455 gold_warning(_("%s:%s exceeds group size"),
2456 i->relobj()->name().c_str(),
2457 i->relobj()->section_name(i->shndx()).c_str());
2458
2459 if (this->state_ != HAS_STUB_SECTION
2460 && (!whole_sec || this->output_section_ != o)
2461 && (this->state_ == NO_GROUP
2462 || this->group_end_addr_ - end_addr < group_size))
2463 {
2464 this->owner_ = i;
2465 this->output_section_ = o;
2466 }
2467
2468 if (this->state_ == NO_GROUP)
2469 {
2470 this->state_ = FINDING_STUB_SECTION;
2471 this->group_end_addr_ = end_addr;
2472 }
2473 else if (this->group_end_addr_ - start_addr < group_size)
2474 ;
2475 // Adding this section would make the group larger than GROUP_SIZE.
2476 else if (this->state_ == FINDING_STUB_SECTION
2477 && !this->stubs_always_before_branch_
2478 && !toobig)
2479 {
2480 // But wait, there's more! Input sections up to GROUP_SIZE
2481 // bytes before the stub table can be handled by it too.
2482 this->state_ = HAS_STUB_SECTION;
2483 this->group_end_addr_ = end_addr;
2484 }
2485 else
2486 {
2487 this->state_ = NO_GROUP;
2488 return false;
2489 }
2490 return true;
2491 }
2492
2493 // Look over all the input sections, deciding where to place stubs.
2494
2495 template<int size, bool big_endian>
2496 void
2497 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2498 const Task*)
2499 {
2500 Stub_control stub_control(parameters->options().stub_group_size());
2501
2502 // Group input sections and insert stub table
2503 Stub_table<size, big_endian>* stub_table = NULL;
2504 Layout::Section_list section_list;
2505 layout->get_executable_sections(&section_list);
2506 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2507 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2508 o != section_list.rend();
2509 ++o)
2510 {
2511 typedef Output_section::Input_section_list Input_section_list;
2512 for (Input_section_list::const_reverse_iterator i
2513 = (*o)->input_sections().rbegin();
2514 i != (*o)->input_sections().rend();
2515 ++i)
2516 {
2517 if (i->is_input_section())
2518 {
2519 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2520 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2521 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2522 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2523 {
2524 stub_table->init(stub_control.owner(),
2525 stub_control.output_section());
2526 stub_control.set_output_and_owner(*o, &*i);
2527 stub_table = NULL;
2528 }
2529 if (stub_table == NULL)
2530 stub_table = this->new_stub_table();
2531 ppcobj->set_stub_table(i->shndx(), stub_table);
2532 }
2533 }
2534 }
2535 if (stub_table != NULL)
2536 {
2537 const Output_section::Input_section* i = stub_control.owner();
2538 if (!i->is_input_section())
2539 {
2540 // Corner case. A new stub group was made for the first
2541 // section (last one looked at here) for some reason, but
2542 // the first section is already being used as the owner for
2543 // a stub table for following sections. Force it into that
2544 // stub group.
2545 gold_assert(this->stub_tables_.size() >= 2);
2546 this->stub_tables_.pop_back();
2547 delete stub_table;
2548 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2549 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2550 ppcobj->set_stub_table(i->shndx(), this->stub_tables_.back());
2551 }
2552 else
2553 stub_table->init(i, stub_control.output_section());
2554 }
2555 }
2556
2557 // If this branch needs a plt call stub, or a long branch stub, make one.
2558
2559 template<int size, bool big_endian>
2560 void
2561 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2562 Stub_table<size, big_endian>* stub_table,
2563 Stub_table<size, big_endian>* ifunc_stub_table,
2564 Symbol_table* symtab) const
2565 {
2566 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2567 if (sym != NULL && sym->is_forwarder())
2568 sym = symtab->resolve_forwards(sym);
2569 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2570 Target_powerpc<size, big_endian>* target =
2571 static_cast<Target_powerpc<size, big_endian>*>(
2572 parameters->sized_target<size, big_endian>());
2573 if (gsym != NULL
2574 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2575 : this->object_->local_has_plt_offset(this->r_sym_))
2576 {
2577 if (size == 64
2578 && gsym != NULL
2579 && target->abiversion() >= 2
2580 && !parameters->options().output_is_position_independent()
2581 && !is_branch_reloc(this->r_type_))
2582 target->glink_section()->add_global_entry(gsym);
2583 else
2584 {
2585 if (stub_table == NULL)
2586 stub_table = this->object_->stub_table(this->shndx_);
2587 if (stub_table == NULL)
2588 {
2589 // This is a ref from a data section to an ifunc symbol.
2590 stub_table = ifunc_stub_table;
2591 }
2592 gold_assert(stub_table != NULL);
2593 if (gsym != NULL)
2594 stub_table->add_plt_call_entry(this->object_, gsym,
2595 this->r_type_, this->addend_);
2596 else
2597 stub_table->add_plt_call_entry(this->object_, this->r_sym_,
2598 this->r_type_, this->addend_);
2599 }
2600 }
2601 else
2602 {
2603 unsigned long max_branch_offset;
2604 if (this->r_type_ == elfcpp::R_POWERPC_REL14
2605 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRTAKEN
2606 || this->r_type_ == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2607 max_branch_offset = 1 << 15;
2608 else if (this->r_type_ == elfcpp::R_POWERPC_REL24
2609 || this->r_type_ == elfcpp::R_PPC_PLTREL24
2610 || this->r_type_ == elfcpp::R_PPC_LOCAL24PC)
2611 max_branch_offset = 1 << 25;
2612 else
2613 return;
2614 Address from = this->object_->get_output_section_offset(this->shndx_);
2615 gold_assert(from != invalid_address);
2616 from += (this->object_->output_section(this->shndx_)->address()
2617 + this->offset_);
2618 Address to;
2619 if (gsym != NULL)
2620 {
2621 switch (gsym->source())
2622 {
2623 case Symbol::FROM_OBJECT:
2624 {
2625 Object* symobj = gsym->object();
2626 if (symobj->is_dynamic()
2627 || symobj->pluginobj() != NULL)
2628 return;
2629 bool is_ordinary;
2630 unsigned int shndx = gsym->shndx(&is_ordinary);
2631 if (shndx == elfcpp::SHN_UNDEF)
2632 return;
2633 }
2634 break;
2635
2636 case Symbol::IS_UNDEFINED:
2637 return;
2638
2639 default:
2640 break;
2641 }
2642 Symbol_table::Compute_final_value_status status;
2643 to = symtab->compute_final_value<size>(gsym, &status);
2644 if (status != Symbol_table::CFVS_OK)
2645 return;
2646 if (size == 64)
2647 to += this->object_->ppc64_local_entry_offset(gsym);
2648 }
2649 else
2650 {
2651 const Symbol_value<size>* psymval
2652 = this->object_->local_symbol(this->r_sym_);
2653 Symbol_value<size> symval;
2654 typedef Sized_relobj_file<size, big_endian> ObjType;
2655 typename ObjType::Compute_final_local_value_status status
2656 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2657 &symval, symtab);
2658 if (status != ObjType::CFLV_OK
2659 || !symval.has_output_value())
2660 return;
2661 to = symval.value(this->object_, 0);
2662 if (size == 64)
2663 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2664 }
2665 to += this->addend_;
2666 if (stub_table == NULL)
2667 stub_table = this->object_->stub_table(this->shndx_);
2668 if (size == 64 && target->abiversion() < 2)
2669 {
2670 unsigned int dest_shndx;
2671 to = target->symval_for_branch(symtab, to, gsym,
2672 this->object_, &dest_shndx);
2673 }
2674 Address delta = to - from;
2675 if (delta + max_branch_offset >= 2 * max_branch_offset)
2676 {
2677 if (stub_table == NULL)
2678 {
2679 gold_warning(_("%s:%s: branch in non-executable section,"
2680 " no long branch stub for you"),
2681 this->object_->name().c_str(),
2682 this->object_->section_name(this->shndx_).c_str());
2683 return;
2684 }
2685 stub_table->add_long_branch_entry(this->object_, to);
2686 }
2687 }
2688 }
2689
2690 // Relaxation hook. This is where we do stub generation.
2691
2692 template<int size, bool big_endian>
2693 bool
2694 Target_powerpc<size, big_endian>::do_relax(int pass,
2695 const Input_objects*,
2696 Symbol_table* symtab,
2697 Layout* layout,
2698 const Task* task)
2699 {
2700 unsigned int prev_brlt_size = 0;
2701 if (pass == 1)
2702 {
2703 bool thread_safe
2704 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2705 if (size == 64
2706 && this->abiversion() < 2
2707 && !thread_safe
2708 && !parameters->options().user_set_plt_thread_safe())
2709 {
2710 static const char* const thread_starter[] =
2711 {
2712 "pthread_create",
2713 /* libstdc++ */
2714 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2715 /* librt */
2716 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2717 "mq_notify", "create_timer",
2718 /* libanl */
2719 "getaddrinfo_a",
2720 /* libgomp */
2721 "GOMP_parallel",
2722 "GOMP_parallel_start",
2723 "GOMP_parallel_loop_static",
2724 "GOMP_parallel_loop_static_start",
2725 "GOMP_parallel_loop_dynamic",
2726 "GOMP_parallel_loop_dynamic_start",
2727 "GOMP_parallel_loop_guided",
2728 "GOMP_parallel_loop_guided_start",
2729 "GOMP_parallel_loop_runtime",
2730 "GOMP_parallel_loop_runtime_start",
2731 "GOMP_parallel_sections",
2732 "GOMP_parallel_sections_start",
2733 /* libgo */
2734 "__go_go",
2735 };
2736
2737 if (parameters->options().shared())
2738 thread_safe = true;
2739 else
2740 {
2741 for (unsigned int i = 0;
2742 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2743 i++)
2744 {
2745 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2746 thread_safe = (sym != NULL
2747 && sym->in_reg()
2748 && sym->in_real_elf());
2749 if (thread_safe)
2750 break;
2751 }
2752 }
2753 }
2754 this->plt_thread_safe_ = thread_safe;
2755 this->group_sections(layout, task);
2756 }
2757
2758 // We need address of stub tables valid for make_stub.
2759 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2760 p != this->stub_tables_.end();
2761 ++p)
2762 {
2763 const Powerpc_relobj<size, big_endian>* object
2764 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2765 Address off = object->get_output_section_offset((*p)->shndx());
2766 gold_assert(off != invalid_address);
2767 Output_section* os = (*p)->output_section();
2768 (*p)->set_address_and_size(os, off);
2769 }
2770
2771 if (pass != 1)
2772 {
2773 // Clear plt call stubs, long branch stubs and branch lookup table.
2774 prev_brlt_size = this->branch_lookup_table_.size();
2775 this->branch_lookup_table_.clear();
2776 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2777 p != this->stub_tables_.end();
2778 ++p)
2779 {
2780 (*p)->clear_stubs();
2781 }
2782 }
2783
2784 // Build all the stubs.
2785 Stub_table<size, big_endian>* ifunc_stub_table
2786 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2787 Stub_table<size, big_endian>* one_stub_table
2788 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2789 for (typename Branches::const_iterator b = this->branch_info_.begin();
2790 b != this->branch_info_.end();
2791 b++)
2792 {
2793 b->make_stub(one_stub_table, ifunc_stub_table, symtab);
2794 }
2795
2796 // Did anything change size?
2797 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2798 bool again = num_huge_branches != prev_brlt_size;
2799 if (size == 64 && num_huge_branches != 0)
2800 this->make_brlt_section(layout);
2801 if (size == 64 && again)
2802 this->brlt_section_->set_current_size(num_huge_branches);
2803
2804 typedef Unordered_set<Output_section*> Output_sections;
2805 Output_sections os_need_update;
2806 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2807 p != this->stub_tables_.end();
2808 ++p)
2809 {
2810 if ((*p)->size_update())
2811 {
2812 again = true;
2813 (*p)->add_eh_frame(layout);
2814 os_need_update.insert((*p)->output_section());
2815 }
2816 }
2817
2818 // Set output section offsets for all input sections in an output
2819 // section that just changed size. Anything past the stubs will
2820 // need updating.
2821 for (typename Output_sections::iterator p = os_need_update.begin();
2822 p != os_need_update.end();
2823 p++)
2824 {
2825 Output_section* os = *p;
2826 Address off = 0;
2827 typedef Output_section::Input_section_list Input_section_list;
2828 for (Input_section_list::const_iterator i = os->input_sections().begin();
2829 i != os->input_sections().end();
2830 ++i)
2831 {
2832 off = align_address(off, i->addralign());
2833 if (i->is_input_section() || i->is_relaxed_input_section())
2834 i->relobj()->set_section_offset(i->shndx(), off);
2835 if (i->is_relaxed_input_section())
2836 {
2837 Stub_table<size, big_endian>* stub_table
2838 = static_cast<Stub_table<size, big_endian>*>(
2839 i->relaxed_input_section());
2840 off += stub_table->set_address_and_size(os, off);
2841 }
2842 else
2843 off += i->data_size();
2844 }
2845 // If .branch_lt is part of this output section, then we have
2846 // just done the offset adjustment.
2847 os->clear_section_offsets_need_adjustment();
2848 }
2849
2850 if (size == 64
2851 && !again
2852 && num_huge_branches != 0
2853 && parameters->options().output_is_position_independent())
2854 {
2855 // Fill in the BRLT relocs.
2856 this->brlt_section_->reset_brlt_sizes();
2857 for (typename Branch_lookup_table::const_iterator p
2858 = this->branch_lookup_table_.begin();
2859 p != this->branch_lookup_table_.end();
2860 ++p)
2861 {
2862 this->brlt_section_->add_reloc(p->first, p->second);
2863 }
2864 this->brlt_section_->finalize_brlt_sizes();
2865 }
2866 return again;
2867 }
2868
2869 template<int size, bool big_endian>
2870 void
2871 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2872 unsigned char* oview,
2873 uint64_t* paddress,
2874 off_t* plen) const
2875 {
2876 uint64_t address = plt->address();
2877 off_t len = plt->data_size();
2878
2879 if (plt == this->glink_)
2880 {
2881 // See Output_data_glink::do_write() for glink contents.
2882 if (len == 0)
2883 {
2884 gold_assert(parameters->doing_static_link());
2885 // Static linking may need stubs, to support ifunc and long
2886 // branches. We need to create an output section for
2887 // .eh_frame early in the link process, to have a place to
2888 // attach stub .eh_frame info. We also need to have
2889 // registered a CIE that matches the stub CIE. Both of
2890 // these requirements are satisfied by creating an FDE and
2891 // CIE for .glink, even though static linking will leave
2892 // .glink zero length.
2893 // ??? Hopefully generating an FDE with a zero address range
2894 // won't confuse anything that consumes .eh_frame info.
2895 }
2896 else if (size == 64)
2897 {
2898 // There is one word before __glink_PLTresolve
2899 address += 8;
2900 len -= 8;
2901 }
2902 else if (parameters->options().output_is_position_independent())
2903 {
2904 // There are two FDEs for a position independent glink.
2905 // The first covers the branch table, the second
2906 // __glink_PLTresolve at the end of glink.
2907 off_t resolve_size = this->glink_->pltresolve_size;
2908 if (oview[9] == elfcpp::DW_CFA_nop)
2909 len -= resolve_size;
2910 else
2911 {
2912 address += len - resolve_size;
2913 len = resolve_size;
2914 }
2915 }
2916 }
2917 else
2918 {
2919 // Must be a stub table.
2920 const Stub_table<size, big_endian>* stub_table
2921 = static_cast<const Stub_table<size, big_endian>*>(plt);
2922 uint64_t stub_address = stub_table->stub_address();
2923 len -= stub_address - address;
2924 address = stub_address;
2925 }
2926
2927 *paddress = address;
2928 *plen = len;
2929 }
2930
2931 // A class to handle the PLT data.
2932
2933 template<int size, bool big_endian>
2934 class Output_data_plt_powerpc : public Output_section_data_build
2935 {
2936 public:
2937 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
2938 size, big_endian> Reloc_section;
2939
2940 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
2941 Reloc_section* plt_rel,
2942 const char* name)
2943 : Output_section_data_build(size == 32 ? 4 : 8),
2944 rel_(plt_rel),
2945 targ_(targ),
2946 name_(name)
2947 { }
2948
2949 // Add an entry to the PLT.
2950 void
2951 add_entry(Symbol*);
2952
2953 void
2954 add_ifunc_entry(Symbol*);
2955
2956 void
2957 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
2958
2959 // Return the .rela.plt section data.
2960 Reloc_section*
2961 rel_plt() const
2962 {
2963 return this->rel_;
2964 }
2965
2966 // Return the number of PLT entries.
2967 unsigned int
2968 entry_count() const
2969 {
2970 if (this->current_data_size() == 0)
2971 return 0;
2972 return ((this->current_data_size() - this->first_plt_entry_offset())
2973 / this->plt_entry_size());
2974 }
2975
2976 protected:
2977 void
2978 do_adjust_output_section(Output_section* os)
2979 {
2980 os->set_entsize(0);
2981 }
2982
2983 // Write to a map file.
2984 void
2985 do_print_to_mapfile(Mapfile* mapfile) const
2986 { mapfile->print_output_data(this, this->name_); }
2987
2988 private:
2989 // Return the offset of the first non-reserved PLT entry.
2990 unsigned int
2991 first_plt_entry_offset() const
2992 {
2993 // IPLT has no reserved entry.
2994 if (this->name_[3] == 'I')
2995 return 0;
2996 return this->targ_->first_plt_entry_offset();
2997 }
2998
2999 // Return the size of each PLT entry.
3000 unsigned int
3001 plt_entry_size() const
3002 {
3003 return this->targ_->plt_entry_size();
3004 }
3005
3006 // Write out the PLT data.
3007 void
3008 do_write(Output_file*);
3009
3010 // The reloc section.
3011 Reloc_section* rel_;
3012 // Allows access to .glink for do_write.
3013 Target_powerpc<size, big_endian>* targ_;
3014 // What to report in map file.
3015 const char *name_;
3016 };
3017
3018 // Add an entry to the PLT.
3019
3020 template<int size, bool big_endian>
3021 void
3022 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3023 {
3024 if (!gsym->has_plt_offset())
3025 {
3026 section_size_type off = this->current_data_size();
3027 if (off == 0)
3028 off += this->first_plt_entry_offset();
3029 gsym->set_plt_offset(off);
3030 gsym->set_needs_dynsym_entry();
3031 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3032 this->rel_->add_global(gsym, dynrel, this, off, 0);
3033 off += this->plt_entry_size();
3034 this->set_current_data_size(off);
3035 }
3036 }
3037
3038 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3039
3040 template<int size, bool big_endian>
3041 void
3042 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3043 {
3044 if (!gsym->has_plt_offset())
3045 {
3046 section_size_type off = this->current_data_size();
3047 gsym->set_plt_offset(off);
3048 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3049 if (size == 64 && this->targ_->abiversion() < 2)
3050 dynrel = elfcpp::R_PPC64_JMP_IREL;
3051 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3052 off += this->plt_entry_size();
3053 this->set_current_data_size(off);
3054 }
3055 }
3056
3057 // Add an entry for a local ifunc symbol to the IPLT.
3058
3059 template<int size, bool big_endian>
3060 void
3061 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3062 Sized_relobj_file<size, big_endian>* relobj,
3063 unsigned int local_sym_index)
3064 {
3065 if (!relobj->local_has_plt_offset(local_sym_index))
3066 {
3067 section_size_type off = this->current_data_size();
3068 relobj->set_local_plt_offset(local_sym_index, off);
3069 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3070 if (size == 64 && this->targ_->abiversion() < 2)
3071 dynrel = elfcpp::R_PPC64_JMP_IREL;
3072 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3073 this, off, 0);
3074 off += this->plt_entry_size();
3075 this->set_current_data_size(off);
3076 }
3077 }
3078
3079 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3080 static const uint32_t add_2_2_11 = 0x7c425a14;
3081 static const uint32_t add_3_3_2 = 0x7c631214;
3082 static const uint32_t add_3_3_13 = 0x7c636a14;
3083 static const uint32_t add_11_0_11 = 0x7d605a14;
3084 static const uint32_t add_11_2_11 = 0x7d625a14;
3085 static const uint32_t add_11_11_2 = 0x7d6b1214;
3086 static const uint32_t addi_0_12 = 0x380c0000;
3087 static const uint32_t addi_2_2 = 0x38420000;
3088 static const uint32_t addi_3_3 = 0x38630000;
3089 static const uint32_t addi_11_11 = 0x396b0000;
3090 static const uint32_t addi_12_12 = 0x398c0000;
3091 static const uint32_t addis_0_2 = 0x3c020000;
3092 static const uint32_t addis_0_13 = 0x3c0d0000;
3093 static const uint32_t addis_3_2 = 0x3c620000;
3094 static const uint32_t addis_3_13 = 0x3c6d0000;
3095 static const uint32_t addis_11_2 = 0x3d620000;
3096 static const uint32_t addis_11_11 = 0x3d6b0000;
3097 static const uint32_t addis_11_30 = 0x3d7e0000;
3098 static const uint32_t addis_12_2 = 0x3d820000;
3099 static const uint32_t addis_12_12 = 0x3d8c0000;
3100 static const uint32_t b = 0x48000000;
3101 static const uint32_t bcl_20_31 = 0x429f0005;
3102 static const uint32_t bctr = 0x4e800420;
3103 static const uint32_t blr = 0x4e800020;
3104 static const uint32_t bnectr_p4 = 0x4ce20420;
3105 static const uint32_t cmpldi_2_0 = 0x28220000;
3106 static const uint32_t cror_15_15_15 = 0x4def7b82;
3107 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3108 static const uint32_t ld_0_1 = 0xe8010000;
3109 static const uint32_t ld_0_12 = 0xe80c0000;
3110 static const uint32_t ld_2_1 = 0xe8410000;
3111 static const uint32_t ld_2_2 = 0xe8420000;
3112 static const uint32_t ld_2_11 = 0xe84b0000;
3113 static const uint32_t ld_11_2 = 0xe9620000;
3114 static const uint32_t ld_11_11 = 0xe96b0000;
3115 static const uint32_t ld_12_2 = 0xe9820000;
3116 static const uint32_t ld_12_11 = 0xe98b0000;
3117 static const uint32_t ld_12_12 = 0xe98c0000;
3118 static const uint32_t lfd_0_1 = 0xc8010000;
3119 static const uint32_t li_0_0 = 0x38000000;
3120 static const uint32_t li_12_0 = 0x39800000;
3121 static const uint32_t lis_0_0 = 0x3c000000;
3122 static const uint32_t lis_11 = 0x3d600000;
3123 static const uint32_t lis_12 = 0x3d800000;
3124 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3125 static const uint32_t lwz_0_12 = 0x800c0000;
3126 static const uint32_t lwz_11_11 = 0x816b0000;
3127 static const uint32_t lwz_11_30 = 0x817e0000;
3128 static const uint32_t lwz_12_12 = 0x818c0000;
3129 static const uint32_t lwzu_0_12 = 0x840c0000;
3130 static const uint32_t mflr_0 = 0x7c0802a6;
3131 static const uint32_t mflr_11 = 0x7d6802a6;
3132 static const uint32_t mflr_12 = 0x7d8802a6;
3133 static const uint32_t mtctr_0 = 0x7c0903a6;
3134 static const uint32_t mtctr_11 = 0x7d6903a6;
3135 static const uint32_t mtctr_12 = 0x7d8903a6;
3136 static const uint32_t mtlr_0 = 0x7c0803a6;
3137 static const uint32_t mtlr_12 = 0x7d8803a6;
3138 static const uint32_t nop = 0x60000000;
3139 static const uint32_t ori_0_0_0 = 0x60000000;
3140 static const uint32_t srdi_0_0_2 = 0x7800f082;
3141 static const uint32_t std_0_1 = 0xf8010000;
3142 static const uint32_t std_0_12 = 0xf80c0000;
3143 static const uint32_t std_2_1 = 0xf8410000;
3144 static const uint32_t stfd_0_1 = 0xd8010000;
3145 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3146 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3147 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3148 static const uint32_t xor_2_12_12 = 0x7d826278;
3149 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3150
3151 // Write out the PLT.
