* options.cc: Include "demangle.h".
[binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
30
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
38
39 namespace gold
40 {
41
42 // Class Symbol.
43
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
46
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
51 {
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->is_forced_local_ = false;
74 }
75
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
78
79 static std::string
80 demangle(const char* name)
81 {
82 if (!parameters->options().do_demangle())
83 return name;
84
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
90
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
94 }
95
96 std::string
97 Symbol::demangled_name() const
98 {
99 return demangle(this->name());
100 }
101
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
103
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
108 {
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
117 }
118
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
121
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
126 {
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
132 }
133
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
136
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
141 {
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
151
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
156 {
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
160 }
161
162 // Allocate a common symbol in the base.
163
164 void
165 Symbol::allocate_base_common(Output_data* od)
166 {
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
171 }
172
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
174
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
180 {
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
184 }
185
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
188
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
196 {
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
201 }
202
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
205
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
213 {
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
217 }
218
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
221
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
227 {
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
231 }
232
233 // Allocate a common symbol.
234
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
238 {
239 this->allocate_base_common(od);
240 this->value_ = value;
241 }
242
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
245
246 inline bool
247 Symbol::should_add_dynsym_entry() const
248 {
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
252
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
255 return false;
256
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters->options().export_dynamic() || parameters->options().shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
263 return true;
264
265 return false;
266 }
267
268 // Return true if the final value of this symbol is known at link
269 // time.
270
271 bool
272 Symbol::final_value_is_known() const
273 {
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (parameters->options().shared() || parameters->options().relocatable())
277 return false;
278
279 // If the symbol is not from an object file, then it is defined, and
280 // known.
281 if (this->source_ != FROM_OBJECT)
282 return true;
283
284 // If the symbol is from a dynamic object, then the final value is
285 // not known.
286 if (this->object()->is_dynamic())
287 return false;
288
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
292 return true;
293
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters->doing_static_link();
299 }
300
301 // Return the output section where this symbol is defined.
302
303 Output_section*
304 Symbol::output_section() const
305 {
306 switch (this->source_)
307 {
308 case FROM_OBJECT:
309 {
310 unsigned int shndx = this->u_.from_object.shndx;
311 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
312 {
313 gold_assert(!this->u_.from_object.object->is_dynamic());
314 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
315 section_offset_type dummy;
316 return relobj->output_section(shndx, &dummy);
317 }
318 return NULL;
319 }
320
321 case IN_OUTPUT_DATA:
322 return this->u_.in_output_data.output_data->output_section();
323
324 case IN_OUTPUT_SEGMENT:
325 case CONSTANT:
326 return NULL;
327
328 default:
329 gold_unreachable();
330 }
331 }
332
333 // Set the symbol's output section. This is used for symbols defined
334 // in scripts. This should only be called after the symbol table has
335 // been finalized.
336
337 void
338 Symbol::set_output_section(Output_section* os)
339 {
340 switch (this->source_)
341 {
342 case FROM_OBJECT:
343 case IN_OUTPUT_DATA:
344 gold_assert(this->output_section() == os);
345 break;
346 case CONSTANT:
347 this->source_ = IN_OUTPUT_DATA;
348 this->u_.in_output_data.output_data = os;
349 this->u_.in_output_data.offset_is_from_end = false;
350 break;
351 case IN_OUTPUT_SEGMENT:
352 default:
353 gold_unreachable();
354 }
355 }
356
357 // Class Symbol_table.
358
359 Symbol_table::Symbol_table(unsigned int count,
360 const Version_script_info& version_script)
361 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
362 forwarders_(), commons_(), forced_locals_(), warnings_(),
363 version_script_(version_script)
364 {
365 namepool_.reserve(count);
366 }
367
368 Symbol_table::~Symbol_table()
369 {
370 }
371
372 // The hash function. The key values are Stringpool keys.
373
374 inline size_t
375 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
376 {
377 return key.first ^ key.second;
378 }
379
380 // The symbol table key equality function. This is called with
381 // Stringpool keys.
382
383 inline bool
384 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
385 const Symbol_table_key& k2) const
386 {
387 return k1.first == k2.first && k1.second == k2.second;
388 }
389
390 // Make TO a symbol which forwards to FROM.
391
392 void
393 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
394 {
395 gold_assert(from != to);
396 gold_assert(!from->is_forwarder() && !to->is_forwarder());
397 this->forwarders_[from] = to;
398 from->set_forwarder();
399 }
400
401 // Resolve the forwards from FROM, returning the real symbol.
402
403 Symbol*
404 Symbol_table::resolve_forwards(const Symbol* from) const
405 {
406 gold_assert(from->is_forwarder());
407 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
408 this->forwarders_.find(from);
409 gold_assert(p != this->forwarders_.end());
410 return p->second;
411 }
412
413 // Look up a symbol by name.
414
415 Symbol*
416 Symbol_table::lookup(const char* name, const char* version) const
417 {
418 Stringpool::Key name_key;
419 name = this->namepool_.find(name, &name_key);
420 if (name == NULL)
421 return NULL;
422
423 Stringpool::Key version_key = 0;
424 if (version != NULL)
425 {
426 version = this->namepool_.find(version, &version_key);
427 if (version == NULL)
428 return NULL;
429 }
430
431 Symbol_table_key key(name_key, version_key);
432 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
433 if (p == this->table_.end())
434 return NULL;
435 return p->second;
436 }
437
438 // Resolve a Symbol with another Symbol. This is only used in the
439 // unusual case where there are references to both an unversioned
440 // symbol and a symbol with a version, and we then discover that that
441 // version is the default version. Because this is unusual, we do
442 // this the slow way, by converting back to an ELF symbol.
443
444 template<int size, bool big_endian>
445 void
446 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
447 const char* version)
448 {
449 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
450 elfcpp::Sym_write<size, big_endian> esym(buf);
451 // We don't bother to set the st_name field.
452 esym.put_st_value(from->value());
453 esym.put_st_size(from->symsize());
454 esym.put_st_info(from->binding(), from->type());
455 esym.put_st_other(from->visibility(), from->nonvis());
456 esym.put_st_shndx(from->shndx());
457 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
458 if (from->in_reg())
459 to->set_in_reg();
460 if (from->in_dyn())
461 to->set_in_dyn();
462 }
463
464 // Record that a symbol is forced to be local by a version script.
465
466 void
467 Symbol_table::force_local(Symbol* sym)
468 {
469 if (!sym->is_defined() && !sym->is_common())
470 return;
471 if (sym->is_forced_local())
472 {
473 // We already got this one.
474 return;
475 }
476 sym->set_is_forced_local();
477 this->forced_locals_.push_back(sym);
478 }
479
480 // Add one symbol from OBJECT to the symbol table. NAME is symbol
481 // name and VERSION is the version; both are canonicalized. DEF is
482 // whether this is the default version.
483
484 // If DEF is true, then this is the definition of a default version of
485 // a symbol. That means that any lookup of NAME/NULL and any lookup
486 // of NAME/VERSION should always return the same symbol. This is
487 // obvious for references, but in particular we want to do this for
488 // definitions: overriding NAME/NULL should also override
489 // NAME/VERSION. If we don't do that, it would be very hard to
490 // override functions in a shared library which uses versioning.
491
492 // We implement this by simply making both entries in the hash table
493 // point to the same Symbol structure. That is easy enough if this is
494 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
495 // that we have seen both already, in which case they will both have
496 // independent entries in the symbol table. We can't simply change
497 // the symbol table entry, because we have pointers to the entries
498 // attached to the object files. So we mark the entry attached to the
499 // object file as a forwarder, and record it in the forwarders_ map.
500 // Note that entries in the hash table will never be marked as
501 // forwarders.
502 //
503 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
504 // symbol exactly as it existed in the input file. SYM is usually
505 // that as well, but can be modified, for instance if we determine
506 // it's in a to-be-discarded section.
507
508 template<int size, bool big_endian>
509 Sized_symbol<size>*
510 Symbol_table::add_from_object(Object* object,
511 const char *name,
512 Stringpool::Key name_key,
513 const char *version,
514 Stringpool::Key version_key,
515 bool def,
516 const elfcpp::Sym<size, big_endian>& sym,
517 const elfcpp::Sym<size, big_endian>& orig_sym)
518 {
519 Symbol* const snull = NULL;
520 std::pair<typename Symbol_table_type::iterator, bool> ins =
521 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
522 snull));
523
524 std::pair<typename Symbol_table_type::iterator, bool> insdef =
525 std::make_pair(this->table_.end(), false);
526 if (def)
527 {
528 const Stringpool::Key vnull_key = 0;
529 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
530 vnull_key),
531 snull));
532 }
533
534 // ins.first: an iterator, which is a pointer to a pair.
