* mapfile.cc (Mapfile::print_input_section): Change -1U to -1ULL.
[binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "object.h"
34 #include "dwarf_reader.h"
35 #include "dynobj.h"
36 #include "output.h"
37 #include "target.h"
38 #include "workqueue.h"
39 #include "symtab.h"
40 #include "plugin.h"
41
42 namespace gold
43 {
44
45 // Class Symbol.
46
47 // Initialize fields in Symbol. This initializes everything except u_
48 // and source_.
49
50 void
51 Symbol::init_fields(const char* name, const char* version,
52 elfcpp::STT type, elfcpp::STB binding,
53 elfcpp::STV visibility, unsigned char nonvis)
54 {
55 this->name_ = name;
56 this->version_ = version;
57 this->symtab_index_ = 0;
58 this->dynsym_index_ = 0;
59 this->got_offsets_.init();
60 this->plt_offset_ = 0;
61 this->type_ = type;
62 this->binding_ = binding;
63 this->visibility_ = visibility;
64 this->nonvis_ = nonvis;
65 this->is_target_special_ = false;
66 this->is_def_ = false;
67 this->is_forwarder_ = false;
68 this->has_alias_ = false;
69 this->needs_dynsym_entry_ = false;
70 this->in_reg_ = false;
71 this->in_dyn_ = false;
72 this->has_plt_offset_ = false;
73 this->has_warning_ = false;
74 this->is_copied_from_dynobj_ = false;
75 this->is_forced_local_ = false;
76 this->is_ordinary_shndx_ = false;
77 this->in_real_elf_ = false;
78 }
79
80 // Return the demangled version of the symbol's name, but only
81 // if the --demangle flag was set.
82
83 static std::string
84 demangle(const char* name)
85 {
86 if (!parameters->options().do_demangle())
87 return name;
88
89 // cplus_demangle allocates memory for the result it returns,
90 // and returns NULL if the name is already demangled.
91 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
92 if (demangled_name == NULL)
93 return name;
94
95 std::string retval(demangled_name);
96 free(demangled_name);
97 return retval;
98 }
99
100 std::string
101 Symbol::demangled_name() const
102 {
103 return demangle(this->name());
104 }
105
106 // Initialize the fields in the base class Symbol for SYM in OBJECT.
107
108 template<int size, bool big_endian>
109 void
110 Symbol::init_base_object(const char* name, const char* version, Object* object,
111 const elfcpp::Sym<size, big_endian>& sym,
112 unsigned int st_shndx, bool is_ordinary)
113 {
114 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
115 sym.get_st_visibility(), sym.get_st_nonvis());
116 this->u_.from_object.object = object;
117 this->u_.from_object.shndx = st_shndx;
118 this->is_ordinary_shndx_ = is_ordinary;
119 this->source_ = FROM_OBJECT;
120 this->in_reg_ = !object->is_dynamic();
121 this->in_dyn_ = object->is_dynamic();
122 this->in_real_elf_ = object->pluginobj() == NULL;
123 }
124
125 // Initialize the fields in the base class Symbol for a symbol defined
126 // in an Output_data.
127
128 void
129 Symbol::init_base_output_data(const char* name, const char* version,
130 Output_data* od, elfcpp::STT type,
131 elfcpp::STB binding, elfcpp::STV visibility,
132 unsigned char nonvis, bool offset_is_from_end)
133 {
134 this->init_fields(name, version, type, binding, visibility, nonvis);
135 this->u_.in_output_data.output_data = od;
136 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
137 this->source_ = IN_OUTPUT_DATA;
138 this->in_reg_ = true;
139 this->in_real_elf_ = true;
140 }
141
142 // Initialize the fields in the base class Symbol for a symbol defined
143 // in an Output_segment.
144
145 void
146 Symbol::init_base_output_segment(const char* name, const char* version,
147 Output_segment* os, elfcpp::STT type,
148 elfcpp::STB binding, elfcpp::STV visibility,
149 unsigned char nonvis,
150 Segment_offset_base offset_base)
151 {
152 this->init_fields(name, version, type, binding, visibility, nonvis);
153 this->u_.in_output_segment.output_segment = os;
154 this->u_.in_output_segment.offset_base = offset_base;
155 this->source_ = IN_OUTPUT_SEGMENT;
156 this->in_reg_ = true;
157 this->in_real_elf_ = true;
158 }
159
160 // Initialize the fields in the base class Symbol for a symbol defined
161 // as a constant.
162
163 void
164 Symbol::init_base_constant(const char* name, const char* version,
165 elfcpp::STT type, elfcpp::STB binding,
166 elfcpp::STV visibility, unsigned char nonvis)
167 {
168 this->init_fields(name, version, type, binding, visibility, nonvis);
169 this->source_ = IS_CONSTANT;
170 this->in_reg_ = true;
171 this->in_real_elf_ = true;
172 }
173
174 // Initialize the fields in the base class Symbol for an undefined
175 // symbol.
176
177 void
178 Symbol::init_base_undefined(const char* name, const char* version,
179 elfcpp::STT type, elfcpp::STB binding,
180 elfcpp::STV visibility, unsigned char nonvis)
181 {
182 this->init_fields(name, version, type, binding, visibility, nonvis);
183 this->dynsym_index_ = -1U;
184 this->source_ = IS_UNDEFINED;
185 this->in_reg_ = true;
186 this->in_real_elf_ = true;
187 }
188
189 // Allocate a common symbol in the base.
190
191 void
192 Symbol::allocate_base_common(Output_data* od)
193 {
194 gold_assert(this->is_common());
195 this->source_ = IN_OUTPUT_DATA;
196 this->u_.in_output_data.output_data = od;
197 this->u_.in_output_data.offset_is_from_end = false;
198 }
199
200 // Initialize the fields in Sized_symbol for SYM in OBJECT.
201
202 template<int size>
203 template<bool big_endian>
204 void
205 Sized_symbol<size>::init_object(const char* name, const char* version,
206 Object* object,
207 const elfcpp::Sym<size, big_endian>& sym,
208 unsigned int st_shndx, bool is_ordinary)
209 {
210 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
211 this->value_ = sym.get_st_value();
212 this->symsize_ = sym.get_st_size();
213 }
214
215 // Initialize the fields in Sized_symbol for a symbol defined in an
216 // Output_data.
217
218 template<int size>
219 void
220 Sized_symbol<size>::init_output_data(const char* name, const char* version,
221 Output_data* od, Value_type value,
222 Size_type symsize, elfcpp::STT type,
223 elfcpp::STB binding,
224 elfcpp::STV visibility,
225 unsigned char nonvis,
226 bool offset_is_from_end)
227 {
228 this->init_base_output_data(name, version, od, type, binding, visibility,
229 nonvis, offset_is_from_end);
230 this->value_ = value;
231 this->symsize_ = symsize;
232 }
233
234 // Initialize the fields in Sized_symbol for a symbol defined in an
235 // Output_segment.
236
237 template<int size>
238 void
239 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
240 Output_segment* os, Value_type value,
241 Size_type symsize, elfcpp::STT type,
242 elfcpp::STB binding,
243 elfcpp::STV visibility,
244 unsigned char nonvis,
245 Segment_offset_base offset_base)
246 {
247 this->init_base_output_segment(name, version, os, type, binding, visibility,
248 nonvis, offset_base);
249 this->value_ = value;
250 this->symsize_ = symsize;
251 }
252
253 // Initialize the fields in Sized_symbol for a symbol defined as a
254 // constant.
255
256 template<int size>
257 void
258 Sized_symbol<size>::init_constant(const char* name, const char* version,
259 Value_type value, Size_type symsize,
260 elfcpp::STT type, elfcpp::STB binding,
261 elfcpp::STV visibility, unsigned char nonvis)
262 {
263 this->init_base_constant(name, version, type, binding, visibility, nonvis);
264 this->value_ = value;
265 this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for an undefined symbol.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_undefined(const char* name, const char* version,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis)
275 {
276 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
277 this->value_ = 0;
278 this->symsize_ = 0;
279 }
280
281 // Allocate a common symbol.
282
283 template<int size>
284 void
285 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
286 {
287 this->allocate_base_common(od);
288 this->value_ = value;
289 }
290
291 // Return true if this symbol should be added to the dynamic symbol
292 // table.
293
294 inline bool
295 Symbol::should_add_dynsym_entry() const
296 {
297 // If the symbol is used by a dynamic relocation, we need to add it.
298 if (this->needs_dynsym_entry())
299 return true;
300
301 // If the symbol was forced local in a version script, do not add it.
302 if (this->is_forced_local())
303 return false;
304
305 // If exporting all symbols or building a shared library,
306 // and the symbol is defined in a regular object and is
307 // externally visible, we need to add it.
308 if ((parameters->options().export_dynamic() || parameters->options().shared())
309 && !this->is_from_dynobj()
310 && this->is_externally_visible())
311 return true;
312
313 return false;
314 }
315
316 // Return true if the final value of this symbol is known at link
317 // time.
318
319 bool
320 Symbol::final_value_is_known() const
321 {
322 // If we are not generating an executable, then no final values are
323 // known, since they will change at runtime.
324 if (parameters->options().shared() || parameters->options().relocatable())
325 return false;
326
327 // If the symbol is not from an object file, and is not undefined,
328 // then it is defined, and known.
329 if (this->source_ != FROM_OBJECT)
330 {
331 if (this->source_ != IS_UNDEFINED)
332 return true;
333 }
334 else
335 {
336 // If the symbol is from a dynamic object, then the final value
337 // is not known.
338 if (this->object()->is_dynamic())
339 return false;
340
341 // If the symbol is not undefined (it is defined or common),
342 // then the final value is known.
343 if (!this->is_undefined())
344 return true;
345 }
346
347 // If the symbol is undefined, then whether the final value is known
348 // depends on whether we are doing a static link. If we are doing a
349 // dynamic link, then the final value could be filled in at runtime.
350 // This could reasonably be the case for a weak undefined symbol.
351 return parameters->doing_static_link();
352 }
353
354 // Return the output section where this symbol is defined.
355
356 Output_section*
357 Symbol::output_section() const
358 {
359 switch (this->source_)
360 {
361 case FROM_OBJECT:
362 {
363 unsigned int shndx = this->u_.from_object.shndx;
364 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
365 {
366 gold_assert(!this->u_.from_object.object->is_dynamic());
367 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
368 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
369 return relobj->output_section(shndx);
370 }
371 return NULL;
372 }
373
374 case IN_OUTPUT_DATA:
375 return this->u_.in_output_data.output_data->output_section();
376
377 case IN_OUTPUT_SEGMENT:
378 case IS_CONSTANT:
379 case IS_UNDEFINED:
380 return NULL;
381
382 default:
383 gold_unreachable();
384 }
385 }
386
387 // Set the symbol's output section. This is used for symbols defined
388 // in scripts. This should only be called after the symbol table has
389 // been finalized.
390
391 void
392 Symbol::set_output_section(Output_section* os)
393 {
394 switch (this->source_)
395 {
396 case FROM_OBJECT:
397 case IN_OUTPUT_DATA:
398 gold_assert(this->output_section() == os);
399 break;
400 case IS_CONSTANT:
401 this->source_ = IN_OUTPUT_DATA;
402 this->u_.in_output_data.output_data = os;
403 this->u_.in_output_data.offset_is_from_end = false;
404 break;
405 case IN_OUTPUT_SEGMENT:
406 case IS_UNDEFINED:
407 default:
408 gold_unreachable();
409 }
410 }
411
412 // Class Symbol_table.
