gcc 3.2.2 portability hacks.
[binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 #include "gold.h"
4
5 #include <stdint.h>
6 #include <string>
7 #include <utility>
8
9 #include "object.h"
10 #include "dynobj.h"
11 #include "output.h"
12 #include "target.h"
13 #include "workqueue.h"
14 #include "symtab.h"
15
16 namespace gold
17 {
18
19 // Class Symbol.
20
21 // Initialize fields in Symbol. This initializes everything except u_
22 // and source_.
23
24 void
25 Symbol::init_fields(const char* name, const char* version,
26 elfcpp::STT type, elfcpp::STB binding,
27 elfcpp::STV visibility, unsigned char nonvis)
28 {
29 this->name_ = name;
30 this->version_ = version;
31 this->symtab_index_ = 0;
32 this->dynsym_index_ = 0;
33 this->got_offset_ = 0;
34 this->type_ = type;
35 this->binding_ = binding;
36 this->visibility_ = visibility;
37 this->nonvis_ = nonvis;
38 this->is_target_special_ = false;
39 this->is_def_ = false;
40 this->is_forwarder_ = false;
41 this->needs_dynsym_entry_ = false;
42 this->in_dyn_ = false;
43 this->has_got_offset_ = false;
44 this->has_warning_ = false;
45 }
46
47 // Initialize the fields in the base class Symbol for SYM in OBJECT.
48
49 template<int size, bool big_endian>
50 void
51 Symbol::init_base(const char* name, const char* version, Object* object,
52 const elfcpp::Sym<size, big_endian>& sym)
53 {
54 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
55 sym.get_st_visibility(), sym.get_st_nonvis());
56 this->u_.from_object.object = object;
57 // FIXME: Handle SHN_XINDEX.
58 this->u_.from_object.shndx = sym.get_st_shndx();
59 this->source_ = FROM_OBJECT;
60 this->in_dyn_ = object->is_dynamic();
61 }
62
63 // Initialize the fields in the base class Symbol for a symbol defined
64 // in an Output_data.
65
66 void
67 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
68 elfcpp::STB binding, elfcpp::STV visibility,
69 unsigned char nonvis, bool offset_is_from_end)
70 {
71 this->init_fields(name, NULL, type, binding, visibility, nonvis);
72 this->u_.in_output_data.output_data = od;
73 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
74 this->source_ = IN_OUTPUT_DATA;
75 }
76
77 // Initialize the fields in the base class Symbol for a symbol defined
78 // in an Output_segment.
79
80 void
81 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
82 elfcpp::STB binding, elfcpp::STV visibility,
83 unsigned char nonvis, Segment_offset_base offset_base)
84 {
85 this->init_fields(name, NULL, type, binding, visibility, nonvis);
86 this->u_.in_output_segment.output_segment = os;
87 this->u_.in_output_segment.offset_base = offset_base;
88 this->source_ = IN_OUTPUT_SEGMENT;
89 }
90
91 // Initialize the fields in the base class Symbol for a symbol defined
92 // as a constant.
93
94 void
95 Symbol::init_base(const char* name, elfcpp::STT type,
96 elfcpp::STB binding, elfcpp::STV visibility,
97 unsigned char nonvis)
98 {
99 this->init_fields(name, NULL, type, binding, visibility, nonvis);
100 this->source_ = CONSTANT;
101 }
102
103 // Initialize the fields in Sized_symbol for SYM in OBJECT.
104
105 template<int size>
106 template<bool big_endian>
107 void
108 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
109 const elfcpp::Sym<size, big_endian>& sym)
110 {
111 this->init_base(name, version, object, sym);
112 this->value_ = sym.get_st_value();
113 this->symsize_ = sym.get_st_size();
114 }
115
116 // Initialize the fields in Sized_symbol for a symbol defined in an
117 // Output_data.
118
119 template<int size>
120 void
121 Sized_symbol<size>::init(const char* name, Output_data* od,
122 Value_type value, Size_type symsize,
123 elfcpp::STT type, elfcpp::STB binding,
124 elfcpp::STV visibility, unsigned char nonvis,
125 bool offset_is_from_end)
126 {
127 this->init_base(name, od, type, binding, visibility, nonvis,
128 offset_is_from_end);
129 this->value_ = value;
130 this->symsize_ = symsize;
131 }
132
133 // Initialize the fields in Sized_symbol for a symbol defined in an
134 // Output_segment.
135
136 template<int size>
137 void
138 Sized_symbol<size>::init(const char* name, Output_segment* os,
139 Value_type value, Size_type symsize,
140 elfcpp::STT type, elfcpp::STB binding,
141 elfcpp::STV visibility, unsigned char nonvis,
142 Segment_offset_base offset_base)
143 {
144 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
145 this->value_ = value;
146 this->symsize_ = symsize;
147 }
148
149 // Initialize the fields in Sized_symbol for a symbol defined as a
150 // constant.
151
152 template<int size>
153 void
154 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
155 elfcpp::STT type, elfcpp::STB binding,
156 elfcpp::STV visibility, unsigned char nonvis)
157 {
158 this->init_base(name, type, binding, visibility, nonvis);
159 this->value_ = value;
160 this->symsize_ = symsize;
161 }
162
163 // Class Symbol_table.
164
165 Symbol_table::Symbol_table()
166 : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(),
167 forwarders_(), commons_(), warnings_()
168 {
169 }
170
171 Symbol_table::~Symbol_table()
172 {
173 }
174
175 // The hash function. The key is always canonicalized, so we use a
176 // simple combination of the pointers.
177
178 size_t
179 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
180 {
181 return key.first ^ key.second;
182 }
183
184 // The symbol table key equality function. This is only called with
185 // canonicalized name and version strings, so we can use pointer
186 // comparison.