535 // ins.first->first: the key (a pair of name and version).
536 // ins.first->second: the value (Symbol*).
537 // ins.second: true if new entry was inserted, false if not.
538
539 Sized_symbol<size>* ret;
540 bool was_undefined;
541 bool was_common;
542 if (!ins.second)
543 {
544 // We already have an entry for NAME/VERSION.
545 ret = this->get_sized_symbol<size>(ins.first->second);
546 gold_assert(ret != NULL);
547
548 was_undefined = ret->is_undefined();
549 was_common = ret->is_common();
550
551 this->resolve(ret, sym, orig_sym, object, version);
552
553 if (def)
554 {
555 if (insdef.second)
556 {
557 // This is the first time we have seen NAME/NULL. Make
558 // NAME/NULL point to NAME/VERSION.
559 insdef.first->second = ret;
560 }
561 else if (insdef.first->second != ret
562 && insdef.first->second->is_undefined())
563 {
564 // This is the unfortunate case where we already have
565 // entries for both NAME/VERSION and NAME/NULL. Note
566 // that we don't want to combine them if the existing
567 // symbol is going to override the new one. FIXME: We
568 // currently just test is_undefined, but this may not do
569 // the right thing if the existing symbol is from a
570 // shared library and the new one is from a regular
571 // object.
572
573 const Sized_symbol<size>* sym2;
574 sym2 = this->get_sized_symbol<size>(insdef.first->second);
575 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
576 this->make_forwarder(insdef.first->second, ret);
577 insdef.first->second = ret;
578 }
579 }
580 }
581 else
582 {
583 // This is the first time we have seen NAME/VERSION.
584 gold_assert(ins.first->second == NULL);
585
586 was_undefined = false;
587 was_common = false;
588
589 if (def && !insdef.second)
590 {
591 // We already have an entry for NAME/NULL. If we override
592 // it, then change it to NAME/VERSION.
593 ret = this->get_sized_symbol<size>(insdef.first->second);
594 this->resolve(ret, sym, orig_sym, object, version);
595 ins.first->second = ret;
596 }
597 else
598 {
599 Sized_target<size, big_endian>* target =
600 object->sized_target<size, big_endian>();
601 if (!target->has_make_symbol())
602 ret = new Sized_symbol<size>();
603 else
604 {
605 ret = target->make_symbol();
606 if (ret == NULL)
607 {
608 // This means that we don't want a symbol table
609 // entry after all.
610 if (!def)
611 this->table_.erase(ins.first);
612 else
613 {
614 this->table_.erase(insdef.first);
615 // Inserting insdef invalidated ins.
616 this->table_.erase(std::make_pair(name_key,
617 version_key));
618 }
619 return NULL;
620 }
621 }
622
623 ret->init(name, version, object, sym);
624
625 ins.first->second = ret;
626 if (def)
627 {
628 // This is the first time we have seen NAME/NULL. Point
629 // it at the new entry for NAME/VERSION.
630 gold_assert(insdef.second);
631 insdef.first->second = ret;
632 }
633 }
634 }
635
636 // Record every time we see a new undefined symbol, to speed up
637 // archive groups.
638 if (!was_undefined && ret->is_undefined())
639 ++this->saw_undefined_;
640
641 // Keep track of common symbols, to speed up common symbol
642 // allocation.
643 if (!was_common && ret->is_common())
644 this->commons_.push_back(ret);
645
646 if (def)
647 ret->set_is_default();
648 return ret;
649 }
650
651 // Add all the symbols in a relocatable object to the hash table.
652
653 template<int size, bool big_endian>
654 void
655 Symbol_table::add_from_relobj(
656 Sized_relobj<size, big_endian>* relobj,
657 const unsigned char* syms,
658 size_t count,
659 const char* sym_names,
660 size_t sym_name_size,
661 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
662 {
663 gold_assert(size == relobj->target()->get_size());
664 gold_assert(size == parameters->target().get_size());
665
666 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
667
668 const bool just_symbols = relobj->just_symbols();
669
670 const unsigned char* p = syms;
671 for (size_t i = 0; i < count; ++i, p += sym_size)
672 {
673 elfcpp::Sym<size, big_endian> sym(p);
674 elfcpp::Sym<size, big_endian>* psym = &sym;
675
676 unsigned int st_name = psym->get_st_name();
677 if (st_name >= sym_name_size)
678 {
679 relobj->error(_("bad global symbol name offset %u at %zu"),
680 st_name, i);
681 continue;
682 }
683
684 const char* name = sym_names + st_name;
685
686 // A symbol defined in a section which we are not including must
687 // be treated as an undefined symbol.
688 unsigned char symbuf[sym_size];
689 elfcpp::Sym<size, big_endian> sym2(symbuf);
690 unsigned int st_shndx = psym->get_st_shndx();
691 if (st_shndx != elfcpp::SHN_UNDEF
692 && st_shndx < elfcpp::SHN_LORESERVE
693 && !relobj->is_section_included(st_shndx))
694 {
695 memcpy(symbuf, p, sym_size);
696 elfcpp::Sym_write<size, big_endian> sw(symbuf);
697 sw.put_st_shndx(elfcpp::SHN_UNDEF);
698 psym = &sym2;
699 }
700
701 // In an object file, an '@' in the name separates the symbol
702 // name from the version name. If there are two '@' characters,
703 // this is the default version.
704 const char* ver = strchr(name, '@');
705 int namelen = 0;
706 // DEF: is the version default? LOCAL: is the symbol forced local?
707 bool def = false;
708 bool local = false;
709
710 if (ver != NULL)
711 {
712 // The symbol name is of the form foo@VERSION or foo@@VERSION
713 namelen = ver - name;
714 ++ver;
715 if (*ver == '@')
716 {
717 def = true;
718 ++ver;
719 }
720 }
721 else if (!version_script_.empty())
722 {
723 // The symbol name did not have a version, but
724 // the version script may assign a version anyway.
725 namelen = strlen(name);
726 def = true;
727 // Check the global: entries from the version script.
728 const std::string& version =
729 version_script_.get_symbol_version(name);
730 if (!version.empty())
731 ver = version.c_str();
732 // Check the local: entries from the version script
733 if (version_script_.symbol_is_local(name))
734 local = true;
735 }
736
737 if (just_symbols)
738 {
739 if (psym != &sym2)
740 memcpy(symbuf, p, sym_size);
741 elfcpp::Sym_write<size, big_endian> sw(symbuf);
742 sw.put_st_shndx(elfcpp::SHN_ABS);
743 if (st_shndx != elfcpp::SHN_UNDEF
744 && st_shndx < elfcpp::SHN_LORESERVE)
745 {
746 // Symbol values in object files are section relative.
747 // This is normally what we want, but since here we are
748 // converting the symbol to absolute we need to add the
749 // section address. The section address in an object
750 // file is normally zero, but people can use a linker
751 // script to change it.
752 sw.put_st_value(sym2.get_st_value()
753 + relobj->section_address(st_shndx));
754 }
755 psym = &sym2;
756 }
757
758 Sized_symbol<size>* res;
759 if (ver == NULL)
760 {
761 Stringpool::Key name_key;
762 name = this->namepool_.add(name, true, &name_key);
763 res = this->add_from_object(relobj, name, name_key, NULL, 0,
764 false, *psym, sym);
765 if (local)
766 this->force_local(res);
767 }
768 else
769 {
770 Stringpool::Key name_key;
771 name = this->namepool_.add_with_length(name, namelen, true,
772 &name_key);
773 Stringpool::Key ver_key;
774 ver = this->namepool_.add(ver, true, &ver_key);
775
776 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
777 def, *psym, sym);
778 }
779
780 (*sympointers)[i] = res;
781 }
782 }
783
784 // Add all the symbols in a dynamic object to the hash table.
