gcc 3.2.2 portability hacks.
[binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <cassert>
6 #include <stdint.h>
7 #include <string>
8 #include <utility>
9
10 #include "object.h"
11 #include "output.h"
12 #include "target.h"
13 #include "symtab.h"
14
15 namespace gold
16 {
17
18 // Class Symbol.
19
20 // Initialize fields in Symbol. This initializes everything except u_
21 // and source_.
22
23 void
24 Symbol::init_fields(const char* name, const char* version,
25 elfcpp::STT type, elfcpp::STB binding,
26 elfcpp::STV visibility, unsigned char nonvis)
27 {
28 this->name_ = name;
29 this->version_ = version;
30 this->got_offset_ = 0;
31 this->type_ = type;
32 this->binding_ = binding;
33 this->visibility_ = visibility;
34 this->nonvis_ = nonvis;
35 this->is_target_special_ = false;
36 this->is_def_ = false;
37 this->is_forwarder_ = false;
38 this->in_dyn_ = false;
39 this->has_got_offset_ = false;
40 }
41
42 // Initialize the fields in the base class Symbol for SYM in OBJECT.
43
44 template<int size, bool big_endian>
45 void
46 Symbol::init_base(const char* name, const char* version, Object* object,
47 const elfcpp::Sym<size, big_endian>& sym)
48 {
49 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
50 sym.get_st_visibility(), sym.get_st_nonvis());
51 this->u_.from_object.object = object;
52 // FIXME: Handle SHN_XINDEX.
53 this->u_.from_object.shnum = sym.get_st_shndx();
54 this->source_ = FROM_OBJECT;
55 this->in_dyn_ = object->is_dynamic();
56 }
57
58 // Initialize the fields in the base class Symbol for a symbol defined
59 // in an Output_data.
60
61 void
62 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
63 elfcpp::STB binding, elfcpp::STV visibility,
64 unsigned char nonvis, bool offset_is_from_end)
65 {
66 this->init_fields(name, NULL, type, binding, visibility, nonvis);
67 this->u_.in_output_data.output_data = od;
68 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
69 this->source_ = IN_OUTPUT_DATA;
70 }
71
72 // Initialize the fields in the base class Symbol for a symbol defined
73 // in an Output_segment.
74
75 void
76 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
77 elfcpp::STB binding, elfcpp::STV visibility,
78 unsigned char nonvis, Segment_offset_base offset_base)
79 {
80 this->init_fields(name, NULL, type, binding, visibility, nonvis);
81 this->u_.in_output_segment.output_segment = os;
82 this->u_.in_output_segment.offset_base = offset_base;
83 this->source_ = IN_OUTPUT_SEGMENT;
84 }
85
86 // Initialize the fields in the base class Symbol for a symbol defined
87 // as a constant.
88
89 void
90 Symbol::init_base(const char* name, elfcpp::STT type,
91 elfcpp::STB binding, elfcpp::STV visibility,
92 unsigned char nonvis)
93 {
94 this->init_fields(name, NULL, type, binding, visibility, nonvis);
95 this->source_ = CONSTANT;
96 }
97
98 // Initialize the fields in Sized_symbol for SYM in OBJECT.
99
100 template<int size>
101 template<bool big_endian>
102 void
103 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
104 const elfcpp::Sym<size, big_endian>& sym)
105 {
106 this->init_base(name, version, object, sym);
107 this->value_ = sym.get_st_value();
108 this->symsize_ = sym.get_st_size();
109 }
110
111 // Initialize the fields in Sized_symbol for a symbol defined in an
112 // Output_data.
113
114 template<int size>
115 void
116 Sized_symbol<size>::init(const char* name, Output_data* od,
117 Value_type value, Size_type symsize,
118 elfcpp::STT type, elfcpp::STB binding,
119 elfcpp::STV visibility, unsigned char nonvis,
120 bool offset_is_from_end)
121 {
122 this->init_base(name, od, type, binding, visibility, nonvis,
123 offset_is_from_end);
124 this->value_ = value;
125 this->symsize_ = symsize;
126 }
127
128 // Initialize the fields in Sized_symbol for a symbol defined in an
129 // Output_segment.