187
188 bool
189 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
190 const Symbol_table_key& k2) const
191 {
192 return k1.first == k2.first && k1.second == k2.second;
193 }
194
195 // Make TO a symbol which forwards to FROM.
196
197 void
198 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
199 {
200 gold_assert(from != to);
201 gold_assert(!from->is_forwarder() && !to->is_forwarder());
202 this->forwarders_[from] = to;
203 from->set_forwarder();
204 }
205
206 // Resolve the forwards from FROM, returning the real symbol.
207
208 Symbol*
209 Symbol_table::resolve_forwards(const Symbol* from) const
210 {
211 gold_assert(from->is_forwarder());
212 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
213 this->forwarders_.find(from);
214 gold_assert(p != this->forwarders_.end());
215 return p->second;
216 }
217
218 // Look up a symbol by name.
219
220 Symbol*
221 Symbol_table::lookup(const char* name, const char* version) const
222 {
223 Stringpool::Key name_key;
224 name = this->namepool_.find(name, &name_key);
225 if (name == NULL)
226 return NULL;
227
228 Stringpool::Key version_key = 0;
229 if (version != NULL)
230 {
231 version = this->namepool_.find(version, &version_key);
232 if (version == NULL)
233 return NULL;
234 }
235
236 Symbol_table_key key(name_key, version_key);
237 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
238 if (p == this->table_.end())
239 return NULL;
240 return p->second;
241 }
242
243 // Resolve a Symbol with another Symbol. This is only used in the
244 // unusual case where there are references to both an unversioned
245 // symbol and a symbol with a version, and we then discover that that
246 // version is the default version. Because this is unusual, we do
247 // this the slow way, by converting back to an ELF symbol.
248
249 template<int size, bool big_endian>
250 void
251 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from
252 ACCEPT_SIZE_ENDIAN)
253 {
254 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
255 elfcpp::Sym_write<size, big_endian> esym(buf);
256 // We don't bother to set the st_name field.
257 esym.put_st_value(from->value());
258 esym.put_st_size(from->symsize());
259 esym.put_st_info(from->binding(), from->type());
260 esym.put_st_other(from->visibility(), from->nonvis());
261 esym.put_st_shndx(from->shndx());
262 Symbol_table::resolve(to, esym.sym(), from->object());
263 }
264
265 // Add one symbol from OBJECT to the symbol table. NAME is symbol
266 // name and VERSION is the version; both are canonicalized. DEF is
267 // whether this is the default version.
268
269 // If DEF is true, then this is the definition of a default version of
270 // a symbol. That means that any lookup of NAME/NULL and any lookup
271 // of NAME/VERSION should always return the same symbol. This is
272 // obvious for references, but in particular we want to do this for
273 // definitions: overriding NAME/NULL should also override
274 // NAME/VERSION. If we don't do that, it would be very hard to
275 // override functions in a shared library which uses versioning.
276
277 // We implement this by simply making both entries in the hash table
278 // point to the same Symbol structure. That is easy enough if this is
279 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
280 // that we have seen both already, in which case they will both have
281 // independent entries in the symbol table. We can't simply change
282 // the symbol table entry, because we have pointers to the entries
283 // attached to the object files. So we mark the entry attached to the
284 // object file as a forwarder, and record it in the forwarders_ map.
285 // Note that entries in the hash table will never be marked as
286 // forwarders.
287
288 template<int size, bool big_endian>
289 Symbol*
290 Symbol_table::add_from_object(Object* object,
291 const char *name,
292 Stringpool::Key name_key,
293 const char *version,
294 Stringpool::Key version_key,
295 bool def,
296 const elfcpp::Sym<size, big_endian>& sym)
297 {
298 Symbol* const snull = NULL;
299 std::pair<typename Symbol_table_type::iterator, bool> ins =
300 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
301 snull));
302
303 std::pair<typename Symbol_table_type::iterator, bool> insdef =
304 std::make_pair(this->table_.end(), false);
305 if (def)
306 {
307 const Stringpool::Key vnull_key = 0;
308 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
309 vnull_key),
310 snull));
311 }
312
313 // ins.first: an iterator, which is a pointer to a pair.
314 // ins.first->first: the key (a pair of name and version).
315 // ins.first->second: the value (Symbol*).
316 // ins.second: true if new entry was inserted, false if not.
317
318 Sized_symbol<size>* ret;
319 bool was_undefined;
320 bool was_common;
321 if (!ins.second)
322 {
323 // We already have an entry for NAME/VERSION.
324 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
325 SELECT_SIZE(size));
326 gold_assert(ret != NULL);
327
328 was_undefined = ret->is_undefined();
329 was_common = ret->is_common();
330
331 Symbol_table::resolve(ret, sym, object);
332
333 if (def)
334 {
335 if (insdef.second)
336 {
337 // This is the first time we have seen NAME/NULL. Make
338 // NAME/NULL point to NAME/VERSION.
339 insdef.first->second = ret;
340 }
341 else if (insdef.first->second != ret)
342 {
343 // This is the unfortunate case where we already have
344 // entries for both NAME/VERSION and NAME/NULL.
345 const Sized_symbol<size>* sym2;
346 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
347 insdef.first->second
348 SELECT_SIZE(size));
349 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
350 ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian));
351 this->make_forwarder(insdef.first->second, ret);
352 insdef.first->second = ret;
353 }
354 }
355 }
356 else
357 {
358 // This is the first time we have seen NAME/VERSION.
359 gold_assert(ins.first->second == NULL);
360
361 was_undefined = false;
362 was_common = false;
363
364 if (def && !insdef.second)
365 {
366 // We already have an entry for NAME/NULL. Make
367 // NAME/VERSION point to it.
