Support -d/--define-common.
[binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82 if (!parameters->options().demangle())
83 return name;
84
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
90
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99 return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
108 {
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
126 {
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
141 {
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
156 {
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
180 {
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
196 {
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
213 {
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
227 {
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239 this->allocate_base_common(od);
240 this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
252
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
255 return false;
256
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters->options().export_dynamic() || parameters->options().shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
263 return true;
264
265 return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (parameters->options().shared() || parameters->options().relocatable())
277 return false;
278
279 // If the symbol is not from an object file, then it is defined, and
280 // known.
281 if (this->source_ != FROM_OBJECT)
282 return true;
283
284 // If the symbol is from a dynamic object, then the final value is
285 // not known.
286 if (this->object()->is_dynamic())
287 return false;
288
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
292 return true;
293
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters->doing_static_link();
299 }
300
301 // Return the output section where this symbol is defined.
302
303 Output_section*
304 Symbol::output_section() const
305 {
306 switch (this->source_)
307 {
308 case FROM_OBJECT:
309 {
310 unsigned int shndx = this->u_.from_object.shndx;
311 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
312 {
313 gold_assert(!this->u_.from_object.object->is_dynamic());
314 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
315 section_offset_type dummy;
316 return relobj->output_section(shndx, &dummy);
317 }
318 return NULL;
319 }
320
321 case IN_OUTPUT_DATA:
322 return this->u_.in_output_data.output_data->output_section();
323
324 case IN_OUTPUT_SEGMENT:
325 case CONSTANT:
326 return NULL;
327
328 default:
329 gold_unreachable();
330 }
331 }
332
333 // Set the symbol's output section. This is used for symbols defined
334 // in scripts. This should only be called after the symbol table has
335 // been finalized.
336
337 void
338 Symbol::set_output_section(Output_section* os)
339 {
340 switch (this->source_)
341 {
342 case FROM_OBJECT:
343 case IN_OUTPUT_DATA:
344 gold_assert(this->output_section() == os);
345 break;
346 case CONSTANT:
347 this->source_ = IN_OUTPUT_DATA;
348 this->u_.in_output_data.output_data = os;
349 this->u_.in_output_data.offset_is_from_end = false;
350 break;
351 case IN_OUTPUT_SEGMENT:
352 default:
353 gold_unreachable();
354 }
355 }
356
357 // Class Symbol_table.
358
359 Symbol_table::Symbol_table(unsigned int count,
360 const Version_script_info& version_script)
361 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
362 forwarders_(), commons_(), forced_locals_(), warnings_(),
363 version_script_(version_script)
364 {
365 namepool_.reserve(count);
366 }
367
368 Symbol_table::~Symbol_table()
369 {
370 }
371
372 // The hash function. The key values are Stringpool keys.
373
374 inline size_t
375 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
376 {
377 return key.first ^ key.second;
378 }
379
380 // The symbol table key equality function. This is called with
381 // Stringpool keys.
382
383 inline bool
384 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
385 const Symbol_table_key& k2) const
386 {
387 return k1.first == k2.first && k1.second == k2.second;
388 }
389
390 // Make TO a symbol which forwards to FROM.
391
392 void
393 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
394 {
395 gold_assert(from != to);
396 gold_assert(!from->is_forwarder() && !to->is_forwarder());
397 this->forwarders_[from] = to;
398 from->set_forwarder();
399 }
400
401 // Resolve the forwards from FROM, returning the real symbol.
402
403 Symbol*
404 Symbol_table::resolve_forwards(const Symbol* from) const
405 {
406 gold_assert(from->is_forwarder());
407 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
408 this->forwarders_.find(from);
409 gold_assert(p != this->forwarders_.end());
410 return p->second;
411 }
412
413 // Look up a symbol by name.
414
415 Symbol*
416 Symbol_table::lookup(const char* name, const char* version) const
417 {
418 Stringpool::Key name_key;
419 name = this->namepool_.find(name, &name_key);
420 if (name == NULL)
421 return NULL;
422
423 Stringpool::Key version_key = 0;
424 if (version != NULL)
425 {
426 version = this->namepool_.find(version, &version_key);
427 if (version == NULL)
428 return NULL;
429 }
430
431 Symbol_table_key key(name_key, version_key);
432 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
433 if (p == this->table_.end())
434 return NULL;
435 return p->second;
436 }
437
438 // Resolve a Symbol with another Symbol. This is only used in the
439 // unusual case where there are references to both an unversioned
440 // symbol and a symbol with a version, and we then discover that that
441 // version is the default version. Because this is unusual, we do
442 // this the slow way, by converting back to an ELF symbol.
443
444 template<int size, bool big_endian>
445 void
446 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
447 const char* version ACCEPT_SIZE_ENDIAN)
448 {
449 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
450 elfcpp::Sym_write<size, big_endian> esym(buf);
451 // We don't bother to set the st_name field.
452 esym.put_st_value(from->value());
453 esym.put_st_size(from->symsize());
454 esym.put_st_info(from->binding(), from->type());
455 esym.put_st_other(from->visibility(), from->nonvis());
456 esym.put_st_shndx(from->shndx());
457 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
458 if (from->in_reg())
459 to->set_in_reg();
460 if (from->in_dyn())
461 to->set_in_dyn();
462 }
463
464 // Record that a symbol is forced to be local by a version script.
465
466 void
467 Symbol_table::force_local(Symbol* sym)
468 {
469 if (!sym->is_defined() && !sym->is_common())
470 return;
471 if (sym->is_forced_local())
472 {
473 // We already got this one.
474 return;
475 }
476 sym->set_is_forced_local();
477 this->forced_locals_.push_back(sym);
478 }
479
480 // Add one symbol from OBJECT to the symbol table. NAME is symbol
481 // name and VERSION is the version; both are canonicalized. DEF is
482 // whether this is the default version.
483
484 // If DEF is true, then this is the definition of a default version of
485 // a symbol. That means that any lookup of NAME/NULL and any lookup
486 // of NAME/VERSION should always return the same symbol. This is
487 // obvious for references, but in particular we want to do this for
488 // definitions: overriding NAME/NULL should also override
489 // NAME/VERSION. If we don't do that, it would be very hard to
490 // override functions in a shared library which uses versioning.
491
492 // We implement this by simply making both entries in the hash table
493 // point to the same Symbol structure. That is easy enough if this is
494 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
495 // that we have seen both already, in which case they will both have
496 // independent entries in the symbol table. We can't simply change
497 // the symbol table entry, because we have pointers to the entries
498 // attached to the object files. So we mark the entry attached to the
499 // object file as a forwarder, and record it in the forwarders_ map.
500 // Note that entries in the hash table will never be marked as
501 // forwarders.
502 //
503 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
504 // symbol exactly as it existed in the input file. SYM is usually
505 // that as well, but can be modified, for instance if we determine
506 // it's in a to-be-discarded section.
507
508 template<int size, bool big_endian>
509 Sized_symbol<size>*
510 Symbol_table::add_from_object(Object* object,
511 const char *name,
512 Stringpool::Key name_key,
513 const char *version,
514 Stringpool::Key version_key,
515 bool def,
516 const elfcpp::Sym<size, big_endian>& sym,
517 const elfcpp::Sym<size, big_endian>& orig_sym)
518 {
519 Symbol* const snull = NULL;
520 std::pair<typename Symbol_table_type::iterator, bool> ins =
521 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
522 snull));
523
524 std::pair<typename Symbol_table_type::iterator, bool> insdef =
525 std::make_pair(this->table_.end(), false);
526 if (def)
527 {
528 const Stringpool::Key vnull_key = 0;
529 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
530 vnull_key),
531 snull));
532 }
533
534 // ins.first: an iterator, which is a pointer to a pair.
535 // ins.first->first: the key (a pair of name and version).
536 // ins.first->second: the value (Symbol*).
537 // ins.second: true if new entry was inserted, false if not.
538
539 Sized_symbol<size>* ret;
540 bool was_undefined;
541 bool was_common;
542 if (!ins.second)
543 {
544 // We already have an entry for NAME/VERSION.