130
131 template<int size>
132 void
133 Sized_symbol<size>::init(const char* name, Output_segment* os,
134 Value_type value, Size_type symsize,
135 elfcpp::STT type, elfcpp::STB binding,
136 elfcpp::STV visibility, unsigned char nonvis,
137 Segment_offset_base offset_base)
138 {
139 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
140 this->value_ = value;
141 this->symsize_ = symsize;
142 }
143
144 // Initialize the fields in Sized_symbol for a symbol defined as a
145 // constant.
146
147 template<int size>
148 void
149 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
150 elfcpp::STT type, elfcpp::STB binding,
151 elfcpp::STV visibility, unsigned char nonvis)
152 {
153 this->init_base(name, type, binding, visibility, nonvis);
154 this->value_ = value;
155 this->symsize_ = symsize;
156 }
157
158 // Class Symbol_table.
159
160 Symbol_table::Symbol_table()
161 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
162 forwarders_(), commons_()
163 {
164 }
165
166 Symbol_table::~Symbol_table()
167 {
168 }
169
170 // The hash function. The key is always canonicalized, so we use a
171 // simple combination of the pointers.
172
173 size_t
174 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
175 {
176 return (reinterpret_cast<size_t>(key.first)
177 ^ reinterpret_cast<size_t>(key.second));
178 }
179
180 // The symbol table key equality function. This is only called with
181 // canonicalized name and version strings, so we can use pointer
182 // comparison.
183
184 bool
185 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
186 const Symbol_table_key& k2) const
187 {
188 return k1.first == k2.first && k1.second == k2.second;
189 }
190
191 // Make TO a symbol which forwards to FROM.
192
193 void
194 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
195 {
196 assert(!from->is_forwarder() && !to->is_forwarder());
197 this->forwarders_[from] = to;
198 from->set_forwarder();
199 }
200
201 // Resolve the forwards from FROM, returning the real symbol.
202
203 Symbol*
204 Symbol_table::resolve_forwards(Symbol* from) const
205 {
206 assert(from->is_forwarder());
207 Unordered_map<Symbol*, Symbol*>::const_iterator p =
208 this->forwarders_.find(from);
209 assert(p != this->forwarders_.end());
210 return p->second;
211 }
212
213 // Look up a symbol by name.
214
215 Symbol*
216 Symbol_table::lookup(const char* name, const char* version) const
217 {
218 name = this->namepool_.find(name);
219 if (name == NULL)
220 return NULL;
221 if (version != NULL)
222 {
223 version = this->namepool_.find(version);
224 if (version == NULL)
225 return NULL;
226 }
227
228 Symbol_table_key key(name, version);
229 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
230 if (p == this->table_.end())
231 return NULL;
232 return p->second;
233 }
234
235 // Resolve a Symbol with another Symbol. This is only used in the
236 // unusual case where there are references to both an unversioned
237 // symbol and a symbol with a version, and we then discover that that
238 // version is the default version. Because this is unusual, we do
239 // this the slow way, by converting back to an ELF symbol.
240
241 template<int size, bool big_endian>
242 void
243 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from
244 ACCEPT_SIZE_ENDIAN)
245 {
246 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
247 elfcpp::Sym_write<size, big_endian> esym(buf);
248 // We don't bother to set the st_name field.
249 esym.put_st_value(from->value());
250 esym.put_st_size(from->symsize());
251 esym.put_st_info(from->binding(), from->type());
252 esym.put_st_other(from->visibility(), from->nonvis());
253 esym.put_st_shndx(from->shnum());
254 Symbol_table::resolve(to, esym.sym(), from->object());
255 }
256
257 // Add one symbol from OBJECT to the symbol table. NAME is symbol
258 // name and VERSION is the version; both are canonicalized. DEF is
259 // whether this is the default version.