785
786 template<int size, bool big_endian>
787 void
788 Symbol_table::add_from_dynobj(
789 Sized_dynobj<size, big_endian>* dynobj,
790 const unsigned char* syms,
791 size_t count,
792 const char* sym_names,
793 size_t sym_name_size,
794 const unsigned char* versym,
795 size_t versym_size,
796 const std::vector<const char*>* version_map)
797 {
798 gold_assert(size == dynobj->target()->get_size());
799 gold_assert(size == parameters->target().get_size());
800
801 if (dynobj->just_symbols())
802 {
803 gold_error(_("--just-symbols does not make sense with a shared object"));
804 return;
805 }
806
807 if (versym != NULL && versym_size / 2 < count)
808 {
809 dynobj->error(_("too few symbol versions"));
810 return;
811 }
812
813 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
814
815 // We keep a list of all STT_OBJECT symbols, so that we can resolve
816 // weak aliases. This is necessary because if the dynamic object
817 // provides the same variable under two names, one of which is a
818 // weak definition, and the regular object refers to the weak
819 // definition, we have to put both the weak definition and the
820 // strong definition into the dynamic symbol table. Given a weak
821 // definition, the only way that we can find the corresponding
822 // strong definition, if any, is to search the symbol table.
823 std::vector<Sized_symbol<size>*> object_symbols;
824
825 const unsigned char* p = syms;
826 const unsigned char* vs = versym;
827 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
828 {
829 elfcpp::Sym<size, big_endian> sym(p);
830
831 // Ignore symbols with local binding or that have
832 // internal or hidden visibility.
833 if (sym.get_st_bind() == elfcpp::STB_LOCAL
834 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
835 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
836 continue;
837
838 unsigned int st_name = sym.get_st_name();
839 if (st_name >= sym_name_size)
840 {
841 dynobj->error(_("bad symbol name offset %u at %zu"),
842 st_name, i);
843 continue;
844 }
845
846 const char* name = sym_names + st_name;
847
848 Sized_symbol<size>* res;
849
850 if (versym == NULL)
851 {
852 Stringpool::Key name_key;
853 name = this->namepool_.add(name, true, &name_key);
854 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
855 false, sym, sym);
856 }
857 else
858 {
859 // Read the version information.
860
861 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
862
863 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
864 v &= elfcpp::VERSYM_VERSION;
865
866 // The Sun documentation says that V can be VER_NDX_LOCAL,
867 // or VER_NDX_GLOBAL, or a version index. The meaning of
868 // VER_NDX_LOCAL is defined as "Symbol has local scope."
869 // The old GNU linker will happily generate VER_NDX_LOCAL
870 // for an undefined symbol. I don't know what the Sun
871 // linker will generate.
872
873 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
874 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
875 {
876 // This symbol should not be visible outside the object.
877 continue;
878 }
879
880 // At this point we are definitely going to add this symbol.
881 Stringpool::Key name_key;
882 name = this->namepool_.add(name, true, &name_key);
883
884 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
885 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
886 {
887 // This symbol does not have a version.
888 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
889 false, sym, sym);
890 }
891 else
892 {
893 if (v >= version_map->size())
894 {
895 dynobj->error(_("versym for symbol %zu out of range: %u"),
896 i, v);
897 continue;
898 }
899
900 const char* version = (*version_map)[v];
901 if (version == NULL)
902 {
903 dynobj->error(_("versym for symbol %zu has no name: %u"),
904 i, v);
905 continue;
906 }
907
908 Stringpool::Key version_key;
909 version = this->namepool_.add(version, true, &version_key);
910
911 // If this is an absolute symbol, and the version name
912 // and symbol name are the same, then this is the
913 // version definition symbol. These symbols exist to
914 // support using -u to pull in particular versions. We
915 // do not want to record a version for them.
916 if (sym.get_st_shndx() == elfcpp::SHN_ABS
917 && name_key == version_key)
918 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
919 false, sym, sym);
920 else
921 {
922 const bool def = (!hidden
923 && (sym.get_st_shndx()
924 != elfcpp::SHN_UNDEF));
925 res = this->add_from_object(dynobj, name, name_key, version,
926 version_key, def, sym, sym);
927 }
928 }
929 }
930
931 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
932 && sym.get_st_type() == elfcpp::STT_OBJECT)
933 object_symbols.push_back(res);
934 }
935
936 this->record_weak_aliases(&object_symbols);
937 }
938
939 // This is used to sort weak aliases. We sort them first by section
940 // index, then by offset, then by weak ahead of strong.
941
942 template<int size>
943 class Weak_alias_sorter
944 {
945 public:
946 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
947 };
948
949 template<int size>
950 bool
951 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
952 const Sized_symbol<size>* s2) const
953 {
954 if (s1->shndx() != s2->shndx())
955 return s1->shndx() < s2->shndx();
956 if (s1->value() != s2->value())
957 return s1->value() < s2->value();
958 if (s1->binding() != s2->binding())
959 {
960 if (s1->binding() == elfcpp::STB_WEAK)
961 return true;
962 if (s2->binding() == elfcpp::STB_WEAK)
963 return false;
964 }
965 return std::string(s1->name()) < std::string(s2->name());
966 }
967
968 // SYMBOLS is a list of object symbols from a dynamic object. Look
969 // for any weak aliases, and record them so that if we add the weak
970 // alias to the dynamic symbol table, we also add the corresponding
971 // strong symbol.
972
973 template<int size>
974 void
975 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
976 {
977 // Sort the vector by section index, then by offset, then by weak
978 // ahead of strong.
979 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
980
981 // Walk through the vector. For each weak definition, record
982 // aliases.
983 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
984 symbols->begin();
985 p != symbols->end();
986 ++p)
987 {
988 if ((*p)->binding() != elfcpp::STB_WEAK)
989 continue;
990
991 // Build a circular list of weak aliases. Each symbol points to
992 // the next one in the circular list.
993
994 Sized_symbol<size>* from_sym = *p;
995 typename std::vector<Sized_symbol<size>*>::const_iterator q;
996 for (q = p + 1; q != symbols->end(); ++q)
997 {
998 if ((*q)->shndx() != from_sym->shndx()
999 || (*q)->value() != from_sym->value())
1000 break;
1001
1002 this->weak_aliases_[from_sym] = *q;
1003 from_sym->set_has_alias();
1004 from_sym = *q;
1005 }
1006
1007 if (from_sym != *p)
1008 {
1009 this->weak_aliases_[from_sym] = *p;
1010 from_sym->set_has_alias();
1011 }
1012
1013 p = q - 1;
1014 }
1015 }
1016
1017 // Create and return a specially defined symbol. If ONLY_IF_REF is
1018 // true, then only create the symbol if there is a reference to it.
1019 // If this does not return NULL, it sets *POLDSYM to the existing
1020 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1021
1022 template<int size, bool big_endian>
1023 Sized_symbol<size>*
1024 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1025 bool only_if_ref,
1026 Sized_symbol<size>** poldsym)
1027 {
1028 Symbol* oldsym;
1029 Sized_symbol<size>* sym;
1030 bool add_to_table = false;
1031 typename Symbol_table_type::iterator add_loc = this->table_.end();
1032
1033 // If the caller didn't give us a version, see if we get one from
1034 // the version script.
1035 if (*pversion == NULL)
1036 {
1037 const std::string& v(this->version_script_.get_symbol_version(*pname));
1038 if (!v.empty())
1039 *pversion = v.c_str();
1040 }
1041
1042 if (only_if_ref)
1043 {
1044 oldsym = this->lookup(*pname, *pversion);
1045 if (oldsym == NULL || !oldsym->is_undefined())
1046 return NULL;
1047
1048 *pname = oldsym->name();
1049 *pversion = oldsym->version();
1050 }
1051 else
1052 {
1053 // Canonicalize NAME and VERSION.
1054 Stringpool::Key name_key;
1055 *pname = this->namepool_.add(*pname, true, &name_key);
1056
1057 Stringpool::Key version_key = 0;
1058 if (*pversion != NULL)
1059 *pversion = this->namepool_.add(*pversion, true, &version_key);
1060
1061 Symbol* const snull = NULL;
1062 std::pair<typename Symbol_table_type::iterator, bool> ins =
1063 this->table_.insert(std::make_pair(std::make_pair(name_key,
1064 version_key),
1065 snull));
1066
1067 if (!ins.second)
1068 {
1069 // We already have a symbol table entry for NAME/VERSION.
1070 oldsym = ins.first->second;
1071 gold_assert(oldsym != NULL);
1072 }
1073 else
1074 {
1075 // We haven't seen this symbol before.
