PR gold/5986
[binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "script.h"
44 #include "script-c.h"
45
46 namespace gold
47 {
48
49 // A token read from a script file. We don't implement keywords here;
50 // all keywords are simply represented as a string.
51
52 class Token
53 {
54 public:
55 // Token classification.
56 enum Classification
57 {
58 // Token is invalid.
59 TOKEN_INVALID,
60 // Token indicates end of input.
61 TOKEN_EOF,
62 // Token is a string of characters.
63 TOKEN_STRING,
64 // Token is a quoted string of characters.
65 TOKEN_QUOTED_STRING,
66 // Token is an operator.
67 TOKEN_OPERATOR,
68 // Token is a number (an integer).
69 TOKEN_INTEGER
70 };
71
72 // We need an empty constructor so that we can put this STL objects.
73 Token()
74 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
75 opcode_(0), lineno_(0), charpos_(0)
76 { }
77
78 // A general token with no value.
79 Token(Classification classification, int lineno, int charpos)
80 : classification_(classification), value_(NULL), value_length_(0),
81 opcode_(0), lineno_(lineno), charpos_(charpos)
82 {
83 gold_assert(classification == TOKEN_INVALID
84 || classification == TOKEN_EOF);
85 }
86
87 // A general token with a value.
88 Token(Classification classification, const char* value, size_t length,
89 int lineno, int charpos)
90 : classification_(classification), value_(value), value_length_(length),
91 opcode_(0), lineno_(lineno), charpos_(charpos)
92 {
93 gold_assert(classification != TOKEN_INVALID
94 && classification != TOKEN_EOF);
95 }
96
97 // A token representing an operator.
98 Token(int opcode, int lineno, int charpos)
99 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
100 opcode_(opcode), lineno_(lineno), charpos_(charpos)
101 { }
102
103 // Return whether the token is invalid.
104 bool
105 is_invalid() const
106 { return this->classification_ == TOKEN_INVALID; }
107
108 // Return whether this is an EOF token.
109 bool
110 is_eof() const
111 { return this->classification_ == TOKEN_EOF; }
112
113 // Return the token classification.
114 Classification
115 classification() const
116 { return this->classification_; }
117
118 // Return the line number at which the token starts.
119 int
120 lineno() const
121 { return this->lineno_; }
122
123 // Return the character position at this the token starts.
124 int
125 charpos() const
126 { return this->charpos_; }
127
128 // Get the value of a token.
129
130 const char*
131 string_value(size_t* length) const
132 {
133 gold_assert(this->classification_ == TOKEN_STRING
134 || this->classification_ == TOKEN_QUOTED_STRING);
135 *length = this->value_length_;
136 return this->value_;
137 }
138
139 int
140 operator_value() const
141 {
142 gold_assert(this->classification_ == TOKEN_OPERATOR);
143 return this->opcode_;
144 }
145
146 uint64_t
147 integer_value() const
148 {
149 gold_assert(this->classification_ == TOKEN_INTEGER);
150 // Null terminate.
151 std::string s(this->value_, this->value_length_);
152 return strtoull(s.c_str(), NULL, 0);
153 }
154
155 private:
156 // The token classification.
157 Classification classification_;
158 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
159 // TOKEN_INTEGER.
160 const char* value_;
161 // The length of the token value.
162 size_t value_length_;
163 // The token value, for TOKEN_OPERATOR.
164 int opcode_;
165 // The line number where this token started (one based).
166 int lineno_;
167 // The character position within the line where this token started
168 // (one based).
169 int charpos_;
170 };
171
172 // This class handles lexing a file into a sequence of tokens.
173
174 class Lex
175 {
176 public:
177 // We unfortunately have to support different lexing modes, because
178 // when reading different parts of a linker script we need to parse
179 // things differently.
180 enum Mode
181 {
182 // Reading an ordinary linker script.
183 LINKER_SCRIPT,
184 // Reading an expression in a linker script.
185 EXPRESSION,
186 // Reading a version script.
187 VERSION_SCRIPT
188 };
189
190 Lex(const char* input_string, size_t input_length, int parsing_token)
191 : input_string_(input_string), input_length_(input_length),
192 current_(input_string), mode_(LINKER_SCRIPT),
193 first_token_(parsing_token), token_(),
194 lineno_(1), linestart_(input_string)
195 { }
196
197 // Read a file into a string.
198 static void
199 read_file(Input_file*, std::string*);
200
201 // Return the next token.
202 const Token*
203 next_token();
204
205 // Return the current lexing mode.
206 Lex::Mode
207 mode() const
208 { return this->mode_; }
209
210 // Set the lexing mode.
211 void
212 set_mode(Mode mode)
213 { this->mode_ = mode; }
214
215 private:
216 Lex(const Lex&);
217 Lex& operator=(const Lex&);
218
219 // Make a general token with no value at the current location.
220 Token
221 make_token(Token::Classification c, const char* start) const
222 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
223
224 // Make a general token with a value at the current location.
225 Token
226 make_token(Token::Classification c, const char* v, size_t len,
227 const char* start)
228 const
229 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
230
231 // Make an operator token at the current location.
232 Token
233 make_token(int opcode, const char* start) const
234 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
235
236 // Make an invalid token at the current location.
237 Token
238 make_invalid_token(const char* start)
239 { return this->make_token(Token::TOKEN_INVALID, start); }
240
241 // Make an EOF token at the current location.
242 Token
243 make_eof_token(const char* start)
244 { return this->make_token(Token::TOKEN_EOF, start); }
245
246 // Return whether C can be the first character in a name. C2 is the
247 // next character, since we sometimes need that.
248 inline bool
249 can_start_name(char c, char c2);
250
251 // If C can appear in a name which has already started, return a
252 // pointer to a character later in the token or just past
253 // it. Otherwise, return NULL.
254 inline const char*
255 can_continue_name(const char* c);
256
257 // Return whether C, C2, C3 can start a hex number.
258 inline bool
259 can_start_hex(char c, char c2, char c3);
260
261 // If C can appear in a hex number which has already started, return
262 // a pointer to a character later in the token or just past
263 // it. Otherwise, return NULL.
264 inline const char*
265 can_continue_hex(const char* c);
266
267 // Return whether C can start a non-hex number.
268 static inline bool
269 can_start_number(char c);
270
271 // If C can appear in a decimal number which has already started,
272 // return a pointer to a character later in the token or just past
273 // it. Otherwise, return NULL.
274 inline const char*
275 can_continue_number(const char* c)
276 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
277
278 // If C1 C2 C3 form a valid three character operator, return the
279 // opcode. Otherwise return 0.
280 static inline int
281 three_char_operator(char c1, char c2, char c3);
282
283 // If C1 C2 form a valid two character operator, return the opcode.
284 // Otherwise return 0.
285 static inline int
286 two_char_operator(char c1, char c2);
287
288 // If C1 is a valid one character operator, return the opcode.
289 // Otherwise return 0.
290 static inline int
291 one_char_operator(char c1);
292
293 // Read the next token.
294 Token
295 get_token(const char**);
296
297 // Skip a C style /* */ comment. Return false if the comment did
298 // not end.
299 bool
300 skip_c_comment(const char**);
301
302 // Skip a line # comment. Return false if there was no newline.
303 bool
304 skip_line_comment(const char**);
305
306 // Build a token CLASSIFICATION from all characters that match
307 // CAN_CONTINUE_FN. The token starts at START. Start matching from
308 // MATCH. Set *PP to the character following the token.
309 inline Token
310 gather_token(Token::Classification,
311 const char* (Lex::*can_continue_fn)(const char*),
312 const char* start, const char* match, const char** pp);
313
314 // Build a token from a quoted string.
315 Token
316 gather_quoted_string(const char** pp);
317
318 // The string we are tokenizing.
319 const char* input_string_;
320 // The length of the string.
321 size_t input_length_;
322 // The current offset into the string.
323 const char* current_;
324 // The current lexing mode.
325 Mode mode_;
326 // The code to use for the first token. This is set to 0 after it
327 // is used.
328 int first_token_;
329 // The current token.
330 Token token_;
331 // The current line number.
332 int lineno_;
333 // The start of the current line in the string.
334 const char* linestart_;
335 };
336
337 // Read the whole file into memory. We don't expect linker scripts to
338 // be large, so we just use a std::string as a buffer. We ignore the
339 // data we've already read, so that we read aligned buffers.