3152
3153 template<int size, bool big_endian>
3154 void
3155 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3156 {
3157 if (size == 32 && this->name_[3] != 'I')
3158 {
3159 const section_size_type offset = this->offset();
3160 const section_size_type oview_size
3161 = convert_to_section_size_type(this->data_size());
3162 unsigned char* const oview = of->get_output_view(offset, oview_size);
3163 unsigned char* pov = oview;
3164 unsigned char* endpov = oview + oview_size;
3165
3166 // The address of the .glink branch table
3167 const Output_data_glink<size, big_endian>* glink
3168 = this->targ_->glink_section();
3169 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3170
3171 while (pov < endpov)
3172 {
3173 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3174 pov += 4;
3175 branch_tab += 4;
3176 }
3177
3178 of->write_output_view(offset, oview_size, oview);
3179 }
3180 }
3181
3182 // Create the PLT section.
3183
3184 template<int size, bool big_endian>
3185 void
3186 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3187 Layout* layout)
3188 {
3189 if (this->plt_ == NULL)
3190 {
3191 if (this->got_ == NULL)
3192 this->got_section(symtab, layout);
3193
3194 if (this->glink_ == NULL)
3195 make_glink_section(layout);
3196
3197 // Ensure that .rela.dyn always appears before .rela.plt This is
3198 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3199 // needs to include .rela.plt in its range.
3200 this->rela_dyn_section(layout);
3201
3202 Reloc_section* plt_rel = new Reloc_section(false);
3203 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3204 elfcpp::SHF_ALLOC, plt_rel,
3205 ORDER_DYNAMIC_PLT_RELOCS, false);
3206 this->plt_
3207 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3208 "** PLT");
3209 layout->add_output_section_data(".plt",
3210 (size == 32
3211 ? elfcpp::SHT_PROGBITS
3212 : elfcpp::SHT_NOBITS),
3213 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3214 this->plt_,
3215 (size == 32
3216 ? ORDER_SMALL_DATA
3217 : ORDER_SMALL_BSS),
3218 false);
3219 }
3220 }
3221
3222 // Create the IPLT section.
3223
3224 template<int size, bool big_endian>
3225 void
3226 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3227 Layout* layout)
3228 {
3229 if (this->iplt_ == NULL)
3230 {
3231 this->make_plt_section(symtab, layout);
3232
3233 Reloc_section* iplt_rel = new Reloc_section(false);
3234 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3235 this->iplt_
3236 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3237 "** IPLT");
3238 this->plt_->output_section()->add_output_section_data(this->iplt_);
3239 }
3240 }
3241
3242 // A section for huge long branch addresses, similar to plt section.
3243
3244 template<int size, bool big_endian>
3245 class Output_data_brlt_powerpc : public Output_section_data_build
3246 {
3247 public:
3248 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3249 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3250 size, big_endian> Reloc_section;
3251
3252 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3253 Reloc_section* brlt_rel)
3254 : Output_section_data_build(size == 32 ? 4 : 8),
3255 rel_(brlt_rel),
3256 targ_(targ)
3257 { }
3258
3259 void
3260 reset_brlt_sizes()
3261 {
3262 this->reset_data_size();
3263 this->rel_->reset_data_size();
3264 }
3265
3266 void
3267 finalize_brlt_sizes()
3268 {
3269 this->finalize_data_size();
3270 this->rel_->finalize_data_size();
3271 }
3272
3273 // Add a reloc for an entry in the BRLT.
3274 void
3275 add_reloc(Address to, unsigned int off)
3276 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3277
3278 // Update section and reloc section size.
3279 void
3280 set_current_size(unsigned int num_branches)
3281 {
3282 this->reset_address_and_file_offset();
3283 this->set_current_data_size(num_branches * 16);
3284 this->finalize_data_size();
3285 Output_section* os = this->output_section();
3286 os->set_section_offsets_need_adjustment();
3287 if (this->rel_ != NULL)
3288 {
3289 unsigned int reloc_size
3290 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3291 this->rel_->reset_address_and_file_offset();
3292 this->rel_->set_current_data_size(num_branches * reloc_size);
3293 this->rel_->finalize_data_size();
3294 Output_section* os = this->rel_->output_section();
3295 os->set_section_offsets_need_adjustment();
3296 }
3297 }
3298
3299 protected:
3300 void
3301 do_adjust_output_section(Output_section* os)
3302 {
3303 os->set_entsize(0);
3304 }
3305
3306 // Write to a map file.
3307 void
3308 do_print_to_mapfile(Mapfile* mapfile) const
3309 { mapfile->print_output_data(this, "** BRLT"); }
3310
3311 private:
3312 // Write out the BRLT data.
3313 void
3314 do_write(Output_file*);
3315
3316 // The reloc section.
3317 Reloc_section* rel_;
3318 Target_powerpc<size, big_endian>* targ_;
3319 };
3320
3321 // Make the branch lookup table section.
3322
3323 template<int size, bool big_endian>
3324 void
3325 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3326 {
3327 if (size == 64 && this->brlt_section_ == NULL)
3328 {
3329 Reloc_section* brlt_rel = NULL;
3330 bool is_pic = parameters->options().output_is_position_independent();
3331 if (is_pic)
3332 {
3333 // When PIC we can't fill in .branch_lt (like .plt it can be
3334 // a bss style section) but must initialise at runtime via
3335 // dynamic relocats.
3336 this->rela_dyn_section(layout);
3337 brlt_rel = new Reloc_section(false);
3338 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3339 }
3340 this->brlt_section_
3341 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3342 if (this->plt_ && is_pic)
3343 this->plt_->output_section()
3344 ->add_output_section_data(this->brlt_section_);
3345 else
3346 layout->add_output_section_data(".branch_lt",
3347 (is_pic ? elfcpp::SHT_NOBITS
3348 : elfcpp::SHT_PROGBITS),
3349 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3350 this->brlt_section_,
3351 (is_pic ? ORDER_SMALL_BSS
3352 : ORDER_SMALL_DATA),
3353 false);
3354 }
3355 }
3356
3357 // Write out .branch_lt when non-PIC.
3358
3359 template<int size, bool big_endian>
3360 void
3361 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3362 {
3363 if (size == 64 && !parameters->options().output_is_position_independent())
3364 {
3365 const section_size_type offset = this->offset();
3366 const section_size_type oview_size
3367 = convert_to_section_size_type(this->data_size());
3368 unsigned char* const oview = of->get_output_view(offset, oview_size);
3369
3370 this->targ_->write_branch_lookup_table(oview);
3371 of->write_output_view(offset, oview_size, oview);
3372 }
3373 }
3374
3375 static inline uint32_t
3376 l(uint32_t a)
3377 {
3378 return a & 0xffff;
3379 }
3380
3381 static inline uint32_t
3382 hi(uint32_t a)
3383 {
3384 return l(a >> 16);
3385 }
3386
3387 static inline uint32_t
3388 ha(uint32_t a)
3389 {
3390 return hi(a + 0x8000);
3391 }
3392
3393 template<int size>
3394 struct Eh_cie
3395 {
3396 static const unsigned char eh_frame_cie[12];
3397 };
3398
3399 template<int size>
3400 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3401 {
3402 1, // CIE version.
3403 'z', 'R', 0, // Augmentation string.
3404 4, // Code alignment.
3405 0x80 - size / 8 , // Data alignment.
3406 65, // RA reg.
3407 1, // Augmentation size.
3408 (elfcpp::DW_EH_PE_pcrel
3409 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3410 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3411 };
3412
3413 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3414 static const unsigned char glink_eh_frame_fde_64v1[] =
3415 {
3416 0, 0, 0, 0, // Replaced with offset to .glink.
3417 0, 0, 0, 0, // Replaced with size of .glink.
3418 0, // Augmentation size.
3419 elfcpp::DW_CFA_advance_loc + 1,
3420 elfcpp::DW_CFA_register, 65, 12,
3421 elfcpp::DW_CFA_advance_loc + 4,
3422 elfcpp::DW_CFA_restore_extended, 65
3423 };
3424
3425 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3426 static const unsigned char glink_eh_frame_fde_64v2[] =
3427 {
3428 0, 0, 0, 0, // Replaced with offset to .glink.
3429 0, 0, 0, 0, // Replaced with size of .glink.
3430 0, // Augmentation size.
3431 elfcpp::DW_CFA_advance_loc + 1,
3432 elfcpp::DW_CFA_register, 65, 0,
3433 elfcpp::DW_CFA_advance_loc + 4,
3434 elfcpp::DW_CFA_restore_extended, 65
3435 };
3436
3437 // Describe __glink_PLTresolve use of LR, 32-bit version.
3438 static const unsigned char glink_eh_frame_fde_32[] =
3439 {
3440 0, 0, 0, 0, // Replaced with offset to .glink.
3441 0, 0, 0, 0, // Replaced with size of .glink.
3442 0, // Augmentation size.
3443 elfcpp::DW_CFA_advance_loc + 2,
3444 elfcpp::DW_CFA_register, 65, 0,
3445 elfcpp::DW_CFA_advance_loc + 4,
3446 elfcpp::DW_CFA_restore_extended, 65
3447 };
3448
3449 static const unsigned char default_fde[] =
3450 {
3451 0, 0, 0, 0, // Replaced with offset to stubs.
3452 0, 0, 0, 0, // Replaced with size of stubs.
3453 0, // Augmentation size.
3454 elfcpp::DW_CFA_nop, // Pad.
3455 elfcpp::DW_CFA_nop,
3456 elfcpp::DW_CFA_nop
3457 };
3458
3459 template<bool big_endian>
3460 static inline void
3461 write_insn(unsigned char* p, uint32_t v)
3462 {
3463 elfcpp::Swap<32, big_endian>::writeval(p, v);
3464 }
3465
3466 // Stub_table holds information about plt and long branch stubs.
3467 // Stubs are built in an area following some input section determined
3468 // by group_sections(). This input section is converted to a relaxed
3469 // input section allowing it to be resized to accommodate the stubs
3470
3471 template<int size, bool big_endian>
3472 class Stub_table : public Output_relaxed_input_section
3473 {
3474 public:
3475 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3476 static const Address invalid_address = static_cast<Address>(0) - 1;
3477
3478 Stub_table(Target_powerpc<size, big_endian>* targ)
3479 : Output_relaxed_input_section(NULL, 0, 0),
3480 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3481 orig_data_size_(0), plt_size_(0), last_plt_size_(0),
3482 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3483 { }
3484
3485 // Delayed Output_relaxed_input_section init.
3486 void
3487 init(const Output_section::Input_section*, Output_section*);
3488
3489 // Add a plt call stub.
3490 void
3491 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3492 const Symbol*,
3493 unsigned int,
3494 Address);
3495
3496 void
3497 add_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3498 unsigned int,
3499 unsigned int,
3500 Address);
3501
3502 // Find a given plt call stub.
3503 Address
3504 find_plt_call_entry(const Symbol*) const;
3505
3506 Address
3507 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3508 unsigned int) const;
3509
3510 Address
3511 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3512 const Symbol*,
3513 unsigned int,
3514 Address) const;
3515
3516 Address
3517 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3518 unsigned int,
3519 unsigned int,
3520 Address) const;
3521
3522 // Add a long branch stub.
3523 void
3524 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, Address);
3525
3526 Address
3527 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3528 Address) const;
3529
3530 void
3531 clear_stubs()
3532 {
3533 this->plt_call_stubs_.clear();
3534 this->plt_size_ = 0;
3535 this->long_branch_stubs_.clear();
3536 this->branch_size_ = 0;
3537 }
3538
3539 Address
3540 set_address_and_size(const Output_section* os, Address off)
3541 {
3542 Address start_off = off;
3543 off += this->orig_data_size_;
3544 Address my_size = this->plt_size_ + this->branch_size_;
3545 if (my_size != 0)
3546 off = align_address(off, this->stub_align());
3547 // Include original section size and alignment padding in size
3548 my_size += off - start_off;
3549 this->reset_address_and_file_offset();
3550 this->set_current_data_size(my_size);
3551 this->set_address_and_file_offset(os->address() + start_off,
3552 os->offset() + start_off);
3553 return my_size;
3554 }
3555
3556 Address
3557 stub_address() const
3558 {
3559 return align_address(this->address() + this->orig_data_size_,
3560 this->stub_align());
3561 }
3562
3563 Address
3564 stub_offset() const
3565 {
3566 return align_address(this->offset() + this->orig_data_size_,
3567 this->stub_align());
3568 }
3569
3570 section_size_type
3571 plt_size() const
3572 { return this->plt_size_; }
3573
3574 bool
3575 size_update()
3576 {
3577 Output_section* os = this->output_section();
3578 if (os->addralign() < this->stub_align())
3579 {
3580 os->set_addralign(this->stub_align());
3581 // FIXME: get rid of the insane checkpointing.
3582 // We can't increase alignment of the input section to which
3583 // stubs are attached; The input section may be .init which
3584 // is pasted together with other .init sections to form a
3585 // function. Aligning might insert zero padding resulting in
3586 // sigill. However we do need to increase alignment of the
3587 // output section so that the align_address() on offset in
3588 // set_address_and_size() adds the same padding as the
3589 // align_address() on address in stub_address().
3590 // What's more, we need this alignment for the layout done in
3591 // relaxation_loop_body() so that the output section starts at
3592 // a suitably aligned address.
3593 os->checkpoint_set_addralign(this->stub_align());
3594 }
3595 if (this->last_plt_size_ != this->plt_size_
3596 || this->last_branch_size_ != this->branch_size_)
3597 {
3598 this->last_plt_size_ = this->plt_size_;
3599 this->last_branch_size_ = this->branch_size_;
3600 return true;
3601 }
3602 return false;
3603 }
3604
3605 // Add .eh_frame info for this stub section. Unlike other linker
3606 // generated .eh_frame this is added late in the link, because we
3607 // only want the .eh_frame info if this particular stub section is
3608 // non-empty.
3609 void
3610 add_eh_frame(Layout* layout)
3611 {
3612 if (!this->eh_frame_added_)
3613 {
3614 if (!parameters->options().ld_generated_unwind_info())
3615 return;
3616
3617 // Since we add stub .eh_frame info late, it must be placed
3618 // after all other linker generated .eh_frame info so that
3619 // merge mapping need not be updated for input sections.
3620 // There is no provision to use a different CIE to that used
3621 // by .glink.
3622 if (!this->targ_->has_glink())
3623 return;
3624
3625 layout->add_eh_frame_for_plt(this,
3626 Eh_cie<size>::eh_frame_cie,
3627 sizeof (Eh_cie<size>::eh_frame_cie),
3628 default_fde,
3629 sizeof (default_fde));
3630 this->eh_frame_added_ = true;
3631 }
3632 }
3633
3634 Target_powerpc<size, big_endian>*
3635 targ() const
3636 { return targ_; }
3637
3638 private:
3639 class Plt_stub_ent;
3640 class Plt_stub_ent_hash;
3641 typedef Unordered_map<Plt_stub_ent, unsigned int,
3642 Plt_stub_ent_hash> Plt_stub_entries;
3643
3644 // Alignment of stub section.
3645 unsigned int
3646 stub_align() const
3647 {
3648 if (size == 32)
3649 return 16;
3650 unsigned int min_align = 32;
3651 unsigned int user_align = 1 << parameters->options().plt_align();
3652 return std::max(user_align, min_align);
3653 }
3654
3655 // Return the plt offset for the given call stub.
3656 Address
3657 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3658 {
3659 const Symbol* gsym = p->first.sym_;
3660 if (gsym != NULL)
3661 {
3662 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3663 && gsym->can_use_relative_reloc(false));
3664 return gsym->plt_offset();
3665 }
3666 else
3667 {
3668 *is_iplt = true;
3669 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3670 unsigned int local_sym_index = p->first.locsym_;
3671 return relobj->local_plt_offset(local_sym_index);
3672 }
3673 }
3674
3675 // Size of a given plt call stub.
3676 unsigned int
3677 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3678 {
3679 if (size == 32)
3680 return 16;
3681
3682 bool is_iplt;
3683 Address plt_addr = this->plt_off(p, &is_iplt);
3684 if (is_iplt)
3685 plt_addr += this->targ_->iplt_section()->address();
3686 else
3687 plt_addr += this->targ_->plt_section()->address();
3688 Address got_addr = this->targ_->got_section()->output_section()->address();
3689 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3690 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3691 got_addr += ppcobj->toc_base_offset();
3692 Address off = plt_addr - got_addr;
3693 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3694 if (this->targ_->abiversion() < 2)
3695 {
3696 bool static_chain = parameters->options().plt_static_chain();
3697 bool thread_safe = this->targ_->plt_thread_safe();
3698 bytes += (4
3699 + 4 * static_chain
3700 + 8 * thread_safe
3701 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3702 }
3703 unsigned int align = 1 << parameters->options().plt_align();
3704 if (align > 1)
3705 bytes = (bytes + align - 1) & -align;
3706 return bytes;
3707 }
3708
3709 // Return long branch stub size.
3710 unsigned int
3711 branch_stub_size(Address to)
3712 {
3713 Address loc
3714 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3715 if (to - loc + (1 << 25) < 2 << 25)
3716 return 4;
3717 if (size == 64 || !parameters->options().output_is_position_independent())
3718 return 16;
3719 return 32;
3720 }
3721
3722 // Write out stubs.
3723 void
3724 do_write(Output_file*);
3725
3726 // Plt call stub keys.
3727 class Plt_stub_ent
3728 {
3729 public:
3730 Plt_stub_ent(const Symbol* sym)
3731 : sym_(sym), object_(0), addend_(0), locsym_(0)
3732 { }
3733
3734 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3735 unsigned int locsym_index)
3736 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3737 { }
3738
3739 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3740 const Symbol* sym,
3741 unsigned int r_type,
3742 Address addend)
3743 : sym_(sym), object_(0), addend_(0), locsym_(0)
3744 {
3745 if (size != 32)
3746 this->addend_ = addend;
3747 else if (parameters->options().output_is_position_independent()
3748 && r_type == elfcpp::R_PPC_PLTREL24)
3749 {
3750 this->addend_ = addend;
3751 if (this->addend_ >= 32768)
3752 this->object_ = object;
3753 }
3754 }
3755
3756 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3757 unsigned int locsym_index,
3758 unsigned int r_type,
3759 Address addend)
3760 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3761 {
3762 if (size != 32)
3763 this->addend_ = addend;
3764 else if (parameters->options().output_is_position_independent()
3765 && r_type == elfcpp::R_PPC_PLTREL24)
3766 this->addend_ = addend;
3767 }
3768
3769 bool operator==(const Plt_stub_ent& that) const
3770 {
3771 return (this->sym_ == that.sym_
3772 && this->object_ == that.object_
3773 && this->addend_ == that.addend_
3774 && this->locsym_ == that.locsym_);
3775 }
3776
3777 const Symbol* sym_;
3778 const Sized_relobj_file<size, big_endian>* object_;
3779 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3780 unsigned int locsym_;
3781 };
3782
3783 class Plt_stub_ent_hash
3784 {
3785 public:
3786 size_t operator()(const Plt_stub_ent& ent) const
3787 {
3788 return (reinterpret_cast<uintptr_t>(ent.sym_)
3789 ^ reinterpret_cast<uintptr_t>(ent.object_)
3790 ^ ent.addend_
3791 ^ ent.locsym_);
3792 }
3793 };
3794
3795 // Long branch stub keys.
3796 class Branch_stub_ent
3797 {
3798 public:
3799 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3800 : dest_(to), toc_base_off_(0)
3801 {
3802 if (size == 64)
3803 toc_base_off_ = obj->toc_base_offset();
3804 }
3805
3806 bool operator==(const Branch_stub_ent& that) const
3807 {
3808 return (this->dest_ == that.dest_
3809 && (size == 32
3810 || this->toc_base_off_ == that.toc_base_off_));
3811 }
3812
3813 Address dest_;
3814 unsigned int toc_base_off_;
3815 };
3816
3817 class Branch_stub_ent_hash
3818 {
3819 public:
3820 size_t operator()(const Branch_stub_ent& ent) const
3821 { return ent.dest_ ^ ent.toc_base_off_; }
3822 };
3823
3824 // In a sane world this would be a global.
3825 Target_powerpc<size, big_endian>* targ_;
3826 // Map sym/object/addend to stub offset.
3827 Plt_stub_entries plt_call_stubs_;
3828 // Map destination address to stub offset.
3829 typedef Unordered_map<Branch_stub_ent, unsigned int,
3830 Branch_stub_ent_hash> Branch_stub_entries;
3831 Branch_stub_entries long_branch_stubs_;
3832 // size of input section
3833 section_size_type orig_data_size_;
3834 // size of stubs
3835 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3836 // Whether .eh_frame info has been created for this stub section.
3837 bool eh_frame_added_;
3838 };
3839
3840 // Make a new stub table, and record.
3841
3842 template<int size, bool big_endian>
3843 Stub_table<size, big_endian>*
3844 Target_powerpc<size, big_endian>::new_stub_table()
3845 {
3846 Stub_table<size, big_endian>* stub_table
3847 = new Stub_table<size, big_endian>(this);
3848 this->stub_tables_.push_back(stub_table);
3849 return stub_table;
3850 }
3851
3852 // Delayed stub table initialisation, because we create the stub table
3853 // before we know to which section it will be attached.
3854
3855 template<int size, bool big_endian>
3856 void
3857 Stub_table<size, big_endian>::init(
3858 const Output_section::Input_section* owner,
3859 Output_section* output_section)
3860 {
3861 this->set_relobj(owner->relobj());
3862 this->set_shndx(owner->shndx());
3863 this->set_addralign(this->relobj()->section_addralign(this->shndx()));
3864 this->set_output_section(output_section);
3865 this->orig_data_size_ = owner->current_data_size();
3866
3867 std::vector<Output_relaxed_input_section*> new_relaxed;
3868 new_relaxed.push_back(this);
3869 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3870 }
3871
3872 // Add a plt call stub, if we do not already have one for this
3873 // sym/object/addend combo.
3874
3875 template<int size, bool big_endian>
3876 void
3877 Stub_table<size, big_endian>::add_plt_call_entry(
3878 const Sized_relobj_file<size, big_endian>* object,
3879 const Symbol* gsym,
3880 unsigned int r_type,
3881 Address addend)
3882 {
3883 Plt_stub_ent ent(object, gsym, r_type, addend);
3884 unsigned int off = this->plt_size_;
3885 std::pair<typename Plt_stub_entries::iterator, bool> p
3886 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3887 if (p.second)
3888 this->plt_size_ = off + this->plt_call_size(p.first);
3889 }
3890
3891 template<int size, bool big_endian>
3892 void
3893 Stub_table<size, big_endian>::add_plt_call_entry(
3894 const Sized_relobj_file<size, big_endian>* object,
3895 unsigned int locsym_index,
3896 unsigned int r_type,
3897 Address addend)
3898 {
3899 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3900 unsigned int off = this->plt_size_;
3901 std::pair<typename Plt_stub_entries::iterator, bool> p
3902 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3903 if (p.second)
3904 this->plt_size_ = off + this->plt_call_size(p.first);
3905 }
3906
3907 // Find a plt call stub.