413
414 Symbol_table::Symbol_table(unsigned int count,
415 const Version_script_info& version_script)
416 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
417 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
418 version_script_(version_script)
419 {
420 namepool_.reserve(count);
421 }
422
423 Symbol_table::~Symbol_table()
424 {
425 }
426
427 // The hash function. The key values are Stringpool keys.
428
429 inline size_t
430 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
431 {
432 return key.first ^ key.second;
433 }
434
435 // The symbol table key equality function. This is called with
436 // Stringpool keys.
437
438 inline bool
439 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
440 const Symbol_table_key& k2) const
441 {
442 return k1.first == k2.first && k1.second == k2.second;
443 }
444
445 // Make TO a symbol which forwards to FROM.
446
447 void
448 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
449 {
450 gold_assert(from != to);
451 gold_assert(!from->is_forwarder() && !to->is_forwarder());
452 this->forwarders_[from] = to;
453 from->set_forwarder();
454 }
455
456 // Resolve the forwards from FROM, returning the real symbol.
457
458 Symbol*
459 Symbol_table::resolve_forwards(const Symbol* from) const
460 {
461 gold_assert(from->is_forwarder());
462 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
463 this->forwarders_.find(from);
464 gold_assert(p != this->forwarders_.end());
465 return p->second;
466 }
467
468 // Look up a symbol by name.
469
470 Symbol*
471 Symbol_table::lookup(const char* name, const char* version) const
472 {
473 Stringpool::Key name_key;
474 name = this->namepool_.find(name, &name_key);
475 if (name == NULL)
476 return NULL;
477
478 Stringpool::Key version_key = 0;
479 if (version != NULL)
480 {
481 version = this->namepool_.find(version, &version_key);
482 if (version == NULL)
483 return NULL;
484 }
485
486 Symbol_table_key key(name_key, version_key);
487 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
488 if (p == this->table_.end())
489 return NULL;
490 return p->second;
491 }
492
493 // Resolve a Symbol with another Symbol. This is only used in the
494 // unusual case where there are references to both an unversioned
495 // symbol and a symbol with a version, and we then discover that that
496 // version is the default version. Because this is unusual, we do
497 // this the slow way, by converting back to an ELF symbol.
498
499 template<int size, bool big_endian>
500 void
501 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
502 {
503 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
504 elfcpp::Sym_write<size, big_endian> esym(buf);
505 // We don't bother to set the st_name or the st_shndx field.
506 esym.put_st_value(from->value());
507 esym.put_st_size(from->symsize());
508 esym.put_st_info(from->binding(), from->type());
509 esym.put_st_other(from->visibility(), from->nonvis());
510 bool is_ordinary;
511 unsigned int shndx = from->shndx(&is_ordinary);
512 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
513 from->version());
514 if (from->in_reg())
515 to->set_in_reg();
516 if (from->in_dyn())
517 to->set_in_dyn();
518 }
519
520 // Record that a symbol is forced to be local by a version script.
521
522 void
523 Symbol_table::force_local(Symbol* sym)
524 {
525 if (!sym->is_defined() && !sym->is_common())
526 return;
527 if (sym->is_forced_local())
528 {
529 // We already got this one.
530 return;
531 }
532 sym->set_is_forced_local();
533 this->forced_locals_.push_back(sym);
534 }
535
536 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
537 // is only called for undefined symbols, when at least one --wrap
538 // option was used.
539
540 const char*
541 Symbol_table::wrap_symbol(Object* object, const char* name,
542 Stringpool::Key* name_key)
543 {
544 // For some targets, we need to ignore a specific character when
545 // wrapping, and add it back later.
546 char prefix = '\0';
547 if (name[0] == object->target()->wrap_char())
548 {
549 prefix = name[0];
550 ++name;
551 }
552
553 if (parameters->options().is_wrap(name))
554 {
555 // Turn NAME into __wrap_NAME.
556 std::string s;
557 if (prefix != '\0')
558 s += prefix;
559 s += "__wrap_";
560 s += name;
561
562 // This will give us both the old and new name in NAMEPOOL_, but
563 // that is OK. Only the versions we need will wind up in the
564 // real string table in the output file.
565 return this->namepool_.add(s.c_str(), true, name_key);
566 }
567
568 const char* const real_prefix = "__real_";
569 const size_t real_prefix_length = strlen(real_prefix);
570 if (strncmp(name, real_prefix, real_prefix_length) == 0
571 && parameters->options().is_wrap(name + real_prefix_length))
572 {
573 // Turn __real_NAME into NAME.
574 std::string s;
575 if (prefix != '\0')
576 s += prefix;
577 s += name + real_prefix_length;
578 return this->namepool_.add(s.c_str(), true, name_key);
579 }
580
581 return name;
582 }
583
584 // Add one symbol from OBJECT to the symbol table. NAME is symbol
585 // name and VERSION is the version; both are canonicalized. DEF is
586 // whether this is the default version. ST_SHNDX is the symbol's
587 // section index; IS_ORDINARY is whether this is a normal section
588 // rather than a special code.
589
590 // If DEF is true, then this is the definition of a default version of
591 // a symbol. That means that any lookup of NAME/NULL and any lookup
592 // of NAME/VERSION should always return the same symbol. This is
593 // obvious for references, but in particular we want to do this for
594 // definitions: overriding NAME/NULL should also override
595 // NAME/VERSION. If we don't do that, it would be very hard to
596 // override functions in a shared library which uses versioning.
597
598 // We implement this by simply making both entries in the hash table
599 // point to the same Symbol structure. That is easy enough if this is
600 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
601 // that we have seen both already, in which case they will both have
602 // independent entries in the symbol table. We can't simply change
603 // the symbol table entry, because we have pointers to the entries
604 // attached to the object files. So we mark the entry attached to the
605 // object file as a forwarder, and record it in the forwarders_ map.
606 // Note that entries in the hash table will never be marked as
607 // forwarders.
608 //
609 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
610 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
611 // for a special section code. ST_SHNDX may be modified if the symbol
612 // is defined in a section being discarded.
613
614 template<int size, bool big_endian>
615 Sized_symbol<size>*
616 Symbol_table::add_from_object(Object* object,
617 const char *name,
618 Stringpool::Key name_key,
619 const char *version,
620 Stringpool::Key version_key,
621 bool def,
622 const elfcpp::Sym<size, big_endian>& sym,
623 unsigned int st_shndx,
624 bool is_ordinary,
625 unsigned int orig_st_shndx)
626 {
627 // Print a message if this symbol is being traced.
628 if (parameters->options().is_trace_symbol(name))
629 {
630 if (orig_st_shndx == elfcpp::SHN_UNDEF)
631 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
632 else
633 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
634 }
635
636 // For an undefined symbol, we may need to adjust the name using
637 // --wrap.
638 if (orig_st_shndx == elfcpp::SHN_UNDEF
639 && parameters->options().any_wrap())
640 {
641 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
642 if (wrap_name != name)
643 {
644 // If we see a reference to malloc with version GLIBC_2.0,
645 // and we turn it into a reference to __wrap_malloc, then we
646 // discard the version number. Otherwise the user would be
647 // required to specify the correct version for
648 // __wrap_malloc.
649 version = NULL;
650 version_key = 0;
651 name = wrap_name;
652 }
653 }
654
655 Symbol* const snull = NULL;
656 std::pair<typename Symbol_table_type::iterator, bool> ins =
657 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
658 snull));
659
660 std::pair<typename Symbol_table_type::iterator, bool> insdef =
661 std::make_pair(this->table_.end(), false);
662 if (def)
663 {
664 const Stringpool::Key vnull_key = 0;
665 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
666 vnull_key),
667 snull));
668 }
669
670 // ins.first: an iterator, which is a pointer to a pair.
671 // ins.first->first: the key (a pair of name and version).
672 // ins.first->second: the value (Symbol*).
673 // ins.second: true if new entry was inserted, false if not.
674
675 Sized_symbol<size>* ret;
676 bool was_undefined;
677 bool was_common;
678 if (!ins.second)
679 {
680 // We already have an entry for NAME/VERSION.
681 ret = this->get_sized_symbol<size>(ins.first->second);
682 gold_assert(ret != NULL);
683
684 was_undefined = ret->is_undefined();
685 was_common = ret->is_common();
686
687 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
688 version);
689
690 if (def)
691 {
692 if (insdef.second)
693 {
694 // This is the first time we have seen NAME/NULL. Make
695 // NAME/NULL point to NAME/VERSION.
696 insdef.first->second = ret;
697 }
698 else if (insdef.first->second != ret)
699 {
700 // This is the unfortunate case where we already have
701 // entries for both NAME/VERSION and NAME/NULL. We now
702 // see a symbol NAME/VERSION where VERSION is the
703 // default version. We have already resolved this new
704 // symbol with the existing NAME/VERSION symbol.
705
706 // It's possible that NAME/NULL and NAME/VERSION are
707 // both defined in regular objects. This can only
708 // happen if one object file defines foo and another
709 // defines foo@@ver. This is somewhat obscure, but we
710 // call it a multiple definition error.
711
712 // It's possible that NAME/NULL actually has a version,
713 // in which case it won't be the same as VERSION. This
714 // happens with ver_test_7.so in the testsuite for the
715 // symbol t2_2. We see t2_2@@VER2, so we define both
716 // t2_2/VER2 and t2_2/NULL. We then see an unadorned
717 // t2_2 in an object file and give it version VER1 from
718 // the version script. This looks like a default
719 // definition for VER1, so it looks like we should merge
720 // t2_2/NULL with t2_2/VER1. That doesn't make sense,
721 // but it's not obvious that this is an error, either.
722 // So we just punt.
723
724 // If one of the symbols has non-default visibility, and
725 // the other is defined in a shared object, then they
726 // are different symbols.
727
728 // Otherwise, we just resolve the symbols as though they
729 // were the same.
730
731 if (insdef.first->second->version() != NULL)
732 {
733 gold_assert(insdef.first->second->version() != version);
734 def = false;
735 }
736 else if (ret->visibility() != elfcpp::STV_DEFAULT
737 && insdef.first->second->is_from_dynobj())
738 def = false;
739 else if (insdef.first->second->visibility() != elfcpp::STV_DEFAULT
740 && ret->is_from_dynobj())
741 def = false;
742 else
743 {
744 const Sized_symbol<size>* sym2;
745 sym2 = this->get_sized_symbol<size>(insdef.first->second);
746 Symbol_table::resolve<size, big_endian>(ret, sym2);
747 this->make_forwarder(insdef.first->second, ret);
748 insdef.first->second = ret;
749 }
750 }
751 else
752 def = false;
753 }
754 }
755 else
756 {
757 // This is the first time we have seen NAME/VERSION.
758 gold_assert(ins.first->second == NULL);
759
760 if (def && !insdef.second)
761 {
762 // We already have an entry for NAME/NULL. If we override
763 // it, then change it to NAME/VERSION.