340
341 void
342 Lex::read_file(Input_file* input_file, std::string* contents)
343 {
344 off_t filesize = input_file->file().filesize();
345 contents->clear();
346 contents->reserve(filesize);
347
348 off_t off = 0;
349 unsigned char buf[BUFSIZ];
350 while (off < filesize)
351 {
352 off_t get = BUFSIZ;
353 if (get > filesize - off)
354 get = filesize - off;
355 input_file->file().read(off, get, buf);
356 contents->append(reinterpret_cast<char*>(&buf[0]), get);
357 off += get;
358 }
359 }
360
361 // Return whether C can be the start of a name, if the next character
362 // is C2. A name can being with a letter, underscore, period, or
363 // dollar sign. Because a name can be a file name, we also permit
364 // forward slash, backslash, and tilde. Tilde is the tricky case
365 // here; GNU ld also uses it as a bitwise not operator. It is only
366 // recognized as the operator if it is not immediately followed by
367 // some character which can appear in a symbol. That is, when we
368 // don't know that we are looking at an expression, "~0" is a file
369 // name, and "~ 0" is an expression using bitwise not. We are
370 // compatible.
371
372 inline bool
373 Lex::can_start_name(char c, char c2)
374 {
375 switch (c)
376 {
377 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
378 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
379 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
380 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
381 case 'Y': case 'Z':
382 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
383 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
384 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
385 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
386 case 'y': case 'z':
387 case '_': case '.': case '$':
388 return true;
389
390 case '/': case '\\':
391 return this->mode_ == LINKER_SCRIPT;
392
393 case '~':
394 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
395
396 case '*': case '[':
397 return (this->mode_ == VERSION_SCRIPT
398 || (this->mode_ == LINKER_SCRIPT
399 && can_continue_name(&c2)));
400
401 default:
402 return false;
403 }
404 }
405
406 // Return whether C can continue a name which has already started.
407 // Subsequent characters in a name are the same as the leading
408 // characters, plus digits and "=+-:[],?*". So in general the linker
409 // script language requires spaces around operators, unless we know
410 // that we are parsing an expression.
411
412 inline const char*
413 Lex::can_continue_name(const char* c)
414 {
415 switch (*c)
416 {
417 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
418 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
419 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
420 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
421 case 'Y': case 'Z':
422 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
423 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
424 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
425 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
426 case 'y': case 'z':
427 case '_': case '.': case '$':
428 case '0': case '1': case '2': case '3': case '4':
429 case '5': case '6': case '7': case '8': case '9':
430 return c + 1;
431
432 case '/': case '\\': case '~':
433 case '=': case '+':
434 case ',': case '?':
435 if (this->mode_ == LINKER_SCRIPT)
436 return c + 1;
437 return NULL;
438
439 case '[': case ']': case '*': case '-':
440 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT)
441 return c + 1;
442 return NULL;
443
444 case '^':
445 if (this->mode_ == VERSION_SCRIPT)
446 return c + 1;
447 return NULL;
448
449 case ':':
450 if (this->mode_ == LINKER_SCRIPT)
451 return c + 1;
452 else if (this->mode_ == VERSION_SCRIPT && (c[1] == ':'))
453 {
454 // A name can have '::' in it, as that's a c++ namespace
455 // separator. But a single colon is not part of a name.
456 return c + 2;
457 }
458 return NULL;
459
460 default:
461 return NULL;
462 }
463 }
464
465 // For a number we accept 0x followed by hex digits, or any sequence
466 // of digits. The old linker accepts leading '$' for hex, and
467 // trailing HXBOD. Those are for MRI compatibility and we don't
468 // accept them. The old linker also accepts trailing MK for mega or
469 // kilo. FIXME: Those are mentioned in the documentation, and we
470 // should accept them.
471
472 // Return whether C1 C2 C3 can start a hex number.
473
474 inline bool
475 Lex::can_start_hex(char c1, char c2, char c3)
476 {
477 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
478 return this->can_continue_hex(&c3);
479 return false;
480 }
481
482 // Return whether C can appear in a hex number.
483
484 inline const char*
485 Lex::can_continue_hex(const char* c)
486 {
487 switch (*c)
488 {
489 case '0': case '1': case '2': case '3': case '4':
490 case '5': case '6': case '7': case '8': case '9':
491 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
492 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
493 return c + 1;
494
495 default:
496 return NULL;
497 }
498 }
499
500 // Return whether C can start a non-hex number.
501
502 inline bool
503 Lex::can_start_number(char c)
504 {
505 switch (c)
506 {
507 case '0': case '1': case '2': case '3': case '4':
508 case '5': case '6': case '7': case '8': case '9':
509 return true;
510
511 default:
512 return false;
513 }
514 }
515
516 // If C1 C2 C3 form a valid three character operator, return the
517 // opcode (defined in the yyscript.h file generated from yyscript.y).
518 // Otherwise return 0.
519
520 inline int
521 Lex::three_char_operator(char c1, char c2, char c3)
522 {
523 switch (c1)
524 {
525 case '<':
526 if (c2 == '<' && c3 == '=')
527 return LSHIFTEQ;
528 break;
529 case '>':
530 if (c2 == '>' && c3 == '=')
531 return RSHIFTEQ;
532 break;
533 default:
534 break;
535 }
536 return 0;
537 }
538
539 // If C1 C2 form a valid two character operator, return the opcode
540 // (defined in the yyscript.h file generated from yyscript.y).
541 // Otherwise return 0.
542
543 inline int
544 Lex::two_char_operator(char c1, char c2)
545 {
546 switch (c1)
547 {
548 case '=':
549 if (c2 == '=')
550 return EQ;
551 break;
552 case '!':
553 if (c2 == '=')
554 return NE;
555 break;
556 case '+':
557 if (c2 == '=')
558 return PLUSEQ;
559 break;
560 case '-':
561 if (c2 == '=')
562 return MINUSEQ;
563 break;
564 case '*':
565 if (c2 == '=')
566 return MULTEQ;
567 break;
568 case '/':
569 if (c2 == '=')
570 return DIVEQ;
571 break;
572 case '|':
573 if (c2 == '=')
574 return OREQ;
575 if (c2 == '|')
576 return OROR;
577 break;
578 case '&':
579 if (c2 == '=')
580 return ANDEQ;
581 if (c2 == '&')
582 return ANDAND;
583 break;
584 case '>':
585 if (c2 == '=')
586 return GE;
587 if (c2 == '>')
588 return RSHIFT;
589 break;
590 case '<':
591 if (c2 == '=')
592 return LE;
593 if (c2 == '<')
594 return LSHIFT;
595 break;
596 default:
597 break;
598 }
599 return 0;
600 }
601
602 // If C1 is a valid operator, return the opcode. Otherwise return 0.
603
604 inline int
605 Lex::one_char_operator(char c1)
606 {
607 switch (c1)
608 {
609 case '+':
610 case '-':
611 case '*':
612 case '/':
613 case '%':
614 case '!':
615 case '&':
616 case '|':
617 case '^':
618 case '~':
619 case '<':
620 case '>':
621 case '=':
622 case '?':
623 case ',':
624 case '(':
625 case ')':
626 case '{':
627 case '}':
628 case '[':
629 case ']':
630 case ':':
631 case ';':
632 return c1;
633 default:
634 return 0;
635 }
636 }
637
638 // Skip a C style comment. *PP points to just after the "/*". Return
639 // false if the comment did not end.
640
641 bool
642 Lex::skip_c_comment(const char** pp)
643 {
644 const char* p = *pp;
645 while (p[0] != '*' || p[1] != '/')
646 {
647 if (*p == '\0')
648 {
649 *pp = p;
650 return false;
651 }
652
653 if (*p == '\n')
654 {
655 ++this->lineno_;
656 this->linestart_ = p + 1;
657 }
658 ++p;
659 }
660
661 *pp = p + 2;
662 return true;
663 }
664
665 // Skip a line # comment. Return false if there was no newline.
666
667 bool
668 Lex::skip_line_comment(const char** pp)
669 {
670 const char* p = *pp;
671 size_t skip = strcspn(p, "\n");
672 if (p[skip] == '\0')
673 {
674 *pp = p + skip;
675 return false;
676 }
677
678 p += skip + 1;
679 ++this->lineno_;
680 this->linestart_ = p;
681 *pp = p;
682
683 return true;
684 }
685
686 // Build a token CLASSIFICATION from all characters that match
687 // CAN_CONTINUE_FN. Update *PP.
688
689 inline Token
690 Lex::gather_token(Token::Classification classification,
691 const char* (Lex::*can_continue_fn)(const char*),
692 const char* start,
693 const char* match,
694 const char **pp)
695 {
696 const char* new_match = NULL;
697 while ((new_match = (this->*can_continue_fn)(match)))
698 match = new_match;
699 *pp = match;
700 return this->make_token(classification, start, match - start, start);
701 }
702
703 // Build a token from a quoted string.
704
705 Token
706 Lex::gather_quoted_string(const char** pp)
707 {
708 const char* start = *pp;
709 const char* p = start;
710 ++p;
711 size_t skip = strcspn(p, "\"\n");
712 if (p[skip] != '"')
713 return this->make_invalid_token(start);
714 *pp = p + skip + 1;
715 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
716 }
717
718 // Return the next token at *PP. Update *PP. General guideline: we
719 // require linker scripts to be simple ASCII. No unicode linker
720 // scripts. In particular we can assume that any '\0' is the end of
721 // the input.