3908
3909 template<int size, bool big_endian>
3910 typename Stub_table<size, big_endian>::Address
3911 Stub_table<size, big_endian>::find_plt_call_entry(
3912 const Sized_relobj_file<size, big_endian>* object,
3913 const Symbol* gsym,
3914 unsigned int r_type,
3915 Address addend) const
3916 {
3917 Plt_stub_ent ent(object, gsym, r_type, addend);
3918 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3919 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3920 }
3921
3922 template<int size, bool big_endian>
3923 typename Stub_table<size, big_endian>::Address
3924 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
3925 {
3926 Plt_stub_ent ent(gsym);
3927 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3928 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3929 }
3930
3931 template<int size, bool big_endian>
3932 typename Stub_table<size, big_endian>::Address
3933 Stub_table<size, big_endian>::find_plt_call_entry(
3934 const Sized_relobj_file<size, big_endian>* object,
3935 unsigned int locsym_index,
3936 unsigned int r_type,
3937 Address addend) const
3938 {
3939 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3940 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3941 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3942 }
3943
3944 template<int size, bool big_endian>
3945 typename Stub_table<size, big_endian>::Address
3946 Stub_table<size, big_endian>::find_plt_call_entry(
3947 const Sized_relobj_file<size, big_endian>* object,
3948 unsigned int locsym_index) const
3949 {
3950 Plt_stub_ent ent(object, locsym_index);
3951 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
3952 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
3953 }
3954
3955 // Add a long branch stub if we don't already have one to given
3956 // destination.
3957
3958 template<int size, bool big_endian>
3959 void
3960 Stub_table<size, big_endian>::add_long_branch_entry(
3961 const Powerpc_relobj<size, big_endian>* object,
3962 Address to)
3963 {
3964 Branch_stub_ent ent(object, to);
3965 Address off = this->branch_size_;
3966 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
3967 {
3968 unsigned int stub_size = this->branch_stub_size(to);
3969 this->branch_size_ = off + stub_size;
3970 if (size == 64 && stub_size != 4)
3971 this->targ_->add_branch_lookup_table(to);
3972 }
3973 }
3974
3975 // Find long branch stub.
3976
3977 template<int size, bool big_endian>
3978 typename Stub_table<size, big_endian>::Address
3979 Stub_table<size, big_endian>::find_long_branch_entry(
3980 const Powerpc_relobj<size, big_endian>* object,
3981 Address to) const
3982 {
3983 Branch_stub_ent ent(object, to);
3984 typename Branch_stub_entries::const_iterator p
3985 = this->long_branch_stubs_.find(ent);
3986 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
3987 }
3988
3989 // A class to handle .glink.
3990
3991 template<int size, bool big_endian>
3992 class Output_data_glink : public Output_section_data
3993 {
3994 public:
3995 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3996 static const Address invalid_address = static_cast<Address>(0) - 1;
3997 static const int pltresolve_size = 16*4;
3998
3999 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4000 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4001 end_branch_table_(), ge_size_(0)
4002 { }
4003
4004 void
4005 add_eh_frame(Layout* layout);
4006
4007 void
4008 add_global_entry(const Symbol*);
4009
4010 Address
4011 find_global_entry(const Symbol*) const;
4012
4013 Address
4014 global_entry_address() const
4015 {
4016 gold_assert(this->is_data_size_valid());
4017 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4018 return this->address() + global_entry_off;
4019 }
4020
4021 protected:
4022 // Write to a map file.
4023 void
4024 do_print_to_mapfile(Mapfile* mapfile) const
4025 { mapfile->print_output_data(this, _("** glink")); }
4026
4027 private:
4028 void
4029 set_final_data_size();
4030
4031 // Write out .glink
4032 void
4033 do_write(Output_file*);
4034
4035 // Allows access to .got and .plt for do_write.
4036 Target_powerpc<size, big_endian>* targ_;
4037
4038 // Map sym to stub offset.
4039 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4040 Global_entry_stub_entries global_entry_stubs_;
4041
4042 unsigned int end_branch_table_, ge_size_;
4043 };
4044
4045 template<int size, bool big_endian>
4046 void
4047 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4048 {
4049 if (!parameters->options().ld_generated_unwind_info())
4050 return;
4051
4052 if (size == 64)
4053 {
4054 if (this->targ_->abiversion() < 2)
4055 layout->add_eh_frame_for_plt(this,
4056 Eh_cie<64>::eh_frame_cie,
4057 sizeof (Eh_cie<64>::eh_frame_cie),
4058 glink_eh_frame_fde_64v1,
4059 sizeof (glink_eh_frame_fde_64v1));
4060 else
4061 layout->add_eh_frame_for_plt(this,
4062 Eh_cie<64>::eh_frame_cie,
4063 sizeof (Eh_cie<64>::eh_frame_cie),
4064 glink_eh_frame_fde_64v2,
4065 sizeof (glink_eh_frame_fde_64v2));
4066 }
4067 else
4068 {
4069 // 32-bit .glink can use the default since the CIE return
4070 // address reg, LR, is valid.
4071 layout->add_eh_frame_for_plt(this,
4072 Eh_cie<32>::eh_frame_cie,
4073 sizeof (Eh_cie<32>::eh_frame_cie),
4074 default_fde,
4075 sizeof (default_fde));
4076 // Except where LR is used in a PIC __glink_PLTresolve.
4077 if (parameters->options().output_is_position_independent())
4078 layout->add_eh_frame_for_plt(this,
4079 Eh_cie<32>::eh_frame_cie,
4080 sizeof (Eh_cie<32>::eh_frame_cie),
4081 glink_eh_frame_fde_32,
4082 sizeof (glink_eh_frame_fde_32));
4083 }
4084 }
4085
4086 template<int size, bool big_endian>
4087 void
4088 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4089 {
4090 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4091 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4092 if (p.second)
4093 this->ge_size_ += 16;
4094 }
4095
4096 template<int size, bool big_endian>
4097 typename Output_data_glink<size, big_endian>::Address
4098 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4099 {
4100 typename Global_entry_stub_entries::const_iterator p
4101 = this->global_entry_stubs_.find(gsym);
4102 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4103 }
4104
4105 template<int size, bool big_endian>
4106 void
4107 Output_data_glink<size, big_endian>::set_final_data_size()
4108 {
4109 unsigned int count = this->targ_->plt_entry_count();
4110 section_size_type total = 0;
4111
4112 if (count != 0)
4113 {
4114 if (size == 32)
4115 {
4116 // space for branch table
4117 total += 4 * (count - 1);
4118
4119 total += -total & 15;
4120 total += this->pltresolve_size;
4121 }
4122 else
4123 {
4124 total += this->pltresolve_size;
4125
4126 // space for branch table
4127 total += 4 * count;
4128 if (this->targ_->abiversion() < 2)
4129 {
4130 total += 4 * count;
4131 if (count > 0x8000)
4132 total += 4 * (count - 0x8000);
4133 }
4134 }
4135 }
4136 this->end_branch_table_ = total;
4137 total = (total + 15) & -16;
4138 total += this->ge_size_;
4139
4140 this->set_data_size(total);
4141 }
4142
4143 // Write out plt and long branch stub code.
4144
4145 template<int size, bool big_endian>
4146 void
4147 Stub_table<size, big_endian>::do_write(Output_file* of)
4148 {
4149 if (this->plt_call_stubs_.empty()
4150 && this->long_branch_stubs_.empty())
4151 return;
4152
4153 const section_size_type start_off = this->offset();
4154 const section_size_type off = this->stub_offset();
4155 const section_size_type oview_size =
4156 convert_to_section_size_type(this->data_size() - (off - start_off));
4157 unsigned char* const oview = of->get_output_view(off, oview_size);
4158 unsigned char* p;
4159
4160 if (size == 64)
4161 {
4162 const Output_data_got_powerpc<size, big_endian>* got
4163 = this->targ_->got_section();
4164 Address got_os_addr = got->output_section()->address();
4165
4166 if (!this->plt_call_stubs_.empty())
4167 {
4168 // The base address of the .plt section.
4169 Address plt_base = this->targ_->plt_section()->address();
4170 Address iplt_base = invalid_address;
4171
4172 // Write out plt call stubs.
4173 typename Plt_stub_entries::const_iterator cs;
4174 for (cs = this->plt_call_stubs_.begin();
4175 cs != this->plt_call_stubs_.end();
4176 ++cs)
4177 {
4178 bool is_iplt;
4179 Address pltoff = this->plt_off(cs, &is_iplt);
4180 Address plt_addr = pltoff;
4181 if (is_iplt)
4182 {
4183 if (iplt_base == invalid_address)
4184 iplt_base = this->targ_->iplt_section()->address();
4185 plt_addr += iplt_base;
4186 }
4187 else
4188 plt_addr += plt_base;
4189 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4190 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4191 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4192 Address off = plt_addr - got_addr;
4193
4194 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4195 gold_error(_("%s: linkage table error against `%s'"),
4196 cs->first.object_->name().c_str(),
4197 cs->first.sym_->demangled_name().c_str());
4198
4199 bool plt_load_toc = this->targ_->abiversion() < 2;
4200 bool static_chain
4201 = plt_load_toc && parameters->options().plt_static_chain();
4202 bool thread_safe
4203 = plt_load_toc && this->targ_->plt_thread_safe();
4204 bool use_fake_dep = false;
4205 Address cmp_branch_off = 0;
4206 if (thread_safe)
4207 {
4208 unsigned int pltindex
4209 = ((pltoff - this->targ_->first_plt_entry_offset())
4210 / this->targ_->plt_entry_size());
4211 Address glinkoff
4212 = (this->targ_->glink_section()->pltresolve_size
4213 + pltindex * 8);
4214 if (pltindex > 32768)
4215 glinkoff += (pltindex - 32768) * 4;
4216 Address to
4217 = this->targ_->glink_section()->address() + glinkoff;
4218 Address from
4219 = (this->stub_address() + cs->second + 24
4220 + 4 * (ha(off) != 0)
4221 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4222 + 4 * static_chain);
4223 cmp_branch_off = to - from;
4224 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4225 }
4226
4227 p = oview + cs->second;
4228 if (ha(off) != 0)
4229 {
4230 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4231 p += 4;
4232 if (plt_load_toc)
4233 {
4234 write_insn<big_endian>(p, addis_11_2 + ha(off));
4235 p += 4;
4236 write_insn<big_endian>(p, ld_12_11 + l(off));
4237 p += 4;
4238 }
4239 else
4240 {
4241 write_insn<big_endian>(p, addis_12_2 + ha(off));
4242 p += 4;
4243 write_insn<big_endian>(p, ld_12_12 + l(off));
4244 p += 4;
4245 }
4246 if (plt_load_toc
4247 && ha(off + 8 + 8 * static_chain) != ha(off))
4248 {
4249 write_insn<big_endian>(p, addi_11_11 + l(off));
4250 p += 4;
4251 off = 0;
4252 }
4253 write_insn<big_endian>(p, mtctr_12);
4254 p += 4;
4255 if (plt_load_toc)
4256 {
4257 if (use_fake_dep)
4258 {
4259 write_insn<big_endian>(p, xor_2_12_12);
4260 p += 4;
4261 write_insn<big_endian>(p, add_11_11_2);
4262 p += 4;
4263 }
4264 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4265 p += 4;
4266 if (static_chain)
4267 {
4268 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4269 p += 4;
4270 }
4271 }
4272 }
4273 else
4274 {
4275 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4276 p += 4;
4277 write_insn<big_endian>(p, ld_12_2 + l(off));
4278 p += 4;
4279 if (plt_load_toc
4280 && ha(off + 8 + 8 * static_chain) != ha(off))
4281 {
4282 write_insn<big_endian>(p, addi_2_2 + l(off));
4283 p += 4;
4284 off = 0;
4285 }
4286 write_insn<big_endian>(p, mtctr_12);
4287 p += 4;
4288 if (plt_load_toc)
4289 {
4290 if (use_fake_dep)
4291 {
4292 write_insn<big_endian>(p, xor_11_12_12);
4293 p += 4;
4294 write_insn<big_endian>(p, add_2_2_11);
4295 p += 4;
4296 }
4297 if (static_chain)
4298 {
4299 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4300 p += 4;
4301 }
4302 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4303 p += 4;
4304 }
4305 }
4306 if (thread_safe && !use_fake_dep)
4307 {
4308 write_insn<big_endian>(p, cmpldi_2_0);
4309 p += 4;
4310 write_insn<big_endian>(p, bnectr_p4);
4311 p += 4;
4312 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4313 }
4314 else
4315 write_insn<big_endian>(p, bctr);
4316 }
4317 }
4318
4319 // Write out long branch stubs.
4320 typename Branch_stub_entries::const_iterator bs;
4321 for (bs = this->long_branch_stubs_.begin();
4322 bs != this->long_branch_stubs_.end();
4323 ++bs)
4324 {
4325 p = oview + this->plt_size_ + bs->second;
4326 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4327 Address delta = bs->first.dest_ - loc;
4328 if (delta + (1 << 25) < 2 << 25)
4329 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4330 else
4331 {
4332 Address brlt_addr
4333 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4334 gold_assert(brlt_addr != invalid_address);
4335 brlt_addr += this->targ_->brlt_section()->address();
4336 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4337 Address brltoff = brlt_addr - got_addr;
4338 if (ha(brltoff) == 0)
4339 {
4340 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4341 }
4342 else
4343 {
4344 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4345 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4346 }
4347 write_insn<big_endian>(p, mtctr_12), p += 4;
4348 write_insn<big_endian>(p, bctr);
4349 }
4350 }
4351 }
4352 else
4353 {
4354 if (!this->plt_call_stubs_.empty())
4355 {
4356 // The base address of the .plt section.
4357 Address plt_base = this->targ_->plt_section()->address();
4358 Address iplt_base = invalid_address;
4359 // The address of _GLOBAL_OFFSET_TABLE_.
4360 Address g_o_t = invalid_address;
4361
4362 // Write out plt call stubs.
4363 typename Plt_stub_entries::const_iterator cs;
4364 for (cs = this->plt_call_stubs_.begin();
4365 cs != this->plt_call_stubs_.end();
4366 ++cs)
4367 {
4368 bool is_iplt;
4369 Address plt_addr = this->plt_off(cs, &is_iplt);
4370 if (is_iplt)
4371 {
4372 if (iplt_base == invalid_address)
4373 iplt_base = this->targ_->iplt_section()->address();
4374 plt_addr += iplt_base;
4375 }
4376 else
4377 plt_addr += plt_base;
4378
4379 p = oview + cs->second;
4380 if (parameters->options().output_is_position_independent())
4381 {
4382 Address got_addr;
4383 const Powerpc_relobj<size, big_endian>* ppcobj
4384 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4385 (cs->first.object_));
4386 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4387 {
4388 unsigned int got2 = ppcobj->got2_shndx();
4389 got_addr = ppcobj->get_output_section_offset(got2);
4390 gold_assert(got_addr != invalid_address);
4391 got_addr += (ppcobj->output_section(got2)->address()
4392 + cs->first.addend_);
4393 }
4394 else
4395 {
4396 if (g_o_t == invalid_address)
4397 {
4398 const Output_data_got_powerpc<size, big_endian>* got
4399 = this->targ_->got_section();
4400 g_o_t = got->address() + got->g_o_t();
4401 }
4402 got_addr = g_o_t;
4403 }
4404
4405 Address off = plt_addr - got_addr;
4406 if (ha(off) == 0)
4407 {
4408 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4409 write_insn<big_endian>(p + 4, mtctr_11);
4410 write_insn<big_endian>(p + 8, bctr);
4411 }
4412 else
4413 {
4414 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4415 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4416 write_insn<big_endian>(p + 8, mtctr_11);
4417 write_insn<big_endian>(p + 12, bctr);
4418 }
4419 }
4420 else
4421 {
4422 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4423 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4424 write_insn<big_endian>(p + 8, mtctr_11);
4425 write_insn<big_endian>(p + 12, bctr);
4426 }
4427 }
4428 }
4429
4430 // Write out long branch stubs.
4431 typename Branch_stub_entries::const_iterator bs;
4432 for (bs = this->long_branch_stubs_.begin();
4433 bs != this->long_branch_stubs_.end();
4434 ++bs)
4435 {
4436 p = oview + this->plt_size_ + bs->second;
4437 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4438 Address delta = bs->first.dest_ - loc;
4439 if (delta + (1 << 25) < 2 << 25)
4440 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4441 else if (!parameters->options().output_is_position_independent())
4442 {
4443 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4444 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4445 write_insn<big_endian>(p + 8, mtctr_12);
4446 write_insn<big_endian>(p + 12, bctr);
4447 }
4448 else
4449 {
4450 delta -= 8;
4451 write_insn<big_endian>(p + 0, mflr_0);
4452 write_insn<big_endian>(p + 4, bcl_20_31);
4453 write_insn<big_endian>(p + 8, mflr_12);
4454 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4455 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4456 write_insn<big_endian>(p + 20, mtlr_0);
4457 write_insn<big_endian>(p + 24, mtctr_12);
4458 write_insn<big_endian>(p + 28, bctr);
4459 }
4460 }
4461 }
4462 }
4463
4464 // Write out .glink.
4465
4466 template<int size, bool big_endian>
4467 void
4468 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4469 {
4470 const section_size_type off = this->offset();
4471 const section_size_type oview_size =
4472 convert_to_section_size_type(this->data_size());
4473 unsigned char* const oview = of->get_output_view(off, oview_size);
4474 unsigned char* p;
4475
4476 // The base address of the .plt section.
4477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4478 Address plt_base = this->targ_->plt_section()->address();
4479
4480 if (size == 64)
4481 {
4482 if (this->end_branch_table_ != 0)
4483 {
4484 // Write pltresolve stub.
4485 p = oview;
4486 Address after_bcl = this->address() + 16;
4487 Address pltoff = plt_base - after_bcl;
4488
4489 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4490
4491 if (this->targ_->abiversion() < 2)
4492 {
4493 write_insn<big_endian>(p, mflr_12), p += 4;
4494 write_insn<big_endian>(p, bcl_20_31), p += 4;
4495 write_insn<big_endian>(p, mflr_11), p += 4;
4496 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4497 write_insn<big_endian>(p, mtlr_12), p += 4;
4498 write_insn<big_endian>(p, add_11_2_11), p += 4;
4499 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4500 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4501 write_insn<big_endian>(p, mtctr_12), p += 4;
4502 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4503 }
4504 else
4505 {
4506 write_insn<big_endian>(p, mflr_0), p += 4;
4507 write_insn<big_endian>(p, bcl_20_31), p += 4;
4508 write_insn<big_endian>(p, mflr_11), p += 4;
4509 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4510 write_insn<big_endian>(p, mtlr_0), p += 4;
4511 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4512 write_insn<big_endian>(p, add_11_2_11), p += 4;
4513 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4514 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4515 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4516 write_insn<big_endian>(p, mtctr_12), p += 4;
4517 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4518 }
4519 write_insn<big_endian>(p, bctr), p += 4;
4520 while (p < oview + this->pltresolve_size)
4521 write_insn<big_endian>(p, nop), p += 4;
4522
4523 // Write lazy link call stubs.
4524 uint32_t indx = 0;
4525 while (p < oview + this->end_branch_table_)
4526 {
4527 if (this->targ_->abiversion() < 2)
4528 {
4529 if (indx < 0x8000)
4530 {
4531 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4532 }
4533 else
4534 {
4535 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4536 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4537 }
4538 }
4539 uint32_t branch_off = 8 - (p - oview);
4540 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4541 indx++;
4542 }
4543 }
4544
4545 Address plt_base = this->targ_->plt_section()->address();
4546 Address iplt_base = invalid_address;
4547 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4548 Address global_entry_base = this->address() + global_entry_off;
4549 typename Global_entry_stub_entries::const_iterator ge;
4550 for (ge = this->global_entry_stubs_.begin();
4551 ge != this->global_entry_stubs_.end();
4552 ++ge)
4553 {
4554 p = oview + global_entry_off + ge->second;
4555 Address plt_addr = ge->first->plt_offset();
4556 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4557 && ge->first->can_use_relative_reloc(false))
4558 {
4559 if (iplt_base == invalid_address)
4560 iplt_base = this->targ_->iplt_section()->address();
4561 plt_addr += iplt_base;
4562 }
4563 else
4564 plt_addr += plt_base;
4565 Address my_addr = global_entry_base + ge->second;
4566 Address off = plt_addr - my_addr;
4567
4568 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4569 gold_error(_("%s: linkage table error against `%s'"),
4570 ge->first->object()->name().c_str(),
4571 ge->first->demangled_name().c_str());
4572
4573 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4574 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4575 write_insn<big_endian>(p, mtctr_12), p += 4;
4576 write_insn<big_endian>(p, bctr);
4577 }
4578 }
4579 else
4580 {
4581 const Output_data_got_powerpc<size, big_endian>* got
4582 = this->targ_->got_section();
4583 // The address of _GLOBAL_OFFSET_TABLE_.
4584 Address g_o_t = got->address() + got->g_o_t();
4585
4586 // Write out pltresolve branch table.
4587 p = oview;
4588 unsigned int the_end = oview_size - this->pltresolve_size;
4589 unsigned char* end_p = oview + the_end;
4590 while (p < end_p - 8 * 4)
4591 write_insn<big_endian>(p, b + end_p - p), p += 4;
4592 while (p < end_p)
4593 write_insn<big_endian>(p, nop), p += 4;
4594
4595 // Write out pltresolve call stub.
4596 if (parameters->options().output_is_position_independent())
4597 {
4598 Address res0_off = 0;
4599 Address after_bcl_off = the_end + 12;
4600 Address bcl_res0 = after_bcl_off - res0_off;
4601
4602 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4603 write_insn<big_endian>(p + 4, mflr_0);
4604 write_insn<big_endian>(p + 8, bcl_20_31);
4605 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4606 write_insn<big_endian>(p + 16, mflr_12);
4607 write_insn<big_endian>(p + 20, mtlr_0);
4608 write_insn<big_endian>(p + 24, sub_11_11_12);
4609
4610 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4611
4612 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4613 if (ha(got_bcl) == ha(got_bcl + 4))
4614 {
4615 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4616 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4617 }
4618 else
4619 {
4620 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4621 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4622 }
4623 write_insn<big_endian>(p + 40, mtctr_0);
4624 write_insn<big_endian>(p + 44, add_0_11_11);
4625 write_insn<big_endian>(p + 48, add_11_0_11);
4626 write_insn<big_endian>(p + 52, bctr);
4627 write_insn<big_endian>(p + 56, nop);
4628 write_insn<big_endian>(p + 60, nop);
4629 }
4630 else
4631 {
4632 Address res0 = this->address();
4633
4634 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4635 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4636 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4637 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4638 else
4639 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4640 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4641 write_insn<big_endian>(p + 16, mtctr_0);
4642 write_insn<big_endian>(p + 20, add_0_11_11);
4643 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4644 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4645 else
4646 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4647 write_insn<big_endian>(p + 28, add_11_0_11);
4648 write_insn<big_endian>(p + 32, bctr);
4649 write_insn<big_endian>(p + 36, nop);
4650 write_insn<big_endian>(p + 40, nop);
4651 write_insn<big_endian>(p + 44, nop);
4652 write_insn<big_endian>(p + 48, nop);
4653 write_insn<big_endian>(p + 52, nop);
4654 write_insn<big_endian>(p + 56, nop);
4655 write_insn<big_endian>(p + 60, nop);
4656 }
4657 p += 64;
4658 }
4659
4660 of->write_output_view(off, oview_size, oview);
4661 }
4662
4663
4664 // A class to handle linker generated save/restore functions.