764 ret = this->get_sized_symbol<size>(insdef.first->second);
765
766 was_undefined = ret->is_undefined();
767 was_common = ret->is_common();
768
769 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
770 version);
771 ins.first->second = ret;
772 }
773 else
774 {
775 was_undefined = false;
776 was_common = false;
777
778 Sized_target<size, big_endian>* target =
779 object->sized_target<size, big_endian>();
780 if (!target->has_make_symbol())
781 ret = new Sized_symbol<size>();
782 else
783 {
784 ret = target->make_symbol();
785 if (ret == NULL)
786 {
787 // This means that we don't want a symbol table
788 // entry after all.
789 if (!def)
790 this->table_.erase(ins.first);
791 else
792 {
793 this->table_.erase(insdef.first);
794 // Inserting insdef invalidated ins.
795 this->table_.erase(std::make_pair(name_key,
796 version_key));
797 }
798 return NULL;
799 }
800 }
801
802 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
803
804 ins.first->second = ret;
805 if (def)
806 {
807 // This is the first time we have seen NAME/NULL. Point
808 // it at the new entry for NAME/VERSION.
809 gold_assert(insdef.second);
810 insdef.first->second = ret;
811 }
812 }
813 }
814
815 // Record every time we see a new undefined symbol, to speed up
816 // archive groups.
817 if (!was_undefined && ret->is_undefined())
818 ++this->saw_undefined_;
819
820 // Keep track of common symbols, to speed up common symbol
821 // allocation.
822 if (!was_common && ret->is_common())
823 {
824 if (ret->type() != elfcpp::STT_TLS)
825 this->commons_.push_back(ret);
826 else
827 this->tls_commons_.push_back(ret);
828 }
829
830 if (def)
831 ret->set_is_default();
832 return ret;
833 }
834
835 // Add all the symbols in a relocatable object to the hash table.
836
837 template<int size, bool big_endian>
838 void
839 Symbol_table::add_from_relobj(
840 Sized_relobj<size, big_endian>* relobj,
841 const unsigned char* syms,
842 size_t count,
843 size_t symndx_offset,
844 const char* sym_names,
845 size_t sym_name_size,
846 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
847 size_t *defined)
848 {
849 *defined = 0;
850
851 gold_assert(size == relobj->target()->get_size());
852 gold_assert(size == parameters->target().get_size());
853
854 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
855
856 const bool just_symbols = relobj->just_symbols();
857
858 const unsigned char* p = syms;
859 for (size_t i = 0; i < count; ++i, p += sym_size)
860 {
861 (*sympointers)[i] = NULL;
862
863 elfcpp::Sym<size, big_endian> sym(p);
864
865 unsigned int st_name = sym.get_st_name();
866 if (st_name >= sym_name_size)
867 {
868 relobj->error(_("bad global symbol name offset %u at %zu"),
869 st_name, i);
870 continue;
871 }
872
873 const char* name = sym_names + st_name;
874
875 bool is_ordinary;
876 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
877 sym.get_st_shndx(),
878 &is_ordinary);
879 unsigned int orig_st_shndx = st_shndx;
880 if (!is_ordinary)
881 orig_st_shndx = elfcpp::SHN_UNDEF;
882
883 if (st_shndx != elfcpp::SHN_UNDEF)
884 ++*defined;
885
886 // A symbol defined in a section which we are not including must
887 // be treated as an undefined symbol.
888 if (st_shndx != elfcpp::SHN_UNDEF
889 && is_ordinary
890 && !relobj->is_section_included(st_shndx))
891 st_shndx = elfcpp::SHN_UNDEF;
892
893 // In an object file, an '@' in the name separates the symbol
894 // name from the version name. If there are two '@' characters,
895 // this is the default version.
896 const char* ver = strchr(name, '@');
897 Stringpool::Key ver_key = 0;
898 int namelen = 0;
899 // DEF: is the version default? LOCAL: is the symbol forced local?
900 bool def = false;
901 bool local = false;
902
903 if (ver != NULL)
904 {
905 // The symbol name is of the form foo@VERSION or foo@@VERSION
906 namelen = ver - name;
907 ++ver;
908 if (*ver == '@')
909 {
910 def = true;
911 ++ver;
912 }
913 ver = this->namepool_.add(ver, true, &ver_key);
914 }
915 // We don't want to assign a version to an undefined symbol,
916 // even if it is listed in the version script. FIXME: What
917 // about a common symbol?
918 else
919 {
920 namelen = strlen(name);
921 if (!this->version_script_.empty()
922 && st_shndx != elfcpp::SHN_UNDEF)
923 {
924 // The symbol name did not have a version, but the
925 // version script may assign a version anyway.
926 std::string version;
927 if (this->version_script_.get_symbol_version(name, &version))
928 {
929 // The version can be empty if the version script is
930 // only used to force some symbols to be local.
931 if (!version.empty())
932 {
933 ver = this->namepool_.add_with_length(version.c_str(),
934 version.length(),
935 true,
936 &ver_key);
937 def = true;
938 }
939 }
940 else if (this->version_script_.symbol_is_local(name))
941 local = true;
942 }
943 }
944
945 elfcpp::Sym<size, big_endian>* psym = &sym;
946 unsigned char symbuf[sym_size];
947 elfcpp::Sym<size, big_endian> sym2(symbuf);
948 if (just_symbols)
949 {
950 memcpy(symbuf, p, sym_size);
951 elfcpp::Sym_write<size, big_endian> sw(symbuf);
952 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
953 {
954 // Symbol values in object files are section relative.
955 // This is normally what we want, but since here we are
956 // converting the symbol to absolute we need to add the
957 // section address. The section address in an object
958 // file is normally zero, but people can use a linker
959 // script to change it.
960 sw.put_st_value(sym.get_st_value()
961 + relobj->section_address(orig_st_shndx));
962 }
963 st_shndx = elfcpp::SHN_ABS;
964 is_ordinary = false;
965 psym = &sym2;
966 }
967
968 Stringpool::Key name_key;
969 name = this->namepool_.add_with_length(name, namelen, true,
970 &name_key);
971
972 Sized_symbol<size>* res;
973 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
974 def, *psym, st_shndx, is_ordinary,
975 orig_st_shndx);
976
977 if (local)
978 this->force_local(res);
979
980 (*sympointers)[i] = res;
981 }
982 }
983
984 // Add a symbol from a plugin-claimed file.
985
986 template<int size, bool big_endian>
987 Symbol*
988 Symbol_table::add_from_pluginobj(
989 Sized_pluginobj<size, big_endian>* obj,
990 const char* name,
991 const char* ver,
992 elfcpp::Sym<size, big_endian>* sym)
993 {
994 unsigned int st_shndx = sym->get_st_shndx();
995
996 Stringpool::Key ver_key = 0;
997 bool def = false;
998 bool local = false;
999
1000 if (ver != NULL)
1001 {
1002 ver = this->namepool_.add(ver, true, &ver_key);
1003 }
1004 // We don't want to assign a version to an undefined symbol,
1005 // even if it is listed in the version script. FIXME: What
1006 // about a common symbol?
1007 else
1008 {
1009 if (!this->version_script_.empty()
1010 && st_shndx != elfcpp::SHN_UNDEF)
1011 {
1012 // The symbol name did not have a version, but the
1013 // version script may assign a version anyway.
1014 std::string version;
1015 if (this->version_script_.get_symbol_version(name, &version))
1016 {
1017 // The version can be empty if the version script is
1018 // only used to force some symbols to be local.
1019 if (!version.empty())
1020 {
1021 ver = this->namepool_.add_with_length(version.c_str(),
1022 version.length(),
1023 true,
1024 &ver_key);
1025 def = true;
1026 }
1027 }
1028 else if (this->version_script_.symbol_is_local(name))
1029 local = true;
1030 }
1031 }
1032
1033 Stringpool::Key name_key;
1034 name = this->namepool_.add(name, true, &name_key);
1035
1036 Sized_symbol<size>* res;
1037 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1038 def, *sym, st_shndx, true, st_shndx);
1039
1040 if (local)
1041 this->force_local(res);
1042
1043 return res;
1044 }
1045
1046 // Add all the symbols in a dynamic object to the hash table.
1047
1048 template<int size, bool big_endian>
1049 void
1050 Symbol_table::add_from_dynobj(
1051 Sized_dynobj<size, big_endian>* dynobj,
1052 const unsigned char* syms,
1053 size_t count,
1054 const char* sym_names,
1055 size_t sym_name_size,
1056 const unsigned char* versym,
1057 size_t versym_size,
1058 const std::vector<const char*>* version_map,
1059 typename Sized_relobj<size, big_endian>::Symbols* sympointers,
1060 size_t* defined)
1061 {
1062 *defined = 0;
1063
1064 gold_assert(size == dynobj->target()->get_size());
1065 gold_assert(size == parameters->target().get_size());
1066
1067 if (dynobj->just_symbols())
1068 {
1069 gold_error(_("--just-symbols does not make sense with a shared object"));
1070 return;
1071 }
1072
1073 if (versym != NULL && versym_size / 2 < count)
1074 {
1075 dynobj->error(_("too few symbol versions"));
1076 return;
1077 }
1078
1079 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1080
1081 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1082 // weak aliases. This is necessary because if the dynamic object
1083 // provides the same variable under two names, one of which is a
1084 // weak definition, and the regular object refers to the weak
1085 // definition, we have to put both the weak definition and the
1086 // strong definition into the dynamic symbol table. Given a weak
1087 // definition, the only way that we can find the corresponding
1088 // strong definition, if any, is to search the symbol table.
1089 std::vector<Sized_symbol<size>*> object_symbols;
1090
1091 const unsigned char* p = syms;
1092 const unsigned char* vs = versym;
1093 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1094 {
1095 elfcpp::Sym<size, big_endian> sym(p);
1096
1097 if (sympointers != NULL)
1098 (*sympointers)[i] = NULL;
1099
1100 // Ignore symbols with local binding or that have
1101 // internal or hidden visibility.
1102 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1103 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1104 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1105 continue;
1106
1107 // A protected symbol in a shared library must be treated as a
1108 // normal symbol when viewed from outside the shared library.
1109 // Implement this by overriding the visibility here.
1110 elfcpp::Sym<size, big_endian>* psym = &sym;
1111 unsigned char symbuf[sym_size];
1112 elfcpp::Sym<size, big_endian> sym2(symbuf);
1113 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1114 {
1115 memcpy(symbuf, p, sym_size);
1116 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1117 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1118 psym = &sym2;
1119 }
1120
1121 unsigned int st_name = psym->get_st_name();
1122 if (st_name >= sym_name_size)
1123 {
1124 dynobj->error(_("bad symbol name offset %u at %zu"),
1125 st_name, i);
1126 continue;
1127 }
1128
1129 const char* name = sym_names + st_name;
1130
1131 bool is_ordinary;
1132 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1133 &is_ordinary);
1134
1135 if (st_shndx != elfcpp::SHN_UNDEF)
1136 ++*defined;
1137
1138 Sized_symbol<size>* res;
1139
1140 if (versym == NULL)
1141 {
1142 Stringpool::Key name_key;
1143 name = this->namepool_.add(name, true, &name_key);
1144 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1145 false, *psym, st_shndx, is_ordinary,
1146 st_shndx);
1147 }
1148 else
1149 {
1150 // Read the version information.