260
261 // If DEF is true, then this is the definition of a default version of
262 // a symbol. That means that any lookup of NAME/NULL and any lookup
263 // of NAME/VERSION should always return the same symbol. This is
264 // obvious for references, but in particular we want to do this for
265 // definitions: overriding NAME/NULL should also override
266 // NAME/VERSION. If we don't do that, it would be very hard to
267 // override functions in a shared library which uses versioning.
268
269 // We implement this by simply making both entries in the hash table
270 // point to the same Symbol structure. That is easy enough if this is
271 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
272 // that we have seen both already, in which case they will both have
273 // independent entries in the symbol table. We can't simply change
274 // the symbol table entry, because we have pointers to the entries
275 // attached to the object files. So we mark the entry attached to the
276 // object file as a forwarder, and record it in the forwarders_ map.
277 // Note that entries in the hash table will never be marked as
278 // forwarders.
279
280 template<int size, bool big_endian>
281 Symbol*
282 Symbol_table::add_from_object(Sized_object<size, big_endian>* object,
283 const char *name,
284 const char *version, bool def,
285 const elfcpp::Sym<size, big_endian>& sym)
286 {
287 Symbol* const snull = NULL;
288 std::pair<typename Symbol_table_type::iterator, bool> ins =
289 this->table_.insert(std::make_pair(std::make_pair(name, version), snull));
290
291 std::pair<typename Symbol_table_type::iterator, bool> insdef =
292 std::make_pair(this->table_.end(), false);
293 if (def)
294 {
295 const char* const vnull = NULL;
296 insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull),
297 snull));
298 }
299
300 // ins.first: an iterator, which is a pointer to a pair.
301 // ins.first->first: the key (a pair of name and version).
302 // ins.first->second: the value (Symbol*).
303 // ins.second: true if new entry was inserted, false if not.
304
305 Sized_symbol<size>* ret;
306 bool was_undefined;
307 bool was_common;
308 if (!ins.second)
309 {
310 // We already have an entry for NAME/VERSION.
311 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
312 SELECT_SIZE(size));
313 assert(ret != NULL);
314
315 was_undefined = ret->is_undefined();
316 was_common = ret->is_common();
317
318 Symbol_table::resolve(ret, sym, object);
319
320 if (def)
321 {
322 if (insdef.second)
323 {
324 // This is the first time we have seen NAME/NULL. Make
325 // NAME/NULL point to NAME/VERSION.
326 insdef.first->second = ret;
327 }
328 else
329 {
330 // This is the unfortunate case where we already have
331 // entries for both NAME/VERSION and NAME/NULL.
332 const Sized_symbol<size>* sym2;
333 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
334 insdef.first->second
335 SELECT_SIZE(size));
336 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
337 ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian));
338 this->make_forwarder(insdef.first->second, ret);
339 insdef.first->second = ret;
340 }
341 }
342 }
343 else
344 {
345 // This is the first time we have seen NAME/VERSION.
346 assert(ins.first->second == NULL);
347
348 was_undefined = false;
349 was_common = false;
350
351 if (def && !insdef.second)
352 {
353 // We already have an entry for NAME/NULL. Make
354 // NAME/VERSION point to it.
355 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
356 insdef.first->second
357 SELECT_SIZE(size));
358 Symbol_table::resolve(ret, sym, object);
359 ins.first->second = ret;
360 }
361 else
362 {
363 Sized_target<size, big_endian>* target = object->sized_target();
364 if (!target->has_make_symbol())
365 ret = new Sized_symbol<size>();
366 else
367 {
368 ret = target->make_symbol();
369 if (ret == NULL)
370 {
371 // This means that we don't want a symbol table
372 // entry after all.
373 if (!def)
374 this->table_.erase(ins.first);
375 else
376 {
377 this->table_.erase(insdef.first);
378 // Inserting insdef invalidated ins.
379 this->table_.erase(std::make_pair(name, version));
380 }
381 return NULL;
382 }
383 }
384
385 ret->init(name, version, object, sym);
386
387 ins.first->second = ret;
388 if (def)
389 {
390 // This is the first time we have seen NAME/NULL. Point
391 // it at the new entry for NAME/VERSION.