545 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
546 SELECT_SIZE(size));
547 gold_assert(ret != NULL);
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
552 this->resolve(ret, sym, orig_sym, object, version);
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
564 {
565 // This is the unfortunate case where we already have
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
574 const Sized_symbol<size>* sym2;
575 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
576 insdef.first->second
577 SELECT_SIZE(size));
578 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
579 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
580 this->make_forwarder(insdef.first->second, ret);
581 insdef.first->second = ret;
582 }
583 }
584 }
585 else
586 {
587 // This is the first time we have seen NAME/VERSION.
588 gold_assert(ins.first->second == NULL);
589
590 was_undefined = false;
591 was_common = false;
592
593 if (def && !insdef.second)
594 {
595 // We already have an entry for NAME/NULL. If we override
596 // it, then change it to NAME/VERSION.
597 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
598 insdef.first->second
599 SELECT_SIZE(size));
600 this->resolve(ret, sym, orig_sym, object, version);
601 ins.first->second = ret;
602 }
603 else
604 {
605 Sized_target<size, big_endian>* target =
606 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
607 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
608 if (!target->has_make_symbol())
609 ret = new Sized_symbol<size>();
610 else
611 {
612 ret = target->make_symbol();
613 if (ret == NULL)
614 {
615 // This means that we don't want a symbol table
616 // entry after all.
617 if (!def)
618 this->table_.erase(ins.first);
619 else
620 {
621 this->table_.erase(insdef.first);
622 // Inserting insdef invalidated ins.
623 this->table_.erase(std::make_pair(name_key,
624 version_key));
625 }
626 return NULL;
627 }
628 }
629
630 ret->init(name, version, object, sym);
631
632 ins.first->second = ret;
633 if (def)
634 {
635 // This is the first time we have seen NAME/NULL. Point
636 // it at the new entry for NAME/VERSION.
637 gold_assert(insdef.second);
638 insdef.first->second = ret;
639 }
640 }
641 }
642
643 // Record every time we see a new undefined symbol, to speed up
644 // archive groups.
645 if (!was_undefined && ret->is_undefined())
646 ++this->saw_undefined_;
647
648 // Keep track of common symbols, to speed up common symbol
649 // allocation.
650 if (!was_common && ret->is_common())
651 this->commons_.push_back(ret);
652
653 ret->set_is_default(def);
654 return ret;
655 }
656
657 // Add all the symbols in a relocatable object to the hash table.
658
659 template<int size, bool big_endian>
660 void
661 Symbol_table::add_from_relobj(
662 Sized_relobj<size, big_endian>* relobj,
663 const unsigned char* syms,
664 size_t count,
665 const char* sym_names,
666 size_t sym_name_size,
667 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
668 {
669 gold_assert(size == relobj->target()->get_size());
670 gold_assert(size == parameters->target().get_size());
671
672 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
673
674 const bool just_symbols = relobj->just_symbols();
675
676 const unsigned char* p = syms;
677 for (size_t i = 0; i < count; ++i, p += sym_size)
678 {
679 elfcpp::Sym<size, big_endian> sym(p);
680 elfcpp::Sym<size, big_endian>* psym = &sym;
681
682 unsigned int st_name = psym->get_st_name();
683 if (st_name >= sym_name_size)
684 {
685 relobj->error(_("bad global symbol name offset %u at %zu"),
686 st_name, i);
687 continue;
688 }
689
690 const char* name = sym_names + st_name;
691
692 // A symbol defined in a section which we are not including must
693 // be treated as an undefined symbol.
694 unsigned char symbuf[sym_size];
695 elfcpp::Sym<size, big_endian> sym2(symbuf);
696 unsigned int st_shndx = psym->get_st_shndx();
697 if (st_shndx != elfcpp::SHN_UNDEF
698 && st_shndx < elfcpp::SHN_LORESERVE
699 && !relobj->is_section_included(st_shndx))
700 {
701 memcpy(symbuf, p, sym_size);
702 elfcpp::Sym_write<size, big_endian> sw(symbuf);
703 sw.put_st_shndx(elfcpp::SHN_UNDEF);
704 psym = &sym2;
705 }
706
707 // In an object file, an '@' in the name separates the symbol
708 // name from the version name. If there are two '@' characters,
709 // this is the default version.
710 const char* ver = strchr(name, '@');
711 int namelen = 0;
712 // DEF: is the version default? LOCAL: is the symbol forced local?
713 bool def = false;
714 bool local = false;
715
716 if (ver != NULL)
717 {
718 // The symbol name is of the form foo@VERSION or foo@@VERSION
719 namelen = ver - name;
720 ++ver;
721 if (*ver == '@')
722 {
723 def = true;
724 ++ver;
725 }
726 }
727 else if (!version_script_.empty())
728 {
729 // The symbol name did not have a version, but
730 // the version script may assign a version anyway.
731 namelen = strlen(name);
732 def = true;
733 // Check the global: entries from the version script.
734 const std::string& version =
735 version_script_.get_symbol_version(name);
736 if (!version.empty())
737 ver = version.c_str();
738 // Check the local: entries from the version script
739 if (version_script_.symbol_is_local(name))
740 local = true;
741 }
742
743 if (just_symbols)
744 {
745 if (psym != &sym2)
746 memcpy(symbuf, p, sym_size);
747 elfcpp::Sym_write<size, big_endian> sw(symbuf);
748 sw.put_st_shndx(elfcpp::SHN_ABS);
749 if (st_shndx != elfcpp::SHN_UNDEF
750 && st_shndx < elfcpp::SHN_LORESERVE)
751 {
752 // Symbol values in object files are section relative.
753 // This is normally what we want, but since here we are
754 // converting the symbol to absolute we need to add the
755 // section address. The section address in an object
756 // file is normally zero, but people can use a linker
757 // script to change it.
758 sw.put_st_value(sym2.get_st_value()
759 + relobj->section_address(st_shndx));
760 }
761 psym = &sym2;
762 }
763
764 Sized_symbol<size>* res;
765 if (ver == NULL)
766 {
767 Stringpool::Key name_key;
768 name = this->namepool_.add(name, true, &name_key);
769 res = this->add_from_object(relobj, name, name_key, NULL, 0,
770 false, *psym, sym);
771 if (local)
772 this->force_local(res);
773 }
774 else
775 {
776 Stringpool::Key name_key;
777 name = this->namepool_.add_with_length(name, namelen, true,
778 &name_key);
779 Stringpool::Key ver_key;
780 ver = this->namepool_.add(ver, true, &ver_key);
781
782 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
783 def, *psym, sym);
784 }
785
786 (*sympointers)[i] = res;
787 }
788 }
789
790 // Add all the symbols in a dynamic object to the hash table.
791
792 template<int size, bool big_endian>
793 void
794 Symbol_table::add_from_dynobj(
795 Sized_dynobj<size, big_endian>* dynobj,
796 const unsigned char* syms,
797 size_t count,
798 const char* sym_names,
799 size_t sym_name_size,
800 const unsigned char* versym,
801 size_t versym_size,
802 const std::vector<const char*>* version_map)
803 {
804 gold_assert(size == dynobj->target()->get_size());
805 gold_assert(size == parameters->target().get_size());
806
807 if (dynobj->just_symbols())
808 {
809 gold_error(_("--just-symbols does not make sense with a shared object"));
810 return;
811 }
812
813 if (versym != NULL && versym_size / 2 < count)
814 {
815 dynobj->error(_("too few symbol versions"));
816 return;
817 }
818
819 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
820
821 // We keep a list of all STT_OBJECT symbols, so that we can resolve
822 // weak aliases. This is necessary because if the dynamic object
823 // provides the same variable under two names, one of which is a
824 // weak definition, and the regular object refers to the weak
825 // definition, we have to put both the weak definition and the
826 // strong definition into the dynamic symbol table. Given a weak
827 // definition, the only way that we can find the corresponding
828 // strong definition, if any, is to search the symbol table.
829 std::vector<Sized_symbol<size>*> object_symbols;
830
831 const unsigned char* p = syms;
832 const unsigned char* vs = versym;
833 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
834 {
835 elfcpp::Sym<size, big_endian> sym(p);
836
837 // Ignore symbols with local binding or that have
838 // internal or hidden visibility.