1151
1152 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1153
1154 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1155 v &= elfcpp::VERSYM_VERSION;
1156
1157 // The Sun documentation says that V can be VER_NDX_LOCAL,
1158 // or VER_NDX_GLOBAL, or a version index. The meaning of
1159 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1160 // The old GNU linker will happily generate VER_NDX_LOCAL
1161 // for an undefined symbol. I don't know what the Sun
1162 // linker will generate.
1163
1164 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1165 && st_shndx != elfcpp::SHN_UNDEF)
1166 {
1167 // This symbol should not be visible outside the object.
1168 continue;
1169 }
1170
1171 // At this point we are definitely going to add this symbol.
1172 Stringpool::Key name_key;
1173 name = this->namepool_.add(name, true, &name_key);
1174
1175 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1176 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1177 {
1178 // This symbol does not have a version.
1179 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1180 false, *psym, st_shndx, is_ordinary,
1181 st_shndx);
1182 }
1183 else
1184 {
1185 if (v >= version_map->size())
1186 {
1187 dynobj->error(_("versym for symbol %zu out of range: %u"),
1188 i, v);
1189 continue;
1190 }
1191
1192 const char* version = (*version_map)[v];
1193 if (version == NULL)
1194 {
1195 dynobj->error(_("versym for symbol %zu has no name: %u"),
1196 i, v);
1197 continue;
1198 }
1199
1200 Stringpool::Key version_key;
1201 version = this->namepool_.add(version, true, &version_key);
1202
1203 // If this is an absolute symbol, and the version name
1204 // and symbol name are the same, then this is the
1205 // version definition symbol. These symbols exist to
1206 // support using -u to pull in particular versions. We
1207 // do not want to record a version for them.
1208 if (st_shndx == elfcpp::SHN_ABS
1209 && !is_ordinary
1210 && name_key == version_key)
1211 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1212 false, *psym, st_shndx, is_ordinary,
1213 st_shndx);
1214 else
1215 {
1216 const bool def = (!hidden
1217 && st_shndx != elfcpp::SHN_UNDEF);
1218 res = this->add_from_object(dynobj, name, name_key, version,
1219 version_key, def, *psym, st_shndx,
1220 is_ordinary, st_shndx);
1221 }
1222 }
1223 }
1224
1225 // Note that it is possible that RES was overridden by an
1226 // earlier object, in which case it can't be aliased here.
1227 if (st_shndx != elfcpp::SHN_UNDEF
1228 && is_ordinary
1229 && psym->get_st_type() == elfcpp::STT_OBJECT
1230 && res->source() == Symbol::FROM_OBJECT
1231 && res->object() == dynobj)
1232 object_symbols.push_back(res);
1233
1234 if (sympointers != NULL)
1235 (*sympointers)[i] = res;
1236 }
1237
1238 this->record_weak_aliases(&object_symbols);
1239 }
1240
1241 // This is used to sort weak aliases. We sort them first by section
1242 // index, then by offset, then by weak ahead of strong.
1243
1244 template<int size>
1245 class Weak_alias_sorter
1246 {
1247 public:
1248 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1249 };
1250
1251 template<int size>
1252 bool
1253 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1254 const Sized_symbol<size>* s2) const
1255 {
1256 bool is_ordinary;
1257 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1258 gold_assert(is_ordinary);
1259 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1260 gold_assert(is_ordinary);
1261 if (s1_shndx != s2_shndx)
1262 return s1_shndx < s2_shndx;
1263
1264 if (s1->value() != s2->value())
1265 return s1->value() < s2->value();
1266 if (s1->binding() != s2->binding())
1267 {
1268 if (s1->binding() == elfcpp::STB_WEAK)
1269 return true;
1270 if (s2->binding() == elfcpp::STB_WEAK)
1271 return false;
1272 }
1273 return std::string(s1->name()) < std::string(s2->name());
1274 }
1275
1276 // SYMBOLS is a list of object symbols from a dynamic object. Look
1277 // for any weak aliases, and record them so that if we add the weak
1278 // alias to the dynamic symbol table, we also add the corresponding
1279 // strong symbol.
1280
1281 template<int size>
1282 void
1283 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1284 {
1285 // Sort the vector by section index, then by offset, then by weak
1286 // ahead of strong.
1287 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1288
1289 // Walk through the vector. For each weak definition, record
1290 // aliases.
1291 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1292 symbols->begin();
1293 p != symbols->end();
1294 ++p)
1295 {
1296 if ((*p)->binding() != elfcpp::STB_WEAK)
1297 continue;
1298
1299 // Build a circular list of weak aliases. Each symbol points to
1300 // the next one in the circular list.
1301
1302 Sized_symbol<size>* from_sym = *p;
1303 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1304 for (q = p + 1; q != symbols->end(); ++q)
1305 {
1306 bool dummy;
1307 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1308 || (*q)->value() != from_sym->value())
1309 break;
1310
1311 this->weak_aliases_[from_sym] = *q;
1312 from_sym->set_has_alias();
1313 from_sym = *q;
1314 }
1315
1316 if (from_sym != *p)
1317 {
1318 this->weak_aliases_[from_sym] = *p;
1319 from_sym->set_has_alias();
1320 }
1321
1322 p = q - 1;
1323 }
1324 }
1325
1326 // Create and return a specially defined symbol. If ONLY_IF_REF is
1327 // true, then only create the symbol if there is a reference to it.
1328 // If this does not return NULL, it sets *POLDSYM to the existing
1329 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1330
1331 template<int size, bool big_endian>
1332 Sized_symbol<size>*
1333 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1334 bool only_if_ref,
1335 Sized_symbol<size>** poldsym)
1336 {
1337 Symbol* oldsym;
1338 Sized_symbol<size>* sym;
1339 bool add_to_table = false;
1340 typename Symbol_table_type::iterator add_loc = this->table_.end();
1341
1342 // If the caller didn't give us a version, see if we get one from
1343 // the version script.
1344 std::string v;
1345 if (*pversion == NULL)
1346 {
1347 if (this->version_script_.get_symbol_version(*pname, &v))
1348 {
1349 if (!v.empty())
1350 *pversion = v.c_str();
1351 }
1352 }
1353
1354 if (only_if_ref)
1355 {
1356 oldsym = this->lookup(*pname, *pversion);
1357 if (oldsym == NULL || !oldsym->is_undefined())
1358 return NULL;
1359
1360 *pname = oldsym->name();
1361 *pversion = oldsym->version();
1362 }
1363 else
1364 {
1365 // Canonicalize NAME and VERSION.
1366 Stringpool::Key name_key;
1367 *pname = this->namepool_.add(*pname, true, &name_key);
1368
1369 Stringpool::Key version_key = 0;
1370 if (*pversion != NULL)
1371 *pversion = this->namepool_.add(*pversion, true, &version_key);
1372
1373 Symbol* const snull = NULL;
1374 std::pair<typename Symbol_table_type::iterator, bool> ins =
1375 this->table_.insert(std::make_pair(std::make_pair(name_key,
1376 version_key),
1377 snull));
1378
1379 if (!ins.second)
1380 {
1381 // We already have a symbol table entry for NAME/VERSION.
1382 oldsym = ins.first->second;
1383 gold_assert(oldsym != NULL);
1384 }
1385 else
1386 {
1387 // We haven't seen this symbol before.
1388 gold_assert(ins.first->second == NULL);
1389 add_to_table = true;
1390 add_loc = ins.first;
1391 oldsym = NULL;
1392 }
1393 }
1394
1395 const Target& target = parameters->target();
1396 if (!target.has_make_symbol())
1397 sym = new Sized_symbol<size>();
1398 else
1399 {
1400 gold_assert(target.get_size() == size);
1401 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1402 typedef Sized_target<size, big_endian> My_target;
1403 const My_target* sized_target =
1404 static_cast<const My_target*>(&target);
1405 sym = sized_target->make_symbol();
1406 if (sym == NULL)
1407 return NULL;
1408 }
1409
1410 if (add_to_table)
1411 add_loc->second = sym;
1412 else
1413 gold_assert(oldsym != NULL);
1414
1415 *poldsym = this->get_sized_symbol<size>(oldsym);
1416
1417 return sym;
1418 }
1419
1420 // Define a symbol based on an Output_data.
1421
1422 Symbol*
1423 Symbol_table::define_in_output_data(const char* name,
1424 const char* version,
1425 Output_data* od,
1426 uint64_t value,
1427 uint64_t symsize,
1428 elfcpp::STT type,
1429 elfcpp::STB binding,
1430 elfcpp::STV visibility,
1431 unsigned char nonvis,
1432 bool offset_is_from_end,
1433 bool only_if_ref)
1434 {
1435 if (parameters->target().get_size() == 32)
1436 {
1437 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1438 return this->do_define_in_output_data<32>(name, version, od,
1439 value, symsize, type, binding,
1440 visibility, nonvis,
1441 offset_is_from_end,
1442 only_if_ref);
1443 #else
1444 gold_unreachable();
1445 #endif
1446 }
1447 else if (parameters->target().get_size() == 64)
1448 {
1449 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1450 return this->do_define_in_output_data<64>(name, version, od,
1451 value, symsize, type, binding,
1452 visibility, nonvis,
1453 offset_is_from_end,
1454 only_if_ref);
1455 #else
1456 gold_unreachable();
1457 #endif
1458 }
1459 else
1460 gold_unreachable();
1461 }
1462
1463 // Define a symbol in an Output_data, sized version.
1464
1465 template<int size>
1466 Sized_symbol<size>*
1467 Symbol_table::do_define_in_output_data(
1468 const char* name,
1469 const char* version,
1470 Output_data* od,
1471 typename elfcpp::Elf_types<size>::Elf_Addr value,
1472 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1473 elfcpp::STT type,
1474 elfcpp::STB binding,
1475 elfcpp::STV visibility,
1476 unsigned char nonvis,
1477 bool offset_is_from_end,
1478 bool only_if_ref)
1479 {
1480 Sized_symbol<size>* sym;
1481 Sized_symbol<size>* oldsym;
1482
1483 if (parameters->target().is_big_endian())
1484 {
1485 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1486 sym = this->define_special_symbol<size, true>(&name, &version,
1487 only_if_ref, &oldsym);
1488 #else
1489 gold_unreachable();
1490 #endif
1491 }
1492 else
1493 {
1494 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1495 sym = this->define_special_symbol<size, false>(&name, &version,
1496 only_if_ref, &oldsym);
1497 #else
1498 gold_unreachable();
1499 #endif
1500 }
1501
1502 if (sym == NULL)
1503 return NULL;
1504
1505 sym->init_output_data(name, version, od, value, symsize, type, binding,
1506 visibility, nonvis, offset_is_from_end);
1507
1508 if (oldsym == NULL)
1509 {
1510 if (binding == elfcpp::STB_LOCAL
1511 || this->version_script_.symbol_is_local(name))
1512 this->force_local(sym);
1513 else if (version != NULL)
1514 sym->set_is_default();
1515 return sym;
1516 }
1517
1518 if (Symbol_table::should_override_with_special(oldsym))
1519 this->override_with_special(oldsym, sym);
1520 delete sym;
1521 return oldsym;
1522 }
1523
1524 // Define a symbol based on an Output_segment.
