PR gdb/15827
[binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Return true for function symbol.
219 bool
220 is_func() const
221 {
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
224 }
225
226 // Return the symbol visibility.
227 elfcpp::STV
228 visibility() const
229 { return this->visibility_; }
230
231 // Set the visibility.
232 void
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
235
236 // Override symbol visibility.
237 void
238 override_visibility(elfcpp::STV);
239
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def.
242 inline void
243 set_undef_binding(elfcpp::STB bind)
244 {
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
246 {
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
249 }
250 }
251
252 // Return TRUE if a weak undef was resolved by a dynamic def.
253 inline bool
254 is_undef_binding_weak() const
255 { return this->undef_binding_weak_; }
256
257 // Return the non-visibility part of the st_other field.
258 unsigned char
259 nonvis() const
260 { return this->nonvis_; }
261
262 // Set the non-visibility part of the st_other field.
263 void
264 set_nonvis(unsigned int nonvis)
265 { this->nonvis_ = nonvis; }
266
267 // Return whether this symbol is a forwarder. This will never be
268 // true of a symbol found in the hash table, but may be true of
269 // symbol pointers attached to object files.
270 bool
271 is_forwarder() const
272 { return this->is_forwarder_; }
273
274 // Mark this symbol as a forwarder.
275 void
276 set_forwarder()
277 { this->is_forwarder_ = true; }
278
279 // Return whether this symbol has an alias in the weak aliases table
280 // in Symbol_table.
281 bool
282 has_alias() const
283 { return this->has_alias_; }
284
285 // Mark this symbol as having an alias.
286 void
287 set_has_alias()
288 { this->has_alias_ = true; }
289
290 // Return whether this symbol needs an entry in the dynamic symbol
291 // table.
292 bool
293 needs_dynsym_entry() const
294 {
295 return (this->needs_dynsym_entry_
296 || (this->in_reg()
297 && this->in_dyn()
298 && this->is_externally_visible()));
299 }
300
301 // Mark this symbol as needing an entry in the dynamic symbol table.
302 void
303 set_needs_dynsym_entry()
304 { this->needs_dynsym_entry_ = true; }
305
306 // Return whether this symbol should be added to the dynamic symbol
307 // table.
308 bool
309 should_add_dynsym_entry(Symbol_table*) const;
310
311 // Return whether this symbol has been seen in a regular object.
312 bool
313 in_reg() const
314 { return this->in_reg_; }
315
316 // Mark this symbol as having been seen in a regular object.
317 void
318 set_in_reg()
319 { this->in_reg_ = true; }
320
321 // Return whether this symbol has been seen in a dynamic object.
322 bool
323 in_dyn() const
324 { return this->in_dyn_; }
325
326 // Mark this symbol as having been seen in a dynamic object.
327 void
328 set_in_dyn()
329 { this->in_dyn_ = true; }
330
331 // Return whether this symbol has been seen in a real ELF object.
332 // (IN_REG will return TRUE if the symbol has been seen in either
333 // a real ELF object or an object claimed by a plugin.)
334 bool
335 in_real_elf() const
336 { return this->in_real_elf_; }
337
338 // Mark this symbol as having been seen in a real ELF object.
339 void
340 set_in_real_elf()
341 { this->in_real_elf_ = true; }
342
343 // Return whether this symbol was defined in a section that was
344 // discarded from the link. This is used to control some error
345 // reporting.
346 bool
347 is_defined_in_discarded_section() const
348 { return this->is_defined_in_discarded_section_; }
349
350 // Mark this symbol as having been defined in a discarded section.
351 void
352 set_is_defined_in_discarded_section()
353 { this->is_defined_in_discarded_section_ = true; }
354
355 // Return the index of this symbol in the output file symbol table.
356 // A value of -1U means that this symbol is not going into the
357 // output file. This starts out as zero, and is set to a non-zero
358 // value by Symbol_table::finalize. It is an error to ask for the
359 // symbol table index before it has been set.
360 unsigned int
361 symtab_index() const
362 {
363 gold_assert(this->symtab_index_ != 0);
364 return this->symtab_index_;
365 }
366
367 // Set the index of the symbol in the output file symbol table.