839 if (sym.get_st_bind() == elfcpp::STB_LOCAL
840 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
841 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
842 continue;
843
844 unsigned int st_name = sym.get_st_name();
845 if (st_name >= sym_name_size)
846 {
847 dynobj->error(_("bad symbol name offset %u at %zu"),
848 st_name, i);
849 continue;
850 }
851
852 const char* name = sym_names + st_name;
853
854 Sized_symbol<size>* res;
855
856 if (versym == NULL)
857 {
858 Stringpool::Key name_key;
859 name = this->namepool_.add(name, true, &name_key);
860 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
861 false, sym, sym);
862 }
863 else
864 {
865 // Read the version information.
866
867 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
868
869 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
870 v &= elfcpp::VERSYM_VERSION;
871
872 // The Sun documentation says that V can be VER_NDX_LOCAL,
873 // or VER_NDX_GLOBAL, or a version index. The meaning of
874 // VER_NDX_LOCAL is defined as "Symbol has local scope."
875 // The old GNU linker will happily generate VER_NDX_LOCAL
876 // for an undefined symbol. I don't know what the Sun
877 // linker will generate.
878
879 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
880 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
881 {
882 // This symbol should not be visible outside the object.
883 continue;
884 }
885
886 // At this point we are definitely going to add this symbol.
887 Stringpool::Key name_key;
888 name = this->namepool_.add(name, true, &name_key);
889
890 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
891 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
892 {
893 // This symbol does not have a version.
894 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
895 false, sym, sym);
896 }
897 else
898 {
899 if (v >= version_map->size())
900 {
901 dynobj->error(_("versym for symbol %zu out of range: %u"),
902 i, v);
903 continue;
904 }
905
906 const char* version = (*version_map)[v];
907 if (version == NULL)
908 {
909 dynobj->error(_("versym for symbol %zu has no name: %u"),
910 i, v);
911 continue;
912 }
913
914 Stringpool::Key version_key;
915 version = this->namepool_.add(version, true, &version_key);
916
917 // If this is an absolute symbol, and the version name
918 // and symbol name are the same, then this is the
919 // version definition symbol. These symbols exist to
920 // support using -u to pull in particular versions. We
921 // do not want to record a version for them.
922 if (sym.get_st_shndx() == elfcpp::SHN_ABS
923 && name_key == version_key)
924 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
925 false, sym, sym);
926 else
927 {
928 const bool def = (!hidden
929 && (sym.get_st_shndx()
930 != elfcpp::SHN_UNDEF));
931 res = this->add_from_object(dynobj, name, name_key, version,
932 version_key, def, sym, sym);
933 }
934 }
935 }
936
937 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
938 && sym.get_st_type() == elfcpp::STT_OBJECT)
939 object_symbols.push_back(res);
940 }
941
942 this->record_weak_aliases(&object_symbols);
943 }
944
945 // This is used to sort weak aliases. We sort them first by section
946 // index, then by offset, then by weak ahead of strong.
947
948 template<int size>
949 class Weak_alias_sorter
950 {
951 public:
952 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
953 };
954
955 template<int size>
956 bool
957 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
958 const Sized_symbol<size>* s2) const
959 {
960 if (s1->shndx() != s2->shndx())
961 return s1->shndx() < s2->shndx();
962 if (s1->value() != s2->value())
963 return s1->value() < s2->value();
964 if (s1->binding() != s2->binding())
965 {
966 if (s1->binding() == elfcpp::STB_WEAK)
967 return true;
968 if (s2->binding() == elfcpp::STB_WEAK)
969 return false;
970 }
971 return std::string(s1->name()) < std::string(s2->name());
972 }
973
974 // SYMBOLS is a list of object symbols from a dynamic object. Look
975 // for any weak aliases, and record them so that if we add the weak
976 // alias to the dynamic symbol table, we also add the corresponding
977 // strong symbol.
978
979 template<int size>
980 void
981 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
982 {
983 // Sort the vector by section index, then by offset, then by weak
984 // ahead of strong.
985 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
986
987 // Walk through the vector. For each weak definition, record
988 // aliases.
989 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
990 symbols->begin();
991 p != symbols->end();
992 ++p)
993 {
994 if ((*p)->binding() != elfcpp::STB_WEAK)
995 continue;
996
997 // Build a circular list of weak aliases. Each symbol points to
998 // the next one in the circular list.
999
1000 Sized_symbol<size>* from_sym = *p;
1001 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1002 for (q = p + 1; q != symbols->end(); ++q)
1003 {
1004 if ((*q)->shndx() != from_sym->shndx()
1005 || (*q)->value() != from_sym->value())
1006 break;
1007
1008 this->weak_aliases_[from_sym] = *q;
1009 from_sym->set_has_alias();
1010 from_sym = *q;
1011 }
1012
1013 if (from_sym != *p)
1014 {
1015 this->weak_aliases_[from_sym] = *p;
1016 from_sym->set_has_alias();
1017 }
1018
1019 p = q - 1;
1020 }
1021 }
1022
1023 // Create and return a specially defined symbol. If ONLY_IF_REF is
1024 // true, then only create the symbol if there is a reference to it.
1025 // If this does not return NULL, it sets *POLDSYM to the existing
1026 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1027
1028 template<int size, bool big_endian>
1029 Sized_symbol<size>*
1030 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1031 bool only_if_ref,
1032 Sized_symbol<size>** poldsym
1033 ACCEPT_SIZE_ENDIAN)
1034 {
1035 Symbol* oldsym;
1036 Sized_symbol<size>* sym;
1037 bool add_to_table = false;
1038 typename Symbol_table_type::iterator add_loc = this->table_.end();
1039
1040 // If the caller didn't give us a version, see if we get one from
1041 // the version script.
1042 if (*pversion == NULL)
1043 {
1044 const std::string& v(this->version_script_.get_symbol_version(*pname));
1045 if (!v.empty())
1046 *pversion = v.c_str();
1047 }
1048
1049 if (only_if_ref)
1050 {
1051 oldsym = this->lookup(*pname, *pversion);
1052 if (oldsym == NULL || !oldsym->is_undefined())
1053 return NULL;
1054
1055 *pname = oldsym->name();
1056 *pversion = oldsym->version();
1057 }
1058 else
1059 {
1060 // Canonicalize NAME and VERSION.
1061 Stringpool::Key name_key;
1062 *pname = this->namepool_.add(*pname, true, &name_key);
1063
1064 Stringpool::Key version_key = 0;
1065 if (*pversion != NULL)
1066 *pversion = this->namepool_.add(*pversion, true, &version_key);
1067
1068 Symbol* const snull = NULL;
1069 std::pair<typename Symbol_table_type::iterator, bool> ins =
1070 this->table_.insert(std::make_pair(std::make_pair(name_key,
1071 version_key),
1072 snull));
1073
1074 if (!ins.second)
1075 {
1076 // We already have a symbol table entry for NAME/VERSION.
1077 oldsym = ins.first->second;
1078 gold_assert(oldsym != NULL);
1079 }
1080 else
1081 {
1082 // We haven't seen this symbol before.
1083 gold_assert(ins.first->second == NULL);
1084 add_to_table = true;
1085 add_loc = ins.first;
1086 oldsym = NULL;
1087 }
1088 }
1089
1090 const Target& target = parameters->target();
1091 if (!target.has_make_symbol())
1092 sym = new Sized_symbol<size>();
1093 else
1094 {
1095 gold_assert(target.get_size() == size);
1096 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1097 typedef Sized_target<size, big_endian> My_target;
1098 const My_target* sized_target =
1099 static_cast<const My_target*>(&target);
1100 sym = sized_target->make_symbol();
1101 if (sym == NULL)
1102 return NULL;
1103 }
1104
1105 if (add_to_table)
1106 add_loc->second = sym;
1107 else
1108 gold_assert(oldsym != NULL);
1109
1110 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
1111 SELECT_SIZE(size));
1112
1113 return sym;
1114 }
1115
1116 // Define a symbol based on an Output_data.
