From Cary Coutant: Fix last patch.
[binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82 if (!parameters->demangle())
83 return name;
84
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
90
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99 return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
108 {
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
126 {
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
141 {
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
156 {
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
180 {
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
196 {
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
213 {
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
227 {
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239 this->allocate_base_common(od);
240 this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
252
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
255 return false;
256
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters->export_dynamic() || parameters->output_is_shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
263 return true;
264
265 return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (!parameters->output_is_executable())
277 return false;
278
279 // If the symbol is not from an object file, then it is defined, and
280 // known.
281 if (this->source_ != FROM_OBJECT)
282 return true;
283
284 // If the symbol is from a dynamic object, then the final value is
285 // not known.
286 if (this->object()->is_dynamic())
287 return false;
288
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
292 return true;
293
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters->doing_static_link();
299 }
300
301 // Class Symbol_table.
302
303 Symbol_table::Symbol_table(unsigned int count,
304 const Version_script_info& version_script)
305 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
306 forwarders_(), commons_(), forced_locals_(), warnings_(),
307 version_script_(version_script)
308 {
309 namepool_.reserve(count);
310 }
311
312 Symbol_table::~Symbol_table()
313 {
314 }
315
316 // The hash function. The key values are Stringpool keys.
317
318 inline size_t
319 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
320 {
321 return key.first ^ key.second;
322 }
323
324 // The symbol table key equality function. This is called with
325 // Stringpool keys.
326
327 inline bool
328 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
329 const Symbol_table_key& k2) const
330 {
331 return k1.first == k2.first && k1.second == k2.second;
332 }
333
334 // Make TO a symbol which forwards to FROM.
335
336 void
337 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
338 {
339 gold_assert(from != to);
340 gold_assert(!from->is_forwarder() && !to->is_forwarder());
341 this->forwarders_[from] = to;
342 from->set_forwarder();
343 }
344
345 // Resolve the forwards from FROM, returning the real symbol.
346
347 Symbol*
348 Symbol_table::resolve_forwards(const Symbol* from) const
349 {
350 gold_assert(from->is_forwarder());
351 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
352 this->forwarders_.find(from);
353 gold_assert(p != this->forwarders_.end());
354 return p->second;
355 }
356
357 // Look up a symbol by name.
358
359 Symbol*
360 Symbol_table::lookup(const char* name, const char* version) const
361 {
362 Stringpool::Key name_key;
363 name = this->namepool_.find(name, &name_key);
364 if (name == NULL)
365 return NULL;
366
367 Stringpool::Key version_key = 0;
368 if (version != NULL)
369 {
370 version = this->namepool_.find(version, &version_key);
371 if (version == NULL)
372 return NULL;
373 }
374
375 Symbol_table_key key(name_key, version_key);
376 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
377 if (p == this->table_.end())
378 return NULL;
379 return p->second;
380 }
381
382 // Resolve a Symbol with another Symbol. This is only used in the
383 // unusual case where there are references to both an unversioned
384 // symbol and a symbol with a version, and we then discover that that
385 // version is the default version. Because this is unusual, we do
386 // this the slow way, by converting back to an ELF symbol.
387
388 template<int size, bool big_endian>
389 void
390 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
391 const char* version ACCEPT_SIZE_ENDIAN)
392 {
393 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
394 elfcpp::Sym_write<size, big_endian> esym(buf);
395 // We don't bother to set the st_name field.
396 esym.put_st_value(from->value());
397 esym.put_st_size(from->symsize());
398 esym.put_st_info(from->binding(), from->type());
399 esym.put_st_other(from->visibility(), from->nonvis());
400 esym.put_st_shndx(from->shndx());
401 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
402 if (from->in_reg())
403 to->set_in_reg();
404 if (from->in_dyn())
405 to->set_in_dyn();
406 }
407
408 // Record that a symbol is forced to be local by a version script.
409
410 void
411 Symbol_table::force_local(Symbol* sym)
412 {
413 if (!sym->is_defined() && !sym->is_common())
414 return;
415 if (sym->is_forced_local())
416 {
417 // We already got this one.
418 return;
419 }
420 sym->set_is_forced_local();
421 this->forced_locals_.push_back(sym);
422 }
423
424 // Add one symbol from OBJECT to the symbol table. NAME is symbol
425 // name and VERSION is the version; both are canonicalized. DEF is
426 // whether this is the default version.
427
428 // If DEF is true, then this is the definition of a default version of
429 // a symbol. That means that any lookup of NAME/NULL and any lookup
430 // of NAME/VERSION should always return the same symbol. This is
431 // obvious for references, but in particular we want to do this for
432 // definitions: overriding NAME/NULL should also override
433 // NAME/VERSION. If we don't do that, it would be very hard to
434 // override functions in a shared library which uses versioning.
435
436 // We implement this by simply making both entries in the hash table
437 // point to the same Symbol structure. That is easy enough if this is
438 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
439 // that we have seen both already, in which case they will both have
440 // independent entries in the symbol table. We can't simply change
441 // the symbol table entry, because we have pointers to the entries
442 // attached to the object files. So we mark the entry attached to the
443 // object file as a forwarder, and record it in the forwarders_ map.
444 // Note that entries in the hash table will never be marked as
445 // forwarders.
446 //
447 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
448 // symbol exactly as it existed in the input file. SYM is usually
449 // that as well, but can be modified, for instance if we determine
450 // it's in a to-be-discarded section.
451
452 template<int size, bool big_endian>
453 Sized_symbol<size>*
454 Symbol_table::add_from_object(Object* object,
455 const char *name,
456 Stringpool::Key name_key,
457 const char *version,
458 Stringpool::Key version_key,
459 bool def,
460 const elfcpp::Sym<size, big_endian>& sym,
461 const elfcpp::Sym<size, big_endian>& orig_sym)
462 {
463 Symbol* const snull = NULL;
464 std::pair<typename Symbol_table_type::iterator, bool> ins =
465 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
466 snull));
467
468 std::pair<typename Symbol_table_type::iterator, bool> insdef =
469 std::make_pair(this->table_.end(), false);
470 if (def)
471 {
472 const Stringpool::Key vnull_key = 0;
473 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
474 vnull_key),
475 snull));
476 }
477
478 // ins.first: an iterator, which is a pointer to a pair.
479 // ins.first->first: the key (a pair of name and version).
480 // ins.first->second: the value (Symbol*).
481 // ins.second: true if new entry was inserted, false if not.
482
483 Sized_symbol<size>* ret;
484 bool was_undefined;
485 bool was_common;
486 if (!ins.second)
487 {
488 // We already have an entry for NAME/VERSION.
489 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
490 SELECT_SIZE(size));
491 gold_assert(ret != NULL);
492
493 was_undefined = ret->is_undefined();
494 was_common = ret->is_common();
495
496 this->resolve(ret, sym, orig_sym, object, version);
497
498 if (def)
499 {
500 if (insdef.second)
501 {
502 // This is the first time we have seen NAME/NULL. Make
503 // NAME/NULL point to NAME/VERSION.
504 insdef.first->second = ret;
505 }
506 else if (insdef.first->second != ret
507 && insdef.first->second->is_undefined())
508 {
509 // This is the unfortunate case where we already have
510 // entries for both NAME/VERSION and NAME/NULL. Note
511 // that we don't want to combine them if the existing
512 // symbol is going to override the new one. FIXME: We
513 // currently just test is_undefined, but this may not do
514 // the right thing if the existing symbol is from a
515 // shared library and the new one is from a regular
516 // object.
517
518 const Sized_symbol<size>* sym2;
519 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
520 insdef.first->second
521 SELECT_SIZE(size));
522 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
523 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
524 this->make_forwarder(insdef.first->second, ret);
525 insdef.first->second = ret;
526 }
527 }
528 }
529 else
530 {
531 // This is the first time we have seen NAME/VERSION.