392 assert(insdef.second);
393 insdef.first->second = ret;
394 }
395 }
396 }
397
398 // Record every time we see a new undefined symbol, to speed up
399 // archive groups.
400 if (!was_undefined && ret->is_undefined())
401 ++this->saw_undefined_;
402
403 // Keep track of common symbols, to speed up common symbol
404 // allocation.
405 if (!was_common && ret->is_common())
406 this->commons_.push_back(ret);
407
408 return ret;
409 }
410
411 // Add all the symbols in an object to the hash table.
412
413 template<int size, bool big_endian>
414 void
415 Symbol_table::add_from_object(
416 Sized_object<size, big_endian>* object,
417 const elfcpp::Sym<size, big_endian>* syms,
418 size_t count,
419 const char* sym_names,
420 size_t sym_name_size,
421 Symbol** sympointers)
422 {
423 // We take the size from the first object we see.
424 if (this->get_size() == 0)
425 this->set_size(size);
426
427 if (size != this->get_size() || size != object->target()->get_size())
428 {
429 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
430 program_name, object->name().c_str());
431 gold_exit(false);
432 }
433
434 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
435
436 const unsigned char* p = reinterpret_cast<const unsigned char*>(syms);
437 for (size_t i = 0; i < count; ++i, p += sym_size)
438 {
439 elfcpp::Sym<size, big_endian> sym(p);
440 elfcpp::Sym<size, big_endian>* psym = &sym;
441
442 unsigned int st_name = psym->get_st_name();
443 if (st_name >= sym_name_size)
444 {
445 fprintf(stderr,
446 _("%s: %s: bad global symbol name offset %u at %lu\n"),
447 program_name, object->name().c_str(), st_name,
448 static_cast<unsigned long>(i));
449 gold_exit(false);
450 }
451
452 // A symbol defined in a section which we are not including must
453 // be treated as an undefined symbol.
454 unsigned char symbuf[sym_size];
455 elfcpp::Sym<size, big_endian> sym2(symbuf);
456 unsigned int st_shndx = psym->get_st_shndx();
457 if (st_shndx != elfcpp::SHN_UNDEF
458 && st_shndx < elfcpp::SHN_LORESERVE
459 && !object->is_section_included(st_shndx))
460 {
461 memcpy(symbuf, p, sym_size);
462 elfcpp::Sym_write<size, big_endian> sw(symbuf);
463 sw.put_st_shndx(elfcpp::SHN_UNDEF);
464 psym = &sym2;
465 }
466
467 const char* name = sym_names + st_name;
468
469 // In an object file, an '@' in the name separates the symbol
470 // name from the version name. If there are two '@' characters,
471 // this is the default version.
472 const char* ver = strchr(name, '@');
473
474 Symbol* res;
475 if (ver == NULL)
476 {
477 name = this->namepool_.add(name);
478 res = this->add_from_object(object, name, NULL, false, *psym);
479 }
480 else
481 {
482 name = this->namepool_.add(name, ver - name);
483 bool def = false;
484 ++ver;
485 if (*ver == '@')
486 {
487 def = true;
488 ++ver;
489 }
490 ver = this->namepool_.add(ver);
491 res = this->add_from_object(object, name, ver, def, *psym);
492 }
493
494 *sympointers++ = res;
495 }
496 }
497
498 // Create and return a specially defined symbol. If ONLY_IF_REF is
499 // true, then only create the symbol if there is a reference to it.
500
501 template<int size, bool big_endian>
502 Sized_symbol<size>*
503 Symbol_table::define_special_symbol(Target* target, const char* name,
504 bool only_if_ref
505 ACCEPT_SIZE_ENDIAN)
506 {
507 assert(this->size_ == size);
508
509 Symbol* oldsym;
510 Sized_symbol<size>* sym;
511
512 if (only_if_ref)
513 {
514 oldsym = this->lookup(name, NULL);
515 if (oldsym == NULL)
516 return NULL;
517 sym = NULL;
518
519 // Canonicalize NAME.
520 name = oldsym->name();
521 }
522 else
523 {
524 // Canonicalize NAME.