1117
1118 Symbol*
1119 Symbol_table::define_in_output_data(const char* name,
1120 const char* version,
1121 Output_data* od,
1122 uint64_t value,
1123 uint64_t symsize,
1124 elfcpp::STT type,
1125 elfcpp::STB binding,
1126 elfcpp::STV visibility,
1127 unsigned char nonvis,
1128 bool offset_is_from_end,
1129 bool only_if_ref)
1130 {
1131 if (parameters->target().get_size() == 32)
1132 {
1133 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1134 return this->do_define_in_output_data<32>(name, version, od,
1135 value, symsize, type, binding,
1136 visibility, nonvis,
1137 offset_is_from_end,
1138 only_if_ref);
1139 #else
1140 gold_unreachable();
1141 #endif
1142 }
1143 else if (parameters->target().get_size() == 64)
1144 {
1145 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1146 return this->do_define_in_output_data<64>(name, version, od,
1147 value, symsize, type, binding,
1148 visibility, nonvis,
1149 offset_is_from_end,
1150 only_if_ref);
1151 #else
1152 gold_unreachable();
1153 #endif
1154 }
1155 else
1156 gold_unreachable();
1157 }
1158
1159 // Define a symbol in an Output_data, sized version.
1160
1161 template<int size>
1162 Sized_symbol<size>*
1163 Symbol_table::do_define_in_output_data(
1164 const char* name,
1165 const char* version,
1166 Output_data* od,
1167 typename elfcpp::Elf_types<size>::Elf_Addr value,
1168 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1169 elfcpp::STT type,
1170 elfcpp::STB binding,
1171 elfcpp::STV visibility,
1172 unsigned char nonvis,
1173 bool offset_is_from_end,
1174 bool only_if_ref)
1175 {
1176 Sized_symbol<size>* sym;
1177 Sized_symbol<size>* oldsym;
1178
1179 if (parameters->target().is_big_endian())
1180 {
1181 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1182 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1183 &name, &version, only_if_ref, &oldsym
1184 SELECT_SIZE_ENDIAN(size, true));
1185 #else
1186 gold_unreachable();
1187 #endif
1188 }
1189 else
1190 {
1191 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1192 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1193 &name, &version, only_if_ref, &oldsym
1194 SELECT_SIZE_ENDIAN(size, false));
1195 #else
1196 gold_unreachable();
1197 #endif
1198 }
1199
1200 if (sym == NULL)
1201 return NULL;
1202
1203 gold_assert(version == NULL || oldsym != NULL);
1204 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1205 offset_is_from_end);
1206
1207 if (oldsym == NULL)
1208 {
1209 if (binding == elfcpp::STB_LOCAL
1210 || this->version_script_.symbol_is_local(name))
1211 this->force_local(sym);
1212 return sym;
1213 }
1214
1215 if (Symbol_table::should_override_with_special(oldsym))
1216 this->override_with_special(oldsym, sym);
1217 delete sym;
1218 return oldsym;
1219 }
1220
1221 // Define a symbol based on an Output_segment.
1222
1223 Symbol*
1224 Symbol_table::define_in_output_segment(const char* name,
1225 const char* version, Output_segment* os,
1226 uint64_t value,
1227 uint64_t symsize,
1228 elfcpp::STT type,
1229 elfcpp::STB binding,
1230 elfcpp::STV visibility,
1231 unsigned char nonvis,
1232 Symbol::Segment_offset_base offset_base,
1233 bool only_if_ref)
1234 {
1235 if (parameters->target().get_size() == 32)
1236 {
1237 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1238 return this->do_define_in_output_segment<32>(name, version, os,
1239 value, symsize, type,
1240 binding, visibility, nonvis,
1241 offset_base, only_if_ref);
1242 #else
1243 gold_unreachable();
1244 #endif
1245 }
1246 else if (parameters->target().get_size() == 64)
1247 {
1248 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1249 return this->do_define_in_output_segment<64>(name, version, os,
1250 value, symsize, type,
1251 binding, visibility, nonvis,
1252 offset_base, only_if_ref);
1253 #else
1254 gold_unreachable();
1255 #endif
1256 }
1257 else
1258 gold_unreachable();
1259 }
1260
1261 // Define a symbol in an Output_segment, sized version.
1262
1263 template<int size>
1264 Sized_symbol<size>*
1265 Symbol_table::do_define_in_output_segment(
1266 const char* name,
1267 const char* version,
1268 Output_segment* os,
1269 typename elfcpp::Elf_types<size>::Elf_Addr value,
1270 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1271 elfcpp::STT type,
1272 elfcpp::STB binding,
1273 elfcpp::STV visibility,
1274 unsigned char nonvis,
1275 Symbol::Segment_offset_base offset_base,
1276 bool only_if_ref)
1277 {
1278 Sized_symbol<size>* sym;
1279 Sized_symbol<size>* oldsym;
1280
1281 if (parameters->target().is_big_endian())
1282 {
1283 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1284 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1285 &name, &version, only_if_ref, &oldsym
1286 SELECT_SIZE_ENDIAN(size, true));
1287 #else
1288 gold_unreachable();
1289 #endif
1290 }
1291 else
1292 {
1293 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1294 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1295 &name, &version, only_if_ref, &oldsym
1296 SELECT_SIZE_ENDIAN(size, false));
1297 #else
1298 gold_unreachable();
1299 #endif
1300 }
1301
1302 if (sym == NULL)
1303 return NULL;
1304
1305 gold_assert(version == NULL || oldsym != NULL);
1306 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1307 offset_base);
1308
1309 if (oldsym == NULL)
1310 {
1311 if (binding == elfcpp::STB_LOCAL
1312 || this->version_script_.symbol_is_local(name))
1313 this->force_local(sym);
1314 return sym;
1315 }
1316
1317 if (Symbol_table::should_override_with_special(oldsym))
1318 this->override_with_special(oldsym, sym);
1319 delete sym;
1320 return oldsym;
1321 }
1322
1323 // Define a special symbol with a constant value. It is a multiple
1324 // definition error if this symbol is already defined.
1325
1326 Symbol*
1327 Symbol_table::define_as_constant(const char* name,
1328 const char* version,
1329 uint64_t value,
1330 uint64_t symsize,
1331 elfcpp::STT type,
1332 elfcpp::STB binding,
1333 elfcpp::STV visibility,
1334 unsigned char nonvis,
1335 bool only_if_ref,
1336 bool force_override)
1337 {
1338 if (parameters->target().get_size() == 32)
1339 {
1340 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1341 return this->do_define_as_constant<32>(name, version, value,
1342 symsize, type, binding,
1343 visibility, nonvis, only_if_ref,
1344 force_override);
1345 #else
1346 gold_unreachable();
1347 #endif
1348 }
1349 else if (parameters->target().get_size() == 64)
1350 {
1351 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1352 return this->do_define_as_constant<64>(name, version, value,
1353 symsize, type, binding,
1354 visibility, nonvis, only_if_ref,
1355 force_override);
1356 #else
1357 gold_unreachable();
1358 #endif
1359 }
1360 else
1361 gold_unreachable();
1362 }
1363
1364 // Define a symbol as a constant, sized version.
1365
1366 template<int size>
1367 Sized_symbol<size>*
1368 Symbol_table::do_define_as_constant(
1369 const char* name,
1370 const char* version,
1371 typename elfcpp::Elf_types<size>::Elf_Addr value,
1372 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1373 elfcpp::STT type,
1374 elfcpp::STB binding,
1375 elfcpp::STV visibility,
1376 unsigned char nonvis,
1377 bool only_if_ref,
1378 bool force_override)
1379 {
1380 Sized_symbol<size>* sym;
1381 Sized_symbol<size>* oldsym;
1382
1383 if (parameters->target().is_big_endian())
1384 {
1385 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1386 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1387 &name, &version, only_if_ref, &oldsym
1388 SELECT_SIZE_ENDIAN(size, true));
1389 #else
1390 gold_unreachable();
1391 #endif
1392 }
1393 else
1394 {
1395 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1396 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1397 &name, &version, only_if_ref, &oldsym
1398 SELECT_SIZE_ENDIAN(size, false));
1399 #else
1400 gold_unreachable();
1401 #endif
1402 }
1403
1404 if (sym == NULL)
1405 return NULL;
1406
1407 gold_assert(version == NULL || version == name || oldsym != NULL);
1408 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1409
1410 if (oldsym == NULL)
1411 {
1412 if (binding == elfcpp::STB_LOCAL
1413 || this->version_script_.symbol_is_local(name))
1414 this->force_local(sym);
1415 return sym;
1416 }
1417
1418 if (force_override || Symbol_table::should_override_with_special(oldsym))
1419 this->override_with_special(oldsym, sym);
1420 delete sym;
1421 return oldsym;
1422 }
1423
1424 // Define a set of symbols in output sections.