368 void
369 set_symtab_index(unsigned int index)
370 {
371 gold_assert(index != 0);
372 this->symtab_index_ = index;
373 }
374
375 // Return whether this symbol already has an index in the output
376 // file symbol table.
377 bool
378 has_symtab_index() const
379 { return this->symtab_index_ != 0; }
380
381 // Return the index of this symbol in the dynamic symbol table. A
382 // value of -1U means that this symbol is not going into the dynamic
383 // symbol table. This starts out as zero, and is set to a non-zero
384 // during Layout::finalize. It is an error to ask for the dynamic
385 // symbol table index before it has been set.
386 unsigned int
387 dynsym_index() const
388 {
389 gold_assert(this->dynsym_index_ != 0);
390 return this->dynsym_index_;
391 }
392
393 // Set the index of the symbol in the dynamic symbol table.
394 void
395 set_dynsym_index(unsigned int index)
396 {
397 gold_assert(index != 0);
398 this->dynsym_index_ = index;
399 }
400
401 // Return whether this symbol already has an index in the dynamic
402 // symbol table.
403 bool
404 has_dynsym_index() const
405 { return this->dynsym_index_ != 0; }
406
407 // Return whether this symbol has an entry in the GOT section.
408 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
409 bool
410 has_got_offset(unsigned int got_type) const
411 { return this->got_offsets_.get_offset(got_type) != -1U; }
412
413 // Return the offset into the GOT section of this symbol.
414 unsigned int
415 got_offset(unsigned int got_type) const
416 {
417 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
418 gold_assert(got_offset != -1U);
419 return got_offset;
420 }
421
422 // Set the GOT offset of this symbol.
423 void
424 set_got_offset(unsigned int got_type, unsigned int got_offset)
425 { this->got_offsets_.set_offset(got_type, got_offset); }
426
427 // Return the GOT offset list.
428 const Got_offset_list*
429 got_offset_list() const
430 { return this->got_offsets_.get_list(); }
431
432 // Return whether this symbol has an entry in the PLT section.
433 bool
434 has_plt_offset() const
435 { return this->plt_offset_ != -1U; }
436
437 // Return the offset into the PLT section of this symbol.
438 unsigned int
439 plt_offset() const
440 {
441 gold_assert(this->has_plt_offset());
442 return this->plt_offset_;
443 }
444
445 // Set the PLT offset of this symbol.
446 void
447 set_plt_offset(unsigned int plt_offset)
448 {
449 gold_assert(plt_offset != -1U);
450 this->plt_offset_ = plt_offset;
451 }
452
453 // Return whether this dynamic symbol needs a special value in the
454 // dynamic symbol table.
455 bool
456 needs_dynsym_value() const
457 { return this->needs_dynsym_value_; }
458
459 // Set that this dynamic symbol needs a special value in the dynamic
460 // symbol table.
461 void
462 set_needs_dynsym_value()
463 {
464 gold_assert(this->object()->is_dynamic());
465 this->needs_dynsym_value_ = true;
466 }
467
468 // Return true if the final value of this symbol is known at link
469 // time.
470 bool
471 final_value_is_known() const;
472
473 // Return true if SHNDX represents a common symbol. This depends on
474 // the target.
475 static bool
476 is_common_shndx(unsigned int shndx);
477
478 // Return whether this is a defined symbol (not undefined or
479 // common).
480 bool
481 is_defined() const
482 {
483 bool is_ordinary;
484 if (this->source_ != FROM_OBJECT)
485 return this->source_ != IS_UNDEFINED;
486 unsigned int shndx = this->shndx(&is_ordinary);
487 return (is_ordinary
488 ? shndx != elfcpp::SHN_UNDEF
489 : !Symbol::is_common_shndx(shndx));
490 }
491
492 // Return true if this symbol is from a dynamic object.
493 bool
494 is_from_dynobj() const
495 {
496 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
497 }
498
499 // Return whether this is a placeholder symbol from a plugin object.
500 bool
501 is_placeholder() const
502 {
503 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
504 }
505
506 // Return whether this is an undefined symbol.
507 bool
508 is_undefined() const
509 {
510 bool is_ordinary;
511 return ((this->source_ == FROM_OBJECT
512 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
513 && is_ordinary)
514 || this->source_ == IS_UNDEFINED);
515 }
516
517 // Return whether this is a weak undefined symbol.