1525
1526 Symbol*
1527 Symbol_table::define_in_output_segment(const char* name,
1528 const char* version, Output_segment* os,
1529 uint64_t value,
1530 uint64_t symsize,
1531 elfcpp::STT type,
1532 elfcpp::STB binding,
1533 elfcpp::STV visibility,
1534 unsigned char nonvis,
1535 Symbol::Segment_offset_base offset_base,
1536 bool only_if_ref)
1537 {
1538 if (parameters->target().get_size() == 32)
1539 {
1540 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1541 return this->do_define_in_output_segment<32>(name, version, os,
1542 value, symsize, type,
1543 binding, visibility, nonvis,
1544 offset_base, only_if_ref);
1545 #else
1546 gold_unreachable();
1547 #endif
1548 }
1549 else if (parameters->target().get_size() == 64)
1550 {
1551 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1552 return this->do_define_in_output_segment<64>(name, version, os,
1553 value, symsize, type,
1554 binding, visibility, nonvis,
1555 offset_base, only_if_ref);
1556 #else
1557 gold_unreachable();
1558 #endif
1559 }
1560 else
1561 gold_unreachable();
1562 }
1563
1564 // Define a symbol in an Output_segment, sized version.
1565
1566 template<int size>
1567 Sized_symbol<size>*
1568 Symbol_table::do_define_in_output_segment(
1569 const char* name,
1570 const char* version,
1571 Output_segment* os,
1572 typename elfcpp::Elf_types<size>::Elf_Addr value,
1573 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1574 elfcpp::STT type,
1575 elfcpp::STB binding,
1576 elfcpp::STV visibility,
1577 unsigned char nonvis,
1578 Symbol::Segment_offset_base offset_base,
1579 bool only_if_ref)
1580 {
1581 Sized_symbol<size>* sym;
1582 Sized_symbol<size>* oldsym;
1583
1584 if (parameters->target().is_big_endian())
1585 {
1586 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1587 sym = this->define_special_symbol<size, true>(&name, &version,
1588 only_if_ref, &oldsym);
1589 #else
1590 gold_unreachable();
1591 #endif
1592 }
1593 else
1594 {
1595 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1596 sym = this->define_special_symbol<size, false>(&name, &version,
1597 only_if_ref, &oldsym);
1598 #else
1599 gold_unreachable();
1600 #endif
1601 }
1602
1603 if (sym == NULL)
1604 return NULL;
1605
1606 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1607 visibility, nonvis, offset_base);
1608
1609 if (oldsym == NULL)
1610 {
1611 if (binding == elfcpp::STB_LOCAL
1612 || this->version_script_.symbol_is_local(name))
1613 this->force_local(sym);
1614 else if (version != NULL)
1615 sym->set_is_default();
1616 return sym;
1617 }
1618
1619 if (Symbol_table::should_override_with_special(oldsym))
1620 this->override_with_special(oldsym, sym);
1621 delete sym;
1622 return oldsym;
1623 }
1624
1625 // Define a special symbol with a constant value. It is a multiple
1626 // definition error if this symbol is already defined.
1627
1628 Symbol*
1629 Symbol_table::define_as_constant(const char* name,
1630 const char* version,
1631 uint64_t value,
1632 uint64_t symsize,
1633 elfcpp::STT type,
1634 elfcpp::STB binding,
1635 elfcpp::STV visibility,
1636 unsigned char nonvis,
1637 bool only_if_ref,
1638 bool force_override)
1639 {
1640 if (parameters->target().get_size() == 32)
1641 {
1642 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1643 return this->do_define_as_constant<32>(name, version, value,
1644 symsize, type, binding,
1645 visibility, nonvis, only_if_ref,
1646 force_override);
1647 #else
1648 gold_unreachable();
1649 #endif
1650 }
1651 else if (parameters->target().get_size() == 64)
1652 {
1653 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1654 return this->do_define_as_constant<64>(name, version, value,
1655 symsize, type, binding,
1656 visibility, nonvis, only_if_ref,
1657 force_override);
1658 #else
1659 gold_unreachable();
1660 #endif
1661 }
1662 else
1663 gold_unreachable();
1664 }
1665
1666 // Define a symbol as a constant, sized version.
1667
1668 template<int size>
1669 Sized_symbol<size>*
1670 Symbol_table::do_define_as_constant(
1671 const char* name,
1672 const char* version,
1673 typename elfcpp::Elf_types<size>::Elf_Addr value,
1674 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1675 elfcpp::STT type,
1676 elfcpp::STB binding,
1677 elfcpp::STV visibility,
1678 unsigned char nonvis,
1679 bool only_if_ref,
1680 bool force_override)
1681 {
1682 Sized_symbol<size>* sym;
1683 Sized_symbol<size>* oldsym;
1684
1685 if (parameters->target().is_big_endian())
1686 {
1687 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1688 sym = this->define_special_symbol<size, true>(&name, &version,
1689 only_if_ref, &oldsym);
1690 #else
1691 gold_unreachable();
1692 #endif
1693 }
1694 else
1695 {
1696 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1697 sym = this->define_special_symbol<size, false>(&name, &version,
1698 only_if_ref, &oldsym);
1699 #else
1700 gold_unreachable();
1701 #endif
1702 }
1703
1704 if (sym == NULL)
1705 return NULL;
1706
1707 sym->init_constant(name, version, value, symsize, type, binding, visibility,
1708 nonvis);
1709
1710 if (oldsym == NULL)
1711 {
1712 // Version symbols are absolute symbols with name == version.
1713 // We don't want to force them to be local.
1714 if ((version == NULL
1715 || name != version
1716 || value != 0)
1717 && (binding == elfcpp::STB_LOCAL
1718 || this->version_script_.symbol_is_local(name)))
1719 this->force_local(sym);
1720 else if (version != NULL
1721 && (name != version || value != 0))
1722 sym->set_is_default();
1723 return sym;
1724 }
1725
1726 if (force_override || Symbol_table::should_override_with_special(oldsym))
1727 this->override_with_special(oldsym, sym);
1728 delete sym;
1729 return oldsym;
1730 }
1731
1732 // Define a set of symbols in output sections.
1733
1734 void
1735 Symbol_table::define_symbols(const Layout* layout, int count,
1736 const Define_symbol_in_section* p,
1737 bool only_if_ref)
1738 {
1739 for (int i = 0; i < count; ++i, ++p)
1740 {
1741 Output_section* os = layout->find_output_section(p->output_section);
1742 if (os != NULL)
1743 this->define_in_output_data(p->name, NULL, os, p->value,
1744 p->size, p->type, p->binding,
1745 p->visibility, p->nonvis,
1746 p->offset_is_from_end,
1747 only_if_ref || p->only_if_ref);
1748 else
1749 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1750 p->binding, p->visibility, p->nonvis,
1751 only_if_ref || p->only_if_ref,
1752 false);
1753 }
1754 }
1755
1756 // Define a set of symbols in output segments.
1757
1758 void
1759 Symbol_table::define_symbols(const Layout* layout, int count,
1760 const Define_symbol_in_segment* p,
1761 bool only_if_ref)
1762 {
1763 for (int i = 0; i < count; ++i, ++p)
1764 {
1765 Output_segment* os = layout->find_output_segment(p->segment_type,
1766 p->segment_flags_set,
1767 p->segment_flags_clear);
1768 if (os != NULL)
1769 this->define_in_output_segment(p->name, NULL, os, p->value,
1770 p->size, p->type, p->binding,
1771 p->visibility, p->nonvis,
1772 p->offset_base,
1773 only_if_ref || p->only_if_ref);
1774 else
1775 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1776 p->binding, p->visibility, p->nonvis,
1777 only_if_ref || p->only_if_ref,
1778 false);
1779 }
1780 }
1781
1782 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1783 // symbol should be defined--typically a .dyn.bss section. VALUE is
1784 // the offset within POSD.
1785
1786 template<int size>
1787 void
1788 Symbol_table::define_with_copy_reloc(
1789 Sized_symbol<size>* csym,
1790 Output_data* posd,
1791 typename elfcpp::Elf_types<size>::Elf_Addr value)
1792 {
1793 gold_assert(csym->is_from_dynobj());
1794 gold_assert(!csym->is_copied_from_dynobj());
1795 Object* object = csym->object();
1796 gold_assert(object->is_dynamic());
1797 Dynobj* dynobj = static_cast<Dynobj*>(object);
1798
1799 // Our copied variable has to override any variable in a shared
1800 // library.
1801 elfcpp::STB binding = csym->binding();
1802 if (binding == elfcpp::STB_WEAK)
1803 binding = elfcpp::STB_GLOBAL;
1804
1805 this->define_in_output_data(csym->name(), csym->version(),
1806 posd, value, csym->symsize(),
1807 csym->type(), binding,
1808 csym->visibility(), csym->nonvis(),
1809 false, false);
1810
1811 csym->set_is_copied_from_dynobj();
1812 csym->set_needs_dynsym_entry();
1813
1814 this->copied_symbol_dynobjs_[csym] = dynobj;
1815
1816 // We have now defined all aliases, but we have not entered them all
1817 // in the copied_symbol_dynobjs_ map.
1818 if (csym->has_alias())
1819 {
1820 Symbol* sym = csym;
1821 while (true)
1822 {
1823 sym = this->weak_aliases_[sym];
1824 if (sym == csym)
1825 break;
1826 gold_assert(sym->output_data() == posd);
1827
1828 sym->set_is_copied_from_dynobj();
1829 this->copied_symbol_dynobjs_[sym] = dynobj;
1830 }
1831 }
1832 }
1833
1834 // SYM is defined using a COPY reloc. Return the dynamic object where
1835 // the original definition was found.
1836
1837 Dynobj*
1838 Symbol_table::get_copy_source(const Symbol* sym) const
1839 {
1840 gold_assert(sym->is_copied_from_dynobj());
1841 Copied_symbol_dynobjs::const_iterator p =
1842 this->copied_symbol_dynobjs_.find(sym);
1843 gold_assert(p != this->copied_symbol_dynobjs_.end());
1844 return p->second;
1845 }
1846
1847 // Add any undefined symbols named on the command line.
1848
1849 void
1850 Symbol_table::add_undefined_symbols_from_command_line()
1851 {
1852 if (parameters->options().any_undefined())
1853 {
1854 if (parameters->target().get_size() == 32)
1855 {
1856 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1857 this->do_add_undefined_symbols_from_command_line<32>();
1858 #else
1859 gold_unreachable();
1860 #endif
1861 }
1862 else if (parameters->target().get_size() == 64)
1863 {
1864 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1865 this->do_add_undefined_symbols_from_command_line<64>();
1866 #else
1867 gold_unreachable();
1868 #endif
1869 }
1870 else
1871 gold_unreachable();
1872 }
1873 }
1874
1875 template<int size>
1876 void
1877 Symbol_table::do_add_undefined_symbols_from_command_line()
1878 {
1879 for (options::String_set::const_iterator p =
1880 parameters->options().undefined_begin();
1881 p != parameters->options().undefined_end();
1882 ++p)
1883 {
1884 const char* name = p->c_str();
1885
1886 if (this->lookup(name) != NULL)
1887 continue;
1888
1889 const char* version = NULL;
1890
1891 Sized_symbol<size>* sym;
1892 Sized_symbol<size>* oldsym;
1893 if (parameters->target().is_big_endian())
1894 {
1895 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1896 sym = this->define_special_symbol<size, true>(&name, &version,
1897 false, &oldsym);
1898 #else
1899 gold_unreachable();
1900 #endif
1901 }
1902 else
1903 {
1904 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1905 sym = this->define_special_symbol<size, false>(&name, &version,
1906 false, &oldsym);
1907 #else
1908 gold_unreachable();
1909 #endif
1910 }
1911
1912 gold_assert(oldsym == NULL);
1913
1914 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1915 elfcpp::STV_DEFAULT, 0);
1916 ++this->saw_undefined_;
1917 }
1918 }
1919
1920 // Set the dynamic symbol indexes. INDEX is the index of the first
1921 // global dynamic symbol. Pointers to the symbols are stored into the
1922 // vector SYMS. The names are added to DYNPOOL. This returns an
1923 // updated dynamic symbol index.