1425
1426 void
1427 Symbol_table::define_symbols(const Layout* layout, int count,
1428 const Define_symbol_in_section* p,
1429 bool only_if_ref)
1430 {
1431 for (int i = 0; i < count; ++i, ++p)
1432 {
1433 Output_section* os = layout->find_output_section(p->output_section);
1434 if (os != NULL)
1435 this->define_in_output_data(p->name, NULL, os, p->value,
1436 p->size, p->type, p->binding,
1437 p->visibility, p->nonvis,
1438 p->offset_is_from_end,
1439 only_if_ref || p->only_if_ref);
1440 else
1441 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1442 p->binding, p->visibility, p->nonvis,
1443 only_if_ref || p->only_if_ref,
1444 false);
1445 }
1446 }
1447
1448 // Define a set of symbols in output segments.
1449
1450 void
1451 Symbol_table::define_symbols(const Layout* layout, int count,
1452 const Define_symbol_in_segment* p,
1453 bool only_if_ref)
1454 {
1455 for (int i = 0; i < count; ++i, ++p)
1456 {
1457 Output_segment* os = layout->find_output_segment(p->segment_type,
1458 p->segment_flags_set,
1459 p->segment_flags_clear);
1460 if (os != NULL)
1461 this->define_in_output_segment(p->name, NULL, os, p->value,
1462 p->size, p->type, p->binding,
1463 p->visibility, p->nonvis,
1464 p->offset_base,
1465 only_if_ref || p->only_if_ref);
1466 else
1467 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1468 p->binding, p->visibility, p->nonvis,
1469 only_if_ref || p->only_if_ref,
1470 false);
1471 }
1472 }
1473
1474 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1475 // symbol should be defined--typically a .dyn.bss section. VALUE is
1476 // the offset within POSD.
1477
1478 template<int size>
1479 void
1480 Symbol_table::define_with_copy_reloc(
1481 Sized_symbol<size>* csym,
1482 Output_data* posd,
1483 typename elfcpp::Elf_types<size>::Elf_Addr value)
1484 {
1485 gold_assert(csym->is_from_dynobj());
1486 gold_assert(!csym->is_copied_from_dynobj());
1487 Object* object = csym->object();
1488 gold_assert(object->is_dynamic());
1489 Dynobj* dynobj = static_cast<Dynobj*>(object);
1490
1491 // Our copied variable has to override any variable in a shared
1492 // library.
1493 elfcpp::STB binding = csym->binding();
1494 if (binding == elfcpp::STB_WEAK)
1495 binding = elfcpp::STB_GLOBAL;
1496
1497 this->define_in_output_data(csym->name(), csym->version(),
1498 posd, value, csym->symsize(),
1499 csym->type(), binding,
1500 csym->visibility(), csym->nonvis(),
1501 false, false);
1502
1503 csym->set_is_copied_from_dynobj();
1504 csym->set_needs_dynsym_entry();
1505
1506 this->copied_symbol_dynobjs_[csym] = dynobj;
1507
1508 // We have now defined all aliases, but we have not entered them all
1509 // in the copied_symbol_dynobjs_ map.
1510 if (csym->has_alias())
1511 {
1512 Symbol* sym = csym;
1513 while (true)
1514 {
1515 sym = this->weak_aliases_[sym];
1516 if (sym == csym)
1517 break;
1518 gold_assert(sym->output_data() == posd);
1519
1520 sym->set_is_copied_from_dynobj();
1521 this->copied_symbol_dynobjs_[sym] = dynobj;
1522 }
1523 }
1524 }
1525
1526 // SYM is defined using a COPY reloc. Return the dynamic object where
1527 // the original definition was found.
1528
1529 Dynobj*
1530 Symbol_table::get_copy_source(const Symbol* sym) const
1531 {
1532 gold_assert(sym->is_copied_from_dynobj());
1533 Copied_symbol_dynobjs::const_iterator p =
1534 this->copied_symbol_dynobjs_.find(sym);
1535 gold_assert(p != this->copied_symbol_dynobjs_.end());
1536 return p->second;
1537 }
1538
1539 // Set the dynamic symbol indexes. INDEX is the index of the first
1540 // global dynamic symbol. Pointers to the symbols are stored into the
1541 // vector SYMS. The names are added to DYNPOOL. This returns an
1542 // updated dynamic symbol index.
1543
1544 unsigned int
1545 Symbol_table::set_dynsym_indexes(unsigned int index,
1546 std::vector<Symbol*>* syms,
1547 Stringpool* dynpool,
1548 Versions* versions)
1549 {
1550 for (Symbol_table_type::iterator p = this->table_.begin();
1551 p != this->table_.end();
1552 ++p)
1553 {
1554 Symbol* sym = p->second;
1555
1556 // Note that SYM may already have a dynamic symbol index, since
1557 // some symbols appear more than once in the symbol table, with
1558 // and without a version.
1559
1560 if (!sym->should_add_dynsym_entry())
1561 sym->set_dynsym_index(-1U);
1562 else if (!sym->has_dynsym_index())
1563 {
1564 sym->set_dynsym_index(index);
1565 ++index;
1566 syms->push_back(sym);
1567 dynpool->add(sym->name(), false, NULL);
1568
1569 // Record any version information.
1570 if (sym->version() != NULL)
1571 versions->record_version(this, dynpool, sym);
1572 }
1573 }
1574
1575 // Finish up the versions. In some cases this may add new dynamic
1576 // symbols.
1577 index = versions->finalize(this, index, syms);
1578
1579 return index;
1580 }
1581
1582 // Set the final values for all the symbols. The index of the first
1583 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1584 // file offset OFF. Add their names to POOL. Return the new file
1585 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1586
1587 off_t
1588 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1589 size_t dyncount, Stringpool* pool,
1590 unsigned int *plocal_symcount)
1591 {
1592 off_t ret;
1593
1594 gold_assert(*plocal_symcount != 0);
1595 this->first_global_index_ = *plocal_symcount;
1596
1597 this->dynamic_offset_ = dynoff;
1598 this->first_dynamic_global_index_ = dyn_global_index;
1599 this->dynamic_count_ = dyncount;
1600
1601 if (parameters->target().get_size() == 32)
1602 {
1603 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1604 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1605 #else
1606 gold_unreachable();
1607 #endif
1608 }
1609 else if (parameters->target().get_size() == 64)
1610 {
1611 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1612 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1613 #else
1614 gold_unreachable();
1615 #endif
1616 }
1617 else
1618 gold_unreachable();
1619
1620 // Now that we have the final symbol table, we can reliably note
1621 // which symbols should get warnings.
1622 this->warnings_.note_warnings(this);
1623
1624 return ret;
1625 }
1626
1627 // SYM is going into the symbol table at *PINDEX. Add the name to
1628 // POOL, update *PINDEX and *POFF.
1629
1630 template<int size>
1631 void
1632 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1633 unsigned int* pindex, off_t* poff)
1634 {
1635 sym->set_symtab_index(*pindex);
1636 pool->add(sym->name(), false, NULL);
1637 ++*pindex;
1638 *poff += elfcpp::Elf_sizes<size>::sym_size;
1639 }
1640
1641 // Set the final value for all the symbols. This is called after
1642 // Layout::finalize, so all the output sections have their final
1643 // address.
1644
1645 template<int size>
1646 off_t
1647 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1648 unsigned int* plocal_symcount)
1649 {
1650 off = align_address(off, size >> 3);
1651 this->offset_ = off;
1652
1653 unsigned int index = *plocal_symcount;
1654 const unsigned int orig_index = index;
1655
1656 // First do all the symbols which have been forced to be local, as
1657 // they must appear before all global symbols.