722
723 Token
724 Lex::get_token(const char** pp)
725 {
726 const char* p = *pp;
727
728 while (true)
729 {
730 if (*p == '\0')
731 {
732 *pp = p;
733 return this->make_eof_token(p);
734 }
735
736 // Skip whitespace quickly.
737 while (*p == ' ' || *p == '\t')
738 ++p;
739
740 if (*p == '\n')
741 {
742 ++p;
743 ++this->lineno_;
744 this->linestart_ = p;
745 continue;
746 }
747
748 // Skip C style comments.
749 if (p[0] == '/' && p[1] == '*')
750 {
751 int lineno = this->lineno_;
752 int charpos = p - this->linestart_ + 1;
753
754 *pp = p + 2;
755 if (!this->skip_c_comment(pp))
756 return Token(Token::TOKEN_INVALID, lineno, charpos);
757 p = *pp;
758
759 continue;
760 }
761
762 // Skip line comments.
763 if (*p == '#')
764 {
765 *pp = p + 1;
766 if (!this->skip_line_comment(pp))
767 return this->make_eof_token(p);
768 p = *pp;
769 continue;
770 }
771
772 // Check for a name.
773 if (this->can_start_name(p[0], p[1]))
774 return this->gather_token(Token::TOKEN_STRING,
775 &Lex::can_continue_name,
776 p, p + 1, pp);
777
778 // We accept any arbitrary name in double quotes, as long as it
779 // does not cross a line boundary.
780 if (*p == '"')
781 {
782 *pp = p;
783 return this->gather_quoted_string(pp);
784 }
785
786 // Check for a number.
787
788 if (this->can_start_hex(p[0], p[1], p[2]))
789 return this->gather_token(Token::TOKEN_INTEGER,
790 &Lex::can_continue_hex,
791 p, p + 3, pp);
792
793 if (Lex::can_start_number(p[0]))
794 return this->gather_token(Token::TOKEN_INTEGER,
795 &Lex::can_continue_number,
796 p, p + 1, pp);
797
798 // Check for operators.
799
800 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
801 if (opcode != 0)
802 {
803 *pp = p + 3;
804 return this->make_token(opcode, p);
805 }
806
807 opcode = Lex::two_char_operator(p[0], p[1]);
808 if (opcode != 0)
809 {
810 *pp = p + 2;
811 return this->make_token(opcode, p);
812 }
813
814 opcode = Lex::one_char_operator(p[0]);
815 if (opcode != 0)
816 {
817 *pp = p + 1;
818 return this->make_token(opcode, p);
819 }
820
821 return this->make_token(Token::TOKEN_INVALID, p);
822 }
823 }
824
825 // Return the next token.
826
827 const Token*
828 Lex::next_token()
829 {
830 // The first token is special.
831 if (this->first_token_ != 0)
832 {
833 this->token_ = Token(this->first_token_, 0, 0);
834 this->first_token_ = 0;
835 return &this->token_;
836 }
837
838 this->token_ = this->get_token(&this->current_);
839
840 // Don't let an early null byte fool us into thinking that we've
841 // reached the end of the file.
842 if (this->token_.is_eof()
843 && (static_cast<size_t>(this->current_ - this->input_string_)
844 < this->input_length_))
845 this->token_ = this->make_invalid_token(this->current_);
846
847 return &this->token_;
848 }
849
850 // class Symbol_assignment.
851
852 // Add the symbol to the symbol table. This makes sure the symbol is
853 // there and defined. The actual value is stored later. We can't
854 // determine the actual value at this point, because we can't
855 // necessarily evaluate the expression until all ordinary symbols have
856 // been finalized.
857
858 // The GNU linker lets symbol assignments in the linker script
859 // silently override defined symbols in object files. We are
860 // compatible. FIXME: Should we issue a warning?
861
862 void
863 Symbol_assignment::add_to_table(Symbol_table* symtab)
864 {
865 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
866 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
867 NULL, // version
868 0, // value
869 0, // size
870 elfcpp::STT_NOTYPE,
871 elfcpp::STB_GLOBAL,
872 vis,
873 0, // nonvis
874 this->provide_,
875 true); // force_override
876 }
877
878 // Finalize a symbol value.
879
880 void
881 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
882 {
883 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
884 }
885
886 // Finalize a symbol value which can refer to the dot symbol.
887
888 void
889 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
890 const Layout* layout,
891 uint64_t dot_value,
892 Output_section* dot_section)
893 {
894 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
895 }
896
897 // Finalize a symbol value, internal version.
898
899 void
900 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
901 const Layout* layout,
902 bool is_dot_available,
903 uint64_t dot_value,
904 Output_section* dot_section)
905 {
906 // If we were only supposed to provide this symbol, the sym_ field
907 // will be NULL if the symbol was not referenced.
908 if (this->sym_ == NULL)
909 {
910 gold_assert(this->provide_);
911 return;
912 }
913
914 if (parameters->target().get_size() == 32)
915 {
916 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
917 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
918 dot_section);
919 #else
920 gold_unreachable();
921 #endif
922 }
923 else if (parameters->target().get_size() == 64)
924 {
925 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
926 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
927 dot_section);
928 #else
929 gold_unreachable();
930 #endif
931 }
932 else
933 gold_unreachable();
934 }
935
936 template<int size>
937 void
938 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
939 bool is_dot_available, uint64_t dot_value,
940 Output_section* dot_section)
941 {
942 Output_section* section;
943 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
944 is_dot_available,
945 dot_value, dot_section,
946 &section);
947 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
948 ssym->set_value(final_val);
949 if (section != NULL)
950 ssym->set_output_section(section);
951 }
952
953 // Set the symbol value if the expression yields an absolute value.
954
955 void
956 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
957 bool is_dot_available, uint64_t dot_value)
958 {
959 if (this->sym_ == NULL)
960 return;
961
962 Output_section* val_section;
963 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
964 is_dot_available, dot_value,
965 NULL, &val_section);
966 if (val_section != NULL)
967 return;
968
969 if (parameters->target().get_size() == 32)
970 {
971 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
972 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
973 ssym->set_value(val);
974 #else
975 gold_unreachable();
976 #endif
977 }
978 else if (parameters->target().get_size() == 64)
979 {
980 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
981 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
982 ssym->set_value(val);
983 #else
984 gold_unreachable();
985 #endif
986 }
987 else
988 gold_unreachable();
989 }
990
991 // Print for debugging.
992
993 void
994 Symbol_assignment::print(FILE* f) const
995 {
996 if (this->provide_ && this->hidden_)
997 fprintf(f, "PROVIDE_HIDDEN(");
998 else if (this->provide_)
999 fprintf(f, "PROVIDE(");
1000 else if (this->hidden_)
1001 gold_unreachable();
1002
1003 fprintf(f, "%s = ", this->name_.c_str());
1004 this->val_->print(f);
1005
1006 if (this->provide_ || this->hidden_)
1007 fprintf(f, ")");
1008
1009 fprintf(f, "\n");
1010 }
1011
1012 // Class Script_assertion.
1013
1014 // Check the assertion.
1015
1016 void
1017 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1018 {
1019 if (!this->check_->eval(symtab, layout, true))
1020 gold_error("%s", this->message_.c_str());
1021 }
1022
1023 // Print for debugging.
1024
1025 void
1026 Script_assertion::print(FILE* f) const
1027 {
1028 fprintf(f, "ASSERT(");
1029 this->check_->print(f);
1030 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1031 }
1032
1033 // Class Script_options.
1034
1035 Script_options::Script_options()
1036 : entry_(), symbol_assignments_(), version_script_info_(),
1037 script_sections_()
1038 {
1039 }
1040
1041 // Add a symbol to be defined.
1042
1043 void
1044 Script_options::add_symbol_assignment(const char* name, size_t length,
1045 Expression* value, bool provide,
1046 bool hidden)
1047 {
1048 if (length != 1 || name[0] != '.')
1049 {
1050 if (this->script_sections_.in_sections_clause())
1051 this->script_sections_.add_symbol_assignment(name, length, value,
1052 provide, hidden);
1053 else
1054 {
1055 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1056 provide, hidden);
1057 this->symbol_assignments_.push_back(p);
1058 }
1059 }
1060 else
1061 {
1062 if (provide || hidden)
1063 gold_error(_("invalid use of PROVIDE for dot symbol"));
1064 if (!this->script_sections_.in_sections_clause())
1065 gold_error(_("invalid assignment to dot outside of SECTIONS"));
1066 else
1067 this->script_sections_.add_dot_assignment(value);
1068 }
1069 }
1070
1071 // Add an assertion.