1924
1925 unsigned int
1926 Symbol_table::set_dynsym_indexes(unsigned int index,
1927 std::vector<Symbol*>* syms,
1928 Stringpool* dynpool,
1929 Versions* versions)
1930 {
1931 for (Symbol_table_type::iterator p = this->table_.begin();
1932 p != this->table_.end();
1933 ++p)
1934 {
1935 Symbol* sym = p->second;
1936
1937 // Note that SYM may already have a dynamic symbol index, since
1938 // some symbols appear more than once in the symbol table, with
1939 // and without a version.
1940
1941 if (!sym->should_add_dynsym_entry())
1942 sym->set_dynsym_index(-1U);
1943 else if (!sym->has_dynsym_index())
1944 {
1945 sym->set_dynsym_index(index);
1946 ++index;
1947 syms->push_back(sym);
1948 dynpool->add(sym->name(), false, NULL);
1949
1950 // Record any version information.
1951 if (sym->version() != NULL)
1952 versions->record_version(this, dynpool, sym);
1953 }
1954 }
1955
1956 // Finish up the versions. In some cases this may add new dynamic
1957 // symbols.
1958 index = versions->finalize(this, index, syms);
1959
1960 return index;
1961 }
1962
1963 // Set the final values for all the symbols. The index of the first
1964 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1965 // file offset OFF. Add their names to POOL. Return the new file
1966 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1967
1968 off_t
1969 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1970 size_t dyncount, Stringpool* pool,
1971 unsigned int *plocal_symcount)
1972 {
1973 off_t ret;
1974
1975 gold_assert(*plocal_symcount != 0);
1976 this->first_global_index_ = *plocal_symcount;
1977
1978 this->dynamic_offset_ = dynoff;
1979 this->first_dynamic_global_index_ = dyn_global_index;
1980 this->dynamic_count_ = dyncount;
1981
1982 if (parameters->target().get_size() == 32)
1983 {
1984 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1985 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1986 #else
1987 gold_unreachable();
1988 #endif
1989 }
1990 else if (parameters->target().get_size() == 64)
1991 {
1992 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1993 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1994 #else
1995 gold_unreachable();
1996 #endif
1997 }
1998 else
1999 gold_unreachable();
2000
2001 // Now that we have the final symbol table, we can reliably note
2002 // which symbols should get warnings.
2003 this->warnings_.note_warnings(this);
2004
2005 return ret;
2006 }
2007
2008 // SYM is going into the symbol table at *PINDEX. Add the name to
2009 // POOL, update *PINDEX and *POFF.
2010
2011 template<int size>
2012 void
2013 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2014 unsigned int* pindex, off_t* poff)
2015 {
2016 sym->set_symtab_index(*pindex);
2017 pool->add(sym->name(), false, NULL);
2018 ++*pindex;
2019 *poff += elfcpp::Elf_sizes<size>::sym_size;
2020 }
2021
2022 // Set the final value for all the symbols. This is called after
2023 // Layout::finalize, so all the output sections have their final
2024 // address.
2025
2026 template<int size>
2027 off_t
2028 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2029 unsigned int* plocal_symcount)
2030 {
2031 off = align_address(off, size >> 3);
2032 this->offset_ = off;
2033
2034 unsigned int index = *plocal_symcount;
2035 const unsigned int orig_index = index;
2036
2037 // First do all the symbols which have been forced to be local, as
2038 // they must appear before all global symbols.
2039 for (Forced_locals::iterator p = this->forced_locals_.begin();
2040 p != this->forced_locals_.end();
2041 ++p)
2042 {
2043 Symbol* sym = *p;
2044 gold_assert(sym->is_forced_local());
2045 if (this->sized_finalize_symbol<size>(sym))
2046 {
2047 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2048 ++*plocal_symcount;
2049 }
2050 }
2051
2052 // Now do all the remaining symbols.
2053 for (Symbol_table_type::iterator p = this->table_.begin();
2054 p != this->table_.end();
2055 ++p)
2056 {
2057 Symbol* sym = p->second;
2058 if (this->sized_finalize_symbol<size>(sym))
2059 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2060 }
2061
2062 this->output_count_ = index - orig_index;
2063
2064 return off;
2065 }
2066
2067 // Finalize the symbol SYM. This returns true if the symbol should be
2068 // added to the symbol table, false otherwise.
2069
2070 template<int size>
2071 bool
2072 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2073 {
2074 typedef typename Sized_symbol<size>::Value_type Value_type;
2075
2076 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2077
2078 // The default version of a symbol may appear twice in the symbol
2079 // table. We only need to finalize it once.
2080 if (sym->has_symtab_index())
2081 return false;
2082
2083 if (!sym->in_reg())
2084 {
2085 gold_assert(!sym->has_symtab_index());
2086 sym->set_symtab_index(-1U);
2087 gold_assert(sym->dynsym_index() == -1U);
2088 return false;
2089 }
2090
2091 Value_type value;
2092
2093 switch (sym->source())
2094 {
2095 case Symbol::FROM_OBJECT:
2096 {
2097 bool is_ordinary;
2098 unsigned int shndx = sym->shndx(&is_ordinary);
2099
2100 // FIXME: We need some target specific support here.
2101 if (!is_ordinary
2102 && shndx != elfcpp::SHN_ABS
2103 && shndx != elfcpp::SHN_COMMON)
2104 {
2105 gold_error(_("%s: unsupported symbol section 0x%x"),
2106 sym->demangled_name().c_str(), shndx);
2107 shndx = elfcpp::SHN_UNDEF;
2108 }
2109
2110 Object* symobj = sym->object();
2111 if (symobj->is_dynamic())
2112 {
2113 value = 0;
2114 shndx = elfcpp::SHN_UNDEF;
2115 }
2116 else if (symobj->pluginobj() != NULL)
2117 {
2118 value = 0;
2119 shndx = elfcpp::SHN_UNDEF;
2120 }
2121 else if (shndx == elfcpp::SHN_UNDEF)
2122 value = 0;
2123 else if (!is_ordinary
2124 && (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON))
2125 value = sym->value();
2126 else
2127 {
2128 Relobj* relobj = static_cast<Relobj*>(symobj);
2129 Output_section* os = relobj->output_section(shndx);
2130
2131 if (os == NULL)
2132 {
2133 sym->set_symtab_index(-1U);
2134 gold_assert(sym->dynsym_index() == -1U);
2135 return false;
2136 }
2137
2138 uint64_t secoff64 = relobj->output_section_offset(shndx);
2139 if (secoff64 == -1ULL)
2140 {
2141 // The section needs special handling (e.g., a merge section).
2142 value = os->output_address(relobj, shndx, sym->value());
2143 }
2144 else
2145 {
2146 Value_type secoff =
2147 convert_types<Value_type, uint64_t>(secoff64);
2148 if (sym->type() == elfcpp::STT_TLS)
2149 value = sym->value() + os->tls_offset() + secoff;
2150 else
2151 value = sym->value() + os->address() + secoff;
2152 }
2153 }
2154 }
2155 break;
2156
2157 case Symbol::IN_OUTPUT_DATA:
2158 {
2159 Output_data* od = sym->output_data();
2160 value = sym->value();
2161 if (sym->type() != elfcpp::STT_TLS)
2162 value += od->address();
2163 else
2164 {
2165 Output_section* os = od->output_section();
2166 gold_assert(os != NULL);
2167 value += os->tls_offset() + (od->address() - os->address());
2168 }
2169 if (sym->offset_is_from_end())
2170 value += od->data_size();
2171 }
2172 break;
2173
2174 case Symbol::IN_OUTPUT_SEGMENT:
2175 {
2176 Output_segment* os = sym->output_segment();
2177 value = sym->value();
2178 if (sym->type() != elfcpp::STT_TLS)
2179 value += os->vaddr();
2180 switch (sym->offset_base())
2181 {
2182 case Symbol::SEGMENT_START:
2183 break;
2184 case Symbol::SEGMENT_END:
2185 value += os->memsz();
2186 break;
2187 case Symbol::SEGMENT_BSS:
2188 value += os->filesz();
2189 break;
2190 default:
2191 gold_unreachable();
2192 }
2193 }
2194 break;
2195
2196 case Symbol::IS_CONSTANT:
2197 value = sym->value();
2198 break;
2199
2200 case Symbol::IS_UNDEFINED:
2201 value = 0;
2202 break;
2203
2204 default:
2205 gold_unreachable();
2206 }
2207
2208 sym->set_value(value);
2209
2210 if (parameters->options().strip_all())
2211 {
2212 sym->set_symtab_index(-1U);
2213 return false;
2214 }
2215
2216 return true;
2217 }
2218
2219 // Write out the global symbols.
2220
2221 void
2222 Symbol_table::write_globals(const Input_objects* input_objects,
2223 const Stringpool* sympool,
2224 const Stringpool* dynpool,
2225 Output_symtab_xindex* symtab_xindex,
2226 Output_symtab_xindex* dynsym_xindex,
2227 Output_file* of) const
2228 {
2229 switch (parameters->size_and_endianness())
2230 {
2231 #ifdef HAVE_TARGET_32_LITTLE
2232 case Parameters::TARGET_32_LITTLE:
2233 this->sized_write_globals<32, false>(input_objects, sympool,
2234 dynpool, symtab_xindex,
2235 dynsym_xindex, of);
2236 break;
2237 #endif
2238 #ifdef HAVE_TARGET_32_BIG
2239 case Parameters::TARGET_32_BIG:
2240 this->sized_write_globals<32, true>(input_objects, sympool,
2241 dynpool, symtab_xindex,
2242 dynsym_xindex, of);
2243 break;
2244 #endif
2245 #ifdef HAVE_TARGET_64_LITTLE
2246 case Parameters::TARGET_64_LITTLE:
2247 this->sized_write_globals<64, false>(input_objects, sympool,
2248 dynpool, symtab_xindex,
2249 dynsym_xindex, of);
2250 break;
2251 #endif
2252 #ifdef HAVE_TARGET_64_BIG
2253 case Parameters::TARGET_64_BIG:
2254 this->sized_write_globals<64, true>(input_objects, sympool,
2255 dynpool, symtab_xindex,
2256 dynsym_xindex, of);
2257 break;
2258 #endif
2259 default:
2260 gold_unreachable();
2261 }
2262 }
2263
2264 // Write out the global symbols.