1658 for (Forced_locals::iterator p = this->forced_locals_.begin();
1659 p != this->forced_locals_.end();
1660 ++p)
1661 {
1662 Symbol* sym = *p;
1663 gold_assert(sym->is_forced_local());
1664 if (this->sized_finalize_symbol<size>(sym))
1665 {
1666 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1667 ++*plocal_symcount;
1668 }
1669 }
1670
1671 // Now do all the remaining symbols.
1672 for (Symbol_table_type::iterator p = this->table_.begin();
1673 p != this->table_.end();
1674 ++p)
1675 {
1676 Symbol* sym = p->second;
1677 if (this->sized_finalize_symbol<size>(sym))
1678 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1679 }
1680
1681 this->output_count_ = index - orig_index;
1682
1683 return off;
1684 }
1685
1686 // Finalize the symbol SYM. This returns true if the symbol should be
1687 // added to the symbol table, false otherwise.
1688
1689 template<int size>
1690 bool
1691 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1692 {
1693 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1694
1695 // The default version of a symbol may appear twice in the symbol
1696 // table. We only need to finalize it once.
1697 if (sym->has_symtab_index())
1698 return false;
1699
1700 if (!sym->in_reg())
1701 {
1702 gold_assert(!sym->has_symtab_index());
1703 sym->set_symtab_index(-1U);
1704 gold_assert(sym->dynsym_index() == -1U);
1705 return false;
1706 }
1707
1708 typename Sized_symbol<size>::Value_type value;
1709
1710 switch (sym->source())
1711 {
1712 case Symbol::FROM_OBJECT:
1713 {
1714 unsigned int shndx = sym->shndx();
1715
1716 // FIXME: We need some target specific support here.
1717 if (shndx >= elfcpp::SHN_LORESERVE
1718 && shndx != elfcpp::SHN_ABS
1719 && shndx != elfcpp::SHN_COMMON)
1720 {
1721 gold_error(_("%s: unsupported symbol section 0x%x"),
1722 sym->demangled_name().c_str(), shndx);
1723 shndx = elfcpp::SHN_UNDEF;
1724 }
1725
1726 Object* symobj = sym->object();
1727 if (symobj->is_dynamic())
1728 {
1729 value = 0;
1730 shndx = elfcpp::SHN_UNDEF;
1731 }
1732 else if (shndx == elfcpp::SHN_UNDEF)
1733 value = 0;
1734 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1735 value = sym->value();
1736 else
1737 {
1738 Relobj* relobj = static_cast<Relobj*>(symobj);
1739 section_offset_type secoff;
1740 Output_section* os = relobj->output_section(shndx, &secoff);
1741
1742 if (os == NULL)
1743 {
1744 sym->set_symtab_index(-1U);
1745 gold_assert(sym->dynsym_index() == -1U);
1746 return false;
1747 }
1748
1749 if (sym->type() == elfcpp::STT_TLS)
1750 value = sym->value() + os->tls_offset() + secoff;
1751 else
1752 value = sym->value() + os->address() + secoff;
1753 }
1754 }
1755 break;
1756
1757 case Symbol::IN_OUTPUT_DATA:
1758 {
1759 Output_data* od = sym->output_data();
1760 value = sym->value() + od->address();
1761 if (sym->offset_is_from_end())
1762 value += od->data_size();
1763 }
1764 break;
1765
1766 case Symbol::IN_OUTPUT_SEGMENT:
1767 {
1768 Output_segment* os = sym->output_segment();
1769 value = sym->value() + os->vaddr();
1770 switch (sym->offset_base())
1771 {
1772 case Symbol::SEGMENT_START:
1773 break;
1774 case Symbol::SEGMENT_END:
1775 value += os->memsz();
1776 break;
1777 case Symbol::SEGMENT_BSS:
1778 value += os->filesz();
1779 break;
1780 default:
1781 gold_unreachable();
1782 }
1783 }
1784 break;
1785
1786 case Symbol::CONSTANT:
1787 value = sym->value();
1788 break;
1789
1790 default:
1791 gold_unreachable();
1792 }
1793
1794 sym->set_value(value);
1795
1796 if (parameters->options().strip_all())
1797 {
1798 sym->set_symtab_index(-1U);
1799 return false;
1800 }
1801
1802 return true;
1803 }
1804
1805 // Write out the global symbols.
1806
1807 void
1808 Symbol_table::write_globals(const Input_objects* input_objects,
1809 const Stringpool* sympool,
1810 const Stringpool* dynpool, Output_file* of) const
1811 {
1812 switch (parameters->size_and_endianness())
1813 {
1814 #ifdef HAVE_TARGET_32_LITTLE
1815 case Parameters::TARGET_32_LITTLE:
1816 this->sized_write_globals<32, false>(input_objects, sympool,
1817 dynpool, of);
1818 break;
1819 #endif
1820 #ifdef HAVE_TARGET_32_BIG
1821 case Parameters::TARGET_32_BIG:
1822 this->sized_write_globals<32, true>(input_objects, sympool,
1823 dynpool, of);
1824 break;
1825 #endif
1826 #ifdef HAVE_TARGET_64_LITTLE
1827 case Parameters::TARGET_64_LITTLE:
1828 this->sized_write_globals<64, false>(input_objects, sympool,
1829 dynpool, of);
1830 break;
1831 #endif
1832 #ifdef HAVE_TARGET_64_BIG
1833 case Parameters::TARGET_64_BIG:
1834 this->sized_write_globals<64, true>(input_objects, sympool,
1835 dynpool, of);
1836 break;
1837 #endif
1838 default:
1839 gold_unreachable();
1840 }
1841 }
1842
1843 // Write out the global symbols.
1844
1845 template<int size, bool big_endian>
1846 void
1847 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1848 const Stringpool* sympool,
1849 const Stringpool* dynpool,
1850 Output_file* of) const
1851 {
1852 const Target& target = parameters->target();
1853
1854 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1855
1856 const unsigned int output_count = this->output_count_;
1857 const section_size_type oview_size = output_count * sym_size;
1858 const unsigned int first_global_index = this->first_global_index_;
1859 unsigned char* psyms;
1860 if (this->offset_ == 0 || output_count == 0)
1861 psyms = NULL;
1862 else
1863 psyms = of->get_output_view(this->offset_, oview_size);
1864
1865 const unsigned int dynamic_count = this->dynamic_count_;
1866 const section_size_type dynamic_size = dynamic_count * sym_size;
1867 const unsigned int first_dynamic_global_index =
1868 this->first_dynamic_global_index_;
1869 unsigned char* dynamic_view;
1870 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1871 dynamic_view = NULL;
1872 else
1873 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1874
1875 for (Symbol_table_type::const_iterator p = this->table_.begin();
1876 p != this->table_.end();
1877 ++p)
1878 {
1879 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1880
1881 // Possibly warn about unresolved symbols in shared libraries.
1882 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1883
1884 unsigned int sym_index = sym->symtab_index();
1885 unsigned int dynsym_index;
1886 if (dynamic_view == NULL)
1887 dynsym_index = -1U;
1888 else
1889 dynsym_index = sym->dynsym_index();
1890
1891 if (sym_index == -1U && dynsym_index == -1U)
1892 {
1893 // This symbol is not included in the output file.
1894 continue;
1895 }
1896
1897 unsigned int shndx;
1898 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1899 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1900 switch (sym->source())
1901 {
1902 case Symbol::FROM_OBJECT:
1903 {
1904 unsigned int in_shndx = sym->shndx();
1905
1906 // FIXME: We need some target specific support here.
1907 if (in_shndx >= elfcpp::SHN_LORESERVE
1908 && in_shndx != elfcpp::SHN_ABS
1909 && in_shndx != elfcpp::SHN_COMMON)
1910 {
1911 gold_error(_("%s: unsupported symbol section 0x%x"),
1912 sym->demangled_name().c_str(), in_shndx);
1913 shndx = in_shndx;
1914 }
1915 else
1916 {
1917 Object* symobj = sym->object();
1918 if (symobj->is_dynamic())
1919 {
1920 if (sym->needs_dynsym_value())
1921 dynsym_value = target.dynsym_value(sym);
1922 shndx = elfcpp::SHN_UNDEF;
1923 }
1924 else if (in_shndx == elfcpp::SHN_UNDEF
1925 || in_shndx == elfcpp::SHN_ABS
1926 || in_shndx == elfcpp::SHN_COMMON)
1927 shndx = in_shndx;
1928 else
1929 {
1930 Relobj* relobj = static_cast<Relobj*>(symobj);
1931 section_offset_type secoff;
1932 Output_section* os = relobj->output_section(in_shndx,
1933 &secoff);
1934 gold_assert(os != NULL);
1935 shndx = os->out_shndx();
1936
1937 // In object files symbol values are section
1938 // relative.