1072
1073 void
1074 Script_options::add_assertion(Expression* check, const char* message,
1075 size_t messagelen)
1076 {
1077 if (this->script_sections_.in_sections_clause())
1078 this->script_sections_.add_assertion(check, message, messagelen);
1079 else
1080 {
1081 Script_assertion* p = new Script_assertion(check, message, messagelen);
1082 this->assertions_.push_back(p);
1083 }
1084 }
1085
1086 // Create sections required by any linker scripts.
1087
1088 void
1089 Script_options::create_script_sections(Layout* layout)
1090 {
1091 if (this->saw_sections_clause())
1092 this->script_sections_.create_sections(layout);
1093 }
1094
1095 // Add any symbols we are defining to the symbol table.
1096
1097 void
1098 Script_options::add_symbols_to_table(Symbol_table* symtab)
1099 {
1100 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1101 p != this->symbol_assignments_.end();
1102 ++p)
1103 (*p)->add_to_table(symtab);
1104 this->script_sections_.add_symbols_to_table(symtab);
1105 }
1106
1107 // Finalize symbol values. Also check assertions.
1108
1109 void
1110 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1111 {
1112 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1113 p != this->symbol_assignments_.end();
1114 ++p)
1115 (*p)->finalize(symtab, layout);
1116
1117 for (Assertions::iterator p = this->assertions_.begin();
1118 p != this->assertions_.end();
1119 ++p)
1120 (*p)->check(symtab, layout);
1121
1122 this->script_sections_.finalize_symbols(symtab, layout);
1123 }
1124
1125 // Set section addresses. We set all the symbols which have absolute
1126 // values. Then we let the SECTIONS clause do its thing. This
1127 // returns the segment which holds the file header and segment
1128 // headers, if any.
1129
1130 Output_segment*
1131 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1132 {
1133 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1134 p != this->symbol_assignments_.end();
1135 ++p)
1136 (*p)->set_if_absolute(symtab, layout, false, 0);
1137
1138 return this->script_sections_.set_section_addresses(symtab, layout);
1139 }
1140
1141 // This class holds data passed through the parser to the lexer and to
1142 // the parser support functions. This avoids global variables. We
1143 // can't use global variables because we need not be called by a
1144 // singleton thread.
1145
1146 class Parser_closure
1147 {
1148 public:
1149 Parser_closure(const char* filename,
1150 const Position_dependent_options& posdep_options,
1151 bool in_group, bool is_in_sysroot,
1152 Command_line* command_line,
1153 Script_options* script_options,
1154 Lex* lex)
1155 : filename_(filename), posdep_options_(posdep_options),
1156 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1157 command_line_(command_line), script_options_(script_options),
1158 version_script_info_(script_options->version_script_info()),
1159 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1160 {
1161 // We start out processing C symbols in the default lex mode.
1162 language_stack_.push_back("");
1163 lex_mode_stack_.push_back(lex->mode());
1164 }
1165
1166 // Return the file name.
1167 const char*
1168 filename() const
1169 { return this->filename_; }
1170
1171 // Return the position dependent options. The caller may modify
1172 // this.
1173 Position_dependent_options&
1174 position_dependent_options()
1175 { return this->posdep_options_; }
1176
1177 // Return whether this script is being run in a group.
1178 bool
1179 in_group() const
1180 { return this->in_group_; }
1181
1182 // Return whether this script was found using a directory in the
1183 // sysroot.
1184 bool
1185 is_in_sysroot() const
1186 { return this->is_in_sysroot_; }
1187
1188 // Returns the Command_line structure passed in at constructor time.
1189 // This value may be NULL. The caller may modify this, which modifies
1190 // the passed-in Command_line object (not a copy).
1191 Command_line*
1192 command_line()
1193 { return this->command_line_; }
1194
1195 // Return the options which may be set by a script.
1196 Script_options*
1197 script_options()
1198 { return this->script_options_; }
1199
1200 // Return the object in which version script information should be stored.
1201 Version_script_info*
1202 version_script()
1203 { return this->version_script_info_; }
1204
1205 // Return the next token, and advance.
1206 const Token*
1207 next_token()
1208 {
1209 const Token* token = this->lex_->next_token();
1210 this->lineno_ = token->lineno();
1211 this->charpos_ = token->charpos();
1212 return token;
1213 }
1214
1215 // Set a new lexer mode, pushing the current one.
1216 void
1217 push_lex_mode(Lex::Mode mode)
1218 {
1219 this->lex_mode_stack_.push_back(this->lex_->mode());
1220 this->lex_->set_mode(mode);
1221 }
1222
1223 // Pop the lexer mode.
1224 void
1225 pop_lex_mode()
1226 {
1227 gold_assert(!this->lex_mode_stack_.empty());
1228 this->lex_->set_mode(this->lex_mode_stack_.back());
1229 this->lex_mode_stack_.pop_back();
1230 }
1231
1232 // Return the current lexer mode.
1233 Lex::Mode
1234 lex_mode() const
1235 { return this->lex_mode_stack_.back(); }
1236
1237 // Return the line number of the last token.
1238 int
1239 lineno() const
1240 { return this->lineno_; }
1241
1242 // Return the character position in the line of the last token.
1243 int
1244 charpos() const
1245 { return this->charpos_; }
1246
1247 // Return the list of input files, creating it if necessary. This
1248 // is a space leak--we never free the INPUTS_ pointer.
1249 Input_arguments*
1250 inputs()
1251 {
1252 if (this->inputs_ == NULL)
1253 this->inputs_ = new Input_arguments();
1254 return this->inputs_;
1255 }
1256
1257 // Return whether we saw any input files.
1258 bool
1259 saw_inputs() const
1260 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1261
1262 // Return the current language being processed in a version script
1263 // (eg, "C++"). The empty string represents unmangled C names.
1264 const std::string&
1265 get_current_language() const
1266 { return this->language_stack_.back(); }
1267
1268 // Push a language onto the stack when entering an extern block.
1269 void push_language(const std::string& lang)
1270 { this->language_stack_.push_back(lang); }
1271
1272 // Pop a language off of the stack when exiting an extern block.
1273 void pop_language()
1274 {
1275 gold_assert(!this->language_stack_.empty());
1276 this->language_stack_.pop_back();
1277 }
1278
1279 private:
1280 // The name of the file we are reading.
1281 const char* filename_;
1282 // The position dependent options.
1283 Position_dependent_options posdep_options_;
1284 // Whether we are currently in a --start-group/--end-group.
1285 bool in_group_;
1286 // Whether the script was found in a sysrooted directory.
1287 bool is_in_sysroot_;
1288 // May be NULL if the user chooses not to pass one in.
1289 Command_line* command_line_;
1290 // Options which may be set from any linker script.
1291 Script_options* script_options_;
1292 // Information parsed from a version script.
1293 Version_script_info* version_script_info_;
1294 // The lexer.
1295 Lex* lex_;
1296 // The line number of the last token returned by next_token.
1297 int lineno_;
1298 // The column number of the last token returned by next_token.
1299 int charpos_;
1300 // A stack of lexer modes.
1301 std::vector<Lex::Mode> lex_mode_stack_;
1302 // A stack of which extern/language block we're inside. Can be C++,
1303 // java, or empty for C.
1304 std::vector<std::string> language_stack_;
1305 // New input files found to add to the link.
1306 Input_arguments* inputs_;
1307 };
1308
1309 // FILE was found as an argument on the command line. Try to read it
1310 // as a script. Return true if the file was handled.
1311
1312 bool
1313 read_input_script(Workqueue* workqueue, const General_options& options,
1314 Symbol_table* symtab, Layout* layout,
1315 Dirsearch* dirsearch, Input_objects* input_objects,
1316 Input_group* input_group,
1317 const Input_argument* input_argument,
1318 Input_file* input_file, Task_token* next_blocker,
1319 bool* used_next_blocker)
1320 {
1321 *used_next_blocker = false;
1322
1323 std::string input_string;
1324 Lex::read_file(input_file, &input_string);
1325
1326 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1327
1328 Parser_closure closure(input_file->filename().c_str(),
1329 input_argument->file().options(),
1330 input_group != NULL,
1331 input_file->is_in_sysroot(),
1332 NULL,
1333 layout->script_options(),
1334 &lex);
1335
1336 if (yyparse(&closure) != 0)
1337 return false;
1338
1339 if (!closure.saw_inputs())
1340 return true;
1341
1342 Task_token* this_blocker = NULL;
1343 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1344 p != closure.inputs()->end();
1345 ++p)
1346 {
1347 Task_token* nb;
1348 if (p + 1 == closure.inputs()->end())
1349 nb = next_blocker;
1350 else
1351 {
1352 nb = new Task_token(true);
1353 nb->add_blocker();
1354 }
1355 workqueue->queue_soon(new Read_symbols(options, input_objects, symtab,
1356 layout, dirsearch, &*p,
1357 input_group, this_blocker, nb));
1358 this_blocker = nb;
1359 }
1360
1361 *used_next_blocker = true;
1362
1363 return true;
1364 }
1365
1366 // Helper function for read_version_script() and
1367 // read_commandline_script(). Processes the given file in the mode
1368 // indicated by first_token and lex_mode.