532 gold_assert(ins.first->second == NULL);
533
534 was_undefined = false;
535 was_common = false;
536
537 if (def && !insdef.second)
538 {
539 // We already have an entry for NAME/NULL. If we override
540 // it, then change it to NAME/VERSION.
541 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
542 insdef.first->second
543 SELECT_SIZE(size));
544 this->resolve(ret, sym, orig_sym, object, version);
545 ins.first->second = ret;
546 }
547 else
548 {
549 Sized_target<size, big_endian>* target =
550 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
551 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
552 if (!target->has_make_symbol())
553 ret = new Sized_symbol<size>();
554 else
555 {
556 ret = target->make_symbol();
557 if (ret == NULL)
558 {
559 // This means that we don't want a symbol table
560 // entry after all.
561 if (!def)
562 this->table_.erase(ins.first);
563 else
564 {
565 this->table_.erase(insdef.first);
566 // Inserting insdef invalidated ins.
567 this->table_.erase(std::make_pair(name_key,
568 version_key));
569 }
570 return NULL;
571 }
572 }
573
574 ret->init(name, version, object, sym);
575
576 ins.first->second = ret;
577 if (def)
578 {
579 // This is the first time we have seen NAME/NULL. Point
580 // it at the new entry for NAME/VERSION.
581 gold_assert(insdef.second);
582 insdef.first->second = ret;
583 }
584 }
585 }
586
587 // Record every time we see a new undefined symbol, to speed up
588 // archive groups.
589 if (!was_undefined && ret->is_undefined())
590 ++this->saw_undefined_;
591
592 // Keep track of common symbols, to speed up common symbol
593 // allocation.
594 if (!was_common && ret->is_common())
595 this->commons_.push_back(ret);
596
597 ret->set_is_default(def);
598 return ret;
599 }
600
601 // Add all the symbols in a relocatable object to the hash table.
602
603 template<int size, bool big_endian>
604 void
605 Symbol_table::add_from_relobj(
606 Sized_relobj<size, big_endian>* relobj,
607 const unsigned char* syms,
608 size_t count,
609 const char* sym_names,
610 size_t sym_name_size,
611 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
612 {
613 gold_assert(size == relobj->target()->get_size());
614 gold_assert(size == parameters->get_size());
615
616 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
617
618 const unsigned char* p = syms;
619 for (size_t i = 0; i < count; ++i, p += sym_size)
620 {
621 elfcpp::Sym<size, big_endian> sym(p);
622 elfcpp::Sym<size, big_endian>* psym = &sym;
623
624 unsigned int st_name = psym->get_st_name();
625 if (st_name >= sym_name_size)
626 {
627 relobj->error(_("bad global symbol name offset %u at %zu"),
628 st_name, i);
629 continue;
630 }
631
632 const char* name = sym_names + st_name;
633
634 // A symbol defined in a section which we are not including must
635 // be treated as an undefined symbol.
636 unsigned char symbuf[sym_size];
637 elfcpp::Sym<size, big_endian> sym2(symbuf);
638 unsigned int st_shndx = psym->get_st_shndx();
639 if (st_shndx != elfcpp::SHN_UNDEF
640 && st_shndx < elfcpp::SHN_LORESERVE
641 && !relobj->is_section_included(st_shndx))
642 {
643 memcpy(symbuf, p, sym_size);
644 elfcpp::Sym_write<size, big_endian> sw(symbuf);
645 sw.put_st_shndx(elfcpp::SHN_UNDEF);
646 psym = &sym2;
647 }
648
649 // In an object file, an '@' in the name separates the symbol
650 // name from the version name. If there are two '@' characters,
651 // this is the default version.
652 const char* ver = strchr(name, '@');
653 int namelen = 0;
654 // DEF: is the version default? LOCAL: is the symbol forced local?
655 bool def = false;
656 bool local = false;
657
658 if (ver != NULL)
659 {
660 // The symbol name is of the form foo@VERSION or foo@@VERSION
661 namelen = ver - name;
662 ++ver;
663 if (*ver == '@')
664 {
665 def = true;
666 ++ver;
667 }
668 }
669 else if (!version_script_.empty())
670 {
671 // The symbol name did not have a version, but
672 // the version script may assign a version anyway.
673 namelen = strlen(name);
674 def = true;
675 // Check the global: entries from the version script.
676 const std::string& version =
677 version_script_.get_symbol_version(name);
678 if (!version.empty())
679 ver = version.c_str();
680 // Check the local: entries from the version script
681 if (version_script_.symbol_is_local(name))
682 local = true;
683 }
684
685 Sized_symbol<size>* res;
686 if (ver == NULL)
687 {
688 Stringpool::Key name_key;
689 name = this->namepool_.add(name, true, &name_key);
690 res = this->add_from_object(relobj, name, name_key, NULL, 0,
691 false, *psym, sym);
692 if (local)
693 this->force_local(res);
694 }
695 else
696 {
697 Stringpool::Key name_key;
698 name = this->namepool_.add_with_length(name, namelen, true,
699 &name_key);
700 Stringpool::Key ver_key;
701 ver = this->namepool_.add(ver, true, &ver_key);
702
703 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
704 def, *psym, sym);
705 }
706
707 (*sympointers)[i] = res;
708 }
709 }
710
711 // Add all the symbols in a dynamic object to the hash table.
712
713 template<int size, bool big_endian>
714 void
715 Symbol_table::add_from_dynobj(
716 Sized_dynobj<size, big_endian>* dynobj,
717 const unsigned char* syms,
718 size_t count,
719 const char* sym_names,
720 size_t sym_name_size,
721 const unsigned char* versym,
722 size_t versym_size,
723 const std::vector<const char*>* version_map)
724 {
725 gold_assert(size == dynobj->target()->get_size());
726 gold_assert(size == parameters->get_size());
727
728 if (versym != NULL && versym_size / 2 < count)
729 {
730 dynobj->error(_("too few symbol versions"));
731 return;
732 }
733
734 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
735
736 // We keep a list of all STT_OBJECT symbols, so that we can resolve
737 // weak aliases. This is necessary because if the dynamic object
738 // provides the same variable under two names, one of which is a
739 // weak definition, and the regular object refers to the weak
740 // definition, we have to put both the weak definition and the
741 // strong definition into the dynamic symbol table. Given a weak
742 // definition, the only way that we can find the corresponding
743 // strong definition, if any, is to search the symbol table.
744 std::vector<Sized_symbol<size>*> object_symbols;
745
746 const unsigned char* p = syms;
747 const unsigned char* vs = versym;
748 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
749 {
750 elfcpp::Sym<size, big_endian> sym(p);
751
752 // Ignore symbols with local binding.
753 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
754 continue;
755
756 unsigned int st_name = sym.get_st_name();
757 if (st_name >= sym_name_size)
758 {
759 dynobj->error(_("bad symbol name offset %u at %zu"),
760 st_name, i);
761 continue;
762 }
763
764 const char* name = sym_names + st_name;
765
766 Sized_symbol<size>* res;
767
768 if (versym == NULL)
769 {
770 Stringpool::Key name_key;
771 name = this->namepool_.add(name, true, &name_key);
772 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
773 false, sym, sym);
774 }
775 else
776 {
777 // Read the version information.
778
779 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
780
781 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
782 v &= elfcpp::VERSYM_VERSION;
783
784 // The Sun documentation says that V can be VER_NDX_LOCAL,
785 // or VER_NDX_GLOBAL, or a version index. The meaning of
786 // VER_NDX_LOCAL is defined as "Symbol has local scope."
787 // The old GNU linker will happily generate VER_NDX_LOCAL
788 // for an undefined symbol. I don't know what the Sun
789 // linker will generate.
790
791 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
792 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
793 {
794 // This symbol should not be visible outside the object.
795 continue;
796 }
797
798 // At this point we are definitely going to add this symbol.