4665
4666 template<int size, bool big_endian>
4667 class Output_data_save_res : public Output_section_data_build
4668 {
4669 public:
4670 Output_data_save_res(Symbol_table* symtab);
4671
4672 protected:
4673 // Write to a map file.
4674 void
4675 do_print_to_mapfile(Mapfile* mapfile) const
4676 { mapfile->print_output_data(this, _("** save/restore")); }
4677
4678 void
4679 do_write(Output_file*);
4680
4681 private:
4682 // The maximum size of save/restore contents.
4683 static const unsigned int savres_max = 218*4;
4684
4685 void
4686 savres_define(Symbol_table* symtab,
4687 const char *name,
4688 unsigned int lo, unsigned int hi,
4689 unsigned char* write_ent(unsigned char*, int),
4690 unsigned char* write_tail(unsigned char*, int));
4691
4692 unsigned char *contents_;
4693 };
4694
4695 template<bool big_endian>
4696 static unsigned char*
4697 savegpr0(unsigned char* p, int r)
4698 {
4699 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4700 write_insn<big_endian>(p, insn);
4701 return p + 4;
4702 }
4703
4704 template<bool big_endian>
4705 static unsigned char*
4706 savegpr0_tail(unsigned char* p, int r)
4707 {
4708 p = savegpr0<big_endian>(p, r);
4709 uint32_t insn = std_0_1 + 16;
4710 write_insn<big_endian>(p, insn);
4711 p = p + 4;
4712 write_insn<big_endian>(p, blr);
4713 return p + 4;
4714 }
4715
4716 template<bool big_endian>
4717 static unsigned char*
4718 restgpr0(unsigned char* p, int r)
4719 {
4720 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4721 write_insn<big_endian>(p, insn);
4722 return p + 4;
4723 }
4724
4725 template<bool big_endian>
4726 static unsigned char*
4727 restgpr0_tail(unsigned char* p, int r)
4728 {
4729 uint32_t insn = ld_0_1 + 16;
4730 write_insn<big_endian>(p, insn);
4731 p = p + 4;
4732 p = restgpr0<big_endian>(p, r);
4733 write_insn<big_endian>(p, mtlr_0);
4734 p = p + 4;
4735 if (r == 29)
4736 {
4737 p = restgpr0<big_endian>(p, 30);
4738 p = restgpr0<big_endian>(p, 31);
4739 }
4740 write_insn<big_endian>(p, blr);
4741 return p + 4;
4742 }
4743
4744 template<bool big_endian>
4745 static unsigned char*
4746 savegpr1(unsigned char* p, int r)
4747 {
4748 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4749 write_insn<big_endian>(p, insn);
4750 return p + 4;
4751 }
4752
4753 template<bool big_endian>
4754 static unsigned char*
4755 savegpr1_tail(unsigned char* p, int r)
4756 {
4757 p = savegpr1<big_endian>(p, r);
4758 write_insn<big_endian>(p, blr);
4759 return p + 4;
4760 }
4761
4762 template<bool big_endian>
4763 static unsigned char*
4764 restgpr1(unsigned char* p, int r)
4765 {
4766 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4767 write_insn<big_endian>(p, insn);
4768 return p + 4;
4769 }
4770
4771 template<bool big_endian>
4772 static unsigned char*
4773 restgpr1_tail(unsigned char* p, int r)
4774 {
4775 p = restgpr1<big_endian>(p, r);
4776 write_insn<big_endian>(p, blr);
4777 return p + 4;
4778 }
4779
4780 template<bool big_endian>
4781 static unsigned char*
4782 savefpr(unsigned char* p, int r)
4783 {
4784 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4785 write_insn<big_endian>(p, insn);
4786 return p + 4;
4787 }
4788
4789 template<bool big_endian>
4790 static unsigned char*
4791 savefpr0_tail(unsigned char* p, int r)
4792 {
4793 p = savefpr<big_endian>(p, r);
4794 write_insn<big_endian>(p, std_0_1 + 16);
4795 p = p + 4;
4796 write_insn<big_endian>(p, blr);
4797 return p + 4;
4798 }
4799
4800 template<bool big_endian>
4801 static unsigned char*
4802 restfpr(unsigned char* p, int r)
4803 {
4804 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4805 write_insn<big_endian>(p, insn);
4806 return p + 4;
4807 }
4808
4809 template<bool big_endian>
4810 static unsigned char*
4811 restfpr0_tail(unsigned char* p, int r)
4812 {
4813 write_insn<big_endian>(p, ld_0_1 + 16);
4814 p = p + 4;
4815 p = restfpr<big_endian>(p, r);
4816 write_insn<big_endian>(p, mtlr_0);
4817 p = p + 4;
4818 if (r == 29)
4819 {
4820 p = restfpr<big_endian>(p, 30);
4821 p = restfpr<big_endian>(p, 31);
4822 }
4823 write_insn<big_endian>(p, blr);
4824 return p + 4;
4825 }
4826
4827 template<bool big_endian>
4828 static unsigned char*
4829 savefpr1_tail(unsigned char* p, int r)
4830 {
4831 p = savefpr<big_endian>(p, r);
4832 write_insn<big_endian>(p, blr);
4833 return p + 4;
4834 }
4835
4836 template<bool big_endian>
4837 static unsigned char*
4838 restfpr1_tail(unsigned char* p, int r)
4839 {
4840 p = restfpr<big_endian>(p, r);
4841 write_insn<big_endian>(p, blr);
4842 return p + 4;
4843 }
4844
4845 template<bool big_endian>
4846 static unsigned char*
4847 savevr(unsigned char* p, int r)
4848 {
4849 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4850 write_insn<big_endian>(p, insn);
4851 p = p + 4;
4852 insn = stvx_0_12_0 + (r << 21);
4853 write_insn<big_endian>(p, insn);
4854 return p + 4;
4855 }
4856
4857 template<bool big_endian>
4858 static unsigned char*
4859 savevr_tail(unsigned char* p, int r)
4860 {
4861 p = savevr<big_endian>(p, r);
4862 write_insn<big_endian>(p, blr);
4863 return p + 4;
4864 }
4865
4866 template<bool big_endian>
4867 static unsigned char*
4868 restvr(unsigned char* p, int r)
4869 {
4870 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4871 write_insn<big_endian>(p, insn);
4872 p = p + 4;
4873 insn = lvx_0_12_0 + (r << 21);
4874 write_insn<big_endian>(p, insn);
4875 return p + 4;
4876 }
4877
4878 template<bool big_endian>
4879 static unsigned char*
4880 restvr_tail(unsigned char* p, int r)
4881 {
4882 p = restvr<big_endian>(p, r);
4883 write_insn<big_endian>(p, blr);
4884 return p + 4;
4885 }
4886
4887
4888 template<int size, bool big_endian>
4889 Output_data_save_res<size, big_endian>::Output_data_save_res(
4890 Symbol_table* symtab)
4891 : Output_section_data_build(4),
4892 contents_(NULL)
4893 {
4894 this->savres_define(symtab,
4895 "_savegpr0_", 14, 31,
4896 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4897 this->savres_define(symtab,
4898 "_restgpr0_", 14, 29,
4899 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4900 this->savres_define(symtab,
4901 "_restgpr0_", 30, 31,
4902 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4903 this->savres_define(symtab,
4904 "_savegpr1_", 14, 31,
4905 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4906 this->savres_define(symtab,
4907 "_restgpr1_", 14, 31,
4908 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4909 this->savres_define(symtab,
4910 "_savefpr_", 14, 31,
4911 savefpr<big_endian>, savefpr0_tail<big_endian>);
4912 this->savres_define(symtab,
4913 "_restfpr_", 14, 29,
4914 restfpr<big_endian>, restfpr0_tail<big_endian>);
4915 this->savres_define(symtab,
4916 "_restfpr_", 30, 31,
4917 restfpr<big_endian>, restfpr0_tail<big_endian>);
4918 this->savres_define(symtab,
4919 "._savef", 14, 31,
4920 savefpr<big_endian>, savefpr1_tail<big_endian>);
4921 this->savres_define(symtab,
4922 "._restf", 14, 31,
4923 restfpr<big_endian>, restfpr1_tail<big_endian>);
4924 this->savres_define(symtab,
4925 "_savevr_", 20, 31,
4926 savevr<big_endian>, savevr_tail<big_endian>);
4927 this->savres_define(symtab,
4928 "_restvr_", 20, 31,
4929 restvr<big_endian>, restvr_tail<big_endian>);
4930 }
4931
4932 template<int size, bool big_endian>
4933 void
4934 Output_data_save_res<size, big_endian>::savres_define(
4935 Symbol_table* symtab,
4936 const char *name,
4937 unsigned int lo, unsigned int hi,
4938 unsigned char* write_ent(unsigned char*, int),
4939 unsigned char* write_tail(unsigned char*, int))
4940 {
4941 size_t len = strlen(name);
4942 bool writing = false;
4943 char sym[16];
4944
4945 memcpy(sym, name, len);
4946 sym[len + 2] = 0;
4947
4948 for (unsigned int i = lo; i <= hi; i++)
4949 {
4950 sym[len + 0] = i / 10 + '0';
4951 sym[len + 1] = i % 10 + '0';
4952 Symbol* gsym = symtab->lookup(sym);
4953 bool refd = gsym != NULL && gsym->is_undefined();
4954 writing = writing || refd;
4955 if (writing)
4956 {
4957 if (this->contents_ == NULL)
4958 this->contents_ = new unsigned char[this->savres_max];
4959
4960 section_size_type value = this->current_data_size();
4961 unsigned char* p = this->contents_ + value;
4962 if (i != hi)
4963 p = write_ent(p, i);
4964 else
4965 p = write_tail(p, i);
4966 section_size_type cur_size = p - this->contents_;
4967 this->set_current_data_size(cur_size);
4968 if (refd)
4969 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
4970 this, value, cur_size - value,
4971 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
4972 elfcpp::STV_HIDDEN, 0, false, false);
4973 }
4974 }
4975 }
4976
4977 // Write out save/restore.
4978
4979 template<int size, bool big_endian>
4980 void
4981 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
4982 {
4983 const section_size_type off = this->offset();
4984 const section_size_type oview_size =
4985 convert_to_section_size_type(this->data_size());
4986 unsigned char* const oview = of->get_output_view(off, oview_size);
4987 memcpy(oview, this->contents_, oview_size);
4988 of->write_output_view(off, oview_size, oview);
4989 }
4990
4991
4992 // Create the glink section.
4993
4994 template<int size, bool big_endian>
4995 void
4996 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
4997 {
4998 if (this->glink_ == NULL)
4999 {
5000 this->glink_ = new Output_data_glink<size, big_endian>(this);
5001 this->glink_->add_eh_frame(layout);
5002 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5003 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5004 this->glink_, ORDER_TEXT, false);
5005 }
5006 }
5007
5008 // Create a PLT entry for a global symbol.
5009
5010 template<int size, bool big_endian>
5011 void
5012 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5013 Layout* layout,
5014 Symbol* gsym)
5015 {
5016 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5017 && gsym->can_use_relative_reloc(false))
5018 {
5019 if (this->iplt_ == NULL)
5020 this->make_iplt_section(symtab, layout);
5021 this->iplt_->add_ifunc_entry(gsym);
5022 }
5023 else
5024 {
5025 if (this->plt_ == NULL)
5026 this->make_plt_section(symtab, layout);
5027 this->plt_->add_entry(gsym);
5028 }
5029 }
5030
5031 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5032
5033 template<int size, bool big_endian>
5034 void
5035 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5036 Symbol_table* symtab,
5037 Layout* layout,
5038 Sized_relobj_file<size, big_endian>* relobj,
5039 unsigned int r_sym)
5040 {
5041 if (this->iplt_ == NULL)
5042 this->make_iplt_section(symtab, layout);
5043 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5044 }
5045
5046 // Return the number of entries in the PLT.
5047
5048 template<int size, bool big_endian>
5049 unsigned int
5050 Target_powerpc<size, big_endian>::plt_entry_count() const
5051 {
5052 if (this->plt_ == NULL)
5053 return 0;
5054 return this->plt_->entry_count();
5055 }
5056
5057 // Create a GOT entry for local dynamic __tls_get_addr calls.
5058
5059 template<int size, bool big_endian>
5060 unsigned int
5061 Target_powerpc<size, big_endian>::tlsld_got_offset(
5062 Symbol_table* symtab,
5063 Layout* layout,
5064 Sized_relobj_file<size, big_endian>* object)
5065 {
5066 if (this->tlsld_got_offset_ == -1U)
5067 {
5068 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5069 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5070 Output_data_got_powerpc<size, big_endian>* got
5071 = this->got_section(symtab, layout);
5072 unsigned int got_offset = got->add_constant_pair(0, 0);
5073 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5074 got_offset, 0);
5075 this->tlsld_got_offset_ = got_offset;
5076 }
5077 return this->tlsld_got_offset_;
5078 }
5079
5080 // Get the Reference_flags for a particular relocation.
5081
5082 template<int size, bool big_endian>
5083 int
5084 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5085 unsigned int r_type,
5086 const Target_powerpc* target)
5087 {
5088 int ref = 0;
5089
5090 switch (r_type)
5091 {
5092 case elfcpp::R_POWERPC_NONE:
5093 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5094 case elfcpp::R_POWERPC_GNU_VTENTRY:
5095 case elfcpp::R_PPC64_TOC:
5096 // No symbol reference.
5097 break;
5098
5099 case elfcpp::R_PPC64_ADDR64:
5100 case elfcpp::R_PPC64_UADDR64:
5101 case elfcpp::R_POWERPC_ADDR32:
5102 case elfcpp::R_POWERPC_UADDR32:
5103 case elfcpp::R_POWERPC_ADDR16:
5104 case elfcpp::R_POWERPC_UADDR16:
5105 case elfcpp::R_POWERPC_ADDR16_LO:
5106 case elfcpp::R_POWERPC_ADDR16_HI:
5107 case elfcpp::R_POWERPC_ADDR16_HA:
5108 ref = Symbol::ABSOLUTE_REF;
5109 break;
5110
5111 case elfcpp::R_POWERPC_ADDR24:
5112 case elfcpp::R_POWERPC_ADDR14:
5113 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5114 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5115 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5116 break;
5117
5118 case elfcpp::R_PPC64_REL64:
5119 case elfcpp::R_POWERPC_REL32:
5120 case elfcpp::R_PPC_LOCAL24PC:
5121 case elfcpp::R_POWERPC_REL16:
5122 case elfcpp::R_POWERPC_REL16_LO:
5123 case elfcpp::R_POWERPC_REL16_HI:
5124 case elfcpp::R_POWERPC_REL16_HA:
5125 ref = Symbol::RELATIVE_REF;
5126 break;
5127
5128 case elfcpp::R_POWERPC_REL24:
5129 case elfcpp::R_PPC_PLTREL24:
5130 case elfcpp::R_POWERPC_REL14:
5131 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5132 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5133 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5134 break;
5135
5136 case elfcpp::R_POWERPC_GOT16:
5137 case elfcpp::R_POWERPC_GOT16_LO:
5138 case elfcpp::R_POWERPC_GOT16_HI:
5139 case elfcpp::R_POWERPC_GOT16_HA:
5140 case elfcpp::R_PPC64_GOT16_DS:
5141 case elfcpp::R_PPC64_GOT16_LO_DS:
5142 case elfcpp::R_PPC64_TOC16:
5143 case elfcpp::R_PPC64_TOC16_LO:
5144 case elfcpp::R_PPC64_TOC16_HI:
5145 case elfcpp::R_PPC64_TOC16_HA:
5146 case elfcpp::R_PPC64_TOC16_DS:
5147 case elfcpp::R_PPC64_TOC16_LO_DS:
5148 // Absolute in GOT.
5149 ref = Symbol::ABSOLUTE_REF;
5150 break;
5151
5152 case elfcpp::R_POWERPC_GOT_TPREL16:
5153 case elfcpp::R_POWERPC_TLS:
5154 ref = Symbol::TLS_REF;
5155 break;
5156
5157 case elfcpp::R_POWERPC_COPY:
5158 case elfcpp::R_POWERPC_GLOB_DAT:
5159 case elfcpp::R_POWERPC_JMP_SLOT:
5160 case elfcpp::R_POWERPC_RELATIVE:
5161 case elfcpp::R_POWERPC_DTPMOD:
5162 default:
5163 // Not expected. We will give an error later.
5164 break;
5165 }
5166
5167 if (size == 64 && target->abiversion() < 2)
5168 ref |= Symbol::FUNC_DESC_ABI;
5169 return ref;
5170 }
5171
5172 // Report an unsupported relocation against a local symbol.
5173
5174 template<int size, bool big_endian>
5175 void
5176 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5177 Sized_relobj_file<size, big_endian>* object,
5178 unsigned int r_type)
5179 {
5180 gold_error(_("%s: unsupported reloc %u against local symbol"),
5181 object->name().c_str(), r_type);
5182 }
5183
5184 // We are about to emit a dynamic relocation of type R_TYPE. If the
5185 // dynamic linker does not support it, issue an error.
5186
5187 template<int size, bool big_endian>
5188 void
5189 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5190 unsigned int r_type)
5191 {
5192 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5193
5194 // These are the relocation types supported by glibc for both 32-bit
5195 // and 64-bit powerpc.
5196 switch (r_type)
5197 {
5198 case elfcpp::R_POWERPC_NONE:
5199 case elfcpp::R_POWERPC_RELATIVE:
5200 case elfcpp::R_POWERPC_GLOB_DAT:
5201 case elfcpp::R_POWERPC_DTPMOD:
5202 case elfcpp::R_POWERPC_DTPREL:
5203 case elfcpp::R_POWERPC_TPREL:
5204 case elfcpp::R_POWERPC_JMP_SLOT:
5205 case elfcpp::R_POWERPC_COPY:
5206 case elfcpp::R_POWERPC_IRELATIVE:
5207 case elfcpp::R_POWERPC_ADDR32:
5208 case elfcpp::R_POWERPC_UADDR32:
5209 case elfcpp::R_POWERPC_ADDR24:
5210 case elfcpp::R_POWERPC_ADDR16:
5211 case elfcpp::R_POWERPC_UADDR16:
5212 case elfcpp::R_POWERPC_ADDR16_LO:
5213 case elfcpp::R_POWERPC_ADDR16_HI:
5214 case elfcpp::R_POWERPC_ADDR16_HA:
5215 case elfcpp::R_POWERPC_ADDR14:
5216 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5217 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5218 case elfcpp::R_POWERPC_REL32:
5219 case elfcpp::R_POWERPC_REL24:
5220 case elfcpp::R_POWERPC_TPREL16:
5221 case elfcpp::R_POWERPC_TPREL16_LO:
5222 case elfcpp::R_POWERPC_TPREL16_HI:
5223 case elfcpp::R_POWERPC_TPREL16_HA:
5224 return;
5225
5226 default:
5227 break;
5228 }
5229
5230 if (size == 64)
5231 {
5232 switch (r_type)
5233 {
5234 // These are the relocation types supported only on 64-bit.
5235 case elfcpp::R_PPC64_ADDR64:
5236 case elfcpp::R_PPC64_UADDR64:
5237 case elfcpp::R_PPC64_JMP_IREL:
5238 case elfcpp::R_PPC64_ADDR16_DS:
5239 case elfcpp::R_PPC64_ADDR16_LO_DS:
5240 case elfcpp::R_PPC64_ADDR16_HIGH:
5241 case elfcpp::R_PPC64_ADDR16_HIGHA:
5242 case elfcpp::R_PPC64_ADDR16_HIGHER:
5243 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5244 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5245 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5246 case elfcpp::R_PPC64_REL64:
5247 case elfcpp::R_POWERPC_ADDR30:
5248 case elfcpp::R_PPC64_TPREL16_DS:
5249 case elfcpp::R_PPC64_TPREL16_LO_DS:
5250 case elfcpp::R_PPC64_TPREL16_HIGH:
5251 case elfcpp::R_PPC64_TPREL16_HIGHA:
5252 case elfcpp::R_PPC64_TPREL16_HIGHER:
5253 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5254 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5255 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5256 return;
5257
5258 default:
5259 break;
5260 }
5261 }
5262 else
5263 {
5264 switch (r_type)
5265 {
5266 // These are the relocation types supported only on 32-bit.
5267 // ??? glibc ld.so doesn't need to support these.
5268 case elfcpp::R_POWERPC_DTPREL16:
5269 case elfcpp::R_POWERPC_DTPREL16_LO:
5270 case elfcpp::R_POWERPC_DTPREL16_HI:
5271 case elfcpp::R_POWERPC_DTPREL16_HA:
5272 return;
5273
5274 default:
5275 break;
5276 }
5277 }
5278
5279 // This prevents us from issuing more than one error per reloc
5280 // section. But we can still wind up issuing more than one
5281 // error per object file.
5282 if (this->issued_non_pic_error_)
5283 return;
5284 gold_assert(parameters->options().output_is_position_independent());
5285 object->error(_("requires unsupported dynamic reloc; "
5286 "recompile with -fPIC"));
5287 this->issued_non_pic_error_ = true;
5288 return;
5289 }
5290
5291 // Return whether we need to make a PLT entry for a relocation of the
5292 // given type against a STT_GNU_IFUNC symbol.
5293
5294 template<int size, bool big_endian>
5295 bool
5296 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5297 Target_powerpc<size, big_endian>* target,
5298 Sized_relobj_file<size, big_endian>* object,
5299 unsigned int r_type,
5300 bool report_err)
5301 {
5302 // In non-pic code any reference will resolve to the plt call stub
5303 // for the ifunc symbol.
5304 if ((size == 32 || target->abiversion() >= 2)
5305 && !parameters->options().output_is_position_independent())
5306 return true;
5307
5308 switch (r_type)
5309 {
5310 // Word size refs from data sections are OK, but don't need a PLT entry.
5311 case elfcpp::R_POWERPC_ADDR32:
5312 case elfcpp::R_POWERPC_UADDR32:
5313 if (size == 32)
5314 return false;
5315 break;
5316
5317 case elfcpp::R_PPC64_ADDR64:
5318 case elfcpp::R_PPC64_UADDR64:
5319 if (size == 64)
5320 return false;
5321 break;
5322
5323 // GOT refs are good, but also don't need a PLT entry.
5324 case elfcpp::R_POWERPC_GOT16:
5325 case elfcpp::R_POWERPC_GOT16_LO:
5326 case elfcpp::R_POWERPC_GOT16_HI:
5327 case elfcpp::R_POWERPC_GOT16_HA:
5328 case elfcpp::R_PPC64_GOT16_DS:
5329 case elfcpp::R_PPC64_GOT16_LO_DS:
5330 return false;
5331
5332 // Function calls are good, and these do need a PLT entry.
5333 case elfcpp::R_POWERPC_ADDR24:
5334 case elfcpp::R_POWERPC_ADDR14:
5335 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5336 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5337 case elfcpp::R_POWERPC_REL24:
5338 case elfcpp::R_PPC_PLTREL24:
5339 case elfcpp::R_POWERPC_REL14:
5340 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5341 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5342 return true;
5343
5344 default:
5345 break;
5346 }
5347
5348 // Anything else is a problem.
5349 // If we are building a static executable, the libc startup function
5350 // responsible for applying indirect function relocations is going
5351 // to complain about the reloc type.