518 bool
519 is_weak_undefined() const
520 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
521
522 // Return whether this is an absolute symbol.
523 bool
524 is_absolute() const
525 {
526 bool is_ordinary;
527 return ((this->source_ == FROM_OBJECT
528 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
529 && !is_ordinary)
530 || this->source_ == IS_CONSTANT);
531 }
532
533 // Return whether this is a common symbol.
534 bool
535 is_common() const
536 {
537 if (this->source_ != FROM_OBJECT)
538 return false;
539 if (this->type_ == elfcpp::STT_COMMON)
540 return true;
541 bool is_ordinary;
542 unsigned int shndx = this->shndx(&is_ordinary);
543 return !is_ordinary && Symbol::is_common_shndx(shndx);
544 }
545
546 // Return whether this symbol can be seen outside this object.
547 bool
548 is_externally_visible() const
549 {
550 return ((this->visibility_ == elfcpp::STV_DEFAULT
551 || this->visibility_ == elfcpp::STV_PROTECTED)
552 && !this->is_forced_local_);
553 }
554
555 // Return true if this symbol can be preempted by a definition in
556 // another link unit.
557 bool
558 is_preemptible() const
559 {
560 // It doesn't make sense to ask whether a symbol defined in
561 // another object is preemptible.
562 gold_assert(!this->is_from_dynobj());
563
564 // It doesn't make sense to ask whether an undefined symbol
565 // is preemptible.
566 gold_assert(!this->is_undefined());
567
568 // If a symbol does not have default visibility, it can not be
569 // seen outside this link unit and therefore is not preemptible.
570 if (this->visibility_ != elfcpp::STV_DEFAULT)
571 return false;
572
573 // If this symbol has been forced to be a local symbol by a
574 // version script, then it is not visible outside this link unit
575 // and is not preemptible.
576 if (this->is_forced_local_)
577 return false;
578
579 // If we are not producing a shared library, then nothing is
580 // preemptible.
581 if (!parameters->options().shared())
582 return false;
583
584 // If the symbol was named in a --dynamic-list script, it is preemptible.
585 if (parameters->options().in_dynamic_list(this->name()))
586 return true;
587
588 // If the user used -Bsymbolic or provided a --dynamic-list script,
589 // then nothing (else) is preemptible.
590 if (parameters->options().Bsymbolic()
591 || parameters->options().have_dynamic_list())
592 return false;
593
594 // If the user used -Bsymbolic-functions, then functions are not
595 // preemptible. We explicitly check for not being STT_OBJECT,
596 // rather than for being STT_FUNC, because that is what the GNU
597 // linker does.
598 if (this->type() != elfcpp::STT_OBJECT
599 && parameters->options().Bsymbolic_functions())
600 return false;
601
602 // Otherwise the symbol is preemptible.
603 return true;
604 }
605
606 // Return true if this symbol is a function that needs a PLT entry.
607 bool
608 needs_plt_entry() const
609 {
610 // An undefined symbol from an executable does not need a PLT entry.
611 if (this->is_undefined() && !parameters->options().shared())
612 return false;
613
614 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
615 // doing a static link.
616 if (this->type() == elfcpp::STT_GNU_IFUNC)
617 return true;
618
619 // We only need a PLT entry for a function.
620 if (!this->is_func())
621 return false;
622
623 // If we're doing a static link or a -pie link, we don't create
624 // PLT entries.
625 if (parameters->doing_static_link()
626 || parameters->options().pie())
627 return false;
628
629 // We need a PLT entry if the function is defined in a dynamic
630 // object, or is undefined when building a shared object, or if it
631 // is subject to pre-emption.
632 return (this->is_from_dynobj()
633 || this->is_undefined()
634 || this->is_preemptible());
635 }
636
637 // When determining whether a reference to a symbol needs a dynamic
638 // relocation, we need to know several things about the reference.
639 // These flags may be or'ed together. 0 means that the symbol
640 // isn't referenced at all.
641 enum Reference_flags
642 {
643 // A reference to the symbol's absolute address. This includes
644 // references that cause an absolute address to be stored in the GOT.
645 ABSOLUTE_REF = 1,
646 // A reference that calculates the offset of the symbol from some
647 // anchor point, such as the PC or GOT.