799 Stringpool::Key name_key;
800 name = this->namepool_.add(name, true, &name_key);
801
802 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
803 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
804 {
805 // This symbol does not have a version.
806 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
807 false, sym, sym);
808 }
809 else
810 {
811 if (v >= version_map->size())
812 {
813 dynobj->error(_("versym for symbol %zu out of range: %u"),
814 i, v);
815 continue;
816 }
817
818 const char* version = (*version_map)[v];
819 if (version == NULL)
820 {
821 dynobj->error(_("versym for symbol %zu has no name: %u"),
822 i, v);
823 continue;
824 }
825
826 Stringpool::Key version_key;
827 version = this->namepool_.add(version, true, &version_key);
828
829 // If this is an absolute symbol, and the version name
830 // and symbol name are the same, then this is the
831 // version definition symbol. These symbols exist to
832 // support using -u to pull in particular versions. We
833 // do not want to record a version for them.
834 if (sym.get_st_shndx() == elfcpp::SHN_ABS
835 && name_key == version_key)
836 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
837 false, sym, sym);
838 else
839 {
840 const bool def = (!hidden
841 && (sym.get_st_shndx()
842 != elfcpp::SHN_UNDEF));
843 res = this->add_from_object(dynobj, name, name_key, version,
844 version_key, def, sym, sym);
845 }
846 }
847 }
848
849 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
850 && sym.get_st_type() == elfcpp::STT_OBJECT)
851 object_symbols.push_back(res);
852 }
853
854 this->record_weak_aliases(&object_symbols);
855 }
856
857 // This is used to sort weak aliases. We sort them first by section
858 // index, then by offset, then by weak ahead of strong.
859
860 template<int size>
861 class Weak_alias_sorter
862 {
863 public:
864 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
865 };
866
867 template<int size>
868 bool
869 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
870 const Sized_symbol<size>* s2) const
871 {
872 if (s1->shndx() != s2->shndx())
873 return s1->shndx() < s2->shndx();
874 if (s1->value() != s2->value())
875 return s1->value() < s2->value();
876 if (s1->binding() != s2->binding())
877 {
878 if (s1->binding() == elfcpp::STB_WEAK)
879 return true;
880 if (s2->binding() == elfcpp::STB_WEAK)
881 return false;
882 }
883 return std::string(s1->name()) < std::string(s2->name());
884 }
885
886 // SYMBOLS is a list of object symbols from a dynamic object. Look
887 // for any weak aliases, and record them so that if we add the weak
888 // alias to the dynamic symbol table, we also add the corresponding
889 // strong symbol.
890
891 template<int size>
892 void
893 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
894 {
895 // Sort the vector by section index, then by offset, then by weak
896 // ahead of strong.
897 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
898
899 // Walk through the vector. For each weak definition, record
900 // aliases.
901 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
902 symbols->begin();
903 p != symbols->end();
904 ++p)
905 {
906 if ((*p)->binding() != elfcpp::STB_WEAK)
907 continue;
908
909 // Build a circular list of weak aliases. Each symbol points to
910 // the next one in the circular list.
911
912 Sized_symbol<size>* from_sym = *p;
913 typename std::vector<Sized_symbol<size>*>::const_iterator q;
914 for (q = p + 1; q != symbols->end(); ++q)
915 {
916 if ((*q)->shndx() != from_sym->shndx()
917 || (*q)->value() != from_sym->value())
918 break;
919
920 this->weak_aliases_[from_sym] = *q;
921 from_sym->set_has_alias();
922 from_sym = *q;
923 }
924
925 if (from_sym != *p)
926 {
927 this->weak_aliases_[from_sym] = *p;
928 from_sym->set_has_alias();
929 }
930
931 p = q - 1;
932 }
933 }
934
935 // Create and return a specially defined symbol. If ONLY_IF_REF is
936 // true, then only create the symbol if there is a reference to it.
937 // If this does not return NULL, it sets *POLDSYM to the existing
938 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
939
940 template<int size, bool big_endian>
941 Sized_symbol<size>*
942 Symbol_table::define_special_symbol(const Target* target, const char** pname,
943 const char** pversion, bool only_if_ref,
944 Sized_symbol<size>** poldsym
945 ACCEPT_SIZE_ENDIAN)
946 {
947 Symbol* oldsym;
948 Sized_symbol<size>* sym;
949 bool add_to_table = false;
950 typename Symbol_table_type::iterator add_loc = this->table_.end();
951
952 // If the caller didn't give us a version, see if we get one from
953 // the version script.
954 if (*pversion == NULL)
955 {
956 const std::string& v(this->version_script_.get_symbol_version(*pname));
957 if (!v.empty())
958 *pversion = v.c_str();
959 }
960
961 if (only_if_ref)
962 {
963 oldsym = this->lookup(*pname, *pversion);
964 if (oldsym == NULL || !oldsym->is_undefined())
965 return NULL;
966
967 *pname = oldsym->name();
968 *pversion = oldsym->version();
969 }
970 else
971 {
972 // Canonicalize NAME and VERSION.
973 Stringpool::Key name_key;
974 *pname = this->namepool_.add(*pname, true, &name_key);
975
976 Stringpool::Key version_key = 0;
977 if (*pversion != NULL)
978 *pversion = this->namepool_.add(*pversion, true, &version_key);
979
980 Symbol* const snull = NULL;
981 std::pair<typename Symbol_table_type::iterator, bool> ins =
982 this->table_.insert(std::make_pair(std::make_pair(name_key,
983 version_key),
984 snull));
985
986 if (!ins.second)
987 {
988 // We already have a symbol table entry for NAME/VERSION.
989 oldsym = ins.first->second;
990 gold_assert(oldsym != NULL);
991 }
992 else
993 {
994 // We haven't seen this symbol before.
995 gold_assert(ins.first->second == NULL);
996 add_to_table = true;
997 add_loc = ins.first;
998 oldsym = NULL;
999 }
1000 }
1001
1002 if (!target->has_make_symbol())
1003 sym = new Sized_symbol<size>();
1004 else
1005 {
1006 gold_assert(target->get_size() == size);
1007 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
1008 typedef Sized_target<size, big_endian> My_target;
1009 const My_target* sized_target =
1010 static_cast<const My_target*>(target);
1011 sym = sized_target->make_symbol();
1012 if (sym == NULL)
1013 return NULL;
1014 }
1015
1016 if (add_to_table)
1017 add_loc->second = sym;
1018 else
1019 gold_assert(oldsym != NULL);
1020
1021 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
1022 SELECT_SIZE(size));
1023
1024 return sym;
1025 }
1026
1027 // Define a symbol based on an Output_data.
1028
1029 Symbol*
1030 Symbol_table::define_in_output_data(const Target* target, const char* name,
1031 const char* version, Output_data* od,
1032 uint64_t value, uint64_t symsize,
1033 elfcpp::STT type, elfcpp::STB binding,
1034 elfcpp::STV visibility,
1035 unsigned char nonvis,
1036 bool offset_is_from_end,
1037 bool only_if_ref)
1038 {
1039 if (parameters->get_size() == 32)
1040 {
1041 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1042 return this->do_define_in_output_data<32>(target, name, version, od,
1043 value, symsize, type, binding,
1044 visibility, nonvis,
1045 offset_is_from_end,
1046 only_if_ref);
1047 #else
1048 gold_unreachable();
1049 #endif
1050 }
1051 else if (parameters->get_size() == 64)
1052 {
1053 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1054 return this->do_define_in_output_data<64>(target, name, version, od,
1055 value, symsize, type, binding,
1056 visibility, nonvis,
1057 offset_is_from_end,
1058 only_if_ref);
1059 #else
1060 gold_unreachable();
1061 #endif
1062 }
1063 else
1064 gold_unreachable();
1065 }
1066
1067 // Define a symbol in an Output_data, sized version.