368 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
369 insdef.first->second
370 SELECT_SIZE(size));
371 Symbol_table::resolve(ret, sym, object);
372 ins.first->second = ret;
373 }
374 else
375 {
376 Sized_target<size, big_endian>* target =
377 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
378 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
379 if (!target->has_make_symbol())
380 ret = new Sized_symbol<size>();
381 else
382 {
383 ret = target->make_symbol();
384 if (ret == NULL)
385 {
386 // This means that we don't want a symbol table
387 // entry after all.
388 if (!def)
389 this->table_.erase(ins.first);
390 else
391 {
392 this->table_.erase(insdef.first);
393 // Inserting insdef invalidated ins.
394 this->table_.erase(std::make_pair(name_key,
395 version_key));
396 }
397 return NULL;
398 }
399 }
400
401 ret->init(name, version, object, sym);
402
403 ins.first->second = ret;
404 if (def)
405 {
406 // This is the first time we have seen NAME/NULL. Point
407 // it at the new entry for NAME/VERSION.
408 gold_assert(insdef.second);
409 insdef.first->second = ret;
410 }
411 }
412 }
413
414 // Record every time we see a new undefined symbol, to speed up
415 // archive groups.
416 if (!was_undefined && ret->is_undefined())
417 ++this->saw_undefined_;
418
419 // Keep track of common symbols, to speed up common symbol
420 // allocation.
421 if (!was_common && ret->is_common())
422 this->commons_.push_back(ret);
423
424 return ret;
425 }
426
427 // Add all the symbols in a relocatable object to the hash table.
428
429 template<int size, bool big_endian>
430 void
431 Symbol_table::add_from_relobj(
432 Sized_relobj<size, big_endian>* relobj,
433 const unsigned char* syms,
434 size_t count,
435 const char* sym_names,
436 size_t sym_name_size,
437 Symbol** sympointers)
438 {
439 // We take the size from the first object we see.
440 if (this->get_size() == 0)
441 this->set_size(size);
442
443 if (size != this->get_size() || size != relobj->target()->get_size())
444 {
445 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
446 program_name, relobj->name().c_str());
447 gold_exit(false);
448 }
449
450 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
451
452 const unsigned char* p = syms;
453 for (size_t i = 0; i < count; ++i, p += sym_size)
454 {
455 elfcpp::Sym<size, big_endian> sym(p);
456 elfcpp::Sym<size, big_endian>* psym = &sym;
457
458 unsigned int st_name = psym->get_st_name();
459 if (st_name >= sym_name_size)
460 {
461 fprintf(stderr,
462 _("%s: %s: bad global symbol name offset %u at %lu\n"),
463 program_name, relobj->name().c_str(), st_name,
464 static_cast<unsigned long>(i));
465 gold_exit(false);
466 }
467
468 const char* name = sym_names + st_name;
469
470 // A symbol defined in a section which we are not including must
471 // be treated as an undefined symbol.
472 unsigned char symbuf[sym_size];
473 elfcpp::Sym<size, big_endian> sym2(symbuf);
474 unsigned int st_shndx = psym->get_st_shndx();
475 if (st_shndx != elfcpp::SHN_UNDEF
476 && st_shndx < elfcpp::SHN_LORESERVE
477 && !relobj->is_section_included(st_shndx))
478 {
479 memcpy(symbuf, p, sym_size);
480 elfcpp::Sym_write<size, big_endian> sw(symbuf);
481 sw.put_st_shndx(elfcpp::SHN_UNDEF);
482 psym = &sym2;
483 }
484
485 // In an object file, an '@' in the name separates the symbol
486 // name from the version name. If there are two '@' characters,
487 // this is the default version.
488 const char* ver = strchr(name, '@');
489
490 Symbol* res;
491 if (ver == NULL)
492 {
493 Stringpool::Key name_key;
494 name = this->namepool_.add(name, &name_key);
495 res = this->add_from_object(relobj, name, name_key, NULL, 0,
496 false, *psym);
497 }
498 else
499 {
500 Stringpool::Key name_key;
501 name = this->namepool_.add(name, ver - name, &name_key);
502
503 bool def = false;
504 ++ver;
505 if (*ver == '@')
506 {
507 def = true;
508 ++ver;
509 }
510
511 Stringpool::Key ver_key;
512 ver = this->namepool_.add(ver, &ver_key);
513
514 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
515 def, *psym);
516 }
517
518 *sympointers++ = res;
519 }
520 }
521
522 // Add all the symbols in a dynamic object to the hash table.
523
524 template<int size, bool big_endian>
525 void
526 Symbol_table::add_from_dynobj(
527 Sized_dynobj<size, big_endian>* dynobj,
528 const unsigned char* syms,
529 size_t count,
530 const char* sym_names,
531 size_t sym_name_size,
532 const unsigned char* versym,
533 size_t versym_size,
534 const std::vector<const char*>* version_map)
535 {
536 // We take the size from the first object we see.
537 if (this->get_size() == 0)
538 this->set_size(size);
539
540 if (size != this->get_size() || size != dynobj->target()->get_size())
541 {
542 fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"),
543 program_name, dynobj->name().c_str());
544 gold_exit(false);
545 }
546
547 if (versym != NULL && versym_size / 2 < count)
548 {
549 fprintf(stderr, _("%s: %s: too few symbol versions\n"),
550 program_name, dynobj->name().c_str());
551 gold_exit(false);
552 }
553
554 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
555
556 const unsigned char* p = syms;
557 const unsigned char* vs = versym;
558 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
559 {
560 elfcpp::Sym<size, big_endian> sym(p);
561
562 // Ignore symbols with local binding.