648 RELATIVE_REF = 2,
649 // A TLS-related reference.
650 TLS_REF = 4,
651 // A reference that can always be treated as a function call.
652 FUNCTION_CALL = 8,
653 // When set, says that dynamic relocations are needed even if a
654 // symbol has a plt entry.
655 FUNC_DESC_ABI = 16,
656 };
657
658 // Given a direct absolute or pc-relative static relocation against
659 // the global symbol, this function returns whether a dynamic relocation
660 // is needed.
661
662 bool
663 needs_dynamic_reloc(int flags) const
664 {
665 // No dynamic relocations in a static link!
666 if (parameters->doing_static_link())
667 return false;
668
669 // A reference to an undefined symbol from an executable should be
670 // statically resolved to 0, and does not need a dynamic relocation.
671 // This matches gnu ld behavior.
672 if (this->is_undefined() && !parameters->options().shared())
673 return false;
674
675 // A reference to an absolute symbol does not need a dynamic relocation.
676 if (this->is_absolute())
677 return false;
678
679 // An absolute reference within a position-independent output file
680 // will need a dynamic relocation.
681 if ((flags & ABSOLUTE_REF)
682 && parameters->options().output_is_position_independent())
683 return true;
684
685 // A function call that can branch to a local PLT entry does not need
686 // a dynamic relocation.
687 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
688 return false;
689
690 // A reference to any PLT entry in a non-position-independent executable
691 // does not need a dynamic relocation.
692 if (!(flags & FUNC_DESC_ABI)
693 && !parameters->options().output_is_position_independent()
694 && this->has_plt_offset())
695 return false;
696
697 // A reference to a symbol defined in a dynamic object or to a
698 // symbol that is preemptible will need a dynamic relocation.
699 if (this->is_from_dynobj()
700 || this->is_undefined()
701 || this->is_preemptible())
702 return true;
703
704 // For all other cases, return FALSE.
705 return false;
706 }
707
708 // Whether we should use the PLT offset associated with a symbol for
709 // a relocation. FLAGS is a set of Reference_flags.
710
711 bool
712 use_plt_offset(int flags) const
713 {
714 // If the symbol doesn't have a PLT offset, then naturally we
715 // don't want to use it.
716 if (!this->has_plt_offset())
717 return false;
718
719 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
720 if (this->type() == elfcpp::STT_GNU_IFUNC)
721 return true;
722
723 // If we are going to generate a dynamic relocation, then we will
724 // wind up using that, so no need to use the PLT entry.
725 if (this->needs_dynamic_reloc(flags))
726 return false;
727
728 // If the symbol is from a dynamic object, we need to use the PLT
729 // entry.
730 if (this->is_from_dynobj())
731 return true;
732
733 // If we are generating a shared object, and this symbol is
734 // undefined or preemptible, we need to use the PLT entry.
735 if (parameters->options().shared()
736 && (this->is_undefined() || this->is_preemptible()))
737 return true;
738
739 // If this is a call to a weak undefined symbol, we need to use
740 // the PLT entry; the symbol may be defined by a library loaded
741 // at runtime.
742 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
743 return true;
744
745 // Otherwise we can use the regular definition.
746 return false;
747 }
748
749 // Given a direct absolute static relocation against
750 // the global symbol, where a dynamic relocation is needed, this
751 // function returns whether a relative dynamic relocation can be used.
752 // The caller must determine separately whether the static relocation
753 // is compatible with a relative relocation.
754
755 bool
756 can_use_relative_reloc(bool is_function_call) const
757 {
758 // A function call that can branch to a local PLT entry can
759 // use a RELATIVE relocation.
760 if (is_function_call && this->has_plt_offset())
761 return true;
762
763 // A reference to a symbol defined in a dynamic object or to a
764 // symbol that is preemptible can not use a RELATIVE relocation.
765 if (this->is_from_dynobj()
766 || this->is_undefined()
767 || this->is_preemptible())
768 return false;
769
770 // For all other cases, return TRUE.
771 return true;
772 }
773
774 // Return the output section where this symbol is defined. Return
775 // NULL if the symbol has an absolute value.
776 Output_section*
777 output_section() const;
778
779 // Set the symbol's output section. This is used for symbols
780 // defined in scripts. This should only be called after the symbol
781 // table has been finalized.