1076 gold_assert(ins.first->second == NULL);
1077 add_to_table = true;
1078 add_loc = ins.first;
1079 oldsym = NULL;
1080 }
1081 }
1082
1083 const Target& target = parameters->target();
1084 if (!target.has_make_symbol())
1085 sym = new Sized_symbol<size>();
1086 else
1087 {
1088 gold_assert(target.get_size() == size);
1089 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1090 typedef Sized_target<size, big_endian> My_target;
1091 const My_target* sized_target =
1092 static_cast<const My_target*>(&target);
1093 sym = sized_target->make_symbol();
1094 if (sym == NULL)
1095 return NULL;
1096 }
1097
1098 if (add_to_table)
1099 add_loc->second = sym;
1100 else
1101 gold_assert(oldsym != NULL);
1102
1103 *poldsym = this->get_sized_symbol<size>(oldsym);
1104
1105 return sym;
1106 }
1107
1108 // Define a symbol based on an Output_data.
1109
1110 Symbol*
1111 Symbol_table::define_in_output_data(const char* name,
1112 const char* version,
1113 Output_data* od,
1114 uint64_t value,
1115 uint64_t symsize,
1116 elfcpp::STT type,
1117 elfcpp::STB binding,
1118 elfcpp::STV visibility,
1119 unsigned char nonvis,
1120 bool offset_is_from_end,
1121 bool only_if_ref)
1122 {
1123 if (parameters->target().get_size() == 32)
1124 {
1125 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1126 return this->do_define_in_output_data<32>(name, version, od,
1127 value, symsize, type, binding,
1128 visibility, nonvis,
1129 offset_is_from_end,
1130 only_if_ref);
1131 #else
1132 gold_unreachable();
1133 #endif
1134 }
1135 else if (parameters->target().get_size() == 64)
1136 {
1137 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1138 return this->do_define_in_output_data<64>(name, version, od,
1139 value, symsize, type, binding,
1140 visibility, nonvis,
1141 offset_is_from_end,
1142 only_if_ref);
1143 #else
1144 gold_unreachable();
1145 #endif
1146 }
1147 else
1148 gold_unreachable();
1149 }
1150
1151 // Define a symbol in an Output_data, sized version.
1152
1153 template<int size>
1154 Sized_symbol<size>*
1155 Symbol_table::do_define_in_output_data(
1156 const char* name,
1157 const char* version,
1158 Output_data* od,
1159 typename elfcpp::Elf_types<size>::Elf_Addr value,
1160 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1161 elfcpp::STT type,
1162 elfcpp::STB binding,
1163 elfcpp::STV visibility,
1164 unsigned char nonvis,
1165 bool offset_is_from_end,
1166 bool only_if_ref)
1167 {
1168 Sized_symbol<size>* sym;
1169 Sized_symbol<size>* oldsym;
1170
1171 if (parameters->target().is_big_endian())
1172 {
1173 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1174 sym = this->define_special_symbol<size, true>(&name, &version,
1175 only_if_ref, &oldsym);
1176 #else
1177 gold_unreachable();
1178 #endif
1179 }
1180 else
1181 {
1182 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1183 sym = this->define_special_symbol<size, false>(&name, &version,
1184 only_if_ref, &oldsym);
1185 #else
1186 gold_unreachable();
1187 #endif
1188 }
1189
1190 if (sym == NULL)
1191 return NULL;
1192
1193 gold_assert(version == NULL || oldsym != NULL);
1194 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1195 offset_is_from_end);
1196
1197 if (oldsym == NULL)
1198 {
1199 if (binding == elfcpp::STB_LOCAL
1200 || this->version_script_.symbol_is_local(name))
1201 this->force_local(sym);
1202 return sym;
1203 }
1204
1205 if (Symbol_table::should_override_with_special(oldsym))
1206 this->override_with_special(oldsym, sym);
1207 delete sym;
1208 return oldsym;
1209 }
1210
1211 // Define a symbol based on an Output_segment.
1212
1213 Symbol*
1214 Symbol_table::define_in_output_segment(const char* name,
1215 const char* version, Output_segment* os,
1216 uint64_t value,
1217 uint64_t symsize,
1218 elfcpp::STT type,
1219 elfcpp::STB binding,
1220 elfcpp::STV visibility,
1221 unsigned char nonvis,
1222 Symbol::Segment_offset_base offset_base,
1223 bool only_if_ref)
1224 {
1225 if (parameters->target().get_size() == 32)
1226 {
1227 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1228 return this->do_define_in_output_segment<32>(name, version, os,
1229 value, symsize, type,
1230 binding, visibility, nonvis,
1231 offset_base, only_if_ref);
1232 #else
1233 gold_unreachable();
1234 #endif
1235 }
1236 else if (parameters->target().get_size() == 64)
1237 {
1238 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1239 return this->do_define_in_output_segment<64>(name, version, os,
1240 value, symsize, type,
1241 binding, visibility, nonvis,
1242 offset_base, only_if_ref);
1243 #else
1244 gold_unreachable();
1245 #endif
1246 }
1247 else
1248 gold_unreachable();
1249 }
1250
1251 // Define a symbol in an Output_segment, sized version.
1252
1253 template<int size>
1254 Sized_symbol<size>*
1255 Symbol_table::do_define_in_output_segment(
1256 const char* name,
1257 const char* version,
1258 Output_segment* os,
1259 typename elfcpp::Elf_types<size>::Elf_Addr value,
1260 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1261 elfcpp::STT type,
1262 elfcpp::STB binding,
1263 elfcpp::STV visibility,
1264 unsigned char nonvis,
1265 Symbol::Segment_offset_base offset_base,
1266 bool only_if_ref)
1267 {
1268 Sized_symbol<size>* sym;
1269 Sized_symbol<size>* oldsym;
1270
1271 if (parameters->target().is_big_endian())
1272 {
1273 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1274 sym = this->define_special_symbol<size, true>(&name, &version,
1275 only_if_ref, &oldsym);
1276 #else
1277 gold_unreachable();
1278 #endif
1279 }
1280 else
1281 {
1282 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1283 sym = this->define_special_symbol<size, false>(&name, &version,
1284 only_if_ref, &oldsym);
1285 #else
1286 gold_unreachable();
1287 #endif
1288 }
1289
1290 if (sym == NULL)
1291 return NULL;
1292
1293 gold_assert(version == NULL || oldsym != NULL);
1294 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1295 offset_base);
1296
1297 if (oldsym == NULL)
1298 {
1299 if (binding == elfcpp::STB_LOCAL
1300 || this->version_script_.symbol_is_local(name))
1301 this->force_local(sym);
1302 return sym;
1303 }
1304
1305 if (Symbol_table::should_override_with_special(oldsym))
1306 this->override_with_special(oldsym, sym);
1307 delete sym;
1308 return oldsym;
1309 }
1310
1311 // Define a special symbol with a constant value. It is a multiple
1312 // definition error if this symbol is already defined.
1313
1314 Symbol*
1315 Symbol_table::define_as_constant(const char* name,
1316 const char* version,
1317 uint64_t value,
1318 uint64_t symsize,
1319 elfcpp::STT type,
1320 elfcpp::STB binding,
1321 elfcpp::STV visibility,
1322 unsigned char nonvis,
1323 bool only_if_ref,
1324 bool force_override)
1325 {
1326 if (parameters->target().get_size() == 32)
1327 {
1328 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1329 return this->do_define_as_constant<32>(name, version, value,
1330 symsize, type, binding,
1331 visibility, nonvis, only_if_ref,
1332 force_override);
1333 #else
1334 gold_unreachable();
1335 #endif
1336 }
1337 else if (parameters->target().get_size() == 64)
1338 {
1339 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1340 return this->do_define_as_constant<64>(name, version, value,
1341 symsize, type, binding,
1342 visibility, nonvis, only_if_ref,
1343 force_override);
1344 #else
1345 gold_unreachable();
1346 #endif
1347 }
1348 else
1349 gold_unreachable();
1350 }
1351
1352 // Define a symbol as a constant, sized version.