5352 // If we are building a dynamic executable, we will have a text
5353 // relocation. The dynamic loader will set the text segment
5354 // writable and non-executable to apply text relocations. So we'll
5355 // segfault when trying to run the indirection function to resolve
5356 // the reloc.
5357 if (report_err)
5358 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5359 object->name().c_str(), r_type);
5360 return false;
5361 }
5362
5363 // Scan a relocation for a local symbol.
5364
5365 template<int size, bool big_endian>
5366 inline void
5367 Target_powerpc<size, big_endian>::Scan::local(
5368 Symbol_table* symtab,
5369 Layout* layout,
5370 Target_powerpc<size, big_endian>* target,
5371 Sized_relobj_file<size, big_endian>* object,
5372 unsigned int data_shndx,
5373 Output_section* output_section,
5374 const elfcpp::Rela<size, big_endian>& reloc,
5375 unsigned int r_type,
5376 const elfcpp::Sym<size, big_endian>& lsym,
5377 bool is_discarded)
5378 {
5379 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5380
5381 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5382 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5383 {
5384 this->expect_tls_get_addr_call();
5385 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5386 if (tls_type != tls::TLSOPT_NONE)
5387 this->skip_next_tls_get_addr_call();
5388 }
5389 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5390 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5391 {
5392 this->expect_tls_get_addr_call();
5393 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5394 if (tls_type != tls::TLSOPT_NONE)
5395 this->skip_next_tls_get_addr_call();
5396 }
5397
5398 Powerpc_relobj<size, big_endian>* ppc_object
5399 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5400
5401 if (is_discarded)
5402 {
5403 if (size == 64
5404 && data_shndx == ppc_object->opd_shndx()
5405 && r_type == elfcpp::R_PPC64_ADDR64)
5406 ppc_object->set_opd_discard(reloc.get_r_offset());
5407 return;
5408 }
5409
5410 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5411 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5412 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5413 {
5414 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5415 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5416 r_type, r_sym, reloc.get_r_addend());
5417 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5418 }
5419
5420 switch (r_type)
5421 {
5422 case elfcpp::R_POWERPC_NONE:
5423 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5424 case elfcpp::R_POWERPC_GNU_VTENTRY:
5425 case elfcpp::R_PPC64_TOCSAVE:
5426 case elfcpp::R_POWERPC_TLS:
5427 break;
5428
5429 case elfcpp::R_PPC64_TOC:
5430 {
5431 Output_data_got_powerpc<size, big_endian>* got
5432 = target->got_section(symtab, layout);
5433 if (parameters->options().output_is_position_independent())
5434 {
5435 Address off = reloc.get_r_offset();
5436 if (size == 64
5437 && target->abiversion() < 2
5438 && data_shndx == ppc_object->opd_shndx()
5439 && ppc_object->get_opd_discard(off - 8))
5440 break;
5441
5442 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5443 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5444 rela_dyn->add_output_section_relative(got->output_section(),
5445 elfcpp::R_POWERPC_RELATIVE,
5446 output_section,
5447 object, data_shndx, off,
5448 symobj->toc_base_offset());
5449 }
5450 }
5451 break;
5452
5453 case elfcpp::R_PPC64_ADDR64:
5454 case elfcpp::R_PPC64_UADDR64:
5455 case elfcpp::R_POWERPC_ADDR32:
5456 case elfcpp::R_POWERPC_UADDR32:
5457 case elfcpp::R_POWERPC_ADDR24:
5458 case elfcpp::R_POWERPC_ADDR16:
5459 case elfcpp::R_POWERPC_ADDR16_LO:
5460 case elfcpp::R_POWERPC_ADDR16_HI:
5461 case elfcpp::R_POWERPC_ADDR16_HA:
5462 case elfcpp::R_POWERPC_UADDR16:
5463 case elfcpp::R_PPC64_ADDR16_HIGH:
5464 case elfcpp::R_PPC64_ADDR16_HIGHA:
5465 case elfcpp::R_PPC64_ADDR16_HIGHER:
5466 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5467 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5468 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5469 case elfcpp::R_PPC64_ADDR16_DS:
5470 case elfcpp::R_PPC64_ADDR16_LO_DS:
5471 case elfcpp::R_POWERPC_ADDR14:
5472 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5473 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5474 // If building a shared library (or a position-independent
5475 // executable), we need to create a dynamic relocation for
5476 // this location.
5477 if (parameters->options().output_is_position_independent()
5478 || (size == 64 && is_ifunc && target->abiversion() < 2))
5479 {
5480 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5481 is_ifunc);
5482 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5483 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5484 {
5485 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5486 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5487 : elfcpp::R_POWERPC_RELATIVE);
5488 rela_dyn->add_local_relative(object, r_sym, dynrel,
5489 output_section, data_shndx,
5490 reloc.get_r_offset(),
5491 reloc.get_r_addend(), false);
5492 }
5493 else
5494 {
5495 check_non_pic(object, r_type);
5496 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5497 rela_dyn->add_local(object, r_sym, r_type, output_section,
5498 data_shndx, reloc.get_r_offset(),
5499 reloc.get_r_addend());
5500 }
5501 }
5502 break;
5503
5504 case elfcpp::R_POWERPC_REL24:
5505 case elfcpp::R_PPC_PLTREL24:
5506 case elfcpp::R_PPC_LOCAL24PC:
5507 case elfcpp::R_POWERPC_REL14:
5508 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5509 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5510 if (!is_ifunc)
5511 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5512 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5513 reloc.get_r_addend());
5514 break;
5515
5516 case elfcpp::R_PPC64_REL64:
5517 case elfcpp::R_POWERPC_REL32:
5518 case elfcpp::R_POWERPC_REL16:
5519 case elfcpp::R_POWERPC_REL16_LO:
5520 case elfcpp::R_POWERPC_REL16_HI:
5521 case elfcpp::R_POWERPC_REL16_HA:
5522 case elfcpp::R_POWERPC_SECTOFF:
5523 case elfcpp::R_POWERPC_SECTOFF_LO:
5524 case elfcpp::R_POWERPC_SECTOFF_HI:
5525 case elfcpp::R_POWERPC_SECTOFF_HA:
5526 case elfcpp::R_PPC64_SECTOFF_DS:
5527 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5528 case elfcpp::R_POWERPC_TPREL16:
5529 case elfcpp::R_POWERPC_TPREL16_LO:
5530 case elfcpp::R_POWERPC_TPREL16_HI:
5531 case elfcpp::R_POWERPC_TPREL16_HA:
5532 case elfcpp::R_PPC64_TPREL16_DS:
5533 case elfcpp::R_PPC64_TPREL16_LO_DS:
5534 case elfcpp::R_PPC64_TPREL16_HIGH:
5535 case elfcpp::R_PPC64_TPREL16_HIGHA:
5536 case elfcpp::R_PPC64_TPREL16_HIGHER:
5537 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5538 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5539 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5540 case elfcpp::R_POWERPC_DTPREL16:
5541 case elfcpp::R_POWERPC_DTPREL16_LO:
5542 case elfcpp::R_POWERPC_DTPREL16_HI:
5543 case elfcpp::R_POWERPC_DTPREL16_HA:
5544 case elfcpp::R_PPC64_DTPREL16_DS:
5545 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5546 case elfcpp::R_PPC64_DTPREL16_HIGH:
5547 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5548 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5549 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5550 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5551 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5552 case elfcpp::R_PPC64_TLSGD:
5553 case elfcpp::R_PPC64_TLSLD:
5554 case elfcpp::R_PPC64_ADDR64_LOCAL:
5555 break;
5556
5557 case elfcpp::R_POWERPC_GOT16:
5558 case elfcpp::R_POWERPC_GOT16_LO:
5559 case elfcpp::R_POWERPC_GOT16_HI:
5560 case elfcpp::R_POWERPC_GOT16_HA:
5561 case elfcpp::R_PPC64_GOT16_DS:
5562 case elfcpp::R_PPC64_GOT16_LO_DS:
5563 {
5564 // The symbol requires a GOT entry.
5565 Output_data_got_powerpc<size, big_endian>* got
5566 = target->got_section(symtab, layout);
5567 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5568
5569 if (!parameters->options().output_is_position_independent())
5570 {
5571 if ((size == 32 && is_ifunc)
5572 || (size == 64 && target->abiversion() >= 2))
5573 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5574 else
5575 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5576 }
5577 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5578 {
5579 // If we are generating a shared object or a pie, this
5580 // symbol's GOT entry will be set by a dynamic relocation.
5581 unsigned int off;
5582 off = got->add_constant(0);
5583 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5584
5585 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5586 is_ifunc);
5587 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5588 : elfcpp::R_POWERPC_RELATIVE);
5589 rela_dyn->add_local_relative(object, r_sym, dynrel,
5590 got, off, 0, false);
5591 }
5592 }
5593 break;
5594
5595 case elfcpp::R_PPC64_TOC16:
5596 case elfcpp::R_PPC64_TOC16_LO:
5597 case elfcpp::R_PPC64_TOC16_HI:
5598 case elfcpp::R_PPC64_TOC16_HA:
5599 case elfcpp::R_PPC64_TOC16_DS:
5600 case elfcpp::R_PPC64_TOC16_LO_DS:
5601 // We need a GOT section.
5602 target->got_section(symtab, layout);
5603 break;
5604
5605 case elfcpp::R_POWERPC_GOT_TLSGD16:
5606 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5607 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5608 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5609 {
5610 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5611 if (tls_type == tls::TLSOPT_NONE)
5612 {
5613 Output_data_got_powerpc<size, big_endian>* got
5614 = target->got_section(symtab, layout);
5615 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5616 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5617 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5618 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5619 }
5620 else if (tls_type == tls::TLSOPT_TO_LE)
5621 {
5622 // no GOT relocs needed for Local Exec.
5623 }
5624 else
5625 gold_unreachable();
5626 }
5627 break;
5628
5629 case elfcpp::R_POWERPC_GOT_TLSLD16:
5630 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5631 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5632 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5633 {
5634 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5635 if (tls_type == tls::TLSOPT_NONE)
5636 target->tlsld_got_offset(symtab, layout, object);
5637 else if (tls_type == tls::TLSOPT_TO_LE)
5638 {
5639 // no GOT relocs needed for Local Exec.
5640 if (parameters->options().emit_relocs())
5641 {
5642 Output_section* os = layout->tls_segment()->first_section();
5643 gold_assert(os != NULL);
5644 os->set_needs_symtab_index();
5645 }
5646 }
5647 else
5648 gold_unreachable();
5649 }
5650 break;
5651
5652 case elfcpp::R_POWERPC_GOT_DTPREL16:
5653 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5654 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5655 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5656 {
5657 Output_data_got_powerpc<size, big_endian>* got
5658 = target->got_section(symtab, layout);
5659 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5660 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5661 }
5662 break;
5663
5664 case elfcpp::R_POWERPC_GOT_TPREL16:
5665 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5666 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5667 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5668 {
5669 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5670 if (tls_type == tls::TLSOPT_NONE)
5671 {
5672 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5673 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5674 {
5675 Output_data_got_powerpc<size, big_endian>* got
5676 = target->got_section(symtab, layout);
5677 unsigned int off = got->add_constant(0);
5678 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5679
5680 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5681 rela_dyn->add_symbolless_local_addend(object, r_sym,
5682 elfcpp::R_POWERPC_TPREL,
5683 got, off, 0);
5684 }
5685 }
5686 else if (tls_type == tls::TLSOPT_TO_LE)
5687 {
5688 // no GOT relocs needed for Local Exec.
5689 }
5690 else
5691 gold_unreachable();
5692 }
5693 break;
5694
5695 default:
5696 unsupported_reloc_local(object, r_type);
5697 break;
5698 }
5699
5700 switch (r_type)
5701 {
5702 case elfcpp::R_POWERPC_GOT_TLSLD16:
5703 case elfcpp::R_POWERPC_GOT_TLSGD16:
5704 case elfcpp::R_POWERPC_GOT_TPREL16:
5705 case elfcpp::R_POWERPC_GOT_DTPREL16:
5706 case elfcpp::R_POWERPC_GOT16:
5707 case elfcpp::R_PPC64_GOT16_DS:
5708 case elfcpp::R_PPC64_TOC16:
5709 case elfcpp::R_PPC64_TOC16_DS:
5710 ppc_object->set_has_small_toc_reloc();
5711 default:
5712 break;
5713 }
5714 }
5715
5716 // Report an unsupported relocation against a global symbol.
5717
5718 template<int size, bool big_endian>
5719 void
5720 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5721 Sized_relobj_file<size, big_endian>* object,
5722 unsigned int r_type,
5723 Symbol* gsym)
5724 {
5725 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5726 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5727 }
5728
5729 // Scan a relocation for a global symbol.
5730
5731 template<int size, bool big_endian>
5732 inline void
5733 Target_powerpc<size, big_endian>::Scan::global(
5734 Symbol_table* symtab,
5735 Layout* layout,
5736 Target_powerpc<size, big_endian>* target,
5737 Sized_relobj_file<size, big_endian>* object,
5738 unsigned int data_shndx,
5739 Output_section* output_section,
5740 const elfcpp::Rela<size, big_endian>& reloc,
5741 unsigned int r_type,
5742 Symbol* gsym)
5743 {
5744 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5745 return;
5746
5747 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5748 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5749 {
5750 this->expect_tls_get_addr_call();
5751 const bool final = gsym->final_value_is_known();
5752 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5753 if (tls_type != tls::TLSOPT_NONE)
5754 this->skip_next_tls_get_addr_call();
5755 }
5756 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5757 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5758 {
5759 this->expect_tls_get_addr_call();
5760 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5761 if (tls_type != tls::TLSOPT_NONE)
5762 this->skip_next_tls_get_addr_call();
5763 }
5764
5765 Powerpc_relobj<size, big_endian>* ppc_object
5766 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5767
5768 // A STT_GNU_IFUNC symbol may require a PLT entry.
5769 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5770 bool pushed_ifunc = false;
5771 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5772 {
5773 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5774 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5775 reloc.get_r_addend());
5776 target->make_plt_entry(symtab, layout, gsym);
5777 pushed_ifunc = true;
5778 }
5779
5780 switch (r_type)
5781 {
5782 case elfcpp::R_POWERPC_NONE:
5783 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5784 case elfcpp::R_POWERPC_GNU_VTENTRY:
5785 case elfcpp::R_PPC_LOCAL24PC:
5786 case elfcpp::R_POWERPC_TLS:
5787 break;
5788
5789 case elfcpp::R_PPC64_TOC:
5790 {
5791 Output_data_got_powerpc<size, big_endian>* got
5792 = target->got_section(symtab, layout);
5793 if (parameters->options().output_is_position_independent())
5794 {
5795 Address off = reloc.get_r_offset();
5796 if (size == 64
5797 && data_shndx == ppc_object->opd_shndx()
5798 && ppc_object->get_opd_discard(off - 8))
5799 break;
5800
5801 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5802 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5803 if (data_shndx != ppc_object->opd_shndx())
5804 symobj = static_cast
5805 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5806 rela_dyn->add_output_section_relative(got->output_section(),
5807 elfcpp::R_POWERPC_RELATIVE,
5808 output_section,
5809 object, data_shndx, off,
5810 symobj->toc_base_offset());
5811 }
5812 }
5813 break;
5814
5815 case elfcpp::R_PPC64_ADDR64:
5816 if (size == 64
5817 && target->abiversion() < 2
5818 && data_shndx == ppc_object->opd_shndx()
5819 && (gsym->is_defined_in_discarded_section()
5820 || gsym->object() != object))
5821 {
5822 ppc_object->set_opd_discard(reloc.get_r_offset());
5823 break;
5824 }
5825 // Fall thru
5826 case elfcpp::R_PPC64_UADDR64:
5827 case elfcpp::R_POWERPC_ADDR32:
5828 case elfcpp::R_POWERPC_UADDR32:
5829 case elfcpp::R_POWERPC_ADDR24:
5830 case elfcpp::R_POWERPC_ADDR16:
5831 case elfcpp::R_POWERPC_ADDR16_LO:
5832 case elfcpp::R_POWERPC_ADDR16_HI:
5833 case elfcpp::R_POWERPC_ADDR16_HA:
5834 case elfcpp::R_POWERPC_UADDR16:
5835 case elfcpp::R_PPC64_ADDR16_HIGH:
5836 case elfcpp::R_PPC64_ADDR16_HIGHA:
5837 case elfcpp::R_PPC64_ADDR16_HIGHER:
5838 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5839 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5840 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5841 case elfcpp::R_PPC64_ADDR16_DS:
5842 case elfcpp::R_PPC64_ADDR16_LO_DS:
5843 case elfcpp::R_POWERPC_ADDR14:
5844 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5845 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5846 {
5847 // Make a PLT entry if necessary.
5848 if (gsym->needs_plt_entry())
5849 {
5850 // Since this is not a PC-relative relocation, we may be
5851 // taking the address of a function. In that case we need to
5852 // set the entry in the dynamic symbol table to the address of
5853 // the PLT call stub.
5854 bool need_ifunc_plt = false;
5855 if ((size == 32 || target->abiversion() >= 2)
5856 && gsym->is_from_dynobj()
5857 && !parameters->options().output_is_position_independent())
5858 {
5859 gsym->set_needs_dynsym_value();
5860 need_ifunc_plt = true;
5861 }
5862 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5863 {
5864 target->push_branch(ppc_object, data_shndx,
5865 reloc.get_r_offset(), r_type,
5866 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5867 reloc.get_r_addend());
5868 target->make_plt_entry(symtab, layout, gsym);
5869 }
5870 }
5871 // Make a dynamic relocation if necessary.
5872 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5873 || (size == 64 && is_ifunc && target->abiversion() < 2))
5874 {
5875 if (!parameters->options().output_is_position_independent()
5876 && gsym->may_need_copy_reloc())
5877 {
5878 target->copy_reloc(symtab, layout, object,
5879 data_shndx, output_section, gsym, reloc);
5880 }
5881 else if ((((size == 32
5882 && r_type == elfcpp::R_POWERPC_ADDR32)
5883 || (size == 64
5884 && r_type == elfcpp::R_PPC64_ADDR64
5885 && target->abiversion() >= 2))
5886 && gsym->can_use_relative_reloc(false)
5887 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5888 && parameters->options().shared()))
5889 || (size == 64
5890 && r_type == elfcpp::R_PPC64_ADDR64
5891 && target->abiversion() < 2
5892 && (gsym->can_use_relative_reloc(false)
5893 || data_shndx == ppc_object->opd_shndx())))
5894 {
5895 Reloc_section* rela_dyn
5896 = target->rela_dyn_section(symtab, layout, is_ifunc);
5897 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5898 : elfcpp::R_POWERPC_RELATIVE);
5899 rela_dyn->add_symbolless_global_addend(
5900 gsym, dynrel, output_section, object, data_shndx,
5901 reloc.get_r_offset(), reloc.get_r_addend());
5902 }
5903 else
5904 {
5905 Reloc_section* rela_dyn
5906 = target->rela_dyn_section(symtab, layout, is_ifunc);
5907 check_non_pic(object, r_type);
5908 rela_dyn->add_global(gsym, r_type, output_section,
5909 object, data_shndx,
5910 reloc.get_r_offset(),
5911 reloc.get_r_addend());
5912 }
5913 }
5914 }
5915 break;
5916
5917 case elfcpp::R_PPC_PLTREL24:
5918 case elfcpp::R_POWERPC_REL24:
5919 if (!is_ifunc)
5920 {
5921 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5922 r_type,
5923 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5924 reloc.get_r_addend());
5925 if (gsym->needs_plt_entry()
5926 || (!gsym->final_value_is_known()
5927 && (gsym->is_undefined()
5928 || gsym->is_from_dynobj()
5929 || gsym->is_preemptible())))
5930 target->make_plt_entry(symtab, layout, gsym);
5931 }
5932 // Fall thru
5933
5934 case elfcpp::R_PPC64_REL64:
5935 case elfcpp::R_POWERPC_REL32:
5936 // Make a dynamic relocation if necessary.
5937 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
5938 {
5939 if (!parameters->options().output_is_position_independent()
5940 && gsym->may_need_copy_reloc())
5941 {
5942 target->copy_reloc(symtab, layout, object,
5943 data_shndx, output_section, gsym,
5944 reloc);
5945 }
5946 else
5947 {
5948 Reloc_section* rela_dyn
5949 = target->rela_dyn_section(symtab, layout, is_ifunc);
5950 check_non_pic(object, r_type);
5951 rela_dyn->add_global(gsym, r_type, output_section, object,
5952 data_shndx, reloc.get_r_offset(),
5953 reloc.get_r_addend());
5954 }
5955 }
5956 break;
5957
5958 case elfcpp::R_POWERPC_REL14:
5959 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5960 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5961 if (!is_ifunc)
5962 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5963 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5964 reloc.get_r_addend());
5965 break;
5966
5967 case elfcpp::R_POWERPC_REL16:
5968 case elfcpp::R_POWERPC_REL16_LO:
5969 case elfcpp::R_POWERPC_REL16_HI:
5970 case elfcpp::R_POWERPC_REL16_HA:
5971 case elfcpp::R_POWERPC_SECTOFF:
5972 case elfcpp::R_POWERPC_SECTOFF_LO:
5973 case elfcpp::R_POWERPC_SECTOFF_HI:
5974 case elfcpp::R_POWERPC_SECTOFF_HA:
5975 case elfcpp::R_PPC64_SECTOFF_DS:
5976 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5977 case elfcpp::R_POWERPC_TPREL16:
5978 case elfcpp::R_POWERPC_TPREL16_LO:
5979 case elfcpp::R_POWERPC_TPREL16_HI:
5980 case elfcpp::R_POWERPC_TPREL16_HA:
5981 case elfcpp::R_PPC64_TPREL16_DS:
5982 case elfcpp::R_PPC64_TPREL16_LO_DS:
5983 case elfcpp::R_PPC64_TPREL16_HIGH:
5984 case elfcpp::R_PPC64_TPREL16_HIGHA:
5985 case elfcpp::R_PPC64_TPREL16_HIGHER:
5986 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5987 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5988 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5989 case elfcpp::R_POWERPC_DTPREL16:
5990 case elfcpp::R_POWERPC_DTPREL16_LO:
5991 case elfcpp::R_POWERPC_DTPREL16_HI:
5992 case elfcpp::R_POWERPC_DTPREL16_HA:
5993 case elfcpp::R_PPC64_DTPREL16_DS:
5994 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5995 case elfcpp::R_PPC64_DTPREL16_HIGH:
5996 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5997 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5998 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5999 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6000 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6001 case elfcpp::R_PPC64_TLSGD:
6002 case elfcpp::R_PPC64_TLSLD:
6003 case elfcpp::R_PPC64_ADDR64_LOCAL:
6004 break;
6005
6006 case elfcpp::R_POWERPC_GOT16:
6007 case elfcpp::R_POWERPC_GOT16_LO:
6008 case elfcpp::R_POWERPC_GOT16_HI:
6009 case elfcpp::R_POWERPC_GOT16_HA:
6010 case elfcpp::R_PPC64_GOT16_DS:
6011 case elfcpp::R_PPC64_GOT16_LO_DS:
6012 {
6013 // The symbol requires a GOT entry.
6014 Output_data_got_powerpc<size, big_endian>* got;
6015
6016 got = target->got_section(symtab, layout);
6017 if (gsym->final_value_is_known())
6018 {
6019 if ((size == 32 && is_ifunc)
6020 || (size == 64 && target->abiversion() >= 2))
6021 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6022 else
6023 got->add_global(gsym, GOT_TYPE_STANDARD);
6024 }
6025 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6026 {
6027 // If we are generating a shared object or a pie, this
6028 // symbol's GOT entry will be set by a dynamic relocation.