1939 if (parameters->options().relocatable())
1940 sym_value -= os->address();
1941 }
1942 }
1943 }
1944 break;
1945
1946 case Symbol::IN_OUTPUT_DATA:
1947 shndx = sym->output_data()->out_shndx();
1948 break;
1949
1950 case Symbol::IN_OUTPUT_SEGMENT:
1951 shndx = elfcpp::SHN_ABS;
1952 break;
1953
1954 case Symbol::CONSTANT:
1955 shndx = elfcpp::SHN_ABS;
1956 break;
1957
1958 default:
1959 gold_unreachable();
1960 }
1961
1962 if (sym_index != -1U)
1963 {
1964 sym_index -= first_global_index;
1965 gold_assert(sym_index < output_count);
1966 unsigned char* ps = psyms + (sym_index * sym_size);
1967 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1968 sym, sym_value, shndx, sympool, ps
1969 SELECT_SIZE_ENDIAN(size, big_endian));
1970 }
1971
1972 if (dynsym_index != -1U)
1973 {
1974 dynsym_index -= first_dynamic_global_index;
1975 gold_assert(dynsym_index < dynamic_count);
1976 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1977 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1978 sym, dynsym_value, shndx, dynpool, pd
1979 SELECT_SIZE_ENDIAN(size, big_endian));
1980 }
1981 }
1982
1983 of->write_output_view(this->offset_, oview_size, psyms);
1984 if (dynamic_view != NULL)
1985 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1986 }
1987
1988 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1989 // strtab holding the name.
1990
1991 template<int size, bool big_endian>
1992 void
1993 Symbol_table::sized_write_symbol(
1994 Sized_symbol<size>* sym,
1995 typename elfcpp::Elf_types<size>::Elf_Addr value,
1996 unsigned int shndx,
1997 const Stringpool* pool,
1998 unsigned char* p
1999 ACCEPT_SIZE_ENDIAN) const
2000 {
2001 elfcpp::Sym_write<size, big_endian> osym(p);
2002 osym.put_st_name(pool->get_offset(sym->name()));
2003 osym.put_st_value(value);
2004 osym.put_st_size(sym->symsize());
2005 // A version script may have overridden the default binding.
2006 if (sym->is_forced_local())
2007 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2008 else
2009 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2010 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2011 osym.put_st_shndx(shndx);
2012 }
2013
2014 // Check for unresolved symbols in shared libraries. This is
2015 // controlled by the --allow-shlib-undefined option.
2016
2017 // We only warn about libraries for which we have seen all the
2018 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2019 // which were not seen in this link. If we didn't see a DT_NEEDED
2020 // entry, we aren't going to be able to reliably report whether the
2021 // symbol is undefined.
2022
2023 // We also don't warn about libraries found in the system library
2024 // directory (the directory were we find libc.so); we assume that
2025 // those libraries are OK. This heuristic avoids problems in
2026 // GNU/Linux, in which -ldl can have undefined references satisfied by
2027 // ld-linux.so.
2028
2029 inline void
2030 Symbol_table::warn_about_undefined_dynobj_symbol(
2031 const Input_objects* input_objects,
2032 Symbol* sym) const
2033 {
2034 if (sym->source() == Symbol::FROM_OBJECT
2035 && sym->object()->is_dynamic()
2036 && sym->shndx() == elfcpp::SHN_UNDEF
2037 && sym->binding() != elfcpp::STB_WEAK
2038 && !parameters->options().allow_shlib_undefined()
2039 && !parameters->target().is_defined_by_abi(sym)
2040 && !input_objects->found_in_system_library_directory(sym->object()))
2041 {
2042 // A very ugly cast.
2043 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2044 if (!dynobj->has_unknown_needed_entries())
2045 gold_error(_("%s: undefined reference to '%s'"),
2046 sym->object()->name().c_str(),
2047 sym->demangled_name().c_str());
2048 }
2049 }
2050
2051 // Write out a section symbol. Return the update offset.
2052
2053 void
2054 Symbol_table::write_section_symbol(const Output_section *os,
2055 Output_file* of,
2056 off_t offset) const
2057 {
2058 switch (parameters->size_and_endianness())
2059 {
2060 #ifdef HAVE_TARGET_32_LITTLE
2061 case Parameters::TARGET_32_LITTLE:
2062 this->sized_write_section_symbol<32, false>(os, of, offset);
2063 break;
2064 #endif
2065 #ifdef HAVE_TARGET_32_BIG
2066 case Parameters::TARGET_32_BIG:
2067 this->sized_write_section_symbol<32, true>(os, of, offset);
2068 break;
2069 #endif
2070 #ifdef HAVE_TARGET_64_LITTLE
2071 case Parameters::TARGET_64_LITTLE:
2072 this->sized_write_section_symbol<64, false>(os, of, offset);
2073 break;
2074 #endif
2075 #ifdef HAVE_TARGET_64_BIG
2076 case Parameters::TARGET_64_BIG:
2077 this->sized_write_section_symbol<64, true>(os, of, offset);
2078 break;
2079 #endif
2080 default:
2081 gold_unreachable();
2082 }
2083 }
2084
2085 // Write out a section symbol, specialized for size and endianness.
2086
2087 template<int size, bool big_endian>
2088 void
2089 Symbol_table::sized_write_section_symbol(const Output_section* os,
2090 Output_file* of,
2091 off_t offset) const
2092 {
2093 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2094
2095 unsigned char* pov = of->get_output_view(offset, sym_size);
2096
2097 elfcpp::Sym_write<size, big_endian> osym(pov);
2098 osym.put_st_name(0);
2099 osym.put_st_value(os->address());
2100 osym.put_st_size(0);
2101 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2102 elfcpp::STT_SECTION));
2103 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2104 osym.put_st_shndx(os->out_shndx());
2105
2106 of->write_output_view(offset, sym_size, pov);
2107 }
2108
2109 // Print statistical information to stderr. This is used for --stats.
2110
2111 void
2112 Symbol_table::print_stats() const
2113 {
2114 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2115 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2116 program_name, this->table_.size(), this->table_.bucket_count());
2117 #else
2118 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2119 program_name, this->table_.size());
2120 #endif
2121 this->namepool_.print_stats("symbol table stringpool");
2122 }
2123
2124 // We check for ODR violations by looking for symbols with the same
2125 // name for which the debugging information reports that they were
2126 // defined in different source locations. When comparing the source
2127 // location, we consider instances with the same base filename and
2128 // line number to be the same. This is because different object
2129 // files/shared libraries can include the same header file using
2130 // different paths, and we don't want to report an ODR violation in
2131 // that case.
2132
2133 // This struct is used to compare line information, as returned by
2134 // Dwarf_line_info::one_addr2line. It implements a < comparison
2135 // operator used with std::set.
2136
2137 struct Odr_violation_compare
2138 {
2139 bool
2140 operator()(const std::string& s1, const std::string& s2) const
2141 {
2142 std::string::size_type pos1 = s1.rfind('/');
2143 std::string::size_type pos2 = s2.rfind('/');
2144 if (pos1 == std::string::npos
2145 || pos2 == std::string::npos)
2146 return s1 < s2;
2147 return s1.compare(pos1, std::string::npos,
2148 s2, pos2, std::string::npos) < 0;
2149 }
2150 };
2151
2152 // Check candidate_odr_violations_ to find symbols with the same name
2153 // but apparently different definitions (different source-file/line-no).
2154
2155 void
2156 Symbol_table::detect_odr_violations(const Task* task,
2157 const char* output_file_name) const
2158 {
2159 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2160 it != candidate_odr_violations_.end();
2161 ++it)
2162 {
2163 const char* symbol_name = it->first;
2164 // We use a sorted set so the output is deterministic.