1369
1370 static bool
1371 read_script_file(const char* filename, Command_line* cmdline,
1372 int first_token, Lex::Mode lex_mode)
1373 {
1374 // TODO: if filename is a relative filename, search for it manually
1375 // using "." + cmdline->options()->search_path() -- not dirsearch.
1376 Dirsearch dirsearch;
1377
1378 // The file locking code wants to record a Task, but we haven't
1379 // started the workqueue yet. This is only for debugging purposes,
1380 // so we invent a fake value.
1381 const Task* task = reinterpret_cast<const Task*>(-1);
1382
1383 // We don't want this file to be opened in binary mode.
1384 Position_dependent_options posdep = cmdline->position_dependent_options();
1385 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1386 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1387 Input_file_argument input_argument(filename, false, "", false, posdep);
1388 Input_file input_file(&input_argument);
1389 if (!input_file.open(cmdline->options(), dirsearch, task))
1390 return false;
1391
1392 std::string input_string;
1393 Lex::read_file(&input_file, &input_string);
1394
1395 Lex lex(input_string.c_str(), input_string.length(), first_token);
1396 lex.set_mode(lex_mode);
1397
1398 Parser_closure closure(filename,
1399 cmdline->position_dependent_options(),
1400 false,
1401 input_file.is_in_sysroot(),
1402 cmdline,
1403 &cmdline->script_options(),
1404 &lex);
1405 if (yyparse(&closure) != 0)
1406 {
1407 input_file.file().unlock(task);
1408 return false;
1409 }
1410
1411 input_file.file().unlock(task);
1412
1413 gold_assert(!closure.saw_inputs());
1414
1415 return true;
1416 }
1417
1418 // FILENAME was found as an argument to --script (-T).
1419 // Read it as a script, and execute its contents immediately.
1420
1421 bool
1422 read_commandline_script(const char* filename, Command_line* cmdline)
1423 {
1424 return read_script_file(filename, cmdline,
1425 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1426 }
1427
1428 // FILE was found as an argument to --version-script. Read it as a
1429 // version script, and store its contents in
1430 // cmdline->script_options()->version_script_info().
1431
1432 bool
1433 read_version_script(const char* filename, Command_line* cmdline)
1434 {
1435 return read_script_file(filename, cmdline,
1436 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1437 }
1438
1439 // Implement the --defsym option on the command line. Return true if
1440 // all is well.
1441
1442 bool
1443 Script_options::define_symbol(const char* definition)
1444 {
1445 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1446 lex.set_mode(Lex::EXPRESSION);
1447
1448 // Dummy value.
1449 Position_dependent_options posdep_options;
1450
1451 Parser_closure closure("command line", posdep_options, false, false, NULL,
1452 this, &lex);
1453
1454 if (yyparse(&closure) != 0)
1455 return false;
1456
1457 gold_assert(!closure.saw_inputs());
1458
1459 return true;
1460 }
1461
1462 // Print the script to F for debugging.
1463
1464 void
1465 Script_options::print(FILE* f) const
1466 {
1467 fprintf(f, "%s: Dumping linker script\n", program_name);
1468
1469 if (!this->entry_.empty())
1470 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1471
1472 for (Symbol_assignments::const_iterator p =
1473 this->symbol_assignments_.begin();
1474 p != this->symbol_assignments_.end();
1475 ++p)
1476 (*p)->print(f);
1477
1478 for (Assertions::const_iterator p = this->assertions_.begin();
1479 p != this->assertions_.end();
1480 ++p)
1481 (*p)->print(f);
1482
1483 this->script_sections_.print(f);
1484
1485 this->version_script_info_.print(f);
1486 }
1487
1488 // Manage mapping from keywords to the codes expected by the bison
1489 // parser. We construct one global object for each lex mode with
1490 // keywords.
1491
1492 class Keyword_to_parsecode
1493 {
1494 public:
1495 // The structure which maps keywords to parsecodes.
1496 struct Keyword_parsecode
1497 {
1498 // Keyword.
1499 const char* keyword;
1500 // Corresponding parsecode.
1501 int parsecode;
1502 };
1503
1504 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1505 int keyword_count)
1506 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1507 { }
1508
1509 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1510 // keyword.
1511 int
1512 keyword_to_parsecode(const char* keyword, size_t len) const;
1513
1514 private:
1515 const Keyword_parsecode* keyword_parsecodes_;
1516 const int keyword_count_;
1517 };
1518
1519 // Mapping from keyword string to keyword parsecode. This array must
1520 // be kept in sorted order. Parsecodes are looked up using bsearch.
1521 // This array must correspond to the list of parsecodes in yyscript.y.
1522
1523 static const Keyword_to_parsecode::Keyword_parsecode
1524 script_keyword_parsecodes[] =
1525 {
1526 { "ABSOLUTE", ABSOLUTE },
1527 { "ADDR", ADDR },
1528 { "ALIGN", ALIGN_K },
1529 { "ALIGNOF", ALIGNOF },
1530 { "ASSERT", ASSERT_K },
1531 { "AS_NEEDED", AS_NEEDED },
1532 { "AT", AT },
1533 { "BIND", BIND },
1534 { "BLOCK", BLOCK },
1535 { "BYTE", BYTE },
1536 { "CONSTANT", CONSTANT },
1537 { "CONSTRUCTORS", CONSTRUCTORS },
1538 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1539 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1540 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1541 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1542 { "DEFINED", DEFINED },
1543 { "ENTRY", ENTRY },
1544 { "EXCLUDE_FILE", EXCLUDE_FILE },
1545 { "EXTERN", EXTERN },
1546 { "FILL", FILL },
1547 { "FLOAT", FLOAT },
1548 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1549 { "GROUP", GROUP },
1550 { "HLL", HLL },
1551 { "INCLUDE", INCLUDE },
1552 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1553 { "INPUT", INPUT },
1554 { "KEEP", KEEP },
1555 { "LENGTH", LENGTH },
1556 { "LOADADDR", LOADADDR },
1557 { "LONG", LONG },
1558 { "MAP", MAP },
1559 { "MAX", MAX_K },
1560 { "MEMORY", MEMORY },
1561 { "MIN", MIN_K },
1562 { "NEXT", NEXT },
1563 { "NOCROSSREFS", NOCROSSREFS },
1564 { "NOFLOAT", NOFLOAT },
1565 { "ONLY_IF_RO", ONLY_IF_RO },
1566 { "ONLY_IF_RW", ONLY_IF_RW },
1567 { "OPTION", OPTION },
1568 { "ORIGIN", ORIGIN },
1569 { "OUTPUT", OUTPUT },
1570 { "OUTPUT_ARCH", OUTPUT_ARCH },
1571 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1572 { "OVERLAY", OVERLAY },
1573 { "PHDRS", PHDRS },
1574 { "PROVIDE", PROVIDE },
1575 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1576 { "QUAD", QUAD },
1577 { "SEARCH_DIR", SEARCH_DIR },
1578 { "SECTIONS", SECTIONS },
1579 { "SEGMENT_START", SEGMENT_START },
1580 { "SHORT", SHORT },
1581 { "SIZEOF", SIZEOF },
1582 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1583 { "SORT", SORT_BY_NAME },
1584 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1585 { "SORT_BY_NAME", SORT_BY_NAME },
1586 { "SPECIAL", SPECIAL },
1587 { "SQUAD", SQUAD },
1588 { "STARTUP", STARTUP },
1589 { "SUBALIGN", SUBALIGN },
1590 { "SYSLIB", SYSLIB },
1591 { "TARGET", TARGET_K },
1592 { "TRUNCATE", TRUNCATE },
1593 { "VERSION", VERSIONK },
1594 { "global", GLOBAL },
1595 { "l", LENGTH },
1596 { "len", LENGTH },
1597 { "local", LOCAL },
1598 { "o", ORIGIN },
1599 { "org", ORIGIN },
1600 { "sizeof_headers", SIZEOF_HEADERS },
1601 };
1602
1603 static const Keyword_to_parsecode
1604 script_keywords(&script_keyword_parsecodes[0],
1605 (sizeof(script_keyword_parsecodes)
1606 / sizeof(script_keyword_parsecodes[0])));
1607
1608 static const Keyword_to_parsecode::Keyword_parsecode
1609 version_script_keyword_parsecodes[] =
1610 {
1611 { "extern", EXTERN },
1612 { "global", GLOBAL },
1613 { "local", LOCAL },
1614 };
1615
1616 static const Keyword_to_parsecode
1617 version_script_keywords(&version_script_keyword_parsecodes[0],
1618 (sizeof(version_script_keyword_parsecodes)
1619 / sizeof(version_script_keyword_parsecodes[0])));
1620
1621 // Comparison function passed to bsearch.