6029 unsigned int off = got->add_constant(0);
6030 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6031
6032 Reloc_section* rela_dyn
6033 = target->rela_dyn_section(symtab, layout, is_ifunc);
6034
6035 if (gsym->can_use_relative_reloc(false)
6036 && !((size == 32
6037 || target->abiversion() >= 2)
6038 && gsym->visibility() == elfcpp::STV_PROTECTED
6039 && parameters->options().shared()))
6040 {
6041 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6042 : elfcpp::R_POWERPC_RELATIVE);
6043 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6044 }
6045 else
6046 {
6047 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6048 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6049 }
6050 }
6051 }
6052 break;
6053
6054 case elfcpp::R_PPC64_TOC16:
6055 case elfcpp::R_PPC64_TOC16_LO:
6056 case elfcpp::R_PPC64_TOC16_HI:
6057 case elfcpp::R_PPC64_TOC16_HA:
6058 case elfcpp::R_PPC64_TOC16_DS:
6059 case elfcpp::R_PPC64_TOC16_LO_DS:
6060 // We need a GOT section.
6061 target->got_section(symtab, layout);
6062 break;
6063
6064 case elfcpp::R_POWERPC_GOT_TLSGD16:
6065 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6066 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6067 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6068 {
6069 const bool final = gsym->final_value_is_known();
6070 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6071 if (tls_type == tls::TLSOPT_NONE)
6072 {
6073 Output_data_got_powerpc<size, big_endian>* got
6074 = target->got_section(symtab, layout);
6075 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6076 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6077 elfcpp::R_POWERPC_DTPMOD,
6078 elfcpp::R_POWERPC_DTPREL);
6079 }
6080 else if (tls_type == tls::TLSOPT_TO_IE)
6081 {
6082 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6083 {
6084 Output_data_got_powerpc<size, big_endian>* got
6085 = target->got_section(symtab, layout);
6086 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6087 if (gsym->is_undefined()
6088 || gsym->is_from_dynobj())
6089 {
6090 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6091 elfcpp::R_POWERPC_TPREL);
6092 }
6093 else
6094 {
6095 unsigned int off = got->add_constant(0);
6096 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6097 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6098 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6099 got, off, 0);
6100 }
6101 }
6102 }
6103 else if (tls_type == tls::TLSOPT_TO_LE)
6104 {
6105 // no GOT relocs needed for Local Exec.
6106 }
6107 else
6108 gold_unreachable();
6109 }
6110 break;
6111
6112 case elfcpp::R_POWERPC_GOT_TLSLD16:
6113 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6114 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6115 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6116 {
6117 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6118 if (tls_type == tls::TLSOPT_NONE)
6119 target->tlsld_got_offset(symtab, layout, object);
6120 else if (tls_type == tls::TLSOPT_TO_LE)
6121 {
6122 // no GOT relocs needed for Local Exec.
6123 if (parameters->options().emit_relocs())
6124 {
6125 Output_section* os = layout->tls_segment()->first_section();
6126 gold_assert(os != NULL);
6127 os->set_needs_symtab_index();
6128 }
6129 }
6130 else
6131 gold_unreachable();
6132 }
6133 break;
6134
6135 case elfcpp::R_POWERPC_GOT_DTPREL16:
6136 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6137 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6138 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6139 {
6140 Output_data_got_powerpc<size, big_endian>* got
6141 = target->got_section(symtab, layout);
6142 if (!gsym->final_value_is_known()
6143 && (gsym->is_from_dynobj()
6144 || gsym->is_undefined()
6145 || gsym->is_preemptible()))
6146 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6147 target->rela_dyn_section(layout),
6148 elfcpp::R_POWERPC_DTPREL);
6149 else
6150 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6151 }
6152 break;
6153
6154 case elfcpp::R_POWERPC_GOT_TPREL16:
6155 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6156 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6157 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6158 {
6159 const bool final = gsym->final_value_is_known();
6160 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6161 if (tls_type == tls::TLSOPT_NONE)
6162 {
6163 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6164 {
6165 Output_data_got_powerpc<size, big_endian>* got
6166 = target->got_section(symtab, layout);
6167 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6168 if (gsym->is_undefined()
6169 || gsym->is_from_dynobj())
6170 {
6171 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6172 elfcpp::R_POWERPC_TPREL);
6173 }
6174 else
6175 {
6176 unsigned int off = got->add_constant(0);
6177 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6178 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6179 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6180 got, off, 0);
6181 }
6182 }
6183 }
6184 else if (tls_type == tls::TLSOPT_TO_LE)
6185 {
6186 // no GOT relocs needed for Local Exec.
6187 }
6188 else
6189 gold_unreachable();
6190 }
6191 break;
6192
6193 default:
6194 unsupported_reloc_global(object, r_type, gsym);
6195 break;
6196 }
6197
6198 switch (r_type)
6199 {
6200 case elfcpp::R_POWERPC_GOT_TLSLD16:
6201 case elfcpp::R_POWERPC_GOT_TLSGD16:
6202 case elfcpp::R_POWERPC_GOT_TPREL16:
6203 case elfcpp::R_POWERPC_GOT_DTPREL16:
6204 case elfcpp::R_POWERPC_GOT16:
6205 case elfcpp::R_PPC64_GOT16_DS:
6206 case elfcpp::R_PPC64_TOC16:
6207 case elfcpp::R_PPC64_TOC16_DS:
6208 ppc_object->set_has_small_toc_reloc();
6209 default:
6210 break;
6211 }
6212 }
6213
6214 // Process relocations for gc.
6215
6216 template<int size, bool big_endian>
6217 void
6218 Target_powerpc<size, big_endian>::gc_process_relocs(
6219 Symbol_table* symtab,
6220 Layout* layout,
6221 Sized_relobj_file<size, big_endian>* object,
6222 unsigned int data_shndx,
6223 unsigned int,
6224 const unsigned char* prelocs,
6225 size_t reloc_count,
6226 Output_section* output_section,
6227 bool needs_special_offset_handling,
6228 size_t local_symbol_count,
6229 const unsigned char* plocal_symbols)
6230 {
6231 typedef Target_powerpc<size, big_endian> Powerpc;
6232 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6233 Powerpc_relobj<size, big_endian>* ppc_object
6234 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6235 if (size == 64)
6236 ppc_object->set_opd_valid();
6237 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6238 {
6239 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6240 for (p = ppc_object->access_from_map()->begin();
6241 p != ppc_object->access_from_map()->end();
6242 ++p)
6243 {
6244 Address dst_off = p->first;
6245 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6246 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6247 for (s = p->second.begin(); s != p->second.end(); ++s)
6248 {
6249 Object* src_obj = s->first;
6250 unsigned int src_indx = s->second;
6251 symtab->gc()->add_reference(src_obj, src_indx,
6252 ppc_object, dst_indx);
6253 }
6254 p->second.clear();
6255 }
6256 ppc_object->access_from_map()->clear();
6257 ppc_object->process_gc_mark(symtab);
6258 // Don't look at .opd relocs as .opd will reference everything.
6259 return;
6260 }
6261
6262 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6263 typename Target_powerpc::Relocatable_size_for_reloc>(
6264 symtab,
6265 layout,
6266 this,
6267 object,
6268 data_shndx,
6269 prelocs,
6270 reloc_count,
6271 output_section,
6272 needs_special_offset_handling,
6273 local_symbol_count,
6274 plocal_symbols);
6275 }
6276
6277 // Handle target specific gc actions when adding a gc reference from
6278 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6279 // and DST_OFF. For powerpc64, this adds a referenc to the code
6280 // section of a function descriptor.
6281
6282 template<int size, bool big_endian>
6283 void
6284 Target_powerpc<size, big_endian>::do_gc_add_reference(
6285 Symbol_table* symtab,
6286 Object* src_obj,
6287 unsigned int src_shndx,
6288 Object* dst_obj,
6289 unsigned int dst_shndx,
6290 Address dst_off) const
6291 {
6292 if (size != 64 || dst_obj->is_dynamic())
6293 return;
6294
6295 Powerpc_relobj<size, big_endian>* ppc_object
6296 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6297 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6298 {
6299 if (ppc_object->opd_valid())
6300 {
6301 dst_shndx = ppc_object->get_opd_ent(dst_off);
6302 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6303 }
6304 else
6305 {
6306 // If we haven't run scan_opd_relocs, we must delay
6307 // processing this function descriptor reference.
6308 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6309 }
6310 }
6311 }
6312
6313 // Add any special sections for this symbol to the gc work list.
6314 // For powerpc64, this adds the code section of a function
6315 // descriptor.
6316
6317 template<int size, bool big_endian>
6318 void
6319 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6320 Symbol_table* symtab,
6321 Symbol* sym) const
6322 {
6323 if (size == 64)
6324 {
6325 Powerpc_relobj<size, big_endian>* ppc_object
6326 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6327 bool is_ordinary;
6328 unsigned int shndx = sym->shndx(&is_ordinary);
6329 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6330 {
6331 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6332 Address dst_off = gsym->value();
6333 if (ppc_object->opd_valid())
6334 {
6335 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6336 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6337 }
6338 else
6339 ppc_object->add_gc_mark(dst_off);
6340 }
6341 }
6342 }
6343
6344 // For a symbol location in .opd, set LOC to the location of the
6345 // function entry.
6346
6347 template<int size, bool big_endian>
6348 void
6349 Target_powerpc<size, big_endian>::do_function_location(
6350 Symbol_location* loc) const
6351 {
6352 if (size == 64 && loc->shndx != 0)
6353 {
6354 if (loc->object->is_dynamic())
6355 {
6356 Powerpc_dynobj<size, big_endian>* ppc_object
6357 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6358 if (loc->shndx == ppc_object->opd_shndx())
6359 {
6360 Address dest_off;
6361 Address off = loc->offset - ppc_object->opd_address();
6362 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6363 loc->offset = dest_off;
6364 }
6365 }
6366 else
6367 {
6368 const Powerpc_relobj<size, big_endian>* ppc_object
6369 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6370 if (loc->shndx == ppc_object->opd_shndx())
6371 {
6372 Address dest_off;
6373 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6374 loc->offset = dest_off;
6375 }
6376 }
6377 }
6378 }
6379
6380 // Scan relocations for a section.
6381
6382 template<int size, bool big_endian>
6383 void
6384 Target_powerpc<size, big_endian>::scan_relocs(
6385 Symbol_table* symtab,
6386 Layout* layout,
6387 Sized_relobj_file<size, big_endian>* object,
6388 unsigned int data_shndx,
6389 unsigned int sh_type,
6390 const unsigned char* prelocs,
6391 size_t reloc_count,
6392 Output_section* output_section,
6393 bool needs_special_offset_handling,
6394 size_t local_symbol_count,
6395 const unsigned char* plocal_symbols)
6396 {
6397 typedef Target_powerpc<size, big_endian> Powerpc;
6398 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6399
6400 if (sh_type == elfcpp::SHT_REL)
6401 {
6402 gold_error(_("%s: unsupported REL reloc section"),
6403 object->name().c_str());
6404 return;
6405 }
6406
6407 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6408 symtab,
6409 layout,
6410 this,
6411 object,
6412 data_shndx,
6413 prelocs,
6414 reloc_count,
6415 output_section,
6416 needs_special_offset_handling,
6417 local_symbol_count,
6418 plocal_symbols);
6419 }
6420
6421 // Functor class for processing the global symbol table.
6422 // Removes symbols defined on discarded opd entries.
6423
6424 template<bool big_endian>
6425 class Global_symbol_visitor_opd
6426 {
6427 public:
6428 Global_symbol_visitor_opd()
6429 { }
6430
6431 void
6432 operator()(Sized_symbol<64>* sym)
6433 {
6434 if (sym->has_symtab_index()
6435 || sym->source() != Symbol::FROM_OBJECT
6436 || !sym->in_real_elf())
6437 return;
6438
6439 if (sym->object()->is_dynamic())
6440 return;
6441
6442 Powerpc_relobj<64, big_endian>* symobj
6443 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6444 if (symobj->opd_shndx() == 0)
6445 return;
6446
6447 bool is_ordinary;
6448 unsigned int shndx = sym->shndx(&is_ordinary);
6449 if (shndx == symobj->opd_shndx()
6450 && symobj->get_opd_discard(sym->value()))
6451 sym->set_symtab_index(-1U);
6452 }
6453 };
6454
6455 template<int size, bool big_endian>
6456 void
6457 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6458 Layout* layout,
6459 Symbol_table* symtab)
6460 {
6461 if (size == 64)
6462 {
6463 Output_data_save_res<64, big_endian>* savres
6464 = new Output_data_save_res<64, big_endian>(symtab);
6465 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6466 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6467 savres, ORDER_TEXT, false);
6468 }
6469 }
6470
6471 // Sort linker created .got section first (for the header), then input
6472 // sections belonging to files using small model code.
6473
6474 template<bool big_endian>
6475 class Sort_toc_sections
6476 {
6477 public:
6478 bool
6479 operator()(const Output_section::Input_section& is1,
6480 const Output_section::Input_section& is2) const
6481 {
6482 if (!is1.is_input_section() && is2.is_input_section())
6483 return true;
6484 bool small1
6485 = (is1.is_input_section()
6486 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6487 ->has_small_toc_reloc()));
6488 bool small2
6489 = (is2.is_input_section()
6490 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6491 ->has_small_toc_reloc()));
6492 return small1 && !small2;
6493 }
6494 };
6495
6496 // Finalize the sections.
6497
6498 template<int size, bool big_endian>
6499 void
6500 Target_powerpc<size, big_endian>::do_finalize_sections(
6501 Layout* layout,
6502 const Input_objects*,
6503 Symbol_table* symtab)
6504 {
6505 if (parameters->doing_static_link())
6506 {
6507 // At least some versions of glibc elf-init.o have a strong
6508 // reference to __rela_iplt marker syms. A weak ref would be
6509 // better..
6510 if (this->iplt_ != NULL)
6511 {
6512 Reloc_section* rel = this->iplt_->rel_plt();
6513 symtab->define_in_output_data("__rela_iplt_start", NULL,
6514 Symbol_table::PREDEFINED, rel, 0, 0,
6515 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6516 elfcpp::STV_HIDDEN, 0, false, true);
6517 symtab->define_in_output_data("__rela_iplt_end", NULL,
6518 Symbol_table::PREDEFINED, rel, 0, 0,
6519 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6520 elfcpp::STV_HIDDEN, 0, true, true);
6521 }
6522 else
6523 {
6524 symtab->define_as_constant("__rela_iplt_start", NULL,
6525 Symbol_table::PREDEFINED, 0, 0,
6526 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6527 elfcpp::STV_HIDDEN, 0, true, false);
6528 symtab->define_as_constant("__rela_iplt_end", NULL,
6529 Symbol_table::PREDEFINED, 0, 0,
6530 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6531 elfcpp::STV_HIDDEN, 0, true, false);
6532 }
6533 }
6534
6535 if (size == 64)
6536 {
6537 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6538 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6539
6540 if (!parameters->options().relocatable())
6541 {
6542 this->define_save_restore_funcs(layout, symtab);
6543
6544 // Annoyingly, we need to make these sections now whether or
6545 // not we need them. If we delay until do_relax then we
6546 // need to mess with the relaxation machinery checkpointing.
6547 this->got_section(symtab, layout);
6548 this->make_brlt_section(layout);
6549
6550 if (parameters->options().toc_sort())
6551 {
6552 Output_section* os = this->got_->output_section();
6553 if (os != NULL && os->input_sections().size() > 1)
6554 std::stable_sort(os->input_sections().begin(),
6555 os->input_sections().end(),
6556 Sort_toc_sections<big_endian>());
6557 }
6558 }
6559 }
6560
6561 // Fill in some more dynamic tags.
6562 Output_data_dynamic* odyn = layout->dynamic_data();
6563 if (odyn != NULL)
6564 {
6565 const Reloc_section* rel_plt = (this->plt_ == NULL
6566 ? NULL
6567 : this->plt_->rel_plt());
6568 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6569 this->rela_dyn_, true, size == 32);
6570
6571 if (size == 32)
6572 {
6573 if (this->got_ != NULL)
6574 {
6575 this->got_->finalize_data_size();
6576 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6577 this->got_, this->got_->g_o_t());
6578 }
6579 }
6580 else
6581 {
6582 if (this->glink_ != NULL)
6583 {
6584 this->glink_->finalize_data_size();
6585 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6586 this->glink_,
6587 (this->glink_->pltresolve_size
6588 - 32));
6589 }
6590 }
6591 }
6592
6593 // Emit any relocs we saved in an attempt to avoid generating COPY
6594 // relocs.
6595 if (this->copy_relocs_.any_saved_relocs())
6596 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6597 }
6598
6599 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6600 // reloc.
6601
6602 static bool
6603 ok_lo_toc_insn(uint32_t insn)
6604 {
6605 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6606 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6607 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6608 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6609 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6610 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6611 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6612 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6613 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6614 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6615 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6616 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6617 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6618 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6619 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6620 && (insn & 3) != 1)
6621 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6622 && ((insn & 3) == 0 || (insn & 3) == 3))
6623 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6624 }
6625
6626 // Return the value to use for a branch relocation.
6627
6628 template<int size, bool big_endian>
6629 typename Target_powerpc<size, big_endian>::Address
6630 Target_powerpc<size, big_endian>::symval_for_branch(
6631 const Symbol_table* symtab,
6632 Address value,
6633 const Sized_symbol<size>* gsym,
6634 Powerpc_relobj<size, big_endian>* object,
6635 unsigned int *dest_shndx)
6636 {
6637 if (size == 32 || this->abiversion() >= 2)
6638 gold_unreachable();
6639 *dest_shndx = 0;
6640
6641 // If the symbol is defined in an opd section, ie. is a function
6642 // descriptor, use the function descriptor code entry address
6643 Powerpc_relobj<size, big_endian>* symobj = object;
6644 if (gsym != NULL
6645 && gsym->source() != Symbol::FROM_OBJECT)
6646 return value;
6647 if (gsym != NULL)
6648 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6649 unsigned int shndx = symobj->opd_shndx();
6650 if (shndx == 0)
6651 return value;
6652 Address opd_addr = symobj->get_output_section_offset(shndx);
6653 if (opd_addr == invalid_address)
6654 return value;
6655 opd_addr += symobj->output_section_address(shndx);
6656 if (value >= opd_addr && value < opd_addr + symobj->section_size(shndx))
6657 {
6658 Address sec_off;
6659 *dest_shndx = symobj->get_opd_ent(value - opd_addr, &sec_off);
6660 if (symtab->is_section_folded(symobj, *dest_shndx))
6661 {
6662 Section_id folded
6663 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6664 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6665 *dest_shndx = folded.second;
6666 }
6667 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6668 gold_assert(sec_addr != invalid_address);
6669 sec_addr += symobj->output_section(*dest_shndx)->address();
6670 value = sec_addr + sec_off;
6671 }
6672 return value;
6673 }
6674
6675 // Perform a relocation.
6676
6677 template<int size, bool big_endian>
6678 inline bool
6679 Target_powerpc<size, big_endian>::Relocate::relocate(
6680 const Relocate_info<size, big_endian>* relinfo,
6681 Target_powerpc* target,
6682 Output_section* os,
6683 size_t relnum,
6684 const elfcpp::Rela<size, big_endian>& rela,
6685 unsigned int r_type,
6686 const Sized_symbol<size>* gsym,
6687 const Symbol_value<size>* psymval,
6688 unsigned char* view,
6689 Address address,
6690 section_size_type view_size)
6691 {
6692 if (view == NULL)
6693 return true;
6694
6695 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6696 {
6697 case Track_tls::NOT_EXPECTED:
6698 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6699 _("__tls_get_addr call lacks marker reloc"));
6700 break;
6701 case Track_tls::EXPECTED:
6702 // We have already complained.
6703 break;
6704 case Track_tls::SKIP:
6705 return true;
6706 case Track_tls::NORMAL:
6707 break;
6708 }
6709
6710 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6711 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6712 Powerpc_relobj<size, big_endian>* const object
6713 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6714 Address value = 0;
6715 bool has_stub_value = false;
6716 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6717 if ((gsym != NULL
6718 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6719 : object->local_has_plt_offset(r_sym))
6720 && (!psymval->is_ifunc_symbol()
6721 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6722 {
6723 if (size == 64
6724 && gsym != NULL
6725 && target->abiversion() >= 2
6726 && !parameters->options().output_is_position_independent()
6727 && !is_branch_reloc(r_type))
6728 {
6729 unsigned int off = target->glink_section()->find_global_entry(gsym);
6730 gold_assert(off != (unsigned int)-1);
6731 value = target->glink_section()->global_entry_address() + off;
6732 }
6733 else
6734 {
6735 Stub_table<size, big_endian>* stub_table
6736 = object->stub_table(relinfo->data_shndx);
6737 if (stub_table == NULL)
6738 {
6739 // This is a ref from a data section to an ifunc symbol.
6740 if (target->stub_tables().size() != 0)
6741 stub_table = target->stub_tables()[0];
6742 }
6743 gold_assert(stub_table != NULL);
6744 Address off;
6745 if (gsym != NULL)
6746 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6747 rela.get_r_addend());
6748 else
6749 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6750 rela.get_r_addend());
6751 gold_assert(off != invalid_address);
6752 value = stub_table->stub_address() + off;
6753 }
6754 has_stub_value = true;
6755 }
6756
6757 if (r_type == elfcpp::R_POWERPC_GOT16
6758 || r_type == elfcpp::R_POWERPC_GOT16_LO
6759 || r_type == elfcpp::R_POWERPC_GOT16_HI
6760 || r_type == elfcpp::R_POWERPC_GOT16_HA
6761 || r_type == elfcpp::R_PPC64_GOT16_DS
6762 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6763 {
6764 if (gsym != NULL)
6765 {
6766 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6767 value = gsym->got_offset(GOT_TYPE_STANDARD);
6768 }
6769 else
6770 {
6771 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6772 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6773 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6774 }
6775 value -= target->got_section()->got_base_offset(object);
6776 }
6777 else if (r_type == elfcpp::R_PPC64_TOC)
6778 {
6779 value = (target->got_section()->output_section()->address()
6780 + object->toc_base_offset());
6781 }
6782 else if (gsym != NULL
6783 && (r_type == elfcpp::R_POWERPC_REL24
6784 || r_type == elfcpp::R_PPC_PLTREL24)
6785 && has_stub_value)
6786 {
6787 if (size == 64)
6788 {
6789 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6790 Valtype* wv = reinterpret_cast<Valtype*>(view);
6791 bool can_plt_call = false;
6792 if (rela.get_r_offset() + 8 <= view_size)
6793 {
6794 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6795 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6796 if ((insn & 1) != 0
6797 && (insn2 == nop
6798 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6799 {
6800 elfcpp::Swap<32, big_endian>::
6801 writeval(wv + 1, ld_2_1 + target->stk_toc());
6802 can_plt_call = true;
6803 }
6804 }
6805 if (!can_plt_call)
6806 {
6807 // If we don't have a branch and link followed by a nop,
6808 // we can't go via the plt because there is no place to
6809 // put a toc restoring instruction.
6810 // Unless we know we won't be returning.
6811 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6812 can_plt_call = true;
6813 }
6814 if (!can_plt_call)
6815 {
6816 // g++ as of 20130507 emits self-calls without a
6817 // following nop. This is arguably wrong since we have
6818 // conflicting information. On the one hand a global
6819 // symbol and on the other a local call sequence, but
6820 // don't error for this special case.