2165 std::set<std::string, Odr_violation_compare> line_nums;
2166
2167 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2168 locs = it->second.begin();
2169 locs != it->second.end();
2170 ++locs)
2171 {
2172 // We need to lock the object in order to read it. This
2173 // means that we have to run in a singleton Task. If we
2174 // want to run this in a general Task for better
2175 // performance, we will need one Task for object, plus
2176 // appropriate locking to ensure that we don't conflict with
2177 // other uses of the object.
2178 Task_lock_obj<Object> tl(task, locs->object);
2179 std::string lineno = Dwarf_line_info::one_addr2line(
2180 locs->object, locs->shndx, locs->offset);
2181 if (!lineno.empty())
2182 line_nums.insert(lineno);
2183 }
2184
2185 if (line_nums.size() > 1)
2186 {
2187 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2188 "places (possible ODR violation):"),
2189 output_file_name, demangle(symbol_name).c_str());
2190 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2191 it2 != line_nums.end();
2192 ++it2)
2193 fprintf(stderr, " %s\n", it2->c_str());
2194 }
2195 }
2196 }
2197
2198 // Warnings functions.
2199
2200 // Add a new warning.
2201
2202 void
2203 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2204 const std::string& warning)
2205 {
2206 name = symtab->canonicalize_name(name);
2207 this->warnings_[name].set(obj, warning);
2208 }
2209
2210 // Look through the warnings and mark the symbols for which we should
2211 // warn. This is called during Layout::finalize when we know the
2212 // sources for all the symbols.
2213
2214 void
2215 Warnings::note_warnings(Symbol_table* symtab)
2216 {
2217 for (Warning_table::iterator p = this->warnings_.begin();
2218 p != this->warnings_.end();
2219 ++p)
2220 {
2221 Symbol* sym = symtab->lookup(p->first, NULL);
2222 if (sym != NULL
2223 && sym->source() == Symbol::FROM_OBJECT
2224 && sym->object() == p->second.object)
2225 sym->set_has_warning();
2226 }
2227 }
2228
2229 // Issue a warning. This is called when we see a relocation against a
2230 // symbol for which has a warning.
2231
2232 template<int size, bool big_endian>
2233 void
2234 Warnings::issue_warning(const Symbol* sym,
2235 const Relocate_info<size, big_endian>* relinfo,
2236 size_t relnum, off_t reloffset) const
2237 {
2238 gold_assert(sym->has_warning());
2239 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2240 gold_assert(p != this->warnings_.end());
2241 gold_warning_at_location(relinfo, relnum, reloffset,
2242 "%s", p->second.text.c_str());
2243 }
2244
2245 // Instantiate the templates we need. We could use the configure
2246 // script to restrict this to only the ones needed for implemented
2247 // targets.
2248
2249 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2250 template
2251 void
2252 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2253 #endif
2254
2255 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2256 template
2257 void
2258 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2259 #endif
2260
2261 #ifdef HAVE_TARGET_32_LITTLE
2262 template
2263 void
2264 Symbol_table::add_from_relobj<32, false>(
2265 Sized_relobj<32, false>* relobj,
2266 const unsigned char* syms,
2267 size_t count,
2268 const char* sym_names,
2269 size_t sym_name_size,
2270 Sized_relobj<32, true>::Symbols* sympointers);
2271 #endif
2272
2273 #ifdef HAVE_TARGET_32_BIG
2274 template
2275 void
2276 Symbol_table::add_from_relobj<32, true>(
2277 Sized_relobj<32, true>* relobj,
2278 const unsigned char* syms,
2279 size_t count,
2280 const char* sym_names,
2281 size_t sym_name_size,
2282 Sized_relobj<32, false>::Symbols* sympointers);
2283 #endif
2284
2285 #ifdef HAVE_TARGET_64_LITTLE
2286 template
2287 void
2288 Symbol_table::add_from_relobj<64, false>(
2289 Sized_relobj<64, false>* relobj,
2290 const unsigned char* syms,
2291 size_t count,
2292 const char* sym_names,
2293 size_t sym_name_size,
2294 Sized_relobj<64, true>::Symbols* sympointers);
2295 #endif
2296
2297 #ifdef HAVE_TARGET_64_BIG
2298 template
2299 void
2300 Symbol_table::add_from_relobj<64, true>(
2301 Sized_relobj<64, true>* relobj,
2302 const unsigned char* syms,
2303 size_t count,
2304 const char* sym_names,
2305 size_t sym_name_size,
2306 Sized_relobj<64, false>::Symbols* sympointers);
2307 #endif
2308
2309 #ifdef HAVE_TARGET_32_LITTLE
2310 template
2311 void
2312 Symbol_table::add_from_dynobj<32, false>(
2313 Sized_dynobj<32, false>* dynobj,
2314 const unsigned char* syms,
2315 size_t count,
2316 const char* sym_names,
2317 size_t sym_name_size,
2318 const unsigned char* versym,
2319 size_t versym_size,
2320 const std::vector<const char*>* version_map);
2321 #endif
2322
2323 #ifdef HAVE_TARGET_32_BIG
2324 template
2325 void
2326 Symbol_table::add_from_dynobj<32, true>(
2327 Sized_dynobj<32, true>* dynobj,
2328 const unsigned char* syms,
2329 size_t count,
2330 const char* sym_names,
2331 size_t sym_name_size,
2332 const unsigned char* versym,
2333 size_t versym_size,
2334 const std::vector<const char*>* version_map);
2335 #endif
2336
2337 #ifdef HAVE_TARGET_64_LITTLE
2338 template
2339 void
2340 Symbol_table::add_from_dynobj<64, false>(
2341 Sized_dynobj<64, false>* dynobj,
2342 const unsigned char* syms,
2343 size_t count,
2344 const char* sym_names,
2345 size_t sym_name_size,
2346 const unsigned char* versym,
2347 size_t versym_size,
2348 const std::vector<const char*>* version_map);
2349 #endif
2350
2351 #ifdef HAVE_TARGET_64_BIG
2352 template
2353 void
2354 Symbol_table::add_from_dynobj<64, true>(
2355 Sized_dynobj<64, true>* dynobj,
2356 const unsigned char* syms,
2357 size_t count,
2358 const char* sym_names,
2359 size_t sym_name_size,
2360 const unsigned char* versym,
2361 size_t versym_size,
2362 const std::vector<const char*>* version_map);
2363 #endif
2364
2365 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2366 template
2367 void
2368 Symbol_table::define_with_copy_reloc<32>(
2369 Sized_symbol<32>* sym,
2370 Output_data* posd,
2371 elfcpp::Elf_types<32>::Elf_Addr value);
2372 #endif
2373
2374 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2375 template
2376 void
2377 Symbol_table::define_with_copy_reloc<64>(
2378 Sized_symbol<64>* sym,
2379 Output_data* posd,
2380 elfcpp::Elf_types<64>::Elf_Addr value);
2381 #endif
2382
2383 #ifdef HAVE_TARGET_32_LITTLE
2384 template
2385 void
2386 Warnings::issue_warning<32, false>(const Symbol* sym,
2387 const Relocate_info<32, false>* relinfo,
2388 size_t relnum, off_t reloffset) const;
2389 #endif
2390
2391 #ifdef HAVE_TARGET_32_BIG
2392 template
2393 void
2394 Warnings::issue_warning<32, true>(const Symbol* sym,
2395 const Relocate_info<32, true>* relinfo,
2396 size_t relnum, off_t reloffset) const;
2397 #endif
2398
2399 #ifdef HAVE_TARGET_64_LITTLE
2400 template
2401 void
2402 Warnings::issue_warning<64, false>(const Symbol* sym,
2403 const Relocate_info<64, false>* relinfo,
2404 size_t relnum, off_t reloffset) const;
2405 #endif
2406
2407 #ifdef HAVE_TARGET_64_BIG
2408 template
2409 void
2410 Warnings::issue_warning<64, true>(const Symbol* sym,
2411 const Relocate_info<64, true>* relinfo,
2412 size_t relnum, off_t reloffset) const;
2413 #endif
2414
2415 } // End namespace gold.