1353
1354 template<int size>
1355 Sized_symbol<size>*
1356 Symbol_table::do_define_as_constant(
1357 const char* name,
1358 const char* version,
1359 typename elfcpp::Elf_types<size>::Elf_Addr value,
1360 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1361 elfcpp::STT type,
1362 elfcpp::STB binding,
1363 elfcpp::STV visibility,
1364 unsigned char nonvis,
1365 bool only_if_ref,
1366 bool force_override)
1367 {
1368 Sized_symbol<size>* sym;
1369 Sized_symbol<size>* oldsym;
1370
1371 if (parameters->target().is_big_endian())
1372 {
1373 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1374 sym = this->define_special_symbol<size, true>(&name, &version,
1375 only_if_ref, &oldsym);
1376 #else
1377 gold_unreachable();
1378 #endif
1379 }
1380 else
1381 {
1382 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1383 sym = this->define_special_symbol<size, false>(&name, &version,
1384 only_if_ref, &oldsym);
1385 #else
1386 gold_unreachable();
1387 #endif
1388 }
1389
1390 if (sym == NULL)
1391 return NULL;
1392
1393 gold_assert(version == NULL || version == name || oldsym != NULL);
1394 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1395
1396 if (oldsym == NULL)
1397 {
1398 if (binding == elfcpp::STB_LOCAL
1399 || this->version_script_.symbol_is_local(name))
1400 this->force_local(sym);
1401 return sym;
1402 }
1403
1404 if (force_override || Symbol_table::should_override_with_special(oldsym))
1405 this->override_with_special(oldsym, sym);
1406 delete sym;
1407 return oldsym;
1408 }
1409
1410 // Define a set of symbols in output sections.
1411
1412 void
1413 Symbol_table::define_symbols(const Layout* layout, int count,
1414 const Define_symbol_in_section* p,
1415 bool only_if_ref)
1416 {
1417 for (int i = 0; i < count; ++i, ++p)
1418 {
1419 Output_section* os = layout->find_output_section(p->output_section);
1420 if (os != NULL)
1421 this->define_in_output_data(p->name, NULL, os, p->value,
1422 p->size, p->type, p->binding,
1423 p->visibility, p->nonvis,
1424 p->offset_is_from_end,
1425 only_if_ref || p->only_if_ref);
1426 else
1427 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1428 p->binding, p->visibility, p->nonvis,
1429 only_if_ref || p->only_if_ref,
1430 false);
1431 }
1432 }
1433
1434 // Define a set of symbols in output segments.
1435
1436 void
1437 Symbol_table::define_symbols(const Layout* layout, int count,
1438 const Define_symbol_in_segment* p,
1439 bool only_if_ref)
1440 {
1441 for (int i = 0; i < count; ++i, ++p)
1442 {
1443 Output_segment* os = layout->find_output_segment(p->segment_type,
1444 p->segment_flags_set,
1445 p->segment_flags_clear);
1446 if (os != NULL)
1447 this->define_in_output_segment(p->name, NULL, os, p->value,
1448 p->size, p->type, p->binding,
1449 p->visibility, p->nonvis,
1450 p->offset_base,
1451 only_if_ref || p->only_if_ref);
1452 else
1453 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1454 p->binding, p->visibility, p->nonvis,
1455 only_if_ref || p->only_if_ref,
1456 false);
1457 }
1458 }
1459
1460 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1461 // symbol should be defined--typically a .dyn.bss section. VALUE is
1462 // the offset within POSD.
1463
1464 template<int size>
1465 void
1466 Symbol_table::define_with_copy_reloc(
1467 Sized_symbol<size>* csym,
1468 Output_data* posd,
1469 typename elfcpp::Elf_types<size>::Elf_Addr value)
1470 {
1471 gold_assert(csym->is_from_dynobj());
1472 gold_assert(!csym->is_copied_from_dynobj());
1473 Object* object = csym->object();
1474 gold_assert(object->is_dynamic());
1475 Dynobj* dynobj = static_cast<Dynobj*>(object);
1476
1477 // Our copied variable has to override any variable in a shared
1478 // library.
1479 elfcpp::STB binding = csym->binding();
1480 if (binding == elfcpp::STB_WEAK)
1481 binding = elfcpp::STB_GLOBAL;
1482
1483 this->define_in_output_data(csym->name(), csym->version(),
1484 posd, value, csym->symsize(),
1485 csym->type(), binding,
1486 csym->visibility(), csym->nonvis(),
1487 false, false);
1488
1489 csym->set_is_copied_from_dynobj();
1490 csym->set_needs_dynsym_entry();
1491
1492 this->copied_symbol_dynobjs_[csym] = dynobj;
1493
1494 // We have now defined all aliases, but we have not entered them all
1495 // in the copied_symbol_dynobjs_ map.
1496 if (csym->has_alias())
1497 {
1498 Symbol* sym = csym;
1499 while (true)
1500 {
1501 sym = this->weak_aliases_[sym];
1502 if (sym == csym)
1503 break;
1504 gold_assert(sym->output_data() == posd);
1505
1506 sym->set_is_copied_from_dynobj();
1507 this->copied_symbol_dynobjs_[sym] = dynobj;
1508 }
1509 }
1510 }
1511
1512 // SYM is defined using a COPY reloc. Return the dynamic object where
1513 // the original definition was found.
1514
1515 Dynobj*
1516 Symbol_table::get_copy_source(const Symbol* sym) const
1517 {
1518 gold_assert(sym->is_copied_from_dynobj());
1519 Copied_symbol_dynobjs::const_iterator p =
1520 this->copied_symbol_dynobjs_.find(sym);
1521 gold_assert(p != this->copied_symbol_dynobjs_.end());
1522 return p->second;
1523 }
1524
1525 // Set the dynamic symbol indexes. INDEX is the index of the first
1526 // global dynamic symbol. Pointers to the symbols are stored into the
1527 // vector SYMS. The names are added to DYNPOOL. This returns an
1528 // updated dynamic symbol index.
1529
1530 unsigned int
1531 Symbol_table::set_dynsym_indexes(unsigned int index,
1532 std::vector<Symbol*>* syms,
1533 Stringpool* dynpool,
1534 Versions* versions)
1535 {
1536 for (Symbol_table_type::iterator p = this->table_.begin();
1537 p != this->table_.end();
1538 ++p)
1539 {
1540 Symbol* sym = p->second;
1541
1542 // Note that SYM may already have a dynamic symbol index, since
1543 // some symbols appear more than once in the symbol table, with
1544 // and without a version.
1545
1546 if (!sym->should_add_dynsym_entry())
1547 sym->set_dynsym_index(-1U);
1548 else if (!sym->has_dynsym_index())
1549 {
1550 sym->set_dynsym_index(index);
1551 ++index;
1552 syms->push_back(sym);
1553 dynpool->add(sym->name(), false, NULL);
1554
1555 // Record any version information.
1556 if (sym->version() != NULL)
1557 versions->record_version(this, dynpool, sym);
1558 }
1559 }
1560
1561 // Finish up the versions. In some cases this may add new dynamic
1562 // symbols.
1563 index = versions->finalize(this, index, syms);
1564
1565 return index;
1566 }
1567
1568 // Set the final values for all the symbols. The index of the first
1569 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1570 // file offset OFF. Add their names to POOL. Return the new file
1571 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1572
1573 off_t
1574 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1575 size_t dyncount, Stringpool* pool,
1576 unsigned int *plocal_symcount)
1577 {
1578 off_t ret;
1579
1580 gold_assert(*plocal_symcount != 0);
1581 this->first_global_index_ = *plocal_symcount;
1582
1583 this->dynamic_offset_ = dynoff;
1584 this->first_dynamic_global_index_ = dyn_global_index;
1585 this->dynamic_count_ = dyncount;
1586
1587 if (parameters->target().get_size() == 32)
1588 {
1589 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1590 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1591 #else
1592 gold_unreachable();
1593 #endif
1594 }
1595 else if (parameters->target().get_size() == 64)
1596 {
1597 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1598 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1599 #else
1600 gold_unreachable();
1601 #endif
1602 }
1603 else
1604 gold_unreachable();
1605
1606 // Now that we have the final symbol table, we can reliably note
1607 // which symbols should get warnings.
1608 this->warnings_.note_warnings(this);
1609
1610 return ret;
1611 }
1612
1613 // SYM is going into the symbol table at *PINDEX. Add the name to
1614 // POOL, update *PINDEX and *POFF.