1068
1069 template<int size>
1070 Sized_symbol<size>*
1071 Symbol_table::do_define_in_output_data(
1072 const Target* target,
1073 const char* name,
1074 const char* version,
1075 Output_data* od,
1076 typename elfcpp::Elf_types<size>::Elf_Addr value,
1077 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1078 elfcpp::STT type,
1079 elfcpp::STB binding,
1080 elfcpp::STV visibility,
1081 unsigned char nonvis,
1082 bool offset_is_from_end,
1083 bool only_if_ref)
1084 {
1085 Sized_symbol<size>* sym;
1086 Sized_symbol<size>* oldsym;
1087
1088 if (parameters->is_big_endian())
1089 {
1090 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1091 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1092 target, &name, &version, only_if_ref, &oldsym
1093 SELECT_SIZE_ENDIAN(size, true));
1094 #else
1095 gold_unreachable();
1096 #endif
1097 }
1098 else
1099 {
1100 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1101 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1102 target, &name, &version, only_if_ref, &oldsym
1103 SELECT_SIZE_ENDIAN(size, false));
1104 #else
1105 gold_unreachable();
1106 #endif
1107 }
1108
1109 if (sym == NULL)
1110 return NULL;
1111
1112 gold_assert(version == NULL || oldsym != NULL);
1113 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1114 offset_is_from_end);
1115
1116 if (oldsym == NULL)
1117 {
1118 if (binding == elfcpp::STB_LOCAL
1119 || this->version_script_.symbol_is_local(name))
1120 this->force_local(sym);
1121 return sym;
1122 }
1123
1124 if (Symbol_table::should_override_with_special(oldsym))
1125 this->override_with_special(oldsym, sym);
1126 delete sym;
1127 return oldsym;
1128 }
1129
1130 // Define a symbol based on an Output_segment.
1131
1132 Symbol*
1133 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1134 const char* version, Output_segment* os,
1135 uint64_t value, uint64_t symsize,
1136 elfcpp::STT type, elfcpp::STB binding,
1137 elfcpp::STV visibility,
1138 unsigned char nonvis,
1139 Symbol::Segment_offset_base offset_base,
1140 bool only_if_ref)
1141 {
1142 if (parameters->get_size() == 32)
1143 {
1144 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1145 return this->do_define_in_output_segment<32>(target, name, version, os,
1146 value, symsize, type,
1147 binding, visibility, nonvis,
1148 offset_base, only_if_ref);
1149 #else
1150 gold_unreachable();
1151 #endif
1152 }
1153 else if (parameters->get_size() == 64)
1154 {
1155 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1156 return this->do_define_in_output_segment<64>(target, name, version, os,
1157 value, symsize, type,
1158 binding, visibility, nonvis,
1159 offset_base, only_if_ref);
1160 #else
1161 gold_unreachable();
1162 #endif
1163 }
1164 else
1165 gold_unreachable();
1166 }
1167
1168 // Define a symbol in an Output_segment, sized version.
1169
1170 template<int size>
1171 Sized_symbol<size>*
1172 Symbol_table::do_define_in_output_segment(
1173 const Target* target,
1174 const char* name,
1175 const char* version,
1176 Output_segment* os,
1177 typename elfcpp::Elf_types<size>::Elf_Addr value,
1178 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1179 elfcpp::STT type,
1180 elfcpp::STB binding,
1181 elfcpp::STV visibility,
1182 unsigned char nonvis,
1183 Symbol::Segment_offset_base offset_base,
1184 bool only_if_ref)
1185 {
1186 Sized_symbol<size>* sym;
1187 Sized_symbol<size>* oldsym;
1188
1189 if (parameters->is_big_endian())
1190 {
1191 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1192 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1193 target, &name, &version, only_if_ref, &oldsym
1194 SELECT_SIZE_ENDIAN(size, true));
1195 #else
1196 gold_unreachable();
1197 #endif
1198 }
1199 else
1200 {
1201 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1202 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1203 target, &name, &version, only_if_ref, &oldsym
1204 SELECT_SIZE_ENDIAN(size, false));
1205 #else
1206 gold_unreachable();
1207 #endif
1208 }
1209
1210 if (sym == NULL)
1211 return NULL;
1212
1213 gold_assert(version == NULL || oldsym != NULL);
1214 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1215 offset_base);
1216
1217 if (oldsym == NULL)
1218 {
1219 if (binding == elfcpp::STB_LOCAL
1220 || this->version_script_.symbol_is_local(name))
1221 this->force_local(sym);
1222 return sym;
1223 }
1224
1225 if (Symbol_table::should_override_with_special(oldsym))
1226 this->override_with_special(oldsym, sym);
1227 delete sym;
1228 return oldsym;
1229 }
1230
1231 // Define a special symbol with a constant value. It is a multiple
1232 // definition error if this symbol is already defined.
1233
1234 Symbol*
1235 Symbol_table::define_as_constant(const Target* target, const char* name,
1236 const char* version, uint64_t value,
1237 uint64_t symsize, elfcpp::STT type,
1238 elfcpp::STB binding, elfcpp::STV visibility,
1239 unsigned char nonvis, bool only_if_ref)
1240 {
1241 if (parameters->get_size() == 32)
1242 {
1243 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1244 return this->do_define_as_constant<32>(target, name, version, value,
1245 symsize, type, binding,
1246 visibility, nonvis, only_if_ref);
1247 #else
1248 gold_unreachable();
1249 #endif
1250 }
1251 else if (parameters->get_size() == 64)
1252 {
1253 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1254 return this->do_define_as_constant<64>(target, name, version, value,
1255 symsize, type, binding,
1256 visibility, nonvis, only_if_ref);
1257 #else
1258 gold_unreachable();
1259 #endif
1260 }
1261 else
1262 gold_unreachable();
1263 }
1264
1265 // Define a symbol as a constant, sized version.
1266
1267 template<int size>
1268 Sized_symbol<size>*
1269 Symbol_table::do_define_as_constant(
1270 const Target* target,
1271 const char* name,
1272 const char* version,
1273 typename elfcpp::Elf_types<size>::Elf_Addr value,
1274 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1275 elfcpp::STT type,
1276 elfcpp::STB binding,
1277 elfcpp::STV visibility,
1278 unsigned char nonvis,
1279 bool only_if_ref)
1280 {
1281 Sized_symbol<size>* sym;
1282 Sized_symbol<size>* oldsym;
1283
1284 if (parameters->is_big_endian())
1285 {
1286 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1287 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1288 target, &name, &version, only_if_ref, &oldsym
1289 SELECT_SIZE_ENDIAN(size, true));
1290 #else
1291 gold_unreachable();
1292 #endif
1293 }
1294 else
1295 {
1296 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1297 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1298 target, &name, &version, only_if_ref, &oldsym
1299 SELECT_SIZE_ENDIAN(size, false));
1300 #else
1301 gold_unreachable();
1302 #endif
1303 }
1304
1305 if (sym == NULL)
1306 return NULL;
1307
1308 gold_assert(version == NULL || version == name || oldsym != NULL);
1309 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1310
1311 if (oldsym == NULL)
1312 {
1313 if (binding == elfcpp::STB_LOCAL
1314 || this->version_script_.symbol_is_local(name))
1315 this->force_local(sym);
1316 return sym;
1317 }
1318
1319 if (Symbol_table::should_override_with_special(oldsym))
1320 this->override_with_special(oldsym, sym);
1321 delete sym;
1322 return oldsym;
1323 }
1324
1325 // Define a set of symbols in output sections.
1326
1327 void
1328 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1329 int count, const Define_symbol_in_section* p)
1330 {
1331 for (int i = 0; i < count; ++i, ++p)
1332 {
1333 Output_section* os = layout->find_output_section(p->output_section);
1334 if (os != NULL)
1335 this->define_in_output_data(target, p->name, NULL, os, p->value,
1336 p->size, p->type, p->binding,
1337 p->visibility, p->nonvis,
1338 p->offset_is_from_end, p->only_if_ref);
1339 else
1340 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1341 p->binding, p->visibility, p->nonvis,
1342 p->only_if_ref);
1343 }
1344 }
1345
1346 // Define a set of symbols in output segments.