563 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
564 continue;
565
566 unsigned int st_name = sym.get_st_name();
567 if (st_name >= sym_name_size)
568 {
569 fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"),
570 program_name, dynobj->name().c_str(), st_name,
571 static_cast<unsigned long>(i));
572 gold_exit(false);
573 }
574
575 const char* name = sym_names + st_name;
576
577 if (versym == NULL)
578 {
579 Stringpool::Key name_key;
580 name = this->namepool_.add(name, &name_key);
581 this->add_from_object(dynobj, name, name_key, NULL, 0,
582 false, sym);
583 continue;
584 }
585
586 // Read the version information.
587
588 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
589
590 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
591 v &= elfcpp::VERSYM_VERSION;
592
593 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL))
594 {
595 // This symbol should not be visible outside the object.
596 continue;
597 }
598
599 // At this point we are definitely going to add this symbol.
600 Stringpool::Key name_key;
601 name = this->namepool_.add(name, &name_key);
602
603 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
604 {
605 // This symbol does not have a version.
606 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
607 continue;
608 }
609
610 if (v >= version_map->size())
611 {
612 fprintf(stderr,
613 _("%s: %s: versym for symbol %zu out of range: %u\n"),
614 program_name, dynobj->name().c_str(), i, v);
615 gold_exit(false);
616 }
617
618 const char* version = (*version_map)[v];
619 if (version == NULL)
620 {
621 fprintf(stderr, _("%s: %s: versym for symbol %zu has no name: %u\n"),
622 program_name, dynobj->name().c_str(), i, v);
623 gold_exit(false);
624 }
625
626 Stringpool::Key version_key;
627 version = this->namepool_.add(version, &version_key);
628
629 // If this is an absolute symbol, and the version name and
630 // symbol name are the same, then this is the version definition
631 // symbol. These symbols exist to support using -u to pull in
632 // particular versions. We do not want to record a version for
633 // them.
634 if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key)
635 {
636 this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym);
637 continue;
638 }
639
640 const bool def = !hidden && sym.get_st_shndx() != elfcpp::SHN_UNDEF;
641
642 this->add_from_object(dynobj, name, name_key, version, version_key,
643 def, sym);
644 }
645 }
646
647 // Create and return a specially defined symbol. If ONLY_IF_REF is
648 // true, then only create the symbol if there is a reference to it.
649
650 template<int size, bool big_endian>
651 Sized_symbol<size>*
652 Symbol_table::define_special_symbol(Target* target, const char* name,
653 bool only_if_ref
654 ACCEPT_SIZE_ENDIAN)
655 {
656 gold_assert(this->size_ == size);
657
658 Symbol* oldsym;
659 Sized_symbol<size>* sym;
660
661 if (only_if_ref)
662 {
663 oldsym = this->lookup(name, NULL);
664 if (oldsym == NULL || !oldsym->is_undefined())
665 return NULL;
666 sym = NULL;
667
668 // Canonicalize NAME.
669 name = oldsym->name();
670 }
671 else
672 {
673 // Canonicalize NAME.
674 Stringpool::Key name_key;
675 name = this->namepool_.add(name, &name_key);
676
677 Symbol* const snull = NULL;
678 const Stringpool::Key ver_key = 0;
679 std::pair<typename Symbol_table_type::iterator, bool> ins =
680 this->table_.insert(std::make_pair(std::make_pair(name_key, ver_key),
681 snull));
682
683 if (!ins.second)
684 {
685 // We already have a symbol table entry for NAME.
686 oldsym = ins.first->second;
687 gold_assert(oldsym != NULL);
688 sym = NULL;
689 }
690 else
691 {
692 // We haven't seen this symbol before.
693 gold_assert(ins.first->second == NULL);
694
695 if (!target->has_make_symbol())
696 sym = new Sized_symbol<size>();
697 else
698 {
699 gold_assert(target->get_size() == size);
700 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
701 typedef Sized_target<size, big_endian> My_target;
702 My_target* sized_target = static_cast<My_target*>(target);
703 sym = sized_target->make_symbol();
704 if (sym == NULL)
705 return NULL;
706 }
707
708 ins.first->second = sym;
709 oldsym = NULL;
710 }
711 }
712
713 if (oldsym != NULL)
714 {
715 gold_assert(sym == NULL);
716
717 sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
718 SELECT_SIZE(size));
719 gold_assert(sym->source() == Symbol::FROM_OBJECT);
720 const int old_shndx = sym->shndx();
721 if (old_shndx != elfcpp::SHN_UNDEF
722 && old_shndx != elfcpp::SHN_COMMON
723 && !sym->object()->is_dynamic())
724 {
725 fprintf(stderr, "%s: linker defined: multiple definition of %s\n",
726 program_name, name);
727 // FIXME: Report old location. Record that we have seen an
728 // error.
729 return NULL;
730 }
731
732 // Our new definition is going to override the old reference.
733 }
734
735 return sym;
736 }
737
738 // Define a symbol based on an Output_data.
739
740 void
741 Symbol_table::define_in_output_data(Target* target, const char* name,
742 Output_data* od,
743 uint64_t value, uint64_t symsize,
744 elfcpp::STT type, elfcpp::STB binding,
745 elfcpp::STV visibility,
746 unsigned char nonvis,
747 bool offset_is_from_end,
748 bool only_if_ref)
749 {
750 gold_assert(target->get_size() == this->size_);
751 if (this->size_ == 32)
752 this->do_define_in_output_data<32>(target, name, od, value, symsize,
753 type, binding, visibility, nonvis,
754 offset_is_from_end, only_if_ref);
755 else if (this->size_ == 64)
756 this->do_define_in_output_data<64>(target, name, od, value, symsize,
757 type, binding, visibility, nonvis,
758 offset_is_from_end, only_if_ref);
759 else
760 gold_unreachable();
761 }
762
763 // Define a symbol in an Output_data, sized version.