1615
1616 template<int size>
1617 void
1618 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1619 unsigned int* pindex, off_t* poff)
1620 {
1621 sym->set_symtab_index(*pindex);
1622 pool->add(sym->name(), false, NULL);
1623 ++*pindex;
1624 *poff += elfcpp::Elf_sizes<size>::sym_size;
1625 }
1626
1627 // Set the final value for all the symbols. This is called after
1628 // Layout::finalize, so all the output sections have their final
1629 // address.
1630
1631 template<int size>
1632 off_t
1633 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1634 unsigned int* plocal_symcount)
1635 {
1636 off = align_address(off, size >> 3);
1637 this->offset_ = off;
1638
1639 unsigned int index = *plocal_symcount;
1640 const unsigned int orig_index = index;
1641
1642 // First do all the symbols which have been forced to be local, as
1643 // they must appear before all global symbols.
1644 for (Forced_locals::iterator p = this->forced_locals_.begin();
1645 p != this->forced_locals_.end();
1646 ++p)
1647 {
1648 Symbol* sym = *p;
1649 gold_assert(sym->is_forced_local());
1650 if (this->sized_finalize_symbol<size>(sym))
1651 {
1652 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1653 ++*plocal_symcount;
1654 }
1655 }
1656
1657 // Now do all the remaining symbols.
1658 for (Symbol_table_type::iterator p = this->table_.begin();
1659 p != this->table_.end();
1660 ++p)
1661 {
1662 Symbol* sym = p->second;
1663 if (this->sized_finalize_symbol<size>(sym))
1664 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1665 }
1666
1667 this->output_count_ = index - orig_index;
1668
1669 return off;
1670 }
1671
1672 // Finalize the symbol SYM. This returns true if the symbol should be
1673 // added to the symbol table, false otherwise.
1674
1675 template<int size>
1676 bool
1677 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1678 {
1679 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1680
1681 // The default version of a symbol may appear twice in the symbol
1682 // table. We only need to finalize it once.
1683 if (sym->has_symtab_index())
1684 return false;
1685
1686 if (!sym->in_reg())
1687 {
1688 gold_assert(!sym->has_symtab_index());
1689 sym->set_symtab_index(-1U);
1690 gold_assert(sym->dynsym_index() == -1U);
1691 return false;
1692 }
1693
1694 typename Sized_symbol<size>::Value_type value;
1695
1696 switch (sym->source())
1697 {
1698 case Symbol::FROM_OBJECT:
1699 {
1700 unsigned int shndx = sym->shndx();
1701
1702 // FIXME: We need some target specific support here.
1703 if (shndx >= elfcpp::SHN_LORESERVE
1704 && shndx != elfcpp::SHN_ABS
1705 && shndx != elfcpp::SHN_COMMON)
1706 {
1707 gold_error(_("%s: unsupported symbol section 0x%x"),
1708 sym->demangled_name().c_str(), shndx);
1709 shndx = elfcpp::SHN_UNDEF;
1710 }
1711
1712 Object* symobj = sym->object();
1713 if (symobj->is_dynamic())
1714 {
1715 value = 0;
1716 shndx = elfcpp::SHN_UNDEF;
1717 }
1718 else if (shndx == elfcpp::SHN_UNDEF)
1719 value = 0;
1720 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1721 value = sym->value();
1722 else
1723 {
1724 Relobj* relobj = static_cast<Relobj*>(symobj);
1725 section_offset_type secoff;
1726 Output_section* os = relobj->output_section(shndx, &secoff);
1727
1728 if (os == NULL)
1729 {
1730 sym->set_symtab_index(-1U);
1731 gold_assert(sym->dynsym_index() == -1U);
1732 return false;
1733 }
1734
1735 if (sym->type() == elfcpp::STT_TLS)
1736 value = sym->value() + os->tls_offset() + secoff;
1737 else
1738 value = sym->value() + os->address() + secoff;
1739 }
1740 }
1741 break;
1742
1743 case Symbol::IN_OUTPUT_DATA:
1744 {
1745 Output_data* od = sym->output_data();
1746 value = sym->value() + od->address();
1747 if (sym->offset_is_from_end())
1748 value += od->data_size();
1749 }
1750 break;
1751
1752 case Symbol::IN_OUTPUT_SEGMENT:
1753 {
1754 Output_segment* os = sym->output_segment();
1755 value = sym->value() + os->vaddr();
1756 switch (sym->offset_base())
1757 {
1758 case Symbol::SEGMENT_START:
1759 break;
1760 case Symbol::SEGMENT_END:
1761 value += os->memsz();
1762 break;
1763 case Symbol::SEGMENT_BSS:
1764 value += os->filesz();
1765 break;
1766 default:
1767 gold_unreachable();
1768 }
1769 }
1770 break;
1771
1772 case Symbol::CONSTANT:
1773 value = sym->value();
1774 break;
1775
1776 default:
1777 gold_unreachable();
1778 }
1779
1780 sym->set_value(value);
1781
1782 if (parameters->options().strip_all())
1783 {
1784 sym->set_symtab_index(-1U);
1785 return false;
1786 }
1787
1788 return true;
1789 }
1790
1791 // Write out the global symbols.
1792
1793 void
1794 Symbol_table::write_globals(const Input_objects* input_objects,
1795 const Stringpool* sympool,
1796 const Stringpool* dynpool, Output_file* of) const
1797 {
1798 switch (parameters->size_and_endianness())
1799 {
1800 #ifdef HAVE_TARGET_32_LITTLE
1801 case Parameters::TARGET_32_LITTLE:
1802 this->sized_write_globals<32, false>(input_objects, sympool,
1803 dynpool, of);
1804 break;
1805 #endif
1806 #ifdef HAVE_TARGET_32_BIG
1807 case Parameters::TARGET_32_BIG:
1808 this->sized_write_globals<32, true>(input_objects, sympool,
1809 dynpool, of);
1810 break;
1811 #endif
1812 #ifdef HAVE_TARGET_64_LITTLE
1813 case Parameters::TARGET_64_LITTLE:
1814 this->sized_write_globals<64, false>(input_objects, sympool,
1815 dynpool, of);
1816 break;
1817 #endif
1818 #ifdef HAVE_TARGET_64_BIG
1819 case Parameters::TARGET_64_BIG:
1820 this->sized_write_globals<64, true>(input_objects, sympool,
1821 dynpool, of);
1822 break;
1823 #endif
1824 default:
1825 gold_unreachable();
1826 }
1827 }
1828
1829 // Write out the global symbols.
1830
1831 template<int size, bool big_endian>
1832 void
1833 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1834 const Stringpool* sympool,
1835 const Stringpool* dynpool,
1836 Output_file* of) const
1837 {
1838 const Target& target = parameters->target();
1839
1840 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1841
1842 const unsigned int output_count = this->output_count_;
1843 const section_size_type oview_size = output_count * sym_size;
1844 const unsigned int first_global_index = this->first_global_index_;
1845 unsigned char* psyms;
1846 if (this->offset_ == 0 || output_count == 0)
1847 psyms = NULL;
1848 else
1849 psyms = of->get_output_view(this->offset_, oview_size);
1850
1851 const unsigned int dynamic_count = this->dynamic_count_;
1852 const section_size_type dynamic_size = dynamic_count * sym_size;
1853 const unsigned int first_dynamic_global_index =
1854 this->first_dynamic_global_index_;
1855 unsigned char* dynamic_view;
1856 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1857 dynamic_view = NULL;
1858 else
1859 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1860
1861 for (Symbol_table_type::const_iterator p = this->table_.begin();
1862 p != this->table_.end();
1863 ++p)
1864 {
1865 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1866
1867 // Possibly warn about unresolved symbols in shared libraries.
1868 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1869
1870 unsigned int sym_index = sym->symtab_index();
1871 unsigned int dynsym_index;
1872 if (dynamic_view == NULL)
1873 dynsym_index = -1U;
1874 else
1875 dynsym_index = sym->dynsym_index();
1876
1877 if (sym_index == -1U && dynsym_index == -1U)
1878 {
1879 // This symbol is not included in the output file.
1880 continue;
1881 }
1882
1883 unsigned int shndx;
1884 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1885 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1886 switch (sym->source())
1887 {
1888 case Symbol::FROM_OBJECT:
1889 {
1890 unsigned int in_shndx = sym->shndx();
1891
1892 // FIXME: We need some target specific support here.