1347
1348 void
1349 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1350 int count, const Define_symbol_in_segment* p)
1351 {
1352 for (int i = 0; i < count; ++i, ++p)
1353 {
1354 Output_segment* os = layout->find_output_segment(p->segment_type,
1355 p->segment_flags_set,
1356 p->segment_flags_clear);
1357 if (os != NULL)
1358 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1359 p->size, p->type, p->binding,
1360 p->visibility, p->nonvis,
1361 p->offset_base, p->only_if_ref);
1362 else
1363 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1364 p->binding, p->visibility, p->nonvis,
1365 p->only_if_ref);
1366 }
1367 }
1368
1369 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1370 // symbol should be defined--typically a .dyn.bss section. VALUE is
1371 // the offset within POSD.
1372
1373 template<int size>
1374 void
1375 Symbol_table::define_with_copy_reloc(
1376 const Target* target,
1377 Sized_symbol<size>* csym,
1378 Output_data* posd,
1379 typename elfcpp::Elf_types<size>::Elf_Addr value)
1380 {
1381 gold_assert(csym->is_from_dynobj());
1382 gold_assert(!csym->is_copied_from_dynobj());
1383 Object* object = csym->object();
1384 gold_assert(object->is_dynamic());
1385 Dynobj* dynobj = static_cast<Dynobj*>(object);
1386
1387 // Our copied variable has to override any variable in a shared
1388 // library.
1389 elfcpp::STB binding = csym->binding();
1390 if (binding == elfcpp::STB_WEAK)
1391 binding = elfcpp::STB_GLOBAL;
1392
1393 this->define_in_output_data(target, csym->name(), csym->version(),
1394 posd, value, csym->symsize(),
1395 csym->type(), binding,
1396 csym->visibility(), csym->nonvis(),
1397 false, false);
1398
1399 csym->set_is_copied_from_dynobj();
1400 csym->set_needs_dynsym_entry();
1401
1402 this->copied_symbol_dynobjs_[csym] = dynobj;
1403
1404 // We have now defined all aliases, but we have not entered them all
1405 // in the copied_symbol_dynobjs_ map.
1406 if (csym->has_alias())
1407 {
1408 Symbol* sym = csym;
1409 while (true)
1410 {
1411 sym = this->weak_aliases_[sym];
1412 if (sym == csym)
1413 break;
1414 gold_assert(sym->output_data() == posd);
1415
1416 sym->set_is_copied_from_dynobj();
1417 this->copied_symbol_dynobjs_[sym] = dynobj;
1418 }
1419 }
1420 }
1421
1422 // SYM is defined using a COPY reloc. Return the dynamic object where
1423 // the original definition was found.
1424
1425 Dynobj*
1426 Symbol_table::get_copy_source(const Symbol* sym) const
1427 {
1428 gold_assert(sym->is_copied_from_dynobj());
1429 Copied_symbol_dynobjs::const_iterator p =
1430 this->copied_symbol_dynobjs_.find(sym);
1431 gold_assert(p != this->copied_symbol_dynobjs_.end());
1432 return p->second;
1433 }
1434
1435 // Set the dynamic symbol indexes. INDEX is the index of the first
1436 // global dynamic symbol. Pointers to the symbols are stored into the
1437 // vector SYMS. The names are added to DYNPOOL. This returns an
1438 // updated dynamic symbol index.
1439
1440 unsigned int
1441 Symbol_table::set_dynsym_indexes(const Target* target,
1442 unsigned int index,
1443 std::vector<Symbol*>* syms,
1444 Stringpool* dynpool,
1445 Versions* versions)
1446 {
1447 for (Symbol_table_type::iterator p = this->table_.begin();
1448 p != this->table_.end();
1449 ++p)
1450 {
1451 Symbol* sym = p->second;
1452
1453 // Note that SYM may already have a dynamic symbol index, since
1454 // some symbols appear more than once in the symbol table, with
1455 // and without a version.
1456
1457 if (!sym->should_add_dynsym_entry())
1458 sym->set_dynsym_index(-1U);
1459 else if (!sym->has_dynsym_index())
1460 {
1461 sym->set_dynsym_index(index);
1462 ++index;
1463 syms->push_back(sym);
1464 dynpool->add(sym->name(), false, NULL);
1465
1466 // Record any version information.
1467 if (sym->version() != NULL)
1468 versions->record_version(this, dynpool, sym);
1469 }
1470 }
1471
1472 // Finish up the versions. In some cases this may add new dynamic
1473 // symbols.
1474 index = versions->finalize(target, this, index, syms);
1475
1476 return index;
1477 }
1478
1479 // Set the final values for all the symbols. The index of the first
1480 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1481 // file offset OFF. Add their names to POOL. Return the new file
1482 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1483
1484 off_t
1485 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1486 size_t dyncount, Stringpool* pool,
1487 unsigned int *plocal_symcount)
1488 {
1489 off_t ret;
1490
1491 gold_assert(*plocal_symcount != 0);
1492 this->first_global_index_ = *plocal_symcount;
1493
1494 this->dynamic_offset_ = dynoff;
1495 this->first_dynamic_global_index_ = dyn_global_index;
1496 this->dynamic_count_ = dyncount;
1497
1498 if (parameters->get_size() == 32)
1499 {
1500 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1501 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1502 #else
1503 gold_unreachable();
1504 #endif
1505 }
1506 else if (parameters->get_size() == 64)
1507 {
1508 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1509 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1510 #else
1511 gold_unreachable();
1512 #endif
1513 }
1514 else
1515 gold_unreachable();
1516
1517 // Now that we have the final symbol table, we can reliably note
1518 // which symbols should get warnings.
1519 this->warnings_.note_warnings(this);
1520
1521 return ret;
1522 }
1523
1524 // SYM is going into the symbol table at *PINDEX. Add the name to
1525 // POOL, update *PINDEX and *POFF.
1526
1527 template<int size>
1528 void
1529 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1530 unsigned int* pindex, off_t* poff)
1531 {
1532 sym->set_symtab_index(*pindex);
1533 pool->add(sym->name(), false, NULL);
1534 ++*pindex;
1535 *poff += elfcpp::Elf_sizes<size>::sym_size;
1536 }
1537
1538 // Set the final value for all the symbols. This is called after
1539 // Layout::finalize, so all the output sections have their final
1540 // address.
1541
1542 template<int size>
1543 off_t
1544 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1545 unsigned int* plocal_symcount)
1546 {
1547 off = align_address(off, size >> 3);
1548 this->offset_ = off;
1549
1550 unsigned int index = *plocal_symcount;
1551 const unsigned int orig_index = index;
1552
1553 // First do all the symbols which have been forced to be local, as
1554 // they must appear before all global symbols.
1555 for (Forced_locals::iterator p = this->forced_locals_.begin();
1556 p != this->forced_locals_.end();
1557 ++p)
1558 {
1559 Symbol* sym = *p;
1560 gold_assert(sym->is_forced_local());
1561 if (this->sized_finalize_symbol<size>(sym))
1562 {
1563 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1564 ++*plocal_symcount;
1565 }
1566 }
1567
1568 // Now do all the remaining symbols.
1569 for (Symbol_table_type::iterator p = this->table_.begin();
1570 p != this->table_.end();
1571 ++p)
1572 {
1573 Symbol* sym = p->second;
1574 if (this->sized_finalize_symbol<size>(sym))
1575 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1576 }
1577
1578 this->output_count_ = index - orig_index;
1579
1580 return off;
1581 }
1582
1583 // Finalize the symbol SYM. This returns true if the symbol should be
1584 // added to the symbol table, false otherwise.