2265
2266 template<int size, bool big_endian>
2267 void
2268 Symbol_table::sized_write_globals(const Input_objects* input_objects,
2269 const Stringpool* sympool,
2270 const Stringpool* dynpool,
2271 Output_symtab_xindex* symtab_xindex,
2272 Output_symtab_xindex* dynsym_xindex,
2273 Output_file* of) const
2274 {
2275 const Target& target = parameters->target();
2276
2277 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2278
2279 const unsigned int output_count = this->output_count_;
2280 const section_size_type oview_size = output_count * sym_size;
2281 const unsigned int first_global_index = this->first_global_index_;
2282 unsigned char* psyms;
2283 if (this->offset_ == 0 || output_count == 0)
2284 psyms = NULL;
2285 else
2286 psyms = of->get_output_view(this->offset_, oview_size);
2287
2288 const unsigned int dynamic_count = this->dynamic_count_;
2289 const section_size_type dynamic_size = dynamic_count * sym_size;
2290 const unsigned int first_dynamic_global_index =
2291 this->first_dynamic_global_index_;
2292 unsigned char* dynamic_view;
2293 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2294 dynamic_view = NULL;
2295 else
2296 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2297
2298 for (Symbol_table_type::const_iterator p = this->table_.begin();
2299 p != this->table_.end();
2300 ++p)
2301 {
2302 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2303
2304 // Possibly warn about unresolved symbols in shared libraries.
2305 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
2306
2307 unsigned int sym_index = sym->symtab_index();
2308 unsigned int dynsym_index;
2309 if (dynamic_view == NULL)
2310 dynsym_index = -1U;
2311 else
2312 dynsym_index = sym->dynsym_index();
2313
2314 if (sym_index == -1U && dynsym_index == -1U)
2315 {
2316 // This symbol is not included in the output file.
2317 continue;
2318 }
2319
2320 unsigned int shndx;
2321 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2322 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2323 switch (sym->source())
2324 {
2325 case Symbol::FROM_OBJECT:
2326 {
2327 bool is_ordinary;
2328 unsigned int in_shndx = sym->shndx(&is_ordinary);
2329
2330 // FIXME: We need some target specific support here.
2331 if (!is_ordinary
2332 && in_shndx != elfcpp::SHN_ABS
2333 && in_shndx != elfcpp::SHN_COMMON)
2334 {
2335 gold_error(_("%s: unsupported symbol section 0x%x"),
2336 sym->demangled_name().c_str(), in_shndx);
2337 shndx = in_shndx;
2338 }
2339 else
2340 {
2341 Object* symobj = sym->object();
2342 if (symobj->is_dynamic())
2343 {
2344 if (sym->needs_dynsym_value())
2345 dynsym_value = target.dynsym_value(sym);
2346 shndx = elfcpp::SHN_UNDEF;
2347 }
2348 else if (symobj->pluginobj() != NULL)
2349 shndx = elfcpp::SHN_UNDEF;
2350 else if (in_shndx == elfcpp::SHN_UNDEF
2351 || (!is_ordinary
2352 && (in_shndx == elfcpp::SHN_ABS
2353 || in_shndx == elfcpp::SHN_COMMON)))
2354 shndx = in_shndx;
2355 else
2356 {
2357 Relobj* relobj = static_cast<Relobj*>(symobj);
2358 Output_section* os = relobj->output_section(in_shndx);
2359 gold_assert(os != NULL);
2360 shndx = os->out_shndx();
2361
2362 if (shndx >= elfcpp::SHN_LORESERVE)
2363 {
2364 if (sym_index != -1U)
2365 symtab_xindex->add(sym_index, shndx);
2366 if (dynsym_index != -1U)
2367 dynsym_xindex->add(dynsym_index, shndx);
2368 shndx = elfcpp::SHN_XINDEX;
2369 }
2370
2371 // In object files symbol values are section
2372 // relative.
2373 if (parameters->options().relocatable())
2374 sym_value -= os->address();
2375 }
2376 }
2377 }
2378 break;
2379
2380 case Symbol::IN_OUTPUT_DATA:
2381 shndx = sym->output_data()->out_shndx();
2382 if (shndx >= elfcpp::SHN_LORESERVE)
2383 {
2384 if (sym_index != -1U)
2385 symtab_xindex->add(sym_index, shndx);
2386 if (dynsym_index != -1U)
2387 dynsym_xindex->add(dynsym_index, shndx);
2388 shndx = elfcpp::SHN_XINDEX;
2389 }
2390 break;
2391
2392 case Symbol::IN_OUTPUT_SEGMENT:
2393 shndx = elfcpp::SHN_ABS;
2394 break;
2395
2396 case Symbol::IS_CONSTANT:
2397 shndx = elfcpp::SHN_ABS;
2398 break;
2399
2400 case Symbol::IS_UNDEFINED:
2401 shndx = elfcpp::SHN_UNDEF;
2402 break;
2403
2404 default:
2405 gold_unreachable();
2406 }
2407
2408 if (sym_index != -1U)
2409 {
2410 sym_index -= first_global_index;
2411 gold_assert(sym_index < output_count);
2412 unsigned char* ps = psyms + (sym_index * sym_size);
2413 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2414 sympool, ps);
2415 }
2416
2417 if (dynsym_index != -1U)
2418 {
2419 dynsym_index -= first_dynamic_global_index;
2420 gold_assert(dynsym_index < dynamic_count);
2421 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2422 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2423 dynpool, pd);
2424 }
2425 }
2426
2427 of->write_output_view(this->offset_, oview_size, psyms);
2428 if (dynamic_view != NULL)
2429 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2430 }
2431
2432 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2433 // strtab holding the name.
2434
2435 template<int size, bool big_endian>
2436 void
2437 Symbol_table::sized_write_symbol(
2438 Sized_symbol<size>* sym,
2439 typename elfcpp::Elf_types<size>::Elf_Addr value,
2440 unsigned int shndx,
2441 const Stringpool* pool,
2442 unsigned char* p) const
2443 {
2444 elfcpp::Sym_write<size, big_endian> osym(p);
2445 osym.put_st_name(pool->get_offset(sym->name()));
2446 osym.put_st_value(value);
2447 // Use a symbol size of zero for undefined symbols from shared libraries.
2448 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2449 osym.put_st_size(0);
2450 else
2451 osym.put_st_size(sym->symsize());
2452 // A version script may have overridden the default binding.
2453 if (sym->is_forced_local())
2454 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2455 else
2456 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
2457 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2458 osym.put_st_shndx(shndx);
2459 }
2460
2461 // Check for unresolved symbols in shared libraries. This is
2462 // controlled by the --allow-shlib-undefined option.
2463
2464 // We only warn about libraries for which we have seen all the
2465 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2466 // which were not seen in this link. If we didn't see a DT_NEEDED
2467 // entry, we aren't going to be able to reliably report whether the
2468 // symbol is undefined.
2469
2470 // We also don't warn about libraries found in the system library
2471 // directory (the directory were we find libc.so); we assume that
2472 // those libraries are OK. This heuristic avoids problems in
2473 // GNU/Linux, in which -ldl can have undefined references satisfied by
2474 // ld-linux.so.
2475
2476 inline void
2477 Symbol_table::warn_about_undefined_dynobj_symbol(
2478 const Input_objects* input_objects,
2479 Symbol* sym) const
2480 {
2481 bool dummy;
2482 if (sym->source() == Symbol::FROM_OBJECT
2483 && sym->object()->is_dynamic()
2484 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2485 && sym->binding() != elfcpp::STB_WEAK
2486 && !parameters->options().allow_shlib_undefined()
2487 && !parameters->target().is_defined_by_abi(sym)
2488 && !input_objects->found_in_system_library_directory(sym->object()))
2489 {
2490 // A very ugly cast.
2491 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2492 if (!dynobj->has_unknown_needed_entries())
2493 {
2494 if (sym->version())
2495 gold_error(_("%s: undefined reference to '%s', version '%s'"),
2496 sym->object()->name().c_str(),
2497 sym->demangled_name().c_str(),
2498 sym->version());
2499 else
2500 gold_error(_("%s: undefined reference to '%s'"),
2501 sym->object()->name().c_str(),
2502 sym->demangled_name().c_str());
2503 }
2504 }
2505 }
2506
2507 // Write out a section symbol. Return the update offset.
2508
2509 void
2510 Symbol_table::write_section_symbol(const Output_section *os,
2511 Output_symtab_xindex* symtab_xindex,
2512 Output_file* of,
2513 off_t offset) const
2514 {
2515 switch (parameters->size_and_endianness())
2516 {
2517 #ifdef HAVE_TARGET_32_LITTLE
2518 case Parameters::TARGET_32_LITTLE:
2519 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
2520 offset);
2521 break;
2522 #endif
2523 #ifdef HAVE_TARGET_32_BIG
2524 case Parameters::TARGET_32_BIG:
2525 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
2526 offset);
2527 break;
2528 #endif
2529 #ifdef HAVE_TARGET_64_LITTLE
2530 case Parameters::TARGET_64_LITTLE:
2531 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
2532 offset);
2533 break;
2534 #endif
2535 #ifdef HAVE_TARGET_64_BIG
2536 case Parameters::TARGET_64_BIG:
2537 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
2538 offset);
2539 break;
2540 #endif
2541 default:
2542 gold_unreachable();
2543 }
2544 }
2545
2546 // Write out a section symbol, specialized for size and endianness.
2547
2548 template<int size, bool big_endian>
2549 void
2550 Symbol_table::sized_write_section_symbol(const Output_section* os,
2551 Output_symtab_xindex* symtab_xindex,
2552 Output_file* of,
2553 off_t offset) const
2554 {
2555 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2556
2557 unsigned char* pov = of->get_output_view(offset, sym_size);
2558
2559 elfcpp::Sym_write<size, big_endian> osym(pov);
2560 osym.put_st_name(0);
2561 osym.put_st_value(os->address());
2562 osym.put_st_size(0);
2563 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2564 elfcpp::STT_SECTION));
2565 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2566
2567 unsigned int shndx = os->out_shndx();
2568 if (shndx >= elfcpp::SHN_LORESERVE)
2569 {
2570 symtab_xindex->add(os->symtab_index(), shndx);
2571 shndx = elfcpp::SHN_XINDEX;
2572 }
2573 osym.put_st_shndx(shndx);
2574
2575 of->write_output_view(offset, sym_size, pov);
2576 }
2577
2578 // Print statistical information to stderr. This is used for --stats.
2579
2580 void
2581 Symbol_table::print_stats() const
2582 {
2583 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2584 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2585 program_name, this->table_.size(), this->table_.bucket_count());
2586 #else
2587 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2588 program_name, this->table_.size());
2589 #endif
2590 this->namepool_.print_stats("symbol table stringpool");
2591 }
2592
2593 // We check for ODR violations by looking for symbols with the same
2594 // name for which the debugging information reports that they were
2595 // defined in different source locations. When comparing the source
2596 // location, we consider instances with the same base filename and
2597 // line number to be the same. This is because different object
2598 // files/shared libraries can include the same header file using
2599 // different paths, and we don't want to report an ODR violation in
2600 // that case.
2601
2602 // This struct is used to compare line information, as returned by
2603 // Dwarf_line_info::one_addr2line. It implements a < comparison
2604 // operator used with std::set.