525 name = this->namepool_.add(name);
526
527 Symbol* const snull = NULL;
528 const char* const vnull = NULL;
529 std::pair<typename Symbol_table_type::iterator, bool> ins =
530 this->table_.insert(std::make_pair(std::make_pair(name, vnull),
531 snull));
532
533 if (!ins.second)
534 {
535 // We already have a symbol table entry for NAME.
536 oldsym = ins.first->second;
537 assert(oldsym != NULL);
538 sym = NULL;
539 }
540 else
541 {
542 // We haven't seen this symbol before.
543 assert(ins.first->second == NULL);
544
545 if (!target->has_make_symbol())
546 sym = new Sized_symbol<size>();
547 else
548 {
549 assert(target->get_size() == size);
550 assert(target->is_big_endian() ? big_endian : !big_endian);
551 typedef Sized_target<size, big_endian> My_target;
552 My_target* sized_target = static_cast<My_target*>(target);
553 sym = sized_target->make_symbol();
554 if (sym == NULL)
555 return NULL;
556 }
557
558 ins.first->second = sym;
559 oldsym = NULL;
560 }
561 }
562
563 if (oldsym != NULL)
564 {
565 assert(sym == NULL);
566
567 sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
568 SELECT_SIZE(size));
569 assert(sym->source() == Symbol::FROM_OBJECT);
570 const int old_shnum = sym->shnum();
571 if (old_shnum != elfcpp::SHN_UNDEF
572 && old_shnum != elfcpp::SHN_COMMON
573 && !sym->object()->is_dynamic())
574 {
575 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
576 program_name, name);
577 // FIXME: Report old location. Record that we have seen an
578 // error.
579 return NULL;
580 }
581
582 // Our new definition is going to override the old reference.
583 }
584
585 return sym;
586 }
587
588 // Define a symbol based on an Output_data.
589
590 void
591 Symbol_table::define_in_output_data(Target* target, const char* name,
592 Output_data* od,
593 uint64_t value, uint64_t symsize,
594 elfcpp::STT type, elfcpp::STB binding,
595 elfcpp::STV visibility,
596 unsigned char nonvis,
597 bool offset_is_from_end,
598 bool only_if_ref)
599 {
600 assert(target->get_size() == this->size_);
601 if (this->size_ == 32)
602 this->do_define_in_output_data<32>(target, name, od, value, symsize,
603 type, binding, visibility, nonvis,
604 offset_is_from_end, only_if_ref);
605 else if (this->size_ == 64)
606 this->do_define_in_output_data<64>(target, name, od, value, symsize,
607 type, binding, visibility, nonvis,
608 offset_is_from_end, only_if_ref);
609 else
610 abort();
611 }
612
613 // Define a symbol in an Output_data, sized version.
614
615 template<int size>
616 void
617 Symbol_table::do_define_in_output_data(
618 Target* target,
619 const char* name,
620 Output_data* od,
621 typename elfcpp::Elf_types<size>::Elf_Addr value,
622 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
623 elfcpp::STT type,
624 elfcpp::STB binding,
625 elfcpp::STV visibility,
626 unsigned char nonvis,
627 bool offset_is_from_end,
628 bool only_if_ref)
629 {
630 Sized_symbol<size>* sym;
631
632 if (target->is_big_endian())
633 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
634 target, name, only_if_ref
635 SELECT_SIZE_ENDIAN(size, true));
636 else
637 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
638 target, name, only_if_ref
639 SELECT_SIZE_ENDIAN(size, false));
640
641 if (sym == NULL)
642 return;
643
644 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
645 offset_is_from_end);
646 }
647
648 // Define a symbol based on an Output_segment.