1893 if (in_shndx >= elfcpp::SHN_LORESERVE
1894 && in_shndx != elfcpp::SHN_ABS
1895 && in_shndx != elfcpp::SHN_COMMON)
1896 {
1897 gold_error(_("%s: unsupported symbol section 0x%x"),
1898 sym->demangled_name().c_str(), in_shndx);
1899 shndx = in_shndx;
1900 }
1901 else
1902 {
1903 Object* symobj = sym->object();
1904 if (symobj->is_dynamic())
1905 {
1906 if (sym->needs_dynsym_value())
1907 dynsym_value = target.dynsym_value(sym);
1908 shndx = elfcpp::SHN_UNDEF;
1909 }
1910 else if (in_shndx == elfcpp::SHN_UNDEF
1911 || in_shndx == elfcpp::SHN_ABS
1912 || in_shndx == elfcpp::SHN_COMMON)
1913 shndx = in_shndx;
1914 else
1915 {
1916 Relobj* relobj = static_cast<Relobj*>(symobj);
1917 section_offset_type secoff;
1918 Output_section* os = relobj->output_section(in_shndx,
1919 &secoff);
1920 gold_assert(os != NULL);
1921 shndx = os->out_shndx();
1922
1923 // In object files symbol values are section
1924 // relative.
1925 if (parameters->options().relocatable())
1926 sym_value -= os->address();
1927 }
1928 }
1929 }
1930 break;
1931
1932 case Symbol::IN_OUTPUT_DATA:
1933 shndx = sym->output_data()->out_shndx();
1934 break;
1935
1936 case Symbol::IN_OUTPUT_SEGMENT:
1937 shndx = elfcpp::SHN_ABS;
1938 break;
1939
1940 case Symbol::CONSTANT:
1941 shndx = elfcpp::SHN_ABS;
1942 break;
1943
1944 default:
1945 gold_unreachable();
1946 }
1947
1948 if (sym_index != -1U)
1949 {
1950 sym_index -= first_global_index;
1951 gold_assert(sym_index < output_count);
1952 unsigned char* ps = psyms + (sym_index * sym_size);
1953 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1954 sympool, ps);
1955 }
1956
1957 if (dynsym_index != -1U)
1958 {
1959 dynsym_index -= first_dynamic_global_index;
1960 gold_assert(dynsym_index < dynamic_count);
1961 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1962 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1963 dynpool, pd);
1964 }
1965 }
1966
1967 of->write_output_view(this->offset_, oview_size, psyms);
1968 if (dynamic_view != NULL)
1969 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1970 }
1971
1972 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1973 // strtab holding the name.
1974
1975 template<int size, bool big_endian>
1976 void
1977 Symbol_table::sized_write_symbol(
1978 Sized_symbol<size>* sym,
1979 typename elfcpp::Elf_types<size>::Elf_Addr value,
1980 unsigned int shndx,
1981 const Stringpool* pool,
1982 unsigned char* p) const
1983 {
1984 elfcpp::Sym_write<size, big_endian> osym(p);
1985 osym.put_st_name(pool->get_offset(sym->name()));
1986 osym.put_st_value(value);
1987 osym.put_st_size(sym->symsize());
1988 // A version script may have overridden the default binding.
1989 if (sym->is_forced_local())
1990 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1991 else
1992 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1993 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1994 osym.put_st_shndx(shndx);
1995 }
1996
1997 // Check for unresolved symbols in shared libraries. This is
1998 // controlled by the --allow-shlib-undefined option.
1999
2000 // We only warn about libraries for which we have seen all the
2001 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2002 // which were not seen in this link. If we didn't see a DT_NEEDED
2003 // entry, we aren't going to be able to reliably report whether the
2004 // symbol is undefined.
2005
2006 // We also don't warn about libraries found in the system library
2007 // directory (the directory were we find libc.so); we assume that
2008 // those libraries are OK. This heuristic avoids problems in
2009 // GNU/Linux, in which -ldl can have undefined references satisfied by
2010 // ld-linux.so.
2011
2012 inline void
2013 Symbol_table::warn_about_undefined_dynobj_symbol(
2014 const Input_objects* input_objects,
2015 Symbol* sym) const
2016 {
2017 if (sym->source() == Symbol::FROM_OBJECT
2018 && sym->object()->is_dynamic()
2019 && sym->shndx() == elfcpp::SHN_UNDEF
2020 && sym->binding() != elfcpp::STB_WEAK
2021 && !parameters->options().allow_shlib_undefined()
2022 && !parameters->target().is_defined_by_abi(sym)
2023 && !input_objects->found_in_system_library_directory(sym->object()))
2024 {
2025 // A very ugly cast.
2026 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2027 if (!dynobj->has_unknown_needed_entries())
2028 gold_error(_("%s: undefined reference to '%s'"),
2029 sym->object()->name().c_str(),
2030 sym->demangled_name().c_str());
2031 }
2032 }
2033
2034 // Write out a section symbol. Return the update offset.
2035
2036 void
2037 Symbol_table::write_section_symbol(const Output_section *os,
2038 Output_file* of,
2039 off_t offset) const
2040 {
2041 switch (parameters->size_and_endianness())
2042 {
2043 #ifdef HAVE_TARGET_32_LITTLE
2044 case Parameters::TARGET_32_LITTLE:
2045 this->sized_write_section_symbol<32, false>(os, of, offset);
2046 break;
2047 #endif
2048 #ifdef HAVE_TARGET_32_BIG
2049 case Parameters::TARGET_32_BIG:
2050 this->sized_write_section_symbol<32, true>(os, of, offset);
2051 break;
2052 #endif
2053 #ifdef HAVE_TARGET_64_LITTLE
2054 case Parameters::TARGET_64_LITTLE:
2055 this->sized_write_section_symbol<64, false>(os, of, offset);
2056 break;
2057 #endif
2058 #ifdef HAVE_TARGET_64_BIG
2059 case Parameters::TARGET_64_BIG:
2060 this->sized_write_section_symbol<64, true>(os, of, offset);
2061 break;
2062 #endif
2063 default:
2064 gold_unreachable();
2065 }
2066 }
2067
2068 // Write out a section symbol, specialized for size and endianness.
2069
2070 template<int size, bool big_endian>
2071 void
2072 Symbol_table::sized_write_section_symbol(const Output_section* os,
2073 Output_file* of,
2074 off_t offset) const
2075 {
2076 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2077
2078 unsigned char* pov = of->get_output_view(offset, sym_size);
2079
2080 elfcpp::Sym_write<size, big_endian> osym(pov);
2081 osym.put_st_name(0);
2082 osym.put_st_value(os->address());
2083 osym.put_st_size(0);
2084 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2085 elfcpp::STT_SECTION));
2086 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2087 osym.put_st_shndx(os->out_shndx());
2088
2089 of->write_output_view(offset, sym_size, pov);
2090 }
2091
2092 // Print statistical information to stderr. This is used for --stats.
2093
2094 void
2095 Symbol_table::print_stats() const
2096 {
2097 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2098 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2099 program_name, this->table_.size(), this->table_.bucket_count());
2100 #else
2101 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2102 program_name, this->table_.size());
2103 #endif
2104 this->namepool_.print_stats("symbol table stringpool");
2105 }
2106
2107 // We check for ODR violations by looking for symbols with the same
2108 // name for which the debugging information reports that they were
2109 // defined in different source locations. When comparing the source
2110 // location, we consider instances with the same base filename and
2111 // line number to be the same. This is because different object
2112 // files/shared libraries can include the same header file using
2113 // different paths, and we don't want to report an ODR violation in
2114 // that case.
2115
2116 // This struct is used to compare line information, as returned by
2117 // Dwarf_line_info::one_addr2line. It implements a < comparison
2118 // operator used with std::set.
2119
2120 struct Odr_violation_compare
2121 {
2122 bool
2123 operator()(const std::string& s1, const std::string& s2) const
2124 {
2125 std::string::size_type pos1 = s1.rfind('/');
2126 std::string::size_type pos2 = s2.rfind('/');
2127 if (pos1 == std::string::npos
2128 || pos2 == std::string::npos)
2129 return s1 < s2;
2130 return s1.compare(pos1, std::string::npos,
2131 s2, pos2, std::string::npos) < 0;
2132 }
2133 };
2134
2135 // Check candidate_odr_violations_ to find symbols with the same name
2136 // but apparently different definitions (different source-file/line-no).