764
765 template<int size>
766 void
767 Symbol_table::do_define_in_output_data(
768 Target* target,
769 const char* name,
770 Output_data* od,
771 typename elfcpp::Elf_types<size>::Elf_Addr value,
772 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
773 elfcpp::STT type,
774 elfcpp::STB binding,
775 elfcpp::STV visibility,
776 unsigned char nonvis,
777 bool offset_is_from_end,
778 bool only_if_ref)
779 {
780 Sized_symbol<size>* sym;
781
782 if (target->is_big_endian())
783 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
784 target, name, only_if_ref
785 SELECT_SIZE_ENDIAN(size, true));
786 else
787 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
788 target, name, only_if_ref
789 SELECT_SIZE_ENDIAN(size, false));
790
791 if (sym == NULL)
792 return;
793
794 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
795 offset_is_from_end);
796 }
797
798 // Define a symbol based on an Output_segment.
799
800 void
801 Symbol_table::define_in_output_segment(Target* target, const char* name,
802 Output_segment* os,
803 uint64_t value, uint64_t symsize,
804 elfcpp::STT type, elfcpp::STB binding,
805 elfcpp::STV visibility,
806 unsigned char nonvis,
807 Symbol::Segment_offset_base offset_base,
808 bool only_if_ref)
809 {
810 gold_assert(target->get_size() == this->size_);
811 if (this->size_ == 32)
812 this->do_define_in_output_segment<32>(target, name, os, value, symsize,
813 type, binding, visibility, nonvis,
814 offset_base, only_if_ref);
815 else if (this->size_ == 64)
816 this->do_define_in_output_segment<64>(target, name, os, value, symsize,
817 type, binding, visibility, nonvis,
818 offset_base, only_if_ref);
819 else
820 gold_unreachable();
821 }
822
823 // Define a symbol in an Output_segment, sized version.
824
825 template<int size>
826 void
827 Symbol_table::do_define_in_output_segment(
828 Target* target,
829 const char* name,
830 Output_segment* os,
831 typename elfcpp::Elf_types<size>::Elf_Addr value,
832 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
833 elfcpp::STT type,
834 elfcpp::STB binding,
835 elfcpp::STV visibility,
836 unsigned char nonvis,
837 Symbol::Segment_offset_base offset_base,
838 bool only_if_ref)
839 {
840 Sized_symbol<size>* sym;
841
842 if (target->is_big_endian())
843 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
844 target, name, only_if_ref
845 SELECT_SIZE_ENDIAN(size, true));
846 else
847 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
848 target, name, only_if_ref
849 SELECT_SIZE_ENDIAN(size, false));
850
851 if (sym == NULL)
852 return;
853
854 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
855 offset_base);
856 }
857
858 // Define a special symbol with a constant value. It is a multiple
859 // definition error if this symbol is already defined.
860
861 void
862 Symbol_table::define_as_constant(Target* target, const char* name,
863 uint64_t value, uint64_t symsize,
864 elfcpp::STT type, elfcpp::STB binding,
865 elfcpp::STV visibility, unsigned char nonvis,
866 bool only_if_ref)
867 {
868 gold_assert(target->get_size() == this->size_);
869 if (this->size_ == 32)
870 this->do_define_as_constant<32>(target, name, value, symsize,
871 type, binding, visibility, nonvis,
872 only_if_ref);
873 else if (this->size_ == 64)
874 this->do_define_as_constant<64>(target, name, value, symsize,
875 type, binding, visibility, nonvis,
876 only_if_ref);
877 else
878 gold_unreachable();
879 }
880
881 // Define a symbol as a constant, sized version.
882
883 template<int size>
884 void
885 Symbol_table::do_define_as_constant(
886 Target* target,
887 const char* name,
888 typename elfcpp::Elf_types<size>::Elf_Addr value,
889 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
890 elfcpp::STT type,
891 elfcpp::STB binding,
892 elfcpp::STV visibility,
893 unsigned char nonvis,
894 bool only_if_ref)
895 {
896 Sized_symbol<size>* sym;
897
898 if (target->is_big_endian())
899 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
900 target, name, only_if_ref
901 SELECT_SIZE_ENDIAN(size, true));
902 else
903 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
904 target, name, only_if_ref
905 SELECT_SIZE_ENDIAN(size, false));
906
907 if (sym == NULL)
908 return;
909
910 sym->init(name, value, symsize, type, binding, visibility, nonvis);
911 }
912
913 // Define a set of symbols in output sections.
914
915 void
916 Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
917 const Define_symbol_in_section* p)
918 {
919 for (int i = 0; i < count; ++i, ++p)
920 {
921 Output_section* os = layout->find_output_section(p->output_section);
922 if (os != NULL)
923 this->define_in_output_data(target, p->name, os, p->value, p->size,
924 p->type, p->binding, p->visibility,
925 p->nonvis, p->offset_is_from_end,
926 p->only_if_ref);
927 else
928 this->define_as_constant(target, p->name, 0, p->size, p->type,
929 p->binding, p->visibility, p->nonvis,
930 p->only_if_ref);
931 }
932 }
933
934 // Define a set of symbols in output segments.
935
936 void
937 Symbol_table::define_symbols(const Layout* layout, Target* target, int count,
938 const Define_symbol_in_segment* p)
939 {
940 for (int i = 0; i < count; ++i, ++p)
941 {
942 Output_segment* os = layout->find_output_segment(p->segment_type,
943 p->segment_flags_set,
944 p->segment_flags_clear);
945 if (os != NULL)
946 this->define_in_output_segment(target, p->name, os, p->value, p->size,
947 p->type, p->binding, p->visibility,
948 p->nonvis, p->offset_base,
949 p->only_if_ref);
950 else
951 this->define_as_constant(target, p->name, 0, p->size, p->type,
952 p->binding, p->visibility, p->nonvis,
953 p->only_if_ref);
954 }
955 }
956
957 // Set the dynamic symbol indexes. INDEX is the index of the first
958 // global dynamic symbol. Pointers to the symbols are stored into the
959 // vector SYMS. The names are added to DYNPOOL. This returns an
960 // updated dynamic symbol index.