649
650 void
651 Symbol_table::define_in_output_segment(Target* target, const char* name,
652 Output_segment* os,
653 uint64_t value, uint64_t symsize,
654 elfcpp::STT type, elfcpp::STB binding,
655 elfcpp::STV visibility,
656 unsigned char nonvis,
657 Symbol::Segment_offset_base offset_base,
658 bool only_if_ref)
659 {
660 assert(target->get_size() == this->size_);
661 if (this->size_ == 32)
662 this->do_define_in_output_segment<32>(target, name, os, value, symsize,
663 type, binding, visibility, nonvis,
664 offset_base, only_if_ref);
665 else if (this->size_ == 64)
666 this->do_define_in_output_segment<64>(target, name, os, value, symsize,
667 type, binding, visibility, nonvis,
668 offset_base, only_if_ref);
669 else
670 abort();
671 }
672
673 // Define a symbol in an Output_segment, sized version.
674
675 template<int size>
676 void
677 Symbol_table::do_define_in_output_segment(
678 Target* target,
679 const char* name,
680 Output_segment* os,
681 typename elfcpp::Elf_types<size>::Elf_Addr value,
682 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
683 elfcpp::STT type,
684 elfcpp::STB binding,
685 elfcpp::STV visibility,
686 unsigned char nonvis,
687 Symbol::Segment_offset_base offset_base,
688 bool only_if_ref)
689 {
690 Sized_symbol<size>* sym;
691
692 if (target->is_big_endian())
693 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
694 target, name, only_if_ref
695 SELECT_SIZE_ENDIAN(size, true));
696 else
697 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
698 target, name, only_if_ref
699 SELECT_SIZE_ENDIAN(size, false));
700
701 if (sym == NULL)
702 return;
703
704 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
705 offset_base);
706 }
707
708 // Define a special symbol with a constant value. It is a multiple
709 // definition error if this symbol is already defined.
710
711 void
712 Symbol_table::define_as_constant(Target* target, const char* name,
713 uint64_t value, uint64_t symsize,
714 elfcpp::STT type, elfcpp::STB binding,
715 elfcpp::STV visibility, unsigned char nonvis,
716 bool only_if_ref)
717 {
718 assert(target->get_size() == this->size_);
719 if (this->size_ == 32)
720 this->do_define_as_constant<32>(target, name, value, symsize,
721 type, binding, visibility, nonvis,
722 only_if_ref);
723 else if (this->size_ == 64)
724 this->do_define_as_constant<64>(target, name, value, symsize,
725 type, binding, visibility, nonvis,
726 only_if_ref);
727 else
728 abort();
729 }
730
731 // Define a symbol as a constant, sized version.
732
733 template<int size>
734 void
735 Symbol_table::do_define_as_constant(
736 Target* target,
737 const char* name,
738 typename elfcpp::Elf_types<size>::Elf_Addr value,
739 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
740 elfcpp::STT type,
741 elfcpp::STB binding,
742 elfcpp::STV visibility,
743 unsigned char nonvis,
744 bool only_if_ref)
745 {
746 Sized_symbol<size>* sym;
747
748 if (target->is_big_endian())
749 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
750 target, name, only_if_ref
751 SELECT_SIZE_ENDIAN(size, true));
752 else
753 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
754 target, name, only_if_ref
755 SELECT_SIZE_ENDIAN(size, false));
756
757 if (sym == NULL)
758 return;
759
760 sym->init(name, value, symsize, type, binding, visibility, nonvis);
761 }
762
763 // Define a set of symbols in output sections.
764
765 void
766 Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
767 const Define_symbol_in_section* p)
768 {
769 for (int i = 0; i < count; ++i, ++p)
770 {
771 Output_section* os = layout->find_output_section(p->output_section);
772 if (os != NULL)
773 this->define_in_output_data(target, p->name, os, p->value, p->size,
774 p->type, p->binding, p->visibility,
775 p->nonvis, p->offset_is_from_end,
776 p->only_if_ref);
777 else
778 this->define_as_constant(target, p->name, 0, p->size, p->type,
779 p->binding, p->visibility, p->nonvis,
780 p->only_if_ref);
781 }
782 }
783
784 // Define a set of symbols in output segments.