1622
1623 extern "C"
1624 {
1625
1626 struct Ktt_key
1627 {
1628 const char* str;
1629 size_t len;
1630 };
1631
1632 static int
1633 ktt_compare(const void* keyv, const void* kttv)
1634 {
1635 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1636 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1637 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1638 int i = strncmp(key->str, ktt->keyword, key->len);
1639 if (i != 0)
1640 return i;
1641 if (ktt->keyword[key->len] != '\0')
1642 return -1;
1643 return 0;
1644 }
1645
1646 } // End extern "C".
1647
1648 int
1649 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1650 size_t len) const
1651 {
1652 Ktt_key key;
1653 key.str = keyword;
1654 key.len = len;
1655 void* kttv = bsearch(&key,
1656 this->keyword_parsecodes_,
1657 this->keyword_count_,
1658 sizeof(this->keyword_parsecodes_[0]),
1659 ktt_compare);
1660 if (kttv == NULL)
1661 return 0;
1662 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1663 return ktt->parsecode;
1664 }
1665
1666 // The following structs are used within the VersionInfo class as well
1667 // as in the bison helper functions. They store the information
1668 // parsed from the version script.
1669
1670 // A single version expression.
1671 // For example, pattern="std::map*" and language="C++".
1672 // pattern and language should be from the stringpool
1673 struct Version_expression {
1674 Version_expression(const std::string& pattern,
1675 const std::string& language,
1676 bool exact_match)
1677 : pattern(pattern), language(language), exact_match(exact_match) {}
1678
1679 std::string pattern;
1680 std::string language;
1681 // If false, we use glob() to match pattern. If true, we use strcmp().
1682 bool exact_match;
1683 };
1684
1685
1686 // A list of expressions.
1687 struct Version_expression_list {
1688 std::vector<struct Version_expression> expressions;
1689 };
1690
1691
1692 // A list of which versions upon which another version depends.
1693 // Strings should be from the Stringpool.
1694 struct Version_dependency_list {
1695 std::vector<std::string> dependencies;
1696 };
1697
1698
1699 // The total definition of a version. It includes the tag for the
1700 // version, its global and local expressions, and any dependencies.
1701 struct Version_tree {
1702 Version_tree()
1703 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1704
1705 std::string tag;
1706 const struct Version_expression_list* global;
1707 const struct Version_expression_list* local;
1708 const struct Version_dependency_list* dependencies;
1709 };
1710
1711 Version_script_info::~Version_script_info()
1712 {
1713 this->clear();
1714 }
1715
1716 void
1717 Version_script_info::clear()
1718 {
1719 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1720 delete dependency_lists_[k];
1721 this->dependency_lists_.clear();
1722 for (size_t k = 0; k < version_trees_.size(); ++k)
1723 delete version_trees_[k];
1724 this->version_trees_.clear();
1725 for (size_t k = 0; k < expression_lists_.size(); ++k)
1726 delete expression_lists_[k];
1727 this->expression_lists_.clear();
1728 }
1729
1730 std::vector<std::string>
1731 Version_script_info::get_versions() const
1732 {
1733 std::vector<std::string> ret;
1734 for (size_t j = 0; j < version_trees_.size(); ++j)
1735 ret.push_back(version_trees_[j]->tag);
1736 return ret;
1737 }
1738
1739 std::vector<std::string>
1740 Version_script_info::get_dependencies(const char* version) const
1741 {
1742 std::vector<std::string> ret;
1743 for (size_t j = 0; j < version_trees_.size(); ++j)
1744 if (version_trees_[j]->tag == version)
1745 {
1746 const struct Version_dependency_list* deps =
1747 version_trees_[j]->dependencies;
1748 if (deps != NULL)
1749 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1750 ret.push_back(deps->dependencies[k]);
1751 return ret;
1752 }
1753 return ret;
1754 }
1755
1756 const std::string&
1757 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1758 bool check_global) const
1759 {
1760 for (size_t j = 0; j < version_trees_.size(); ++j)
1761 {
1762 // Is it a global symbol for this version?
1763 const Version_expression_list* explist =
1764 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1765 if (explist != NULL)
1766 for (size_t k = 0; k < explist->expressions.size(); ++k)
1767 {
1768 const char* name_to_match = symbol_name;
1769 const struct Version_expression& exp = explist->expressions[k];
1770 char* demangled_name = NULL;
1771 if (exp.language == "C++")
1772 {
1773 demangled_name = cplus_demangle(symbol_name,
1774 DMGL_ANSI | DMGL_PARAMS);
1775 // This isn't a C++ symbol.
1776 if (demangled_name == NULL)
1777 continue;
1778 name_to_match = demangled_name;
1779 }
1780 else if (exp.language == "Java")
1781 {
1782 demangled_name = cplus_demangle(symbol_name,
1783 (DMGL_ANSI | DMGL_PARAMS
1784 | DMGL_JAVA));
1785 // This isn't a Java symbol.
1786 if (demangled_name == NULL)
1787 continue;
1788 name_to_match = demangled_name;
1789 }
1790 bool matched;
1791 if (exp.exact_match)
1792 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1793 else
1794 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1795 FNM_NOESCAPE) == 0;
1796 if (demangled_name != NULL)
1797 free(demangled_name);
1798 if (matched)
1799 return version_trees_[j]->tag;
1800 }
1801 }
1802 static const std::string empty = "";
1803 return empty;
1804 }
1805
1806 struct Version_dependency_list*
1807 Version_script_info::allocate_dependency_list()
1808 {
1809 dependency_lists_.push_back(new Version_dependency_list);
1810 return dependency_lists_.back();
1811 }
1812
1813 struct Version_expression_list*
1814 Version_script_info::allocate_expression_list()
1815 {
1816 expression_lists_.push_back(new Version_expression_list);
1817 return expression_lists_.back();
1818 }
1819
1820 struct Version_tree*
1821 Version_script_info::allocate_version_tree()
1822 {
1823 version_trees_.push_back(new Version_tree);
1824 return version_trees_.back();
1825 }
1826
1827 // Print for debugging.
1828
1829 void
1830 Version_script_info::print(FILE* f) const
1831 {
1832 if (this->empty())
1833 return;
1834
1835 fprintf(f, "VERSION {");
1836
1837 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1838 {
1839 const Version_tree* vt = this->version_trees_[i];
1840
1841 if (vt->tag.empty())
1842 fprintf(f, " {\n");
1843 else
1844 fprintf(f, " %s {\n", vt->tag.c_str());
1845
1846 if (vt->global != NULL)
1847 {
1848 fprintf(f, " global :\n");
1849 this->print_expression_list(f, vt->global);
1850 }
1851
1852 if (vt->local != NULL)
1853 {
1854 fprintf(f, " local :\n");
1855 this->print_expression_list(f, vt->local);
1856 }
1857
1858 fprintf(f, " }");
1859 if (vt->dependencies != NULL)
1860 {
1861 const Version_dependency_list* deps = vt->dependencies;
1862 for (size_t j = 0; j < deps->dependencies.size(); ++j)
1863 {
1864 if (j < deps->dependencies.size() - 1)
1865 fprintf(f, "\n");
1866 fprintf(f, " %s", deps->dependencies[j].c_str());
1867 }
1868 }
1869 fprintf(f, ";\n");
1870 }
1871
1872 fprintf(f, "}\n");
1873 }
1874
1875 void
1876 Version_script_info::print_expression_list(
1877 FILE* f,
1878 const Version_expression_list* vel) const
1879 {
1880 std::string current_language;
1881 for (size_t i = 0; i < vel->expressions.size(); ++i)
1882 {
1883 const Version_expression& ve(vel->expressions[i]);
1884
1885 if (ve.language != current_language)
1886 {
1887 if (!current_language.empty())
1888 fprintf(f, " }\n");
1889 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
1890 current_language = ve.language;
1891 }
1892
1893 fprintf(f, " ");
1894 if (!current_language.empty())
1895 fprintf(f, " ");
1896
1897 if (ve.exact_match)
1898 fprintf(f, "\"");
1899 fprintf(f, "%s", ve.pattern.c_str());
1900 if (ve.exact_match)
1901 fprintf(f, "\"");
1902
1903 fprintf(f, "\n");
1904 }
1905
1906 if (!current_language.empty())
1907 fprintf(f, " }\n");
1908 }
1909
1910 } // End namespace gold.
1911
1912 // The remaining functions are extern "C", so it's clearer to not put
1913 // them in namespace gold.
1914
1915 using namespace gold;
1916
1917 // This function is called by the bison parser to return the next
1918 // token.