961
962 unsigned int
963 Symbol_table::set_dynsym_indexes(unsigned int index,
964 std::vector<Symbol*>* syms,
965 Stringpool* dynpool)
966 {
967 for (Symbol_table_type::iterator p = this->table_.begin();
968 p != this->table_.end();
969 ++p)
970 {
971 Symbol* sym = p->second;
972
973 // Note that SYM may already have a dynamic symbol index, since
974 // some symbols appear more than once in the symbol table, with
975 // and without a version.
976
977 if (!sym->needs_dynsym_entry())
978 sym->set_dynsym_index(-1U);
979 else if (!sym->has_dynsym_index())
980 {
981 sym->set_dynsym_index(index);
982 ++index;
983 syms->push_back(sym);
984 dynpool->add(sym->name(), NULL);
985 }
986 }
987
988 return index;
989 }
990
991 // Set the final values for all the symbols. The index of the first
992 // global symbol in the output file is INDEX. Record the file offset
993 // OFF. Add their names to POOL. Return the new file offset.
994
995 off_t
996 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
997 size_t dyn_global_index, size_t dyncount,
998 Stringpool* pool)
999 {
1000 off_t ret;
1001
1002 gold_assert(index != 0);
1003 this->first_global_index_ = index;
1004
1005 this->dynamic_offset_ = dynoff;
1006 this->first_dynamic_global_index_ = dyn_global_index;
1007 this->dynamic_count_ = dyncount;
1008
1009 if (this->size_ == 32)
1010 ret = this->sized_finalize<32>(index, off, pool);
1011 else if (this->size_ == 64)
1012 ret = this->sized_finalize<64>(index, off, pool);
1013 else
1014 gold_unreachable();
1015
1016 // Now that we have the final symbol table, we can reliably note
1017 // which symbols should get warnings.
1018 this->warnings_.note_warnings(this);
1019
1020 return ret;
1021 }
1022
1023 // Set the final value for all the symbols. This is called after
1024 // Layout::finalize, so all the output sections have their final
1025 // address.
1026
1027 template<int size>
1028 off_t
1029 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1030 {
1031 off = align_address(off, size >> 3);
1032 this->offset_ = off;
1033
1034 size_t orig_index = index;
1035
1036 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1037 for (Symbol_table_type::iterator p = this->table_.begin();
1038 p != this->table_.end();
1039 ++p)
1040 {
1041 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1042
1043 // FIXME: Here we need to decide which symbols should go into
1044 // the output file, based on --strip.
1045
1046 // The default version of a symbol may appear twice in the
1047 // symbol table. We only need to finalize it once.
1048 if (sym->has_symtab_index())
1049 continue;
1050
1051 typename Sized_symbol<size>::Value_type value;
1052
1053 switch (sym->source())
1054 {
1055 case Symbol::FROM_OBJECT:
1056 {
1057 unsigned int shndx = sym->shndx();
1058
1059 // FIXME: We need some target specific support here.
1060 if (shndx >= elfcpp::SHN_LORESERVE
1061 && shndx != elfcpp::SHN_ABS)
1062 {
1063 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1064 program_name, sym->name(), shndx);
1065 gold_exit(false);
1066 }
1067
1068 Object* symobj = sym->object();
1069 if (symobj->is_dynamic())
1070 {
1071 value = 0;
1072 shndx = elfcpp::SHN_UNDEF;
1073 }
1074 else if (shndx == elfcpp::SHN_UNDEF)
1075 value = 0;
1076 else if (shndx == elfcpp::SHN_ABS)
1077 value = sym->value();
1078 else
1079 {
1080 Relobj* relobj = static_cast<Relobj*>(symobj);
1081 off_t secoff;
1082 Output_section* os = relobj->output_section(shndx, &secoff);
1083
1084 if (os == NULL)
1085 {
1086 sym->set_symtab_index(-1U);
1087 gold_assert(sym->dynsym_index() == -1U);
1088 continue;
1089 }
1090
1091 value = sym->value() + os->address() + secoff;
1092 }
1093 }
1094 break;
1095
1096 case Symbol::IN_OUTPUT_DATA:
1097 {
1098 Output_data* od = sym->output_data();
1099 value = sym->value() + od->address();
1100 if (sym->offset_is_from_end())
1101 value += od->data_size();
1102 }
1103 break;
1104
1105 case Symbol::IN_OUTPUT_SEGMENT:
1106 {
1107 Output_segment* os = sym->output_segment();
1108 value = sym->value() + os->vaddr();
1109 switch (sym->offset_base())
1110 {
1111 case Symbol::SEGMENT_START:
1112 break;
1113 case Symbol::SEGMENT_END:
1114 value += os->memsz();
1115 break;
1116 case Symbol::SEGMENT_BSS:
1117 value += os->filesz();
1118 break;
1119 default:
1120 gold_unreachable();
1121 }
1122 }
1123 break;
1124
1125 case Symbol::CONSTANT:
1126 value = sym->value();
1127 break;
1128
1129 default:
1130 gold_unreachable();
1131 }
1132
1133 sym->set_value(value);
1134 sym->set_symtab_index(index);
1135 pool->add(sym->name(), NULL);
1136 ++index;
1137 off += sym_size;
1138 }
1139
1140 this->output_count_ = index - orig_index;
1141
1142 return off;
1143 }
1144
1145 // Write out the global symbols.