1585
1586 template<int size>
1587 bool
1588 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1589 {
1590 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1591
1592 // The default version of a symbol may appear twice in the symbol
1593 // table. We only need to finalize it once.
1594 if (sym->has_symtab_index())
1595 return false;
1596
1597 if (!sym->in_reg())
1598 {
1599 gold_assert(!sym->has_symtab_index());
1600 sym->set_symtab_index(-1U);
1601 gold_assert(sym->dynsym_index() == -1U);
1602 return false;
1603 }
1604
1605 typename Sized_symbol<size>::Value_type value;
1606
1607 switch (sym->source())
1608 {
1609 case Symbol::FROM_OBJECT:
1610 {
1611 unsigned int shndx = sym->shndx();
1612
1613 // FIXME: We need some target specific support here.
1614 if (shndx >= elfcpp::SHN_LORESERVE
1615 && shndx != elfcpp::SHN_ABS)
1616 {
1617 gold_error(_("%s: unsupported symbol section 0x%x"),
1618 sym->demangled_name().c_str(), shndx);
1619 shndx = elfcpp::SHN_UNDEF;
1620 }
1621
1622 Object* symobj = sym->object();
1623 if (symobj->is_dynamic())
1624 {
1625 value = 0;
1626 shndx = elfcpp::SHN_UNDEF;
1627 }
1628 else if (shndx == elfcpp::SHN_UNDEF)
1629 value = 0;
1630 else if (shndx == elfcpp::SHN_ABS)
1631 value = sym->value();
1632 else
1633 {
1634 Relobj* relobj = static_cast<Relobj*>(symobj);
1635 section_offset_type secoff;
1636 Output_section* os = relobj->output_section(shndx, &secoff);
1637
1638 if (os == NULL)
1639 {
1640 sym->set_symtab_index(-1U);
1641 gold_assert(sym->dynsym_index() == -1U);
1642 return false;
1643 }
1644
1645 if (sym->type() == elfcpp::STT_TLS)
1646 value = sym->value() + os->tls_offset() + secoff;
1647 else
1648 value = sym->value() + os->address() + secoff;
1649 }
1650 }
1651 break;
1652
1653 case Symbol::IN_OUTPUT_DATA:
1654 {
1655 Output_data* od = sym->output_data();
1656 value = sym->value() + od->address();
1657 if (sym->offset_is_from_end())
1658 value += od->data_size();
1659 }
1660 break;
1661
1662 case Symbol::IN_OUTPUT_SEGMENT:
1663 {
1664 Output_segment* os = sym->output_segment();
1665 value = sym->value() + os->vaddr();
1666 switch (sym->offset_base())
1667 {
1668 case Symbol::SEGMENT_START:
1669 break;
1670 case Symbol::SEGMENT_END:
1671 value += os->memsz();
1672 break;
1673 case Symbol::SEGMENT_BSS:
1674 value += os->filesz();
1675 break;
1676 default:
1677 gold_unreachable();
1678 }
1679 }
1680 break;
1681
1682 case Symbol::CONSTANT:
1683 value = sym->value();
1684 break;
1685
1686 default:
1687 gold_unreachable();
1688 }
1689
1690 sym->set_value(value);
1691
1692 if (parameters->strip_all())
1693 {
1694 sym->set_symtab_index(-1U);
1695 return false;
1696 }
1697
1698 return true;
1699 }
1700
1701 // Write out the global symbols.
1702
1703 void
1704 Symbol_table::write_globals(const Input_objects* input_objects,
1705 const Stringpool* sympool,
1706 const Stringpool* dynpool, Output_file* of) const
1707 {
1708 if (parameters->get_size() == 32)
1709 {
1710 if (parameters->is_big_endian())
1711 {
1712 #ifdef HAVE_TARGET_32_BIG
1713 this->sized_write_globals<32, true>(input_objects, sympool,
1714 dynpool, of);
1715 #else
1716 gold_unreachable();
1717 #endif
1718 }
1719 else
1720 {
1721 #ifdef HAVE_TARGET_32_LITTLE
1722 this->sized_write_globals<32, false>(input_objects, sympool,
1723 dynpool, of);
1724 #else
1725 gold_unreachable();
1726 #endif
1727 }
1728 }
1729 else if (parameters->get_size() == 64)
1730 {
1731 if (parameters->is_big_endian())
1732 {
1733 #ifdef HAVE_TARGET_64_BIG
1734 this->sized_write_globals<64, true>(input_objects, sympool,
1735 dynpool, of);
1736 #else
1737 gold_unreachable();
1738 #endif
1739 }
1740 else
1741 {
1742 #ifdef HAVE_TARGET_64_LITTLE
1743 this->sized_write_globals<64, false>(input_objects, sympool,
1744 dynpool, of);
1745 #else
1746 gold_unreachable();
1747 #endif
1748 }
1749 }
1750 else
1751 gold_unreachable();
1752 }
1753
1754 // Write out the global symbols.
1755
1756 template<int size, bool big_endian>
1757 void
1758 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1759 const Stringpool* sympool,
1760 const Stringpool* dynpool,
1761 Output_file* of) const
1762 {
1763 const Target* const target = input_objects->target();
1764
1765 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1766
1767 const unsigned int output_count = this->output_count_;
1768 const section_size_type oview_size = output_count * sym_size;
1769 const unsigned int first_global_index = this->first_global_index_;
1770 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1771
1772 const unsigned int dynamic_count = this->dynamic_count_;
1773 const section_size_type dynamic_size = dynamic_count * sym_size;
1774 const unsigned int first_dynamic_global_index =
1775 this->first_dynamic_global_index_;
1776 unsigned char* dynamic_view;
1777 if (this->dynamic_offset_ == 0)
1778 dynamic_view = NULL;
1779 else
1780 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1781
1782 for (Symbol_table_type::const_iterator p = this->table_.begin();
1783 p != this->table_.end();
1784 ++p)
1785 {
1786 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1787
1788 // Possibly warn about unresolved symbols in shared libraries.
1789 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1790
1791 unsigned int sym_index = sym->symtab_index();
1792 unsigned int dynsym_index;
1793 if (dynamic_view == NULL)
1794 dynsym_index = -1U;
1795 else
1796 dynsym_index = sym->dynsym_index();
1797
1798 if (sym_index == -1U && dynsym_index == -1U)
1799 {
1800 // This symbol is not included in the output file.
1801 continue;
1802 }
1803
1804 unsigned int shndx;
1805 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1806 switch (sym->source())
1807 {
1808 case Symbol::FROM_OBJECT:
1809 {
1810 unsigned int in_shndx = sym->shndx();
1811
1812 // FIXME: We need some target specific support here.
1813 if (in_shndx >= elfcpp::SHN_LORESERVE
1814 && in_shndx != elfcpp::SHN_ABS)
1815 {
1816 gold_error(_("%s: unsupported symbol section 0x%x"),
1817 sym->demangled_name().c_str(), in_shndx);
1818 shndx = in_shndx;
1819 }
1820 else
1821 {
1822 Object* symobj = sym->object();
1823 if (symobj->is_dynamic())
1824 {
1825 if (sym->needs_dynsym_value())
1826 value = target->dynsym_value(sym);
1827 shndx = elfcpp::SHN_UNDEF;
1828 }
1829 else if (in_shndx == elfcpp::SHN_UNDEF
1830 || in_shndx == elfcpp::SHN_ABS)
1831 shndx = in_shndx;
1832 else
1833 {
1834 Relobj* relobj = static_cast<Relobj*>(symobj);
1835 section_offset_type secoff;
1836 Output_section* os = relobj->output_section(in_shndx,
1837 &secoff);
1838 gold_assert(os != NULL);
1839 shndx = os->out_shndx();
1840 }
1841 }
1842 }
1843 break;
1844
1845 case Symbol::IN_OUTPUT_DATA:
1846 shndx = sym->output_data()->out_shndx();
1847 break;
1848
1849 case Symbol::IN_OUTPUT_SEGMENT:
1850 shndx = elfcpp::SHN_ABS;
1851 break;
1852
1853 case Symbol::CONSTANT:
1854 shndx = elfcpp::SHN_ABS;
1855 break;
1856
1857 default:
1858 gold_unreachable();
1859 }
1860
1861 if (sym_index != -1U)
1862 {
1863 sym_index -= first_global_index;
1864 gold_assert(sym_index < output_count);
1865 unsigned char* ps = psyms + (sym_index * sym_size);
1866 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1867 sym, sym->value(), shndx, sympool, ps
1868 SELECT_SIZE_ENDIAN(size, big_endian));
1869 }
1870
1871 if (dynsym_index != -1U)
1872 {
1873 dynsym_index -= first_dynamic_global_index;
1874 gold_assert(dynsym_index < dynamic_count);
1875 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1876 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1877 sym, value, shndx, dynpool, pd
1878 SELECT_SIZE_ENDIAN(size, big_endian));
1879 }
1880 }
1881
1882 of->write_output_view(this->offset_, oview_size, psyms);
1883 if (dynamic_view != NULL)
1884 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1885 }
1886
1887 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1888 // strtab holding the name.