782 void
783 set_output_section(Output_section*);
784
785 // Return whether there should be a warning for references to this
786 // symbol.
787 bool
788 has_warning() const
789 { return this->has_warning_; }
790
791 // Mark this symbol as having a warning.
792 void
793 set_has_warning()
794 { this->has_warning_ = true; }
795
796 // Return whether this symbol is defined by a COPY reloc from a
797 // dynamic object.
798 bool
799 is_copied_from_dynobj() const
800 { return this->is_copied_from_dynobj_; }
801
802 // Mark this symbol as defined by a COPY reloc.
803 void
804 set_is_copied_from_dynobj()
805 { this->is_copied_from_dynobj_ = true; }
806
807 // Return whether this symbol is forced to visibility STB_LOCAL
808 // by a "local:" entry in a version script.
809 bool
810 is_forced_local() const
811 { return this->is_forced_local_; }
812
813 // Mark this symbol as forced to STB_LOCAL visibility.
814 void
815 set_is_forced_local()
816 { this->is_forced_local_ = true; }
817
818 // Return true if this may need a COPY relocation.
819 // References from an executable object to non-function symbols
820 // defined in a dynamic object may need a COPY relocation.
821 bool
822 may_need_copy_reloc() const
823 {
824 return (!parameters->options().output_is_position_independent()
825 && parameters->options().copyreloc()
826 && this->is_from_dynobj()
827 && !this->is_func());
828 }
829
830 // Return true if this symbol was predefined by the linker.
831 bool
832 is_predefined() const
833 { return this->is_predefined_; }
834
835 // Return true if this is a C++ vtable symbol.
836 bool
837 is_cxx_vtable() const
838 { return is_prefix_of("_ZTV", this->name_); }
839
840 protected:
841 // Instances of this class should always be created at a specific
842 // size.
843 Symbol()
844 { memset(this, 0, sizeof *this); }
845
846 // Initialize the general fields.
847 void
848 init_fields(const char* name, const char* version,
849 elfcpp::STT type, elfcpp::STB binding,
850 elfcpp::STV visibility, unsigned char nonvis);
851
852 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
853 // section index, IS_ORDINARY is whether it is a normal section
854 // index rather than a special code.
855 template<int size, bool big_endian>
856 void
857 init_base_object(const char* name, const char* version, Object* object,
858 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
859 bool is_ordinary);
860
861 // Initialize fields for an Output_data.
862 void
863 init_base_output_data(const char* name, const char* version, Output_data*,
864 elfcpp::STT, elfcpp::STB, elfcpp::STV,
865 unsigned char nonvis, bool offset_is_from_end,
866 bool is_predefined);
867
868 // Initialize fields for an Output_segment.
869 void
870 init_base_output_segment(const char* name, const char* version,
871 Output_segment* os, elfcpp::STT type,
872 elfcpp::STB binding, elfcpp::STV visibility,
873 unsigned char nonvis,
874 Segment_offset_base offset_base,
875 bool is_predefined);
876
877 // Initialize fields for a constant.
878 void
879 init_base_constant(const char* name, const char* version, elfcpp::STT type,
880 elfcpp::STB binding, elfcpp::STV visibility,
881 unsigned char nonvis, bool is_predefined);
882
883 // Initialize fields for an undefined symbol.
884 void
885 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
886 elfcpp::STB binding, elfcpp::STV visibility,
887 unsigned char nonvis);
888
889 // Override existing symbol.
890 template<int size, bool big_endian>
891 void
892 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
893 bool is_ordinary, Object* object, const char* version);
894
895 // Override existing symbol with a special symbol.
896 void
897 override_base_with_special(const Symbol* from);
898
899 // Override symbol version.
900 void
901 override_version(const char* version);
902
903 // Allocate a common symbol by giving it a location in the output
904 // file.
905 void
906 allocate_base_common(Output_data*);
907
908 private:
909 Symbol(const Symbol&);
910 Symbol& operator=(const Symbol&);
911
912 // Symbol name (expected to point into a Stringpool).
913 const char* name_;
914 // Symbol version (expected to point into a Stringpool). This may
915 // be NULL.
916 const char* version_;
917
918 union
919 {
920 // This struct is used if SOURCE_ == FROM_OBJECT.