785
786 void
787 Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
788 const Define_symbol_in_segment* p)
789 {
790 for (int i = 0; i < count; ++i, ++p)
791 {
792 Output_segment* os = layout->find_output_segment(p->segment_type,
793 p->segment_flags_set,
794 p->segment_flags_clear);
795 if (os != NULL)
796 this->define_in_output_segment(target, p->name, os, p->value, p->size,
797 p->type, p->binding, p->visibility,
798 p->nonvis, p->offset_base,
799 p->only_if_ref);
800 else
801 this->define_as_constant(target, p->name, 0, p->size, p->type,
802 p->binding, p->visibility, p->nonvis,
803 p->only_if_ref);
804 }
805 }
806
807 // Set the final values for all the symbols. Record the file offset
808 // OFF. Add their names to POOL. Return the new file offset.
809
810 off_t
811 Symbol_table::finalize(off_t off, Stringpool* pool)
812 {
813 if (this->size_ == 32)
814 return this->sized_finalize<32>(off, pool);
815 else if (this->size_ == 64)
816 return this->sized_finalize<64>(off, pool);
817 else
818 abort();
819 }
820
821 // Set the final value for all the symbols. This is called after
822 // Layout::finalize, so all the output sections have their final
823 // address.
824
825 template<int size>
826 off_t
827 Symbol_table::sized_finalize(off_t off, Stringpool* pool)
828 {
829 off = align_address(off, size >> 3);
830 this->offset_ = off;
831
832 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
833 Symbol_table_type::iterator p = this->table_.begin();
834 size_t count = 0;
835 while (p != this->table_.end())
836 {
837 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
838
839 // FIXME: Here we need to decide which symbols should go into
840 // the output file.
841
842 typename Sized_symbol<size>::Value_type value;
843
844 switch (sym->source())
845 {
846 case Symbol::FROM_OBJECT:
847 {
848 unsigned int shnum = sym->shnum();
849
850 // FIXME: We need some target specific support here.
851 if (shnum >= elfcpp::SHN_LORESERVE
852 && shnum != elfcpp::SHN_ABS)
853 {
854 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
855 program_name, sym->name(), shnum);
856 gold_exit(false);
857 }
858
859 if (shnum == elfcpp::SHN_UNDEF)
860 value = 0;
861 else if (shnum == elfcpp::SHN_ABS)
862 value = sym->value();
863 else
864 {
865 off_t secoff;
866 Output_section* os = sym->object()->output_section(shnum,
867 &secoff);
868
869 if (os == NULL)
870 {
871 // We should be able to erase this symbol from the
872 // symbol table, but at least with gcc 4.0.2
873 // std::unordered_map::erase doesn't appear to return
874 // the new iterator.
875 // p = this->table_.erase(p);
876 ++p;
877 continue;
878 }
879
880 value = sym->value() + os->address() + secoff;
881 }
882 }
883 break;
884
885 case Symbol::IN_OUTPUT_DATA:
886 {
887 Output_data* od = sym->output_data();
888 value = sym->value() + od->address();
889 if (sym->offset_is_from_end())
890 value += od->data_size();
891 }
892 break;
893
894 case Symbol::IN_OUTPUT_SEGMENT:
895 {
896 Output_segment* os = sym->output_segment();
897 value = sym->value() + os->vaddr();
898 switch (sym->offset_base())
899 {
900 case Symbol::SEGMENT_START:
901 break;
902 case Symbol::SEGMENT_END:
903 value += os->memsz();
904 break;
905 case Symbol::SEGMENT_BSS:
906 value += os->filesz();
907 break;
908 default:
909 abort();
910 }
911 }
912 break;
913
914 case Symbol::CONSTANT:
915 value = sym->value();
916 break;
917
918 default:
919 abort();
920 }
921
922 sym->set_value(value);
923 pool->add(sym->name());
924 ++count;
925 off += sym_size;
926 ++p;
927 }
928
929 this->output_count_ = count;
930
931 return off;
932 }
933
934 // Write out the global symbols.
935
936 void
937 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
938 Output_file* of) const
939 {
940 if (this->size_ == 32)
941 {
942 if (target->is_big_endian())
943 this->sized_write_globals<32, true>(target, sympool, of);
944 else
945 this->sized_write_globals<32, false>(target, sympool, of);
946 }
947 else if (this->size_ == 64)
948 {
949 if (target->is_big_endian())
950 this->sized_write_globals<64, true>(target, sympool, of);
951 else
952 this->sized_write_globals<64, false>(target, sympool, of);
953 }
954 else
955 abort();
956 }
957
958 // Write out the global symbols.