1146
1147 void
1148 Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
1149 const Stringpool* dynpool, Output_file* of) const
1150 {
1151 if (this->size_ == 32)
1152 {
1153 if (target->is_big_endian())
1154 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1155 else
1156 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1157 }
1158 else if (this->size_ == 64)
1159 {
1160 if (target->is_big_endian())
1161 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1162 else
1163 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1164 }
1165 else
1166 gold_unreachable();
1167 }
1168
1169 // Write out the global symbols.
1170
1171 template<int size, bool big_endian>
1172 void
1173 Symbol_table::sized_write_globals(const Target*,
1174 const Stringpool* sympool,
1175 const Stringpool* dynpool,
1176 Output_file* of) const
1177 {
1178 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1179 unsigned int index = this->first_global_index_;
1180 const off_t oview_size = this->output_count_ * sym_size;
1181 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1182
1183 unsigned int dynamic_count = this->dynamic_count_;
1184 off_t dynamic_size = dynamic_count * sym_size;
1185 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1186 unsigned char* dynamic_view;
1187 if (this->dynamic_offset_ == 0)
1188 dynamic_view = NULL;
1189 else
1190 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1191
1192 unsigned char* ps = psyms;
1193 for (Symbol_table_type::const_iterator p = this->table_.begin();
1194 p != this->table_.end();
1195 ++p)
1196 {
1197 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1198
1199 unsigned int sym_index = sym->symtab_index();
1200 unsigned int dynsym_index;
1201 if (dynamic_view == NULL)
1202 dynsym_index = -1U;
1203 else
1204 dynsym_index = sym->dynsym_index();
1205
1206 if (sym_index == -1U && dynsym_index == -1U)
1207 {
1208 // This symbol is not included in the output file.
1209 continue;
1210 }
1211
1212 if (sym_index == index)
1213 ++index;
1214 else if (sym_index != -1U)
1215 {
1216 // We have already seen this symbol, because it has a
1217 // default version.
1218 gold_assert(sym_index < index);
1219 if (dynsym_index == -1U)
1220 continue;
1221 sym_index = -1U;
1222 }
1223
1224 unsigned int shndx;
1225 switch (sym->source())
1226 {
1227 case Symbol::FROM_OBJECT:
1228 {
1229 unsigned int in_shndx = sym->shndx();
1230
1231 // FIXME: We need some target specific support here.
1232 if (in_shndx >= elfcpp::SHN_LORESERVE
1233 && in_shndx != elfcpp::SHN_ABS)
1234 {
1235 fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"),
1236 program_name, sym->name(), in_shndx);
1237 gold_exit(false);
1238 }
1239
1240 Object* symobj = sym->object();
1241 if (symobj->is_dynamic())
1242 {
1243 // FIXME.
1244 shndx = elfcpp::SHN_UNDEF;
1245 }
1246 else if (in_shndx == elfcpp::SHN_UNDEF
1247 || in_shndx == elfcpp::SHN_ABS)
1248 shndx = in_shndx;
1249 else
1250 {
1251 Relobj* relobj = static_cast<Relobj*>(symobj);
1252 off_t secoff;
1253 Output_section* os = relobj->output_section(in_shndx, &secoff);
1254 gold_assert(os != NULL);
1255 shndx = os->out_shndx();
1256 }
1257 }
1258 break;
1259
1260 case Symbol::IN_OUTPUT_DATA:
1261 shndx = sym->output_data()->out_shndx();
1262 break;
1263
1264 case Symbol::IN_OUTPUT_SEGMENT:
1265 shndx = elfcpp::SHN_ABS;
1266 break;
1267
1268 case Symbol::CONSTANT:
1269 shndx = elfcpp::SHN_ABS;
1270 break;
1271
1272 default:
1273 gold_unreachable();
1274 }
1275
1276 if (sym_index != -1U)
1277 {
1278 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1279 sym, shndx, sympool, ps
1280 SELECT_SIZE_ENDIAN(size, big_endian));
1281 ps += sym_size;
1282 }
1283
1284 if (dynsym_index != -1U)
1285 {
1286 dynsym_index -= first_dynamic_global_index;
1287 gold_assert(dynsym_index < dynamic_count);
1288 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1289 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1290 sym, shndx, dynpool, pd
1291 SELECT_SIZE_ENDIAN(size, big_endian));
1292 }
1293 }
1294
1295 gold_assert(ps - psyms == oview_size);
1296
1297 of->write_output_view(this->offset_, oview_size, psyms);
1298 if (dynamic_view != NULL)
1299 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1300 }
1301
1302 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1303 // strtab holding the name.
1304
1305 template<int size, bool big_endian>
1306 void
1307 Symbol_table::sized_write_symbol(Sized_symbol<size>* sym,
1308 unsigned int shndx,
1309 const Stringpool* pool,
1310 unsigned char* p
1311 ACCEPT_SIZE_ENDIAN) const
1312 {
1313 elfcpp::Sym_write<size, big_endian> osym(p);
1314 osym.put_st_name(pool->get_offset(sym->name()));
1315 osym.put_st_value(sym->value());
1316 osym.put_st_size(sym->symsize());
1317 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1318 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1319 osym.put_st_shndx(shndx);
1320 }
1321
1322 // Write out a section symbol. Return the update offset.
1323
1324 void
1325 Symbol_table::write_section_symbol(const Target* target,
1326 const Output_section *os,
1327 Output_file* of,
1328 off_t offset) const
1329 {
1330 if (this->size_ == 32)
1331 {
1332 if (target->is_big_endian())
1333 this->sized_write_section_symbol<32, true>(os, of, offset);
1334 else
1335 this->sized_write_section_symbol<32, false>(os, of, offset);
1336 }
1337 else if (this->size_ == 64)
1338 {
1339 if (target->is_big_endian())
1340 this->sized_write_section_symbol<64, true>(os, of, offset);
1341 else
1342 this->sized_write_section_symbol<64, false>(os, of, offset);
1343 }
1344 else
1345 gold_unreachable();
1346 }
1347
1348 // Write out a section symbol, specialized for size and endianness.