6821 // It isn't possible to cheaply verify we have exactly
6822 // such a call. Allow all calls to the same section.
6823 bool ok = false;
6824 Address code = value;
6825 if (gsym->source() == Symbol::FROM_OBJECT
6826 && gsym->object() == object)
6827 {
6828 unsigned int dest_shndx = 0;
6829 if (target->abiversion() < 2)
6830 {
6831 Address addend = rela.get_r_addend();
6832 Address opdent = psymval->value(object, addend);
6833 code = target->symval_for_branch(relinfo->symtab,
6834 opdent, gsym, object,
6835 &dest_shndx);
6836 }
6837 bool is_ordinary;
6838 if (dest_shndx == 0)
6839 dest_shndx = gsym->shndx(&is_ordinary);
6840 ok = dest_shndx == relinfo->data_shndx;
6841 }
6842 if (!ok)
6843 {
6844 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6845 _("call lacks nop, can't restore toc; "
6846 "recompile with -fPIC"));
6847 value = code;
6848 }
6849 }
6850 }
6851 }
6852 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6853 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6854 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6855 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6856 {
6857 // First instruction of a global dynamic sequence, arg setup insn.
6858 const bool final = gsym == NULL || gsym->final_value_is_known();
6859 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6860 enum Got_type got_type = GOT_TYPE_STANDARD;
6861 if (tls_type == tls::TLSOPT_NONE)
6862 got_type = GOT_TYPE_TLSGD;
6863 else if (tls_type == tls::TLSOPT_TO_IE)
6864 got_type = GOT_TYPE_TPREL;
6865 if (got_type != GOT_TYPE_STANDARD)
6866 {
6867 if (gsym != NULL)
6868 {
6869 gold_assert(gsym->has_got_offset(got_type));
6870 value = gsym->got_offset(got_type);
6871 }
6872 else
6873 {
6874 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6875 gold_assert(object->local_has_got_offset(r_sym, got_type));
6876 value = object->local_got_offset(r_sym, got_type);
6877 }
6878 value -= target->got_section()->got_base_offset(object);
6879 }
6880 if (tls_type == tls::TLSOPT_TO_IE)
6881 {
6882 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6883 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6884 {
6885 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6886 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6887 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6888 if (size == 32)
6889 insn |= 32 << 26; // lwz
6890 else
6891 insn |= 58 << 26; // ld
6892 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6893 }
6894 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
6895 - elfcpp::R_POWERPC_GOT_TLSGD16);
6896 }
6897 else if (tls_type == tls::TLSOPT_TO_LE)
6898 {
6899 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6900 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6901 {
6902 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6903 Insn insn = addis_3_13;
6904 if (size == 32)
6905 insn = addis_3_2;
6906 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6907 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6908 value = psymval->value(object, rela.get_r_addend());
6909 }
6910 else
6911 {
6912 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6913 Insn insn = nop;
6914 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6915 r_type = elfcpp::R_POWERPC_NONE;
6916 }
6917 }
6918 }
6919 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6920 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
6921 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
6922 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
6923 {
6924 // First instruction of a local dynamic sequence, arg setup insn.
6925 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6926 if (tls_type == tls::TLSOPT_NONE)
6927 {
6928 value = target->tlsld_got_offset();
6929 value -= target->got_section()->got_base_offset(object);
6930 }
6931 else
6932 {
6933 gold_assert(tls_type == tls::TLSOPT_TO_LE);
6934 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
6935 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
6936 {
6937 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6938 Insn insn = addis_3_13;
6939 if (size == 32)
6940 insn = addis_3_2;
6941 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6942 r_type = elfcpp::R_POWERPC_TPREL16_HA;
6943 value = dtp_offset;
6944 }
6945 else
6946 {
6947 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6948 Insn insn = nop;
6949 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
6950 r_type = elfcpp::R_POWERPC_NONE;
6951 }
6952 }
6953 }
6954 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
6955 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
6956 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
6957 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
6958 {
6959 // Accesses relative to a local dynamic sequence address,
6960 // no optimisation here.
6961 if (gsym != NULL)
6962 {
6963 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
6964 value = gsym->got_offset(GOT_TYPE_DTPREL);
6965 }
6966 else
6967 {
6968 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6969 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
6970 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
6971 }
6972 value -= target->got_section()->got_base_offset(object);
6973 }
6974 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
6975 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
6976 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
6977 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
6978 {
6979 // First instruction of initial exec sequence.
6980 const bool final = gsym == NULL || gsym->final_value_is_known();
6981 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6982 if (tls_type == tls::TLSOPT_NONE)
6983 {
6984 if (gsym != NULL)
6985 {
6986 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
6987 value = gsym->got_offset(GOT_TYPE_TPREL);
6988 }
6989 else
6990 {
6991 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6992 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
6993 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
6994 }
6995 value -= target->got_section()->got_base_offset(object);
6996 }
6997 else
6998 {
6999 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7000 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7001 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7002 {
7003 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7004 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7005 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7006 if (size == 32)
7007 insn |= addis_0_2;
7008 else
7009 insn |= addis_0_13;
7010 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7011 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7012 value = psymval->value(object, rela.get_r_addend());
7013 }
7014 else
7015 {
7016 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7017 Insn insn = nop;
7018 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7019 r_type = elfcpp::R_POWERPC_NONE;
7020 }
7021 }
7022 }
7023 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7024 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7025 {
7026 // Second instruction of a global dynamic sequence,
7027 // the __tls_get_addr call
7028 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7029 const bool final = gsym == NULL || gsym->final_value_is_known();
7030 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7031 if (tls_type != tls::TLSOPT_NONE)
7032 {
7033 if (tls_type == tls::TLSOPT_TO_IE)
7034 {
7035 Insn* iview = reinterpret_cast<Insn*>(view);
7036 Insn insn = add_3_3_13;
7037 if (size == 32)
7038 insn = add_3_3_2;
7039 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7040 r_type = elfcpp::R_POWERPC_NONE;
7041 }
7042 else
7043 {
7044 Insn* iview = reinterpret_cast<Insn*>(view);
7045 Insn insn = addi_3_3;
7046 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7047 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7048 view += 2 * big_endian;
7049 value = psymval->value(object, rela.get_r_addend());
7050 }
7051 this->skip_next_tls_get_addr_call();
7052 }
7053 }
7054 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7055 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7056 {
7057 // Second instruction of a local dynamic sequence,
7058 // the __tls_get_addr call
7059 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7060 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7061 if (tls_type == tls::TLSOPT_TO_LE)
7062 {
7063 Insn* iview = reinterpret_cast<Insn*>(view);
7064 Insn insn = addi_3_3;
7065 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7066 this->skip_next_tls_get_addr_call();
7067 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7068 view += 2 * big_endian;
7069 value = dtp_offset;
7070 }
7071 }
7072 else if (r_type == elfcpp::R_POWERPC_TLS)
7073 {
7074 // Second instruction of an initial exec sequence
7075 const bool final = gsym == NULL || gsym->final_value_is_known();
7076 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7077 if (tls_type == tls::TLSOPT_TO_LE)
7078 {
7079 Insn* iview = reinterpret_cast<Insn*>(view);
7080 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7081 unsigned int reg = size == 32 ? 2 : 13;
7082 insn = at_tls_transform(insn, reg);
7083 gold_assert(insn != 0);
7084 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7085 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7086 view += 2 * big_endian;
7087 value = psymval->value(object, rela.get_r_addend());
7088 }
7089 }
7090 else if (!has_stub_value)
7091 {
7092 Address addend = 0;
7093 unsigned int dest_shndx;
7094 if (r_type != elfcpp::R_PPC_PLTREL24)
7095 addend = rela.get_r_addend();
7096 value = psymval->value(object, addend);
7097 if (size == 64 && is_branch_reloc(r_type))
7098 {
7099 if (target->abiversion() >= 2)
7100 {
7101 if (gsym != NULL)
7102 value += object->ppc64_local_entry_offset(gsym);
7103 else
7104 value += object->ppc64_local_entry_offset(r_sym);
7105 }
7106 else
7107 value = target->symval_for_branch(relinfo->symtab, value,
7108 gsym, object, &dest_shndx);
7109 }
7110 unsigned int max_branch_offset = 0;
7111 if (r_type == elfcpp::R_POWERPC_REL24
7112 || r_type == elfcpp::R_PPC_PLTREL24
7113 || r_type == elfcpp::R_PPC_LOCAL24PC)
7114 max_branch_offset = 1 << 25;
7115 else if (r_type == elfcpp::R_POWERPC_REL14
7116 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
7117 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
7118 max_branch_offset = 1 << 15;
7119 if (max_branch_offset != 0
7120 && value - address + max_branch_offset >= 2 * max_branch_offset)
7121 {
7122 Stub_table<size, big_endian>* stub_table
7123 = object->stub_table(relinfo->data_shndx);
7124 if (stub_table != NULL)
7125 {
7126 Address off = stub_table->find_long_branch_entry(object, value);
7127 if (off != invalid_address)
7128 {
7129 value = (stub_table->stub_address() + stub_table->plt_size()
7130 + off);
7131 has_stub_value = true;
7132 }
7133 }
7134 }
7135 }
7136
7137 switch (r_type)
7138 {
7139 case elfcpp::R_PPC64_REL64:
7140 case elfcpp::R_POWERPC_REL32:
7141 case elfcpp::R_POWERPC_REL24:
7142 case elfcpp::R_PPC_PLTREL24:
7143 case elfcpp::R_PPC_LOCAL24PC:
7144 case elfcpp::R_POWERPC_REL16:
7145 case elfcpp::R_POWERPC_REL16_LO:
7146 case elfcpp::R_POWERPC_REL16_HI:
7147 case elfcpp::R_POWERPC_REL16_HA:
7148 case elfcpp::R_POWERPC_REL14:
7149 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7150 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7151 value -= address;
7152 break;
7153
7154 case elfcpp::R_PPC64_TOC16:
7155 case elfcpp::R_PPC64_TOC16_LO:
7156 case elfcpp::R_PPC64_TOC16_HI:
7157 case elfcpp::R_PPC64_TOC16_HA:
7158 case elfcpp::R_PPC64_TOC16_DS:
7159 case elfcpp::R_PPC64_TOC16_LO_DS:
7160 // Subtract the TOC base address.
7161 value -= (target->got_section()->output_section()->address()
7162 + object->toc_base_offset());
7163 break;
7164
7165 case elfcpp::R_POWERPC_SECTOFF:
7166 case elfcpp::R_POWERPC_SECTOFF_LO:
7167 case elfcpp::R_POWERPC_SECTOFF_HI:
7168 case elfcpp::R_POWERPC_SECTOFF_HA:
7169 case elfcpp::R_PPC64_SECTOFF_DS:
7170 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7171 if (os != NULL)
7172 value -= os->address();
7173 break;
7174
7175 case elfcpp::R_PPC64_TPREL16_DS:
7176 case elfcpp::R_PPC64_TPREL16_LO_DS:
7177 case elfcpp::R_PPC64_TPREL16_HIGH:
7178 case elfcpp::R_PPC64_TPREL16_HIGHA:
7179 if (size != 64)
7180 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7181 break;
7182 case elfcpp::R_POWERPC_TPREL16:
7183 case elfcpp::R_POWERPC_TPREL16_LO:
7184 case elfcpp::R_POWERPC_TPREL16_HI:
7185 case elfcpp::R_POWERPC_TPREL16_HA:
7186 case elfcpp::R_POWERPC_TPREL:
7187 case elfcpp::R_PPC64_TPREL16_HIGHER:
7188 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7189 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7190 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7191 // tls symbol values are relative to tls_segment()->vaddr()
7192 value -= tp_offset;
7193 break;
7194
7195 case elfcpp::R_PPC64_DTPREL16_DS:
7196 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7197 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7198 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7199 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7200 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7201 if (size != 64)
7202 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7203 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7204 break;
7205 case elfcpp::R_POWERPC_DTPREL16:
7206 case elfcpp::R_POWERPC_DTPREL16_LO:
7207 case elfcpp::R_POWERPC_DTPREL16_HI:
7208 case elfcpp::R_POWERPC_DTPREL16_HA:
7209 case elfcpp::R_POWERPC_DTPREL:
7210 case elfcpp::R_PPC64_DTPREL16_HIGH:
7211 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7212 // tls symbol values are relative to tls_segment()->vaddr()
7213 value -= dtp_offset;
7214 break;
7215
7216 case elfcpp::R_PPC64_ADDR64_LOCAL:
7217 if (gsym != NULL)
7218 value += object->ppc64_local_entry_offset(gsym);
7219 else
7220 value += object->ppc64_local_entry_offset(r_sym);
7221 break;
7222
7223 default:
7224 break;
7225 }
7226
7227 Insn branch_bit = 0;
7228 switch (r_type)
7229 {
7230 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7231 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7232 branch_bit = 1 << 21;
7233 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7234 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7235 {
7236 Insn* iview = reinterpret_cast<Insn*>(view);
7237 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7238 insn &= ~(1 << 21);
7239 insn |= branch_bit;
7240 if (this->is_isa_v2)
7241 {
7242 // Set 'a' bit. This is 0b00010 in BO field for branch
7243 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7244 // for branch on CTR insns (BO == 1a00t or 1a01t).
7245 if ((insn & (0x14 << 21)) == (0x04 << 21))
7246 insn |= 0x02 << 21;
7247 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7248 insn |= 0x08 << 21;
7249 else
7250 break;
7251 }
7252 else
7253 {
7254 // Invert 'y' bit if not the default.
7255 if (static_cast<Signed_address>(value) < 0)
7256 insn ^= 1 << 21;
7257 }
7258 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7259 }
7260 break;
7261
7262 default:
7263 break;
7264 }
7265
7266 if (size == 64)
7267 {
7268 // Multi-instruction sequences that access the TOC can be
7269 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7270 // to nop; addi rb,r2,x;
7271 switch (r_type)
7272 {
7273 default:
7274 break;
7275
7276 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7277 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7278 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7279 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7280 case elfcpp::R_POWERPC_GOT16_HA:
7281 case elfcpp::R_PPC64_TOC16_HA:
7282 if (parameters->options().toc_optimize())
7283 {
7284 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7285 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7286 if ((insn & ((0x3f << 26) | 0x1f << 16))
7287 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7288 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7289 _("toc optimization is not supported "
7290 "for %#08x instruction"), insn);
7291 else if (value + 0x8000 < 0x10000)
7292 {
7293 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7294 return true;
7295 }
7296 }
7297 break;
7298
7299 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7300 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7301 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7302 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7303 case elfcpp::R_POWERPC_GOT16_LO:
7304 case elfcpp::R_PPC64_GOT16_LO_DS:
7305 case elfcpp::R_PPC64_TOC16_LO:
7306 case elfcpp::R_PPC64_TOC16_LO_DS:
7307 if (parameters->options().toc_optimize())
7308 {
7309 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7310 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7311 if (!ok_lo_toc_insn(insn))
7312 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7313 _("toc optimization is not supported "
7314 "for %#08x instruction"), insn);
7315 else if (value + 0x8000 < 0x10000)
7316 {
7317 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7318 {
7319 // Transform addic to addi when we change reg.
7320 insn &= ~((0x3f << 26) | (0x1f << 16));
7321 insn |= (14u << 26) | (2 << 16);
7322 }
7323 else
7324 {
7325 insn &= ~(0x1f << 16);
7326 insn |= 2 << 16;
7327 }
7328 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7329 }
7330 }
7331 break;
7332 }
7333 }
7334
7335 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7336 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7337 switch (r_type)
7338 {
7339 case elfcpp::R_POWERPC_ADDR32:
7340 case elfcpp::R_POWERPC_UADDR32:
7341 if (size == 64)
7342 overflow = Reloc::CHECK_BITFIELD;
7343 break;
7344
7345 case elfcpp::R_POWERPC_REL32:
7346 if (size == 64)
7347 overflow = Reloc::CHECK_SIGNED;
7348 break;
7349
7350 case elfcpp::R_POWERPC_UADDR16:
7351 overflow = Reloc::CHECK_BITFIELD;
7352 break;
7353
7354 case elfcpp::R_POWERPC_ADDR16:
7355 // We really should have three separate relocations,
7356 // one for 16-bit data, one for insns with 16-bit signed fields,
7357 // and one for insns with 16-bit unsigned fields.
7358 overflow = Reloc::CHECK_BITFIELD;
7359 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7360 overflow = Reloc::CHECK_LOW_INSN;
7361 break;
7362
7363 case elfcpp::R_POWERPC_ADDR16_HI:
7364 case elfcpp::R_POWERPC_ADDR16_HA:
7365 case elfcpp::R_POWERPC_GOT16_HI:
7366 case elfcpp::R_POWERPC_GOT16_HA:
7367 case elfcpp::R_POWERPC_PLT16_HI:
7368 case elfcpp::R_POWERPC_PLT16_HA:
7369 case elfcpp::R_POWERPC_SECTOFF_HI:
7370 case elfcpp::R_POWERPC_SECTOFF_HA:
7371 case elfcpp::R_PPC64_TOC16_HI:
7372 case elfcpp::R_PPC64_TOC16_HA:
7373 case elfcpp::R_PPC64_PLTGOT16_HI:
7374 case elfcpp::R_PPC64_PLTGOT16_HA:
7375 case elfcpp::R_POWERPC_TPREL16_HI:
7376 case elfcpp::R_POWERPC_TPREL16_HA:
7377 case elfcpp::R_POWERPC_DTPREL16_HI:
7378 case elfcpp::R_POWERPC_DTPREL16_HA:
7379 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7380 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7381 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7382 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7383 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7384 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7385 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7386 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7387 case elfcpp::R_POWERPC_REL16_HI:
7388 case elfcpp::R_POWERPC_REL16_HA:
7389 if (size != 32)
7390 overflow = Reloc::CHECK_HIGH_INSN;
7391 break;
7392
7393 case elfcpp::R_POWERPC_REL16:
7394 case elfcpp::R_PPC64_TOC16:
7395 case elfcpp::R_POWERPC_GOT16:
7396 case elfcpp::R_POWERPC_SECTOFF:
7397 case elfcpp::R_POWERPC_TPREL16:
7398 case elfcpp::R_POWERPC_DTPREL16:
7399 case elfcpp::R_POWERPC_GOT_TLSGD16:
7400 case elfcpp::R_POWERPC_GOT_TLSLD16:
7401 case elfcpp::R_POWERPC_GOT_TPREL16:
7402 case elfcpp::R_POWERPC_GOT_DTPREL16:
7403 overflow = Reloc::CHECK_LOW_INSN;
7404 break;
7405
7406 case elfcpp::R_POWERPC_ADDR24:
7407 case elfcpp::R_POWERPC_ADDR14:
7408 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7409 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7410 case elfcpp::R_PPC64_ADDR16_DS:
7411 case elfcpp::R_POWERPC_REL24:
7412 case elfcpp::R_PPC_PLTREL24:
7413 case elfcpp::R_PPC_LOCAL24PC:
7414 case elfcpp::R_PPC64_TPREL16_DS:
7415 case elfcpp::R_PPC64_DTPREL16_DS:
7416 case elfcpp::R_PPC64_TOC16_DS:
7417 case elfcpp::R_PPC64_GOT16_DS:
7418 case elfcpp::R_PPC64_SECTOFF_DS:
7419 case elfcpp::R_POWERPC_REL14:
7420 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7421 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7422 overflow = Reloc::CHECK_SIGNED;
7423 break;
7424 }
7425
7426 if (overflow == Reloc::CHECK_LOW_INSN
7427 || overflow == Reloc::CHECK_HIGH_INSN)
7428 {
7429 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7430 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7431
7432 overflow = Reloc::CHECK_SIGNED;
7433 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7434 overflow = Reloc::CHECK_BITFIELD;
7435 else if (overflow == Reloc::CHECK_LOW_INSN
7436 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7437 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7438 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7439 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7440 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7441 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7442 overflow = Reloc::CHECK_UNSIGNED;
7443 }
7444
7445 typename Powerpc_relocate_functions<size, big_endian>::Status status
7446 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7447 switch (r_type)
7448 {
7449 case elfcpp::R_POWERPC_NONE:
7450 case elfcpp::R_POWERPC_TLS:
7451 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7452 case elfcpp::R_POWERPC_GNU_VTENTRY:
7453 break;
7454
7455 case elfcpp::R_PPC64_ADDR64:
7456 case elfcpp::R_PPC64_REL64:
7457 case elfcpp::R_PPC64_TOC:
7458 case elfcpp::R_PPC64_ADDR64_LOCAL:
7459 Reloc::addr64(view, value);
7460 break;
7461
7462 case elfcpp::R_POWERPC_TPREL:
7463 case elfcpp::R_POWERPC_DTPREL:
7464 if (size == 64)
7465 Reloc::addr64(view, value);
7466 else
7467 status = Reloc::addr32(view, value, overflow);
7468 break;
7469
7470 case elfcpp::R_PPC64_UADDR64:
7471 Reloc::addr64_u(view, value);
7472 break;
7473
7474 case elfcpp::R_POWERPC_ADDR32:
7475 status = Reloc::addr32(view, value, overflow);
7476 break;
7477
7478 case elfcpp::R_POWERPC_REL32:
7479 case elfcpp::R_POWERPC_UADDR32:
7480 status = Reloc::addr32_u(view, value, overflow);
7481 break;
7482
7483 case elfcpp::R_POWERPC_ADDR24:
7484 case elfcpp::R_POWERPC_REL24:
7485 case elfcpp::R_PPC_PLTREL24:
7486 case elfcpp::R_PPC_LOCAL24PC:
7487 status = Reloc::addr24(view, value, overflow);
7488 break;
7489
7490 case elfcpp::R_POWERPC_GOT_DTPREL16:
7491 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7492 if (size == 64)
7493 {
7494 status = Reloc::addr16_ds(view, value, overflow);
7495 break;
7496 }
7497 case elfcpp::R_POWERPC_ADDR16:
7498 case elfcpp::R_POWERPC_REL16:
7499 case elfcpp::R_PPC64_TOC16:
7500 case elfcpp::R_POWERPC_GOT16:
7501 case elfcpp::R_POWERPC_SECTOFF:
7502 case elfcpp::R_POWERPC_TPREL16:
7503 case elfcpp::R_POWERPC_DTPREL16:
7504 case elfcpp::R_POWERPC_GOT_TLSGD16:
7505 case elfcpp::R_POWERPC_GOT_TLSLD16:
7506 case elfcpp::R_POWERPC_GOT_TPREL16:
7507 case elfcpp::R_POWERPC_ADDR16_LO:
7508 case elfcpp::R_POWERPC_REL16_LO:
7509 case elfcpp::R_PPC64_TOC16_LO:
7510 case elfcpp::R_POWERPC_GOT16_LO:
7511 case elfcpp::R_POWERPC_SECTOFF_LO:
7512 case elfcpp::R_POWERPC_TPREL16_LO:
7513 case elfcpp::R_POWERPC_DTPREL16_LO:
7514 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7515 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7516 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7517 status = Reloc::addr16(view, value, overflow);
7518 break;
7519
7520 case elfcpp::R_POWERPC_UADDR16:
7521 status = Reloc::addr16_u(view, value, overflow);
7522 break;
7523
7524 case elfcpp::R_PPC64_ADDR16_HIGH:
7525 case elfcpp::R_PPC64_TPREL16_HIGH:
7526 case elfcpp::R_PPC64_DTPREL16_HIGH:
7527 if (size == 32)
7528 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7529 goto unsupp;
7530 case elfcpp::R_POWERPC_ADDR16_HI:
7531 case elfcpp::R_POWERPC_REL16_HI:
7532 case elfcpp::R_PPC64_TOC16_HI:
7533 case elfcpp::R_POWERPC_GOT16_HI:
7534 case elfcpp::R_POWERPC_SECTOFF_HI:
7535 case elfcpp::R_POWERPC_TPREL16_HI:
7536 case elfcpp::R_POWERPC_DTPREL16_HI:
7537 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7538 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7539 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7540 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7541 Reloc::addr16_hi(view, value);
7542 break;
7543
7544 case elfcpp::R_PPC64_ADDR16_HIGHA:
7545 case elfcpp::R_PPC64_TPREL16_HIGHA:
7546 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7547 if (size == 32)
7548 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7549 goto unsupp;
7550 case elfcpp::R_POWERPC_ADDR16_HA:
7551 case elfcpp::R_POWERPC_REL16_HA:
7552 case elfcpp::R_PPC64_TOC16_HA:
7553 case elfcpp::R_POWERPC_GOT16_HA:
7554 case elfcpp::R_POWERPC_SECTOFF_HA:
7555 case elfcpp::R_POWERPC_TPREL16_HA:
7556 case elfcpp::R_POWERPC_DTPREL16_HA:
7557 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7558 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7559 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7560 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7561 Reloc::addr16_ha(view, value);
7562 break;
7563
7564 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7565 if (size == 32)
7566 // R_PPC_EMB_NADDR16_LO
7567 goto unsupp;
7568 case elfcpp::R_PPC64_ADDR16_HIGHER:
7569 case elfcpp::R_PPC64_TPREL16_HIGHER:
7570 Reloc::addr16_hi2(view, value);
7571 break;
7572
7573 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7574 if (size == 32)
7575 // R_PPC_EMB_NADDR16_HI
7576 goto unsupp;
7577 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7578 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7579 Reloc::addr16_ha2(view, value);
7580 break;
7581
7582 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7583 if (size == 32)
7584 // R_PPC_EMB_NADDR16_HA
7585 goto unsupp;
7586 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7587 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7588 Reloc::addr16_hi3(view, value);
7589 break;
7590
7591 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7592 if (size == 32)
7593 // R_PPC_EMB_SDAI16
7594 goto unsupp;
7595 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7596 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7597 Reloc::addr16_ha3(view, value);
7598 break;
7599
7600 case elfcpp::R_PPC64_DTPREL16_DS:
7601 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7602 if (size == 32)
7603 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7604 goto unsupp;
7605 case elfcpp::R_PPC64_TPREL16_DS:
7606 case elfcpp::R_PPC64_TPREL16_LO_DS:
7607 if (size == 32)
7608 // R_PPC_TLSGD, R_PPC_TLSLD
7609 break;
7610 case elfcpp::R_PPC64_ADDR16_DS:
7611 case elfcpp::R_PPC64_ADDR16_LO_DS:
7612 case elfcpp::R_PPC64_TOC16_DS:
7613 case elfcpp::R_PPC64_TOC16_LO_DS:
7614 case elfcpp::R_PPC64_GOT16_DS:
7615 case elfcpp::R_PPC64_GOT16_LO_DS:
7616 case elfcpp::R_PPC64_SECTOFF_DS:
7617 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7618 status = Reloc::addr16_ds(view, value, overflow);
7619 break;
7620
7621 case elfcpp::R_POWERPC_ADDR14:
7622 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7623 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7624 case elfcpp::R_POWERPC_REL14:
7625 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7626 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7627 status = Reloc::addr14(view, value, overflow);
7628 break;
7629
7630 case elfcpp::R_POWERPC_COPY:
7631 case elfcpp::R_POWERPC_GLOB_DAT:
7632 case elfcpp::R_POWERPC_JMP_SLOT:
7633 case elfcpp::R_POWERPC_RELATIVE:
7634 case elfcpp::R_POWERPC_DTPMOD:
7635 case elfcpp::R_PPC64_JMP_IREL:
7636 case elfcpp::R_POWERPC_IRELATIVE:
7637 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7638 _("unexpected reloc %u in object file"),
7639 r_type);
7640 break;
7641
7642 case elfcpp::R_PPC_EMB_SDA21:
7643 if (size == 32)
7644 goto unsupp;
7645 else
7646 {
7647 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7648 }
7649 break;
7650
7651 case elfcpp::R_PPC_EMB_SDA2I16:
7652 case elfcpp::R_PPC_EMB_SDA2REL:
7653 if (size == 32)
7654 goto unsupp;
7655 // R_PPC64_TLSGD, R_PPC64_TLSLD
7656 break;
7657
7658 case elfcpp::R_POWERPC_PLT32:
7659 case elfcpp::R_POWERPC_PLTREL32:
7660 case elfcpp::R_POWERPC_PLT16_LO:
7661 case elfcpp::R_POWERPC_PLT16_HI:
7662 case elfcpp::R_POWERPC_PLT16_HA:
7663 case elfcpp::R_PPC_SDAREL16:
7664 case elfcpp::R_POWERPC_ADDR30:
7665 case elfcpp::R_PPC64_PLT64:
7666 case elfcpp::R_PPC64_PLTREL64:
7667 case elfcpp::R_PPC64_PLTGOT16:
7668 case elfcpp::R_PPC64_PLTGOT16_LO:
7669 case elfcpp::R_PPC64_PLTGOT16_HI:
7670 case elfcpp::R_PPC64_PLTGOT16_HA:
7671 case elfcpp::R_PPC64_PLT16_LO_DS:
7672 case elfcpp::R_PPC64_PLTGOT16_DS:
7673 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7674 case elfcpp::R_PPC_EMB_RELSDA:
7675 case elfcpp::R_PPC_TOC16:
7676 default:
7677 unsupp:
7678 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7679 _("unsupported reloc %u"),
7680 r_type);
7681 break;
7682 }
7683 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7684 && (has_stub_value
7685 || !(gsym != NULL
7686 && gsym->is_weak_undefined()
7687 && is_branch_reloc(r_type))))
7688 {
7689 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7690 _("relocation overflow"));
7691 if (has_stub_value)
7692 gold_info(_("try relinking with a smaller --stub-group-size"));
7693 }
7694
7695 return true;
7696 }
7697
7698 // Relocate section data.