2137
2138 void
2139 Symbol_table::detect_odr_violations(const Task* task,
2140 const char* output_file_name) const
2141 {
2142 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2143 it != candidate_odr_violations_.end();
2144 ++it)
2145 {
2146 const char* symbol_name = it->first;
2147 // We use a sorted set so the output is deterministic.
2148 std::set<std::string, Odr_violation_compare> line_nums;
2149
2150 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2151 locs = it->second.begin();
2152 locs != it->second.end();
2153 ++locs)
2154 {
2155 // We need to lock the object in order to read it. This
2156 // means that we have to run in a singleton Task. If we
2157 // want to run this in a general Task for better
2158 // performance, we will need one Task for object, plus
2159 // appropriate locking to ensure that we don't conflict with
2160 // other uses of the object.
2161 Task_lock_obj<Object> tl(task, locs->object);
2162 std::string lineno = Dwarf_line_info::one_addr2line(
2163 locs->object, locs->shndx, locs->offset);
2164 if (!lineno.empty())
2165 line_nums.insert(lineno);
2166 }
2167
2168 if (line_nums.size() > 1)
2169 {
2170 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2171 "places (possible ODR violation):"),
2172 output_file_name, demangle(symbol_name).c_str());
2173 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2174 it2 != line_nums.end();
2175 ++it2)
2176 fprintf(stderr, " %s\n", it2->c_str());
2177 }
2178 }
2179 }
2180
2181 // Warnings functions.
2182
2183 // Add a new warning.
2184
2185 void
2186 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2187 const std::string& warning)
2188 {
2189 name = symtab->canonicalize_name(name);
2190 this->warnings_[name].set(obj, warning);
2191 }
2192
2193 // Look through the warnings and mark the symbols for which we should
2194 // warn. This is called during Layout::finalize when we know the
2195 // sources for all the symbols.
2196
2197 void
2198 Warnings::note_warnings(Symbol_table* symtab)
2199 {
2200 for (Warning_table::iterator p = this->warnings_.begin();
2201 p != this->warnings_.end();
2202 ++p)
2203 {
2204 Symbol* sym = symtab->lookup(p->first, NULL);
2205 if (sym != NULL
2206 && sym->source() == Symbol::FROM_OBJECT
2207 && sym->object() == p->second.object)
2208 sym->set_has_warning();
2209 }
2210 }
2211
2212 // Issue a warning. This is called when we see a relocation against a
2213 // symbol for which has a warning.
2214
2215 template<int size, bool big_endian>
2216 void
2217 Warnings::issue_warning(const Symbol* sym,
2218 const Relocate_info<size, big_endian>* relinfo,
2219 size_t relnum, off_t reloffset) const
2220 {
2221 gold_assert(sym->has_warning());
2222 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2223 gold_assert(p != this->warnings_.end());
2224 gold_warning_at_location(relinfo, relnum, reloffset,
2225 "%s", p->second.text.c_str());
2226 }
2227
2228 // Instantiate the templates we need. We could use the configure
2229 // script to restrict this to only the ones needed for implemented
2230 // targets.
2231
2232 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2233 template
2234 void
2235 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2236 #endif
2237
2238 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2239 template
2240 void
2241 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2242 #endif
2243
2244 #ifdef HAVE_TARGET_32_LITTLE
2245 template
2246 void
2247 Symbol_table::add_from_relobj<32, false>(
2248 Sized_relobj<32, false>* relobj,
2249 const unsigned char* syms,
2250 size_t count,
2251 const char* sym_names,
2252 size_t sym_name_size,
2253 Sized_relobj<32, true>::Symbols* sympointers);
2254 #endif
2255
2256 #ifdef HAVE_TARGET_32_BIG
2257 template
2258 void
2259 Symbol_table::add_from_relobj<32, true>(
2260 Sized_relobj<32, true>* relobj,
2261 const unsigned char* syms,
2262 size_t count,
2263 const char* sym_names,
2264 size_t sym_name_size,
2265 Sized_relobj<32, false>::Symbols* sympointers);
2266 #endif
2267
2268 #ifdef HAVE_TARGET_64_LITTLE
2269 template
2270 void
2271 Symbol_table::add_from_relobj<64, false>(
2272 Sized_relobj<64, false>* relobj,
2273 const unsigned char* syms,
2274 size_t count,
2275 const char* sym_names,
2276 size_t sym_name_size,
2277 Sized_relobj<64, true>::Symbols* sympointers);
2278 #endif
2279
2280 #ifdef HAVE_TARGET_64_BIG
2281 template
2282 void
2283 Symbol_table::add_from_relobj<64, true>(
2284 Sized_relobj<64, true>* relobj,
2285 const unsigned char* syms,
2286 size_t count,
2287 const char* sym_names,
2288 size_t sym_name_size,
2289 Sized_relobj<64, false>::Symbols* sympointers);
2290 #endif
2291
2292 #ifdef HAVE_TARGET_32_LITTLE
2293 template
2294 void
2295 Symbol_table::add_from_dynobj<32, false>(
2296 Sized_dynobj<32, false>* dynobj,
2297 const unsigned char* syms,
2298 size_t count,
2299 const char* sym_names,
2300 size_t sym_name_size,
2301 const unsigned char* versym,
2302 size_t versym_size,
2303 const std::vector<const char*>* version_map);
2304 #endif
2305
2306 #ifdef HAVE_TARGET_32_BIG
2307 template
2308 void
2309 Symbol_table::add_from_dynobj<32, true>(
2310 Sized_dynobj<32, true>* dynobj,
2311 const unsigned char* syms,
2312 size_t count,
2313 const char* sym_names,
2314 size_t sym_name_size,
2315 const unsigned char* versym,
2316 size_t versym_size,
2317 const std::vector<const char*>* version_map);
2318 #endif
2319
2320 #ifdef HAVE_TARGET_64_LITTLE
2321 template
2322 void
2323 Symbol_table::add_from_dynobj<64, false>(
2324 Sized_dynobj<64, false>* dynobj,
2325 const unsigned char* syms,
2326 size_t count,
2327 const char* sym_names,
2328 size_t sym_name_size,
2329 const unsigned char* versym,
2330 size_t versym_size,
2331 const std::vector<const char*>* version_map);
2332 #endif
2333
2334 #ifdef HAVE_TARGET_64_BIG
2335 template
2336 void
2337 Symbol_table::add_from_dynobj<64, true>(
2338 Sized_dynobj<64, true>* dynobj,
2339 const unsigned char* syms,
2340 size_t count,
2341 const char* sym_names,
2342 size_t sym_name_size,
2343 const unsigned char* versym,
2344 size_t versym_size,
2345 const std::vector<const char*>* version_map);
2346 #endif
2347
2348 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2349 template
2350 void
2351 Symbol_table::define_with_copy_reloc<32>(
2352 Sized_symbol<32>* sym,
2353 Output_data* posd,
2354 elfcpp::Elf_types<32>::Elf_Addr value);
2355 #endif
2356
2357 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2358 template
2359 void
2360 Symbol_table::define_with_copy_reloc<64>(
2361 Sized_symbol<64>* sym,
2362 Output_data* posd,
2363 elfcpp::Elf_types<64>::Elf_Addr value);
2364 #endif
2365
2366 #ifdef HAVE_TARGET_32_LITTLE
2367 template
2368 void
2369 Warnings::issue_warning<32, false>(const Symbol* sym,
2370 const Relocate_info<32, false>* relinfo,
2371 size_t relnum, off_t reloffset) const;
2372 #endif
2373
2374 #ifdef HAVE_TARGET_32_BIG
2375 template
2376 void
2377 Warnings::issue_warning<32, true>(const Symbol* sym,
2378 const Relocate_info<32, true>* relinfo,
2379 size_t relnum, off_t reloffset) const;
2380 #endif
2381
2382 #ifdef HAVE_TARGET_64_LITTLE
2383 template
2384 void
2385 Warnings::issue_warning<64, false>(const Symbol* sym,
2386 const Relocate_info<64, false>* relinfo,
2387 size_t relnum, off_t reloffset) const;
2388 #endif
2389
2390 #ifdef HAVE_TARGET_64_BIG
2391 template
2392 void
2393 Warnings::issue_warning<64, true>(const Symbol* sym,
2394 const Relocate_info<64, true>* relinfo,
2395 size_t relnum, off_t reloffset) const;
2396 #endif
2397
2398 } // End namespace gold.