1889
1890 template<int size, bool big_endian>
1891 void
1892 Symbol_table::sized_write_symbol(
1893 Sized_symbol<size>* sym,
1894 typename elfcpp::Elf_types<size>::Elf_Addr value,
1895 unsigned int shndx,
1896 const Stringpool* pool,
1897 unsigned char* p
1898 ACCEPT_SIZE_ENDIAN) const
1899 {
1900 elfcpp::Sym_write<size, big_endian> osym(p);
1901 osym.put_st_name(pool->get_offset(sym->name()));
1902 osym.put_st_value(value);
1903 osym.put_st_size(sym->symsize());
1904 // A version script may have overridden the default binding.
1905 if (sym->is_forced_local())
1906 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1907 else
1908 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1909 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1910 osym.put_st_shndx(shndx);
1911 }
1912
1913 // Check for unresolved symbols in shared libraries. This is
1914 // controlled by the --allow-shlib-undefined option.
1915
1916 // We only warn about libraries for which we have seen all the
1917 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1918 // which were not seen in this link. If we didn't see a DT_NEEDED
1919 // entry, we aren't going to be able to reliably report whether the
1920 // symbol is undefined.
1921
1922 // We also don't warn about libraries found in the system library
1923 // directory (the directory were we find libc.so); we assume that
1924 // those libraries are OK. This heuristic avoids problems in
1925 // GNU/Linux, in which -ldl can have undefined references satisfied by
1926 // ld-linux.so.
1927
1928 inline void
1929 Symbol_table::warn_about_undefined_dynobj_symbol(
1930 const Input_objects* input_objects,
1931 Symbol* sym) const
1932 {
1933 if (sym->source() == Symbol::FROM_OBJECT
1934 && sym->object()->is_dynamic()
1935 && sym->shndx() == elfcpp::SHN_UNDEF
1936 && sym->binding() != elfcpp::STB_WEAK
1937 && !parameters->allow_shlib_undefined()
1938 && !input_objects->target()->is_defined_by_abi(sym)
1939 && !input_objects->found_in_system_library_directory(sym->object()))
1940 {
1941 // A very ugly cast.
1942 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1943 if (!dynobj->has_unknown_needed_entries())
1944 gold_error(_("%s: undefined reference to '%s'"),
1945 sym->object()->name().c_str(),
1946 sym->demangled_name().c_str());
1947 }
1948 }
1949
1950 // Write out a section symbol. Return the update offset.
1951
1952 void
1953 Symbol_table::write_section_symbol(const Output_section *os,
1954 Output_file* of,
1955 off_t offset) const
1956 {
1957 if (parameters->get_size() == 32)
1958 {
1959 if (parameters->is_big_endian())
1960 {
1961 #ifdef HAVE_TARGET_32_BIG
1962 this->sized_write_section_symbol<32, true>(os, of, offset);
1963 #else
1964 gold_unreachable();
1965 #endif
1966 }
1967 else
1968 {
1969 #ifdef HAVE_TARGET_32_LITTLE
1970 this->sized_write_section_symbol<32, false>(os, of, offset);
1971 #else
1972 gold_unreachable();
1973 #endif
1974 }
1975 }
1976 else if (parameters->get_size() == 64)
1977 {
1978 if (parameters->is_big_endian())
1979 {
1980 #ifdef HAVE_TARGET_64_BIG
1981 this->sized_write_section_symbol<64, true>(os, of, offset);
1982 #else
1983 gold_unreachable();
1984 #endif
1985 }
1986 else
1987 {
1988 #ifdef HAVE_TARGET_64_LITTLE
1989 this->sized_write_section_symbol<64, false>(os, of, offset);
1990 #else
1991 gold_unreachable();
1992 #endif
1993 }
1994 }
1995 else
1996 gold_unreachable();
1997 }
1998
1999 // Write out a section symbol, specialized for size and endianness.
2000
2001 template<int size, bool big_endian>
2002 void
2003 Symbol_table::sized_write_section_symbol(const Output_section* os,
2004 Output_file* of,
2005 off_t offset) const
2006 {
2007 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2008
2009 unsigned char* pov = of->get_output_view(offset, sym_size);
2010
2011 elfcpp::Sym_write<size, big_endian> osym(pov);
2012 osym.put_st_name(0);
2013 osym.put_st_value(os->address());
2014 osym.put_st_size(0);
2015 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2016 elfcpp::STT_SECTION));
2017 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2018 osym.put_st_shndx(os->out_shndx());
2019
2020 of->write_output_view(offset, sym_size, pov);
2021 }
2022
2023 // Print statistical information to stderr. This is used for --stats.
2024
2025 void
2026 Symbol_table::print_stats() const
2027 {
2028 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2029 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2030 program_name, this->table_.size(), this->table_.bucket_count());
2031 #else
2032 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2033 program_name, this->table_.size());
2034 #endif
2035 this->namepool_.print_stats("symbol table stringpool");
2036 }
2037
2038 // We check for ODR violations by looking for symbols with the same
2039 // name for which the debugging information reports that they were
2040 // defined in different source locations. When comparing the source
2041 // location, we consider instances with the same base filename and
2042 // line number to be the same. This is because different object
2043 // files/shared libraries can include the same header file using
2044 // different paths, and we don't want to report an ODR violation in
2045 // that case.
2046
2047 // This struct is used to compare line information, as returned by
2048 // Dwarf_line_info::one_addr2line. It implements a < comparison
2049 // operator used with std::set.
2050
2051 struct Odr_violation_compare
2052 {
2053 bool
2054 operator()(const std::string& s1, const std::string& s2) const
2055 {
2056 std::string::size_type pos1 = s1.rfind('/');
2057 std::string::size_type pos2 = s2.rfind('/');
2058 if (pos1 == std::string::npos
2059 || pos2 == std::string::npos)
2060 return s1 < s2;
2061 return s1.compare(pos1, std::string::npos,
2062 s2, pos2, std::string::npos) < 0;
2063 }
2064 };
2065
2066 // Check candidate_odr_violations_ to find symbols with the same name
2067 // but apparently different definitions (different source-file/line-no).
2068
2069 void
2070 Symbol_table::detect_odr_violations(const Task* task,
2071 const char* output_file_name) const
2072 {
2073 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2074 it != candidate_odr_violations_.end();
2075 ++it)
2076 {
2077 const char* symbol_name = it->first;
2078 // We use a sorted set so the output is deterministic.
2079 std::set<std::string, Odr_violation_compare> line_nums;
2080
2081 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2082 locs = it->second.begin();
2083 locs != it->second.end();
2084 ++locs)
2085 {
2086 // We need to lock the object in order to read it. This
2087 // means that we have to run in a singleton Task. If we
2088 // want to run this in a general Task for better
2089 // performance, we will need one Task for object, plus
2090 // appropriate locking to ensure that we don't conflict with
2091 // other uses of the object.