7699
7700 template<int size, bool big_endian>
7701 void
7702 Target_powerpc<size, big_endian>::relocate_section(
7703 const Relocate_info<size, big_endian>* relinfo,
7704 unsigned int sh_type,
7705 const unsigned char* prelocs,
7706 size_t reloc_count,
7707 Output_section* output_section,
7708 bool needs_special_offset_handling,
7709 unsigned char* view,
7710 Address address,
7711 section_size_type view_size,
7712 const Reloc_symbol_changes* reloc_symbol_changes)
7713 {
7714 typedef Target_powerpc<size, big_endian> Powerpc;
7715 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7716 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7717 Powerpc_comdat_behavior;
7718
7719 gold_assert(sh_type == elfcpp::SHT_RELA);
7720
7721 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7722 Powerpc_relocate, Powerpc_comdat_behavior>(
7723 relinfo,
7724 this,
7725 prelocs,
7726 reloc_count,
7727 output_section,
7728 needs_special_offset_handling,
7729 view,
7730 address,
7731 view_size,
7732 reloc_symbol_changes);
7733 }
7734
7735 class Powerpc_scan_relocatable_reloc
7736 {
7737 public:
7738 // Return the strategy to use for a local symbol which is not a
7739 // section symbol, given the relocation type.
7740 inline Relocatable_relocs::Reloc_strategy
7741 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7742 {
7743 if (r_type == 0 && r_sym == 0)
7744 return Relocatable_relocs::RELOC_DISCARD;
7745 return Relocatable_relocs::RELOC_COPY;
7746 }
7747
7748 // Return the strategy to use for a local symbol which is a section
7749 // symbol, given the relocation type.
7750 inline Relocatable_relocs::Reloc_strategy
7751 local_section_strategy(unsigned int, Relobj*)
7752 {
7753 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7754 }
7755
7756 // Return the strategy to use for a global symbol, given the
7757 // relocation type, the object, and the symbol index.
7758 inline Relocatable_relocs::Reloc_strategy
7759 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7760 {
7761 if (r_type == elfcpp::R_PPC_PLTREL24)
7762 return Relocatable_relocs::RELOC_SPECIAL;
7763 return Relocatable_relocs::RELOC_COPY;
7764 }
7765 };
7766
7767 // Scan the relocs during a relocatable link.
7768
7769 template<int size, bool big_endian>
7770 void
7771 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7772 Symbol_table* symtab,
7773 Layout* layout,
7774 Sized_relobj_file<size, big_endian>* object,
7775 unsigned int data_shndx,
7776 unsigned int sh_type,
7777 const unsigned char* prelocs,
7778 size_t reloc_count,
7779 Output_section* output_section,
7780 bool needs_special_offset_handling,
7781 size_t local_symbol_count,
7782 const unsigned char* plocal_symbols,
7783 Relocatable_relocs* rr)
7784 {
7785 gold_assert(sh_type == elfcpp::SHT_RELA);
7786
7787 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7788 Powerpc_scan_relocatable_reloc>(
7789 symtab,
7790 layout,
7791 object,
7792 data_shndx,
7793 prelocs,
7794 reloc_count,
7795 output_section,
7796 needs_special_offset_handling,
7797 local_symbol_count,
7798 plocal_symbols,
7799 rr);
7800 }
7801
7802 // Emit relocations for a section.
7803 // This is a modified version of the function by the same name in
7804 // target-reloc.h. Using relocate_special_relocatable for
7805 // R_PPC_PLTREL24 would require duplication of the entire body of the
7806 // loop, so we may as well duplicate the whole thing.
7807
7808 template<int size, bool big_endian>
7809 void
7810 Target_powerpc<size, big_endian>::relocate_relocs(
7811 const Relocate_info<size, big_endian>* relinfo,
7812 unsigned int sh_type,
7813 const unsigned char* prelocs,
7814 size_t reloc_count,
7815 Output_section* output_section,
7816 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7817 const Relocatable_relocs* rr,
7818 unsigned char*,
7819 Address view_address,
7820 section_size_type,
7821 unsigned char* reloc_view,
7822 section_size_type reloc_view_size)
7823 {
7824 gold_assert(sh_type == elfcpp::SHT_RELA);
7825
7826 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7827 Reltype;
7828 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7829 Reltype_write;
7830 const int reloc_size
7831 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7832
7833 Powerpc_relobj<size, big_endian>* const object
7834 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7835 const unsigned int local_count = object->local_symbol_count();
7836 unsigned int got2_shndx = object->got2_shndx();
7837 Address got2_addend = 0;
7838 if (got2_shndx != 0)
7839 {
7840 got2_addend = object->get_output_section_offset(got2_shndx);
7841 gold_assert(got2_addend != invalid_address);
7842 }
7843
7844 unsigned char* pwrite = reloc_view;
7845 bool zap_next = false;
7846 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7847 {
7848 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7849 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7850 continue;
7851
7852 Reltype reloc(prelocs);
7853 Reltype_write reloc_write(pwrite);
7854
7855 Address offset = reloc.get_r_offset();
7856 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7857 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7858 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7859 const unsigned int orig_r_sym = r_sym;
7860 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7861 = reloc.get_r_addend();
7862 const Symbol* gsym = NULL;
7863
7864 if (zap_next)
7865 {
7866 // We could arrange to discard these and other relocs for
7867 // tls optimised sequences in the strategy methods, but for
7868 // now do as BFD ld does.
7869 r_type = elfcpp::R_POWERPC_NONE;
7870 zap_next = false;
7871 }
7872
7873 // Get the new symbol index.
7874 if (r_sym < local_count)
7875 {
7876 switch (strategy)
7877 {
7878 case Relocatable_relocs::RELOC_COPY:
7879 case Relocatable_relocs::RELOC_SPECIAL:
7880 if (r_sym != 0)
7881 {
7882 r_sym = object->symtab_index(r_sym);
7883 gold_assert(r_sym != -1U);
7884 }
7885 break;
7886
7887 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7888 {
7889 // We are adjusting a section symbol. We need to find
7890 // the symbol table index of the section symbol for
7891 // the output section corresponding to input section
7892 // in which this symbol is defined.
7893 gold_assert(r_sym < local_count);
7894 bool is_ordinary;
7895 unsigned int shndx =
7896 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7897 gold_assert(is_ordinary);
7898 Output_section* os = object->output_section(shndx);
7899 gold_assert(os != NULL);
7900 gold_assert(os->needs_symtab_index());
7901 r_sym = os->symtab_index();
7902 }
7903 break;
7904
7905 default:
7906 gold_unreachable();
7907 }
7908 }
7909 else
7910 {
7911 gsym = object->global_symbol(r_sym);
7912 gold_assert(gsym != NULL);
7913 if (gsym->is_forwarder())
7914 gsym = relinfo->symtab->resolve_forwards(gsym);
7915
7916 gold_assert(gsym->has_symtab_index());
7917 r_sym = gsym->symtab_index();
7918 }
7919
7920 // Get the new offset--the location in the output section where
7921 // this relocation should be applied.
7922 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7923 offset += offset_in_output_section;
7924 else
7925 {
7926 section_offset_type sot_offset =
7927 convert_types<section_offset_type, Address>(offset);
7928 section_offset_type new_sot_offset =
7929 output_section->output_offset(object, relinfo->data_shndx,
7930 sot_offset);
7931 gold_assert(new_sot_offset != -1);
7932 offset = new_sot_offset;
7933 }
7934
7935 // In an object file, r_offset is an offset within the section.
7936 // In an executable or dynamic object, generated by
7937 // --emit-relocs, r_offset is an absolute address.
7938 if (!parameters->options().relocatable())
7939 {
7940 offset += view_address;
7941 if (static_cast<Address>(offset_in_output_section) != invalid_address)
7942 offset -= offset_in_output_section;
7943 }
7944
7945 // Handle the reloc addend based on the strategy.
7946 if (strategy == Relocatable_relocs::RELOC_COPY)
7947 ;
7948 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
7949 {
7950 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
7951 addend = psymval->value(object, addend);
7952 }
7953 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
7954 {
7955 if (addend >= 32768)
7956 addend += got2_addend;
7957 }
7958 else
7959 gold_unreachable();
7960
7961 if (!parameters->options().relocatable())
7962 {
7963 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7964 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7965 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7966 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7967 {
7968 // First instruction of a global dynamic sequence,
7969 // arg setup insn.
7970 const bool final = gsym == NULL || gsym->final_value_is_known();
7971 switch (this->optimize_tls_gd(final))
7972 {
7973 case tls::TLSOPT_TO_IE:
7974 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7975 - elfcpp::R_POWERPC_GOT_TLSGD16);
7976 break;
7977 case tls::TLSOPT_TO_LE:
7978 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7979 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7980 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7981 else
7982 {
7983 r_type = elfcpp::R_POWERPC_NONE;
7984 offset -= 2 * big_endian;
7985 }
7986 break;
7987 default:
7988 break;
7989 }
7990 }
7991 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7992 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7993 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7994 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7995 {
7996 // First instruction of a local dynamic sequence,
7997 // arg setup insn.
7998 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
7999 {
8000 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8001 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8002 {
8003 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8004 const Output_section* os = relinfo->layout->tls_segment()
8005 ->first_section();
8006 gold_assert(os != NULL);
8007 gold_assert(os->needs_symtab_index());
8008 r_sym = os->symtab_index();
8009 addend = dtp_offset;
8010 }
8011 else
8012 {
8013 r_type = elfcpp::R_POWERPC_NONE;
8014 offset -= 2 * big_endian;
8015 }
8016 }
8017 }
8018 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8019 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8020 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8021 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8022 {
8023 // First instruction of initial exec sequence.
8024 const bool final = gsym == NULL || gsym->final_value_is_known();
8025 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8026 {
8027 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8028 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8029 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8030 else
8031 {
8032 r_type = elfcpp::R_POWERPC_NONE;
8033 offset -= 2 * big_endian;
8034 }
8035 }
8036 }
8037 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8038 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8039 {
8040 // Second instruction of a global dynamic sequence,
8041 // the __tls_get_addr call
8042 const bool final = gsym == NULL || gsym->final_value_is_known();
8043 switch (this->optimize_tls_gd(final))
8044 {
8045 case tls::TLSOPT_TO_IE:
8046 r_type = elfcpp::R_POWERPC_NONE;
8047 zap_next = true;
8048 break;
8049 case tls::TLSOPT_TO_LE:
8050 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8051 offset += 2 * big_endian;
8052 zap_next = true;
8053 break;
8054 default:
8055 break;
8056 }
8057 }
8058 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8059 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8060 {
8061 // Second instruction of a local dynamic sequence,
8062 // the __tls_get_addr call
8063 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8064 {
8065 const Output_section* os = relinfo->layout->tls_segment()
8066 ->first_section();
8067 gold_assert(os != NULL);
8068 gold_assert(os->needs_symtab_index());
8069 r_sym = os->symtab_index();
8070 addend = dtp_offset;
8071 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8072 offset += 2 * big_endian;
8073 zap_next = true;
8074 }
8075 }
8076 else if (r_type == elfcpp::R_POWERPC_TLS)
8077 {
8078 // Second instruction of an initial exec sequence
8079 const bool final = gsym == NULL || gsym->final_value_is_known();
8080 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8081 {
8082 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8083 offset += 2 * big_endian;
8084 }
8085 }
8086 }
8087
8088 reloc_write.put_r_offset(offset);
8089 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8090 reloc_write.put_r_addend(addend);
8091
8092 pwrite += reloc_size;
8093 }
8094
8095 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8096 == reloc_view_size);
8097 }
8098
8099 // Return the value to use for a dynamic symbol which requires special
8100 // treatment. This is how we support equality comparisons of function
8101 // pointers across shared library boundaries, as described in the
8102 // processor specific ABI supplement.
8103
8104 template<int size, bool big_endian>
8105 uint64_t
8106 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8107 {
8108 if (size == 32)
8109 {
8110 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8111 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8112 p != this->stub_tables_.end();
8113 ++p)
8114 {
8115 Address off = (*p)->find_plt_call_entry(gsym);
8116 if (off != invalid_address)
8117 return (*p)->stub_address() + off;
8118 }
8119 }
8120 else if (this->abiversion() >= 2)
8121 {
8122 unsigned int off = this->glink_section()->find_global_entry(gsym);
8123 if (off != (unsigned int)-1)
8124 return this->glink_section()->global_entry_address() + off;
8125 }
8126 gold_unreachable();
8127 }
8128
8129 // Return the PLT address to use for a local symbol.
8130 template<int size, bool big_endian>
8131 uint64_t
8132 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8133 const Relobj* object,
8134 unsigned int symndx) const
8135 {
8136 if (size == 32)
8137 {
8138 const Sized_relobj<size, big_endian>* relobj
8139 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8140 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8141 p != this->stub_tables_.end();
8142 ++p)
8143 {
8144 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8145 symndx);
8146 if (off != invalid_address)
8147 return (*p)->stub_address() + off;
8148 }
8149 }
8150 gold_unreachable();
8151 }
8152
8153 // Return the PLT address to use for a global symbol.
8154 template<int size, bool big_endian>
8155 uint64_t
8156 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8157 const Symbol* gsym) const
8158 {
8159 if (size == 32)
8160 {
8161 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8162 p != this->stub_tables_.end();
8163 ++p)
8164 {
8165 Address off = (*p)->find_plt_call_entry(gsym);
8166 if (off != invalid_address)
8167 return (*p)->stub_address() + off;
8168 }
8169 }
8170 else if (this->abiversion() >= 2)
8171 {
8172 unsigned int off = this->glink_section()->find_global_entry(gsym);
8173 if (off != (unsigned int)-1)
8174 return this->glink_section()->global_entry_address() + off;
8175 }
8176 gold_unreachable();
8177 }
8178
8179 // Return the offset to use for the GOT_INDX'th got entry which is
8180 // for a local tls symbol specified by OBJECT, SYMNDX.
8181 template<int size, bool big_endian>
8182 int64_t
8183 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8184 const Relobj* object,
8185 unsigned int symndx,
8186 unsigned int got_indx) const
8187 {
8188 const Powerpc_relobj<size, big_endian>* ppc_object
8189 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8190 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8191 {
8192 for (Got_type got_type = GOT_TYPE_TLSGD;
8193 got_type <= GOT_TYPE_TPREL;
8194 got_type = Got_type(got_type + 1))
8195 if (ppc_object->local_has_got_offset(symndx, got_type))
8196 {
8197 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8198 if (got_type == GOT_TYPE_TLSGD)
8199 off += size / 8;
8200 if (off == got_indx * (size / 8))
8201 {
8202 if (got_type == GOT_TYPE_TPREL)
8203 return -tp_offset;
8204 else
8205 return -dtp_offset;
8206 }
8207 }
8208 }
8209 gold_unreachable();
8210 }
8211
8212 // Return the offset to use for the GOT_INDX'th got entry which is
8213 // for global tls symbol GSYM.
8214 template<int size, bool big_endian>
8215 int64_t
8216 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8217 Symbol* gsym,
8218 unsigned int got_indx) const
8219 {
8220 if (gsym->type() == elfcpp::STT_TLS)
8221 {
8222 for (Got_type got_type = GOT_TYPE_TLSGD;
8223 got_type <= GOT_TYPE_TPREL;
8224 got_type = Got_type(got_type + 1))
8225 if (gsym->has_got_offset(got_type))
8226 {
8227 unsigned int off = gsym->got_offset(got_type);
8228 if (got_type == GOT_TYPE_TLSGD)
8229 off += size / 8;
8230 if (off == got_indx * (size / 8))
8231 {
8232 if (got_type == GOT_TYPE_TPREL)
8233 return -tp_offset;
8234 else
8235 return -dtp_offset;
8236 }
8237 }
8238 }
8239 gold_unreachable();
8240 }
8241
8242 // The selector for powerpc object files.
8243
8244 template<int size, bool big_endian>
8245 class Target_selector_powerpc : public Target_selector
8246 {
8247 public:
8248 Target_selector_powerpc()
8249 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8250 size, big_endian,
8251 (size == 64
8252 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8253 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8254 (size == 64
8255 ? (big_endian ? "elf64ppc" : "elf64lppc")
8256 : (big_endian ? "elf32ppc" : "elf32lppc")))
8257 { }
8258
8259 virtual Target*
8260 do_instantiate_target()
8261 { return new Target_powerpc<size, big_endian>(); }
8262 };
8263
8264 Target_selector_powerpc<32, true> target_selector_ppc32;
8265 Target_selector_powerpc<32, false> target_selector_ppc32le;
8266 Target_selector_powerpc<64, true> target_selector_ppc64;
8267 Target_selector_powerpc<64, false> target_selector_ppc64le;
8268
8269 // Instantiate these constants for -O0
8270 template<int size, bool big_endian>
8271 const int Output_data_glink<size, big_endian>::pltresolve_size;
8272 template<int size, bool big_endian>
8273 const typename Output_data_glink<size, big_endian>::Address
8274 Output_data_glink<size, big_endian>::invalid_address;
8275 template<int size, bool big_endian>
8276 const typename Stub_table<size, big_endian>::Address
8277 Stub_table<size, big_endian>::invalid_address;
8278 template<int size, bool big_endian>
8279 const typename Target_powerpc<size, big_endian>::Address
8280 Target_powerpc<size, big_endian>::invalid_address;
8281
8282 } // End anonymous namespace.