2605
2606 struct Odr_violation_compare
2607 {
2608 bool
2609 operator()(const std::string& s1, const std::string& s2) const
2610 {
2611 std::string::size_type pos1 = s1.rfind('/');
2612 std::string::size_type pos2 = s2.rfind('/');
2613 if (pos1 == std::string::npos
2614 || pos2 == std::string::npos)
2615 return s1 < s2;
2616 return s1.compare(pos1, std::string::npos,
2617 s2, pos2, std::string::npos) < 0;
2618 }
2619 };
2620
2621 // Check candidate_odr_violations_ to find symbols with the same name
2622 // but apparently different definitions (different source-file/line-no).
2623
2624 void
2625 Symbol_table::detect_odr_violations(const Task* task,
2626 const char* output_file_name) const
2627 {
2628 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2629 it != candidate_odr_violations_.end();
2630 ++it)
2631 {
2632 const char* symbol_name = it->first;
2633 // We use a sorted set so the output is deterministic.
2634 std::set<std::string, Odr_violation_compare> line_nums;
2635
2636 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2637 locs = it->second.begin();
2638 locs != it->second.end();
2639 ++locs)
2640 {
2641 // We need to lock the object in order to read it. This
2642 // means that we have to run in a singleton Task. If we
2643 // want to run this in a general Task for better
2644 // performance, we will need one Task for object, plus
2645 // appropriate locking to ensure that we don't conflict with
2646 // other uses of the object. Also note, one_addr2line is not
2647 // currently thread-safe.
2648 Task_lock_obj<Object> tl(task, locs->object);
2649 // 16 is the size of the object-cache that one_addr2line should use.
2650 std::string lineno = Dwarf_line_info::one_addr2line(
2651 locs->object, locs->shndx, locs->offset, 16);
2652 if (!lineno.empty())
2653 line_nums.insert(lineno);
2654 }
2655
2656 if (line_nums.size() > 1)
2657 {
2658 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2659 "places (possible ODR violation):"),
2660 output_file_name, demangle(symbol_name).c_str());
2661 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2662 it2 != line_nums.end();
2663 ++it2)
2664 fprintf(stderr, " %s\n", it2->c_str());
2665 }
2666 }
2667 // We only call one_addr2line() in this function, so we can clear its cache.
2668 Dwarf_line_info::clear_addr2line_cache();
2669 }
2670
2671 // Warnings functions.
2672
2673 // Add a new warning.
2674
2675 void
2676 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2677 const std::string& warning)
2678 {
2679 name = symtab->canonicalize_name(name);
2680 this->warnings_[name].set(obj, warning);
2681 }
2682
2683 // Look through the warnings and mark the symbols for which we should
2684 // warn. This is called during Layout::finalize when we know the
2685 // sources for all the symbols.
2686
2687 void
2688 Warnings::note_warnings(Symbol_table* symtab)
2689 {
2690 for (Warning_table::iterator p = this->warnings_.begin();
2691 p != this->warnings_.end();
2692 ++p)
2693 {
2694 Symbol* sym = symtab->lookup(p->first, NULL);
2695 if (sym != NULL
2696 && sym->source() == Symbol::FROM_OBJECT
2697 && sym->object() == p->second.object)
2698 sym->set_has_warning();
2699 }
2700 }
2701
2702 // Issue a warning. This is called when we see a relocation against a
2703 // symbol for which has a warning.
2704
2705 template<int size, bool big_endian>
2706 void
2707 Warnings::issue_warning(const Symbol* sym,
2708 const Relocate_info<size, big_endian>* relinfo,
2709 size_t relnum, off_t reloffset) const
2710 {
2711 gold_assert(sym->has_warning());
2712 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2713 gold_assert(p != this->warnings_.end());
2714 gold_warning_at_location(relinfo, relnum, reloffset,
2715 "%s", p->second.text.c_str());
2716 }
2717
2718 // Instantiate the templates we need. We could use the configure
2719 // script to restrict this to only the ones needed for implemented
2720 // targets.
2721
2722 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2723 template
2724 void
2725 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2726 #endif
2727
2728 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2729 template
2730 void
2731 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2732 #endif
2733
2734 #ifdef HAVE_TARGET_32_LITTLE
2735 template
2736 void
2737 Symbol_table::add_from_relobj<32, false>(
2738 Sized_relobj<32, false>* relobj,
2739 const unsigned char* syms,
2740 size_t count,
2741 size_t symndx_offset,
2742 const char* sym_names,
2743 size_t sym_name_size,
2744 Sized_relobj<32, false>::Symbols* sympointers,
2745 size_t* defined);
2746 #endif
2747
2748 #ifdef HAVE_TARGET_32_BIG
2749 template
2750 void
2751 Symbol_table::add_from_relobj<32, true>(
2752 Sized_relobj<32, true>* relobj,
2753 const unsigned char* syms,
2754 size_t count,
2755 size_t symndx_offset,
2756 const char* sym_names,
2757 size_t sym_name_size,
2758 Sized_relobj<32, true>::Symbols* sympointers,
2759 size_t* defined);
2760 #endif
2761
2762 #ifdef HAVE_TARGET_64_LITTLE
2763 template
2764 void
2765 Symbol_table::add_from_relobj<64, false>(
2766 Sized_relobj<64, false>* relobj,
2767 const unsigned char* syms,
2768 size_t count,
2769 size_t symndx_offset,
2770 const char* sym_names,
2771 size_t sym_name_size,
2772 Sized_relobj<64, false>::Symbols* sympointers,
2773 size_t* defined);
2774 #endif
2775
2776 #ifdef HAVE_TARGET_64_BIG
2777 template
2778 void
2779 Symbol_table::add_from_relobj<64, true>(
2780 Sized_relobj<64, true>* relobj,
2781 const unsigned char* syms,
2782 size_t count,
2783 size_t symndx_offset,
2784 const char* sym_names,
2785 size_t sym_name_size,
2786 Sized_relobj<64, true>::Symbols* sympointers,
2787 size_t* defined);
2788 #endif
2789
2790 #ifdef HAVE_TARGET_32_LITTLE
2791 template
2792 Symbol*
2793 Symbol_table::add_from_pluginobj<32, false>(
2794 Sized_pluginobj<32, false>* obj,
2795 const char* name,
2796 const char* ver,
2797 elfcpp::Sym<32, false>* sym);
2798 #endif
2799
2800 #ifdef HAVE_TARGET_32_BIG
2801 template
2802 Symbol*
2803 Symbol_table::add_from_pluginobj<32, true>(
2804 Sized_pluginobj<32, true>* obj,
2805 const char* name,
2806 const char* ver,
2807 elfcpp::Sym<32, true>* sym);
2808 #endif
2809
2810 #ifdef HAVE_TARGET_64_LITTLE
2811 template
2812 Symbol*
2813 Symbol_table::add_from_pluginobj<64, false>(
2814 Sized_pluginobj<64, false>* obj,
2815 const char* name,
2816 const char* ver,
2817 elfcpp::Sym<64, false>* sym);
2818 #endif
2819
2820 #ifdef HAVE_TARGET_64_BIG
2821 template
2822 Symbol*
2823 Symbol_table::add_from_pluginobj<64, true>(
2824 Sized_pluginobj<64, true>* obj,
2825 const char* name,
2826 const char* ver,
2827 elfcpp::Sym<64, true>* sym);
2828 #endif
2829
2830 #ifdef HAVE_TARGET_32_LITTLE
2831 template
2832 void
2833 Symbol_table::add_from_dynobj<32, false>(
2834 Sized_dynobj<32, false>* dynobj,
2835 const unsigned char* syms,
2836 size_t count,
2837 const char* sym_names,
2838 size_t sym_name_size,
2839 const unsigned char* versym,
2840 size_t versym_size,
2841 const std::vector<const char*>* version_map,
2842 Sized_relobj<32, false>::Symbols* sympointers,
2843 size_t* defined);
2844 #endif
2845
2846 #ifdef HAVE_TARGET_32_BIG
2847 template
2848 void
2849 Symbol_table::add_from_dynobj<32, true>(
2850 Sized_dynobj<32, true>* dynobj,
2851 const unsigned char* syms,
2852 size_t count,
2853 const char* sym_names,
2854 size_t sym_name_size,
2855 const unsigned char* versym,
2856 size_t versym_size,
2857 const std::vector<const char*>* version_map,
2858 Sized_relobj<32, true>::Symbols* sympointers,
2859 size_t* defined);
2860 #endif
2861
2862 #ifdef HAVE_TARGET_64_LITTLE
2863 template
2864 void
2865 Symbol_table::add_from_dynobj<64, false>(
2866 Sized_dynobj<64, false>* dynobj,
2867 const unsigned char* syms,
2868 size_t count,
2869 const char* sym_names,
2870 size_t sym_name_size,
2871 const unsigned char* versym,
2872 size_t versym_size,
2873 const std::vector<const char*>* version_map,
2874 Sized_relobj<64, false>::Symbols* sympointers,
2875 size_t* defined);
2876 #endif
2877
2878 #ifdef HAVE_TARGET_64_BIG
2879 template
2880 void
2881 Symbol_table::add_from_dynobj<64, true>(
2882 Sized_dynobj<64, true>* dynobj,
2883 const unsigned char* syms,
2884 size_t count,
2885 const char* sym_names,
2886 size_t sym_name_size,
2887 const unsigned char* versym,
2888 size_t versym_size,
2889 const std::vector<const char*>* version_map,
2890 Sized_relobj<64, true>::Symbols* sympointers,
2891 size_t* defined);
2892 #endif
2893
2894 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2895 template
2896 void
2897 Symbol_table::define_with_copy_reloc<32>(
2898 Sized_symbol<32>* sym,
2899 Output_data* posd,
2900 elfcpp::Elf_types<32>::Elf_Addr value);
2901 #endif
2902
2903 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2904 template
2905 void
2906 Symbol_table::define_with_copy_reloc<64>(
2907 Sized_symbol<64>* sym,
2908 Output_data* posd,
2909 elfcpp::Elf_types<64>::Elf_Addr value);
2910 #endif
2911
2912 #ifdef HAVE_TARGET_32_LITTLE
2913 template
2914 void
2915 Warnings::issue_warning<32, false>(const Symbol* sym,
2916 const Relocate_info<32, false>* relinfo,
2917 size_t relnum, off_t reloffset) const;
2918 #endif
2919
2920 #ifdef HAVE_TARGET_32_BIG
2921 template
2922 void
2923 Warnings::issue_warning<32, true>(const Symbol* sym,
2924 const Relocate_info<32, true>* relinfo,
2925 size_t relnum, off_t reloffset) const;
2926 #endif
2927
2928 #ifdef HAVE_TARGET_64_LITTLE
2929 template
2930 void
2931 Warnings::issue_warning<64, false>(const Symbol* sym,
2932 const Relocate_info<64, false>* relinfo,
2933 size_t relnum, off_t reloffset) const;
2934 #endif
2935
2936 #ifdef HAVE_TARGET_64_BIG
2937 template
2938 void
2939 Warnings::issue_warning<64, true>(const Symbol* sym,
2940 const Relocate_info<64, true>* relinfo,
2941 size_t relnum, off_t reloffset) const;
2942 #endif
2943
2944 } // End namespace gold.