2092 Task_lock_obj<Object> tl(task, locs->object);
2093 std::string lineno = Dwarf_line_info::one_addr2line(
2094 locs->object, locs->shndx, locs->offset);
2095 if (!lineno.empty())
2096 line_nums.insert(lineno);
2097 }
2098
2099 if (line_nums.size() > 1)
2100 {
2101 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2102 "places (possible ODR violation):"),
2103 output_file_name, demangle(symbol_name).c_str());
2104 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2105 it2 != line_nums.end();
2106 ++it2)
2107 fprintf(stderr, " %s\n", it2->c_str());
2108 }
2109 }
2110 }
2111
2112 // Warnings functions.
2113
2114 // Add a new warning.
2115
2116 void
2117 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2118 const std::string& warning)
2119 {
2120 name = symtab->canonicalize_name(name);
2121 this->warnings_[name].set(obj, warning);
2122 }
2123
2124 // Look through the warnings and mark the symbols for which we should
2125 // warn. This is called during Layout::finalize when we know the
2126 // sources for all the symbols.
2127
2128 void
2129 Warnings::note_warnings(Symbol_table* symtab)
2130 {
2131 for (Warning_table::iterator p = this->warnings_.begin();
2132 p != this->warnings_.end();
2133 ++p)
2134 {
2135 Symbol* sym = symtab->lookup(p->first, NULL);
2136 if (sym != NULL
2137 && sym->source() == Symbol::FROM_OBJECT
2138 && sym->object() == p->second.object)
2139 sym->set_has_warning();
2140 }
2141 }
2142
2143 // Issue a warning. This is called when we see a relocation against a
2144 // symbol for which has a warning.
2145
2146 template<int size, bool big_endian>
2147 void
2148 Warnings::issue_warning(const Symbol* sym,
2149 const Relocate_info<size, big_endian>* relinfo,
2150 size_t relnum, off_t reloffset) const
2151 {
2152 gold_assert(sym->has_warning());
2153 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2154 gold_assert(p != this->warnings_.end());
2155 gold_warning_at_location(relinfo, relnum, reloffset,
2156 "%s", p->second.text.c_str());
2157 }
2158
2159 // Instantiate the templates we need. We could use the configure
2160 // script to restrict this to only the ones needed for implemented
2161 // targets.
2162
2163 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2164 template
2165 void
2166 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2167 #endif
2168
2169 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2170 template
2171 void
2172 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2173 #endif
2174
2175 #ifdef HAVE_TARGET_32_LITTLE
2176 template
2177 void
2178 Symbol_table::add_from_relobj<32, false>(
2179 Sized_relobj<32, false>* relobj,
2180 const unsigned char* syms,
2181 size_t count,
2182 const char* sym_names,
2183 size_t sym_name_size,
2184 Sized_relobj<32, true>::Symbols* sympointers);
2185 #endif
2186
2187 #ifdef HAVE_TARGET_32_BIG
2188 template
2189 void
2190 Symbol_table::add_from_relobj<32, true>(
2191 Sized_relobj<32, true>* relobj,
2192 const unsigned char* syms,
2193 size_t count,
2194 const char* sym_names,
2195 size_t sym_name_size,
2196 Sized_relobj<32, false>::Symbols* sympointers);
2197 #endif
2198
2199 #ifdef HAVE_TARGET_64_LITTLE
2200 template
2201 void
2202 Symbol_table::add_from_relobj<64, false>(
2203 Sized_relobj<64, false>* relobj,
2204 const unsigned char* syms,
2205 size_t count,
2206 const char* sym_names,
2207 size_t sym_name_size,
2208 Sized_relobj<64, true>::Symbols* sympointers);
2209 #endif
2210
2211 #ifdef HAVE_TARGET_64_BIG
2212 template
2213 void
2214 Symbol_table::add_from_relobj<64, true>(
2215 Sized_relobj<64, true>* relobj,
2216 const unsigned char* syms,
2217 size_t count,
2218 const char* sym_names,
2219 size_t sym_name_size,
2220 Sized_relobj<64, false>::Symbols* sympointers);
2221 #endif
2222
2223 #ifdef HAVE_TARGET_32_LITTLE
2224 template
2225 void
2226 Symbol_table::add_from_dynobj<32, false>(
2227 Sized_dynobj<32, false>* dynobj,
2228 const unsigned char* syms,
2229 size_t count,
2230 const char* sym_names,
2231 size_t sym_name_size,
2232 const unsigned char* versym,
2233 size_t versym_size,
2234 const std::vector<const char*>* version_map);
2235 #endif
2236
2237 #ifdef HAVE_TARGET_32_BIG
2238 template
2239 void
2240 Symbol_table::add_from_dynobj<32, true>(
2241 Sized_dynobj<32, true>* dynobj,
2242 const unsigned char* syms,
2243 size_t count,
2244 const char* sym_names,
2245 size_t sym_name_size,
2246 const unsigned char* versym,
2247 size_t versym_size,
2248 const std::vector<const char*>* version_map);
2249 #endif
2250
2251 #ifdef HAVE_TARGET_64_LITTLE
2252 template
2253 void
2254 Symbol_table::add_from_dynobj<64, false>(
2255 Sized_dynobj<64, false>* dynobj,
2256 const unsigned char* syms,
2257 size_t count,
2258 const char* sym_names,
2259 size_t sym_name_size,
2260 const unsigned char* versym,
2261 size_t versym_size,
2262 const std::vector<const char*>* version_map);
2263 #endif
2264
2265 #ifdef HAVE_TARGET_64_BIG
2266 template
2267 void
2268 Symbol_table::add_from_dynobj<64, true>(
2269 Sized_dynobj<64, true>* dynobj,
2270 const unsigned char* syms,
2271 size_t count,
2272 const char* sym_names,
2273 size_t sym_name_size,
2274 const unsigned char* versym,
2275 size_t versym_size,
2276 const std::vector<const char*>* version_map);
2277 #endif
2278
2279 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2280 template
2281 void
2282 Symbol_table::define_with_copy_reloc<32>(
2283 const Target* target,
2284 Sized_symbol<32>* sym,
2285 Output_data* posd,
2286 elfcpp::Elf_types<32>::Elf_Addr value);
2287 #endif
2288
2289 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2290 template
2291 void
2292 Symbol_table::define_with_copy_reloc<64>(
2293 const Target* target,
2294 Sized_symbol<64>* sym,
2295 Output_data* posd,
2296 elfcpp::Elf_types<64>::Elf_Addr value);
2297 #endif
2298
2299 #ifdef HAVE_TARGET_32_LITTLE
2300 template
2301 void
2302 Warnings::issue_warning<32, false>(const Symbol* sym,
2303 const Relocate_info<32, false>* relinfo,
2304 size_t relnum, off_t reloffset) const;
2305 #endif
2306
2307 #ifdef HAVE_TARGET_32_BIG
2308 template
2309 void
2310 Warnings::issue_warning<32, true>(const Symbol* sym,
2311 const Relocate_info<32, true>* relinfo,
2312 size_t relnum, off_t reloffset) const;
2313 #endif
2314
2315 #ifdef HAVE_TARGET_64_LITTLE
2316 template
2317 void
2318 Warnings::issue_warning<64, false>(const Symbol* sym,
2319 const Relocate_info<64, false>* relinfo,
2320 size_t relnum, off_t reloffset) const;
2321 #endif
2322
2323 #ifdef HAVE_TARGET_64_BIG
2324 template
2325 void
2326 Warnings::issue_warning<64, true>(const Symbol* sym,
2327 const Relocate_info<64, true>* relinfo,
2328 size_t relnum, off_t reloffset) const;
2329 #endif
2330
2331 } // End namespace gold.