1919
1920 extern "C" int
1921 yylex(YYSTYPE* lvalp, void* closurev)
1922 {
1923 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1924 const Token* token = closure->next_token();
1925 switch (token->classification())
1926 {
1927 default:
1928 gold_unreachable();
1929
1930 case Token::TOKEN_INVALID:
1931 yyerror(closurev, "invalid character");
1932 return 0;
1933
1934 case Token::TOKEN_EOF:
1935 return 0;
1936
1937 case Token::TOKEN_STRING:
1938 {
1939 // This is either a keyword or a STRING.
1940 size_t len;
1941 const char* str = token->string_value(&len);
1942 int parsecode = 0;
1943 switch (closure->lex_mode())
1944 {
1945 case Lex::LINKER_SCRIPT:
1946 parsecode = script_keywords.keyword_to_parsecode(str, len);
1947 break;
1948 case Lex::VERSION_SCRIPT:
1949 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
1950 break;
1951 default:
1952 break;
1953 }
1954 if (parsecode != 0)
1955 return parsecode;
1956 lvalp->string.value = str;
1957 lvalp->string.length = len;
1958 return STRING;
1959 }
1960
1961 case Token::TOKEN_QUOTED_STRING:
1962 lvalp->string.value = token->string_value(&lvalp->string.length);
1963 return QUOTED_STRING;
1964
1965 case Token::TOKEN_OPERATOR:
1966 return token->operator_value();
1967
1968 case Token::TOKEN_INTEGER:
1969 lvalp->integer = token->integer_value();
1970 return INTEGER;
1971 }
1972 }
1973
1974 // This function is called by the bison parser to report an error.
1975
1976 extern "C" void
1977 yyerror(void* closurev, const char* message)
1978 {
1979 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1980 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
1981 closure->charpos(), message);
1982 }
1983
1984 // Called by the bison parser to add a file to the link.
1985
1986 extern "C" void
1987 script_add_file(void* closurev, const char* name, size_t length)
1988 {
1989 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1990
1991 // If this is an absolute path, and we found the script in the
1992 // sysroot, then we want to prepend the sysroot to the file name.
1993 // For example, this is how we handle a cross link to the x86_64
1994 // libc.so, which refers to /lib/libc.so.6.
1995 std::string name_string(name, length);
1996 const char* extra_search_path = ".";
1997 std::string script_directory;
1998 if (IS_ABSOLUTE_PATH(name_string.c_str()))
1999 {
2000 if (closure->is_in_sysroot())
2001 {
2002 const std::string& sysroot(parameters->options().sysroot());
2003 gold_assert(!sysroot.empty());
2004 name_string = sysroot + name_string;
2005 }
2006 }
2007 else
2008 {
2009 // In addition to checking the normal library search path, we
2010 // also want to check in the script-directory.
2011 const char *slash = strrchr(closure->filename(), '/');
2012 if (slash != NULL)
2013 {
2014 script_directory.assign(closure->filename(),
2015 slash - closure->filename() + 1);
2016 extra_search_path = script_directory.c_str();
2017 }
2018 }
2019
2020 Input_file_argument file(name_string.c_str(), false, extra_search_path,
2021 false, closure->position_dependent_options());
2022 closure->inputs()->add_file(file);
2023 }
2024
2025 // Called by the bison parser to start a group. If we are already in
2026 // a group, that means that this script was invoked within a
2027 // --start-group --end-group sequence on the command line, or that
2028 // this script was found in a GROUP of another script. In that case,
2029 // we simply continue the existing group, rather than starting a new
2030 // one. It is possible to construct a case in which this will do
2031 // something other than what would happen if we did a recursive group,
2032 // but it's hard to imagine why the different behaviour would be
2033 // useful for a real program. Avoiding recursive groups is simpler
2034 // and more efficient.
2035
2036 extern "C" void
2037 script_start_group(void* closurev)
2038 {
2039 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2040 if (!closure->in_group())
2041 closure->inputs()->start_group();
2042 }
2043
2044 // Called by the bison parser at the end of a group.
2045
2046 extern "C" void
2047 script_end_group(void* closurev)
2048 {
2049 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2050 if (!closure->in_group())
2051 closure->inputs()->end_group();
2052 }
2053
2054 // Called by the bison parser to start an AS_NEEDED list.
2055
2056 extern "C" void
2057 script_start_as_needed(void* closurev)
2058 {
2059 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2060 closure->position_dependent_options().set_as_needed(true);
2061 }
2062
2063 // Called by the bison parser at the end of an AS_NEEDED list.
2064
2065 extern "C" void
2066 script_end_as_needed(void* closurev)
2067 {
2068 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2069 closure->position_dependent_options().set_as_needed(false);
2070 }
2071
2072 // Called by the bison parser to set the entry symbol.
2073
2074 extern "C" void
2075 script_set_entry(void* closurev, const char* entry, size_t length)
2076 {
2077 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2078 // TODO(csilvers): FIXME -- call set_entry directly.
2079 std::string arg("--entry=");
2080 arg.append(entry, length);
2081 script_parse_option(closurev, arg.c_str(), arg.size());
2082 }
2083
2084 // Called by the bison parser to set whether to define common symbols.
2085
2086 extern "C" void
2087 script_set_common_allocation(void* closurev, int set)
2088 {
2089 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2090 script_parse_option(closurev, arg, strlen(arg));
2091 }
2092
2093 // Called by the bison parser to define a symbol.
2094
2095 extern "C" void
2096 script_set_symbol(void* closurev, const char* name, size_t length,
2097 Expression* value, int providei, int hiddeni)
2098 {
2099 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2100 const bool provide = providei != 0;
2101 const bool hidden = hiddeni != 0;
2102 closure->script_options()->add_symbol_assignment(name, length, value,
2103 provide, hidden);
2104 }
2105
2106 // Called by the bison parser to add an assertion.
2107
2108 extern "C" void
2109 script_add_assertion(void* closurev, Expression* check, const char* message,
2110 size_t messagelen)
2111 {
2112 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2113 closure->script_options()->add_assertion(check, message, messagelen);
2114 }
2115
2116 // Called by the bison parser to parse an OPTION.
2117
2118 extern "C" void
2119 script_parse_option(void* closurev, const char* option, size_t length)
2120 {
2121 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2122 // We treat the option as a single command-line option, even if
2123 // it has internal whitespace.
2124 if (closure->command_line() == NULL)
2125 {
2126 // There are some options that we could handle here--e.g.,
2127 // -lLIBRARY. Should we bother?
2128 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2129 " for scripts specified via -T/--script"),
2130 closure->filename(), closure->lineno(), closure->charpos());
2131 }
2132 else
2133 {
2134 bool past_a_double_dash_option = false;
2135 const char* mutable_option = strndup(option, length);
2136 gold_assert(mutable_option != NULL);
2137 closure->command_line()->process_one_option(1, &mutable_option, 0,
2138 &past_a_double_dash_option);
2139 // The General_options class will quite possibly store a pointer
2140 // into mutable_option, so we can't free it. In cases the class
2141 // does not store such a pointer, this is a memory leak. Alas. :(
2142 }
2143 }
2144
2145 // Called by the bison parser to handle SEARCH_DIR. This is handled
2146 // exactly like a -L option.
2147
2148 extern "C" void
2149 script_add_search_dir(void* closurev, const char* option, size_t length)
2150 {
2151 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2152 if (closure->command_line() == NULL)
2153 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2154 " for scripts specified via -T/--script"),
2155 closure->filename(), closure->lineno(), closure->charpos());
2156 else
2157 {
2158 std::string s = "-L" + std::string(option, length);
2159 script_parse_option(closurev, s.c_str(), s.size());
2160 }
2161 }
2162
2163 /* Called by the bison parser to push the lexer into expression
2164 mode. */
2165
2166 extern "C" void
2167 script_push_lex_into_expression_mode(void* closurev)
2168 {
2169 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2170 closure->push_lex_mode(Lex::EXPRESSION);
2171 }
2172
2173 /* Called by the bison parser to push the lexer into version
2174 mode. */
2175
2176 extern "C" void
2177 script_push_lex_into_version_mode(void* closurev)
2178 {
2179 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2180 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2181 }
2182
2183 /* Called by the bison parser to pop the lexer mode. */
2184
2185 extern "C" void
2186 script_pop_lex_mode(void* closurev)
2187 {
2188 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2189 closure->pop_lex_mode();
2190 }
2191
2192 // Register an entire version node. For example:
2193 //
2194 // GLIBC_2.1 {
2195 // global: foo;
2196 // } GLIBC_2.0;
2197 //
2198 // - tag is "GLIBC_2.1"
2199 // - tree contains the information "global: foo"
2200 // - deps contains "GLIBC_2.0"
2201
2202 extern "C" void
2203 script_register_vers_node(void*,
2204 const char* tag,
2205 int taglen,
2206 struct Version_tree *tree,
2207 struct Version_dependency_list *deps)
2208 {
2209 gold_assert(tree != NULL);
2210 gold_assert(tag != NULL);
2211 tree->dependencies = deps;
2212 tree->tag = std::string(tag, taglen);
2213 }
2214
2215 // Add a dependencies to the list of existing dependencies, if any,
2216 // and return the expanded list.