959
960 template<int size, bool big_endian>
961 void
962 Symbol_table::sized_write_globals(const Target*,
963 const Stringpool* sympool,
964 Output_file* of) const
965 {
966 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
967 unsigned char* psyms = of->get_output_view(this->offset_,
968 this->output_count_ * sym_size);
969 unsigned char* ps = psyms;
970 for (Symbol_table_type::const_iterator p = this->table_.begin();
971 p != this->table_.end();
972 ++p)
973 {
974 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
975
976 // FIXME: This repeats sized_finalize().
977
978 unsigned int shndx;
979 switch (sym->source())
980 {
981 case Symbol::FROM_OBJECT:
982 {
983 unsigned int shnum = sym->shnum();
984
985 // FIXME: We need some target specific support here.
986 if (shnum >= elfcpp::SHN_LORESERVE
987 && shnum != elfcpp::SHN_ABS)
988 {
989 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
990 program_name, sym->name(), sym->shnum());
991 gold_exit(false);
992 }
993
994 if (shnum == elfcpp::SHN_UNDEF || shnum == elfcpp::SHN_ABS)
995 shndx = shnum;
996 else
997 {
998 off_t secoff;
999 Output_section* os = sym->object()->output_section(shnum,
1000 &secoff);
1001 if (os == NULL)
1002 continue;
1003
1004 shndx = os->out_shndx();
1005 }
1006 }
1007 break;
1008
1009 case Symbol::IN_OUTPUT_DATA:
1010 shndx = sym->output_data()->out_shndx();
1011 break;
1012
1013 case Symbol::IN_OUTPUT_SEGMENT:
1014 shndx = elfcpp::SHN_ABS;
1015 break;
1016
1017 case Symbol::CONSTANT:
1018 shndx = elfcpp::SHN_ABS;
1019 break;
1020
1021 default:
1022 abort();
1023 }
1024
1025 elfcpp::Sym_write<size, big_endian> osym(ps);
1026 osym.put_st_name(sympool->get_offset(sym->name()));
1027 osym.put_st_value(sym->value());
1028 osym.put_st_size(sym->symsize());
1029 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1030 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
1031 sym->nonvis()));
1032 osym.put_st_shndx(shndx);
1033
1034 ps += sym_size;
1035 }
1036
1037 of->write_output_view(this->offset_, this->output_count_ * sym_size, psyms);
1038 }
1039
1040 // Instantiate the templates we need. We could use the configure
1041 // script to restrict this to only the ones needed for implemented
1042 // targets.
1043
1044 template
1045 void
1046 Symbol_table::add_from_object<32, true>(
1047 Sized_object<32, true>* object,
1048 const elfcpp::Sym<32, true>* syms,
1049 size_t count,
1050 const char* sym_names,
1051 size_t sym_name_size,
1052 Symbol** sympointers);
1053
1054 template
1055 void
1056 Symbol_table::add_from_object<32, false>(
1057 Sized_object<32, false>* object,
1058 const elfcpp::Sym<32, false>* syms,
1059 size_t count,
1060 const char* sym_names,
1061 size_t sym_name_size,
1062 Symbol** sympointers);
1063
1064 template
1065 void
1066 Symbol_table::add_from_object<64, true>(
1067 Sized_object<64, true>* object,
1068 const elfcpp::Sym<64, true>* syms,
1069 size_t count,
1070 const char* sym_names,
1071 size_t sym_name_size,
1072 Symbol** sympointers);
1073
1074 template
1075 void
1076 Symbol_table::add_from_object<64, false>(
1077 Sized_object<64, false>* object,
1078 const elfcpp::Sym<64, false>* syms,
1079 size_t count,
1080 const char* sym_names,
1081 size_t sym_name_size,
1082 Symbol** sympointers);
1083
1084 } // End namespace gold.