1349
1350 template<int size, bool big_endian>
1351 void
1352 Symbol_table::sized_write_section_symbol(const Output_section* os,
1353 Output_file* of,
1354 off_t offset) const
1355 {
1356 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1357
1358 unsigned char* pov = of->get_output_view(offset, sym_size);
1359
1360 elfcpp::Sym_write<size, big_endian> osym(pov);
1361 osym.put_st_name(0);
1362 osym.put_st_value(os->address());
1363 osym.put_st_size(0);
1364 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1365 elfcpp::STT_SECTION));
1366 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1367 osym.put_st_shndx(os->out_shndx());
1368
1369 of->write_output_view(offset, sym_size, pov);
1370 }
1371
1372 // Warnings functions.
1373
1374 // Add a new warning.
1375
1376 void
1377 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1378 unsigned int shndx)
1379 {
1380 name = symtab->canonicalize_name(name);
1381 this->warnings_[name].set(obj, shndx);
1382 }
1383
1384 // Look through the warnings and mark the symbols for which we should
1385 // warn. This is called during Layout::finalize when we know the
1386 // sources for all the symbols.
1387
1388 void
1389 Warnings::note_warnings(Symbol_table* symtab)
1390 {
1391 for (Warning_table::iterator p = this->warnings_.begin();
1392 p != this->warnings_.end();
1393 ++p)
1394 {
1395 Symbol* sym = symtab->lookup(p->first, NULL);
1396 if (sym != NULL
1397 && sym->source() == Symbol::FROM_OBJECT
1398 && sym->object() == p->second.object)
1399 {
1400 sym->set_has_warning();
1401
1402 // Read the section contents to get the warning text. It
1403 // would be nicer if we only did this if we have to actually
1404 // issue a warning. Unfortunately, warnings are issued as
1405 // we relocate sections. That means that we can not lock
1406 // the object then, as we might try to issue the same
1407 // warning multiple times simultaneously.
1408 {
1409 Task_locker_obj<Object> tl(*p->second.object);
1410 const unsigned char* c;
1411 off_t len;
1412 c = p->second.object->section_contents(p->second.shndx, &len);
1413 p->second.set_text(reinterpret_cast<const char*>(c), len);
1414 }
1415 }
1416 }
1417 }
1418
1419 // Issue a warning. This is called when we see a relocation against a
1420 // symbol for which has a warning.
1421
1422 void
1423 Warnings::issue_warning(const Symbol* sym, const std::string& location) const
1424 {
1425 gold_assert(sym->has_warning());
1426 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1427 gold_assert(p != this->warnings_.end());
1428 fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(),
1429 p->second.text.c_str());
1430 }
1431
1432 // Instantiate the templates we need. We could use the configure
1433 // script to restrict this to only the ones needed for implemented
1434 // targets.
1435
1436 template
1437 void
1438 Symbol_table::add_from_relobj<32, true>(
1439 Sized_relobj<32, true>* relobj,
1440 const unsigned char* syms,
1441 size_t count,
1442 const char* sym_names,
1443 size_t sym_name_size,
1444 Symbol** sympointers);
1445
1446 template
1447 void
1448 Symbol_table::add_from_relobj<32, false>(
1449 Sized_relobj<32, false>* relobj,
1450 const unsigned char* syms,
1451 size_t count,
1452 const char* sym_names,
1453 size_t sym_name_size,
1454 Symbol** sympointers);
1455
1456 template
1457 void
1458 Symbol_table::add_from_relobj<64, true>(
1459 Sized_relobj<64, true>* relobj,
1460 const unsigned char* syms,
1461 size_t count,
1462 const char* sym_names,
1463 size_t sym_name_size,
1464 Symbol** sympointers);
1465
1466 template
1467 void
1468 Symbol_table::add_from_relobj<64, false>(
1469 Sized_relobj<64, false>* relobj,
1470 const unsigned char* syms,
1471 size_t count,
1472 const char* sym_names,
1473 size_t sym_name_size,
1474 Symbol** sympointers);
1475
1476 template
1477 void
1478 Symbol_table::add_from_dynobj<32, true>(
1479 Sized_dynobj<32, true>* dynobj,
1480 const unsigned char* syms,
1481 size_t count,
1482 const char* sym_names,
1483 size_t sym_name_size,
1484 const unsigned char* versym,
1485 size_t versym_size,
1486 const std::vector<const char*>* version_map);
1487
1488 template
1489 void
1490 Symbol_table::add_from_dynobj<32, false>(
1491 Sized_dynobj<32, false>* dynobj,
1492 const unsigned char* syms,
1493 size_t count,
1494 const char* sym_names,
1495 size_t sym_name_size,
1496 const unsigned char* versym,
1497 size_t versym_size,
1498 const std::vector<const char*>* version_map);
1499
1500 template
1501 void
1502 Symbol_table::add_from_dynobj<64, true>(
1503 Sized_dynobj<64, true>* dynobj,
1504 const unsigned char* syms,
1505 size_t count,
1506 const char* sym_names,
1507 size_t sym_name_size,
1508 const unsigned char* versym,
1509 size_t versym_size,
1510 const std::vector<const char*>* version_map);
1511
1512 template
1513 void
1514 Symbol_table::add_from_dynobj<64, false>(
1515 Sized_dynobj<64, false>* dynobj,
1516 const unsigned char* syms,
1517 size_t count,
1518 const char* sym_names,
1519 size_t sym_name_size,
1520 const unsigned char* versym,
1521 size_t versym_size,
1522 const std::vector<const char*>* version_map);
1523
1524 } // End namespace gold.