2217
2218 extern "C" struct Version_dependency_list *
2219 script_add_vers_depend(void* closurev,
2220 struct Version_dependency_list *all_deps,
2221 const char *depend_to_add, int deplen)
2222 {
2223 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2224 if (all_deps == NULL)
2225 all_deps = closure->version_script()->allocate_dependency_list();
2226 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2227 return all_deps;
2228 }
2229
2230 // Add a pattern expression to an existing list of expressions, if any.
2231 // TODO: In the old linker, the last argument used to be a bool, but I
2232 // don't know what it meant.
2233
2234 extern "C" struct Version_expression_list *
2235 script_new_vers_pattern(void* closurev,
2236 struct Version_expression_list *expressions,
2237 const char *pattern, int patlen, int exact_match)
2238 {
2239 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2240 if (expressions == NULL)
2241 expressions = closure->version_script()->allocate_expression_list();
2242 expressions->expressions.push_back(
2243 Version_expression(std::string(pattern, patlen),
2244 closure->get_current_language(),
2245 static_cast<bool>(exact_match)));
2246 return expressions;
2247 }
2248
2249 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2250
2251 extern "C" struct Version_expression_list*
2252 script_merge_expressions(struct Version_expression_list *a,
2253 struct Version_expression_list *b)
2254 {
2255 a->expressions.insert(a->expressions.end(),
2256 b->expressions.begin(), b->expressions.end());
2257 // We could delete b and remove it from expressions_lists_, but
2258 // that's a lot of work. This works just as well.
2259 b->expressions.clear();
2260 return a;
2261 }
2262
2263 // Combine the global and local expressions into a a Version_tree.
2264
2265 extern "C" struct Version_tree *
2266 script_new_vers_node(void* closurev,
2267 struct Version_expression_list *global,
2268 struct Version_expression_list *local)
2269 {
2270 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2271 Version_tree* tree = closure->version_script()->allocate_version_tree();
2272 tree->global = global;
2273 tree->local = local;
2274 return tree;
2275 }
2276
2277 // Handle a transition in language, such as at the
2278 // start or end of 'extern "C++"'
2279
2280 extern "C" void
2281 version_script_push_lang(void* closurev, const char* lang, int langlen)
2282 {
2283 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2284 closure->push_language(std::string(lang, langlen));
2285 }
2286
2287 extern "C" void
2288 version_script_pop_lang(void* closurev)
2289 {
2290 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2291 closure->pop_language();
2292 }
2293
2294 // Called by the bison parser to start a SECTIONS clause.
2295
2296 extern "C" void
2297 script_start_sections(void* closurev)
2298 {
2299 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2300 closure->script_options()->script_sections()->start_sections();
2301 }
2302
2303 // Called by the bison parser to finish a SECTIONS clause.
2304
2305 extern "C" void
2306 script_finish_sections(void* closurev)
2307 {
2308 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2309 closure->script_options()->script_sections()->finish_sections();
2310 }
2311
2312 // Start processing entries for an output section.
2313
2314 extern "C" void
2315 script_start_output_section(void* closurev, const char* name, size_t namelen,
2316 const struct Parser_output_section_header* header)
2317 {
2318 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2319 closure->script_options()->script_sections()->start_output_section(name,
2320 namelen,
2321 header);
2322 }
2323
2324 // Finish processing entries for an output section.
2325
2326 extern "C" void
2327 script_finish_output_section(void* closurev,
2328 const struct Parser_output_section_trailer* trail)
2329 {
2330 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2331 closure->script_options()->script_sections()->finish_output_section(trail);
2332 }
2333
2334 // Add a data item (e.g., "WORD (0)") to the current output section.
2335
2336 extern "C" void
2337 script_add_data(void* closurev, int data_token, Expression* val)
2338 {
2339 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2340 int size;
2341 bool is_signed = true;
2342 switch (data_token)
2343 {
2344 case QUAD:
2345 size = 8;
2346 is_signed = false;
2347 break;
2348 case SQUAD:
2349 size = 8;
2350 break;
2351 case LONG:
2352 size = 4;
2353 break;
2354 case SHORT:
2355 size = 2;
2356 break;
2357 case BYTE:
2358 size = 1;
2359 break;
2360 default:
2361 gold_unreachable();
2362 }
2363 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2364 }
2365
2366 // Add a clause setting the fill value to the current output section.
2367
2368 extern "C" void
2369 script_add_fill(void* closurev, Expression* val)
2370 {
2371 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2372 closure->script_options()->script_sections()->add_fill(val);
2373 }
2374
2375 // Add a new input section specification to the current output
2376 // section.
2377
2378 extern "C" void
2379 script_add_input_section(void* closurev,
2380 const struct Input_section_spec* spec,
2381 int keepi)
2382 {
2383 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2384 bool keep = keepi != 0;
2385 closure->script_options()->script_sections()->add_input_section(spec, keep);
2386 }
2387
2388 // Create a new list of string/sort pairs.
2389
2390 extern "C" String_sort_list_ptr
2391 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2392 {
2393 return new String_sort_list(1, *string_sort);
2394 }
2395
2396 // Add an entry to a list of string/sort pairs. The way the parser
2397 // works permits us to simply modify the first parameter, rather than
2398 // copy the vector.
2399
2400 extern "C" String_sort_list_ptr
2401 script_string_sort_list_add(String_sort_list_ptr pv,
2402 const struct Wildcard_section* string_sort)
2403 {
2404 if (pv == NULL)
2405 return script_new_string_sort_list(string_sort);
2406 else
2407 {
2408 pv->push_back(*string_sort);
2409 return pv;
2410 }
2411 }
2412
2413 // Create a new list of strings.
2414
2415 extern "C" String_list_ptr
2416 script_new_string_list(const char* str, size_t len)
2417 {
2418 return new String_list(1, std::string(str, len));
2419 }
2420
2421 // Add an element to a list of strings. The way the parser works
2422 // permits us to simply modify the first parameter, rather than copy
2423 // the vector.
2424
2425 extern "C" String_list_ptr
2426 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2427 {
2428 if (pv == NULL)
2429 return script_new_string_list(str, len);
2430 else
2431 {
2432 pv->push_back(std::string(str, len));
2433 return pv;
2434 }
2435 }
2436
2437 // Concatenate two string lists. Either or both may be NULL. The way
2438 // the parser works permits us to modify the parameters, rather than
2439 // copy the vector.
2440
2441 extern "C" String_list_ptr
2442 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2443 {
2444 if (pv1 == NULL)
2445 return pv2;
2446 if (pv2 == NULL)
2447 return pv1;
2448 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2449 return pv1;
2450 }
2451
2452 // Add a new program header.
2453
2454 extern "C" void
2455 script_add_phdr(void* closurev, const char* name, size_t namelen,
2456 unsigned int type, const Phdr_info* info)
2457 {
2458 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2459 bool includes_filehdr = info->includes_filehdr != 0;
2460 bool includes_phdrs = info->includes_phdrs != 0;
2461 bool is_flags_valid = info->is_flags_valid != 0;
2462 Script_sections* ss = closure->script_options()->script_sections();
2463 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
2464 is_flags_valid, info->flags, info->load_address);
2465 }
2466
2467 // Convert a program header string to a type.
2468
2469 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
2470
2471 static struct
2472 {
2473 const char* name;
2474 size_t namelen;
2475 unsigned int val;
2476 } phdr_type_names[] =
2477 {
2478 PHDR_TYPE(PT_NULL),
2479 PHDR_TYPE(PT_LOAD),
2480 PHDR_TYPE(PT_DYNAMIC),
2481 PHDR_TYPE(PT_INTERP),
2482 PHDR_TYPE(PT_NOTE),
2483 PHDR_TYPE(PT_SHLIB),
2484 PHDR_TYPE(PT_PHDR),
2485 PHDR_TYPE(PT_TLS),
2486 PHDR_TYPE(PT_GNU_EH_FRAME),
2487 PHDR_TYPE(PT_GNU_STACK),
2488 PHDR_TYPE(PT_GNU_RELRO)
2489 };
2490
2491 extern "C" unsigned int
2492 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
2493 {
2494 for (unsigned int i = 0;
2495 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
2496 ++i)
2497 if (namelen == phdr_type_names[i].namelen
2498 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
2499 return phdr_type_names[i].val;
2500 yyerror(closurev, _("unknown PHDR type (try integer)"));
2501 return elfcpp::PT_NULL;
2502 }