921 struct
922 {
923 // Object in which symbol is defined, or in which it was first
924 // seen.
925 Object* object;
926 // Section number in object_ in which symbol is defined.
927 unsigned int shndx;
928 } from_object;
929
930 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
931 struct
932 {
933 // Output_data in which symbol is defined. Before
934 // Layout::finalize the symbol's value is an offset within the
935 // Output_data.
936 Output_data* output_data;
937 // True if the offset is from the end, false if the offset is
938 // from the beginning.
939 bool offset_is_from_end;
940 } in_output_data;
941
942 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
943 struct
944 {
945 // Output_segment in which the symbol is defined. Before
946 // Layout::finalize the symbol's value is an offset.
947 Output_segment* output_segment;
948 // The base to use for the offset before Layout::finalize.
949 Segment_offset_base offset_base;
950 } in_output_segment;
951 } u_;
952
953 // The index of this symbol in the output file. If the symbol is
954 // not going into the output file, this value is -1U. This field
955 // starts as always holding zero. It is set to a non-zero value by
956 // Symbol_table::finalize.
957 unsigned int symtab_index_;
958
959 // The index of this symbol in the dynamic symbol table. If the
960 // symbol is not going into the dynamic symbol table, this value is
961 // -1U. This field starts as always holding zero. It is set to a
962 // non-zero value during Layout::finalize.
963 unsigned int dynsym_index_;
964
965 // The GOT section entries for this symbol. A symbol may have more
966 // than one GOT offset (e.g., when mixing modules compiled with two
967 // different TLS models), but will usually have at most one.
968 Got_offset_list got_offsets_;
969
970 // If this symbol has an entry in the PLT section, then this is the
971 // offset from the start of the PLT section. This is -1U if there
972 // is no PLT entry.
973 unsigned int plt_offset_;
974
975 // Symbol type (bits 0 to 3).
976 elfcpp::STT type_ : 4;
977 // Symbol binding (bits 4 to 7).
978 elfcpp::STB binding_ : 4;
979 // Symbol visibility (bits 8 to 9).
980 elfcpp::STV visibility_ : 2;
981 // Rest of symbol st_other field (bits 10 to 15).
982 unsigned int nonvis_ : 6;
983 // The type of symbol (bits 16 to 18).
984 Source source_ : 3;
985 // True if this is the default version of the symbol (bit 19).
986 bool is_def_ : 1;
987 // True if this symbol really forwards to another symbol. This is
988 // used when we discover after the fact that two different entries
989 // in the hash table really refer to the same symbol. This will
990 // never be set for a symbol found in the hash table, but may be set
991 // for a symbol found in the list of symbols attached to an Object.
992 // It forwards to the symbol found in the forwarders_ map of
993 // Symbol_table (bit 20).
994 bool is_forwarder_ : 1;
995 // True if the symbol has an alias in the weak_aliases table in
996 // Symbol_table (bit 21).
997 bool has_alias_ : 1;
998 // True if this symbol needs to be in the dynamic symbol table (bit
999 // 22).
1000 bool needs_dynsym_entry_ : 1;
1001 // True if we've seen this symbol in a regular object (bit 23).
1002 bool in_reg_ : 1;
1003 // True if we've seen this symbol in a dynamic object (bit 24).
1004 bool in_dyn_ : 1;
1005 // True if this is a dynamic symbol which needs a special value in
1006 // the dynamic symbol table (bit 25).
1007 bool needs_dynsym_value_ : 1;
1008 // True if there is a warning for this symbol (bit 26).
1009 bool has_warning_ : 1;
1010 // True if we are using a COPY reloc for this symbol, so that the
1011 // real definition lives in a dynamic object (bit 27).
1012 bool is_copied_from_dynobj_ : 1;
1013 // True if this symbol was forced to local visibility by a version
1014 // script (bit 28).
1015 bool is_forced_local_ : 1;
1016 // True if the field u_.from_object.shndx is an ordinary section
1017 // index, not one of the special codes from SHN_LORESERVE to
1018 // SHN_HIRESERVE (bit 29).
1019 bool is_ordinary_shndx_ : 1;
1020 // True if we've seen this symbol in a "real" ELF object (bit 30).
1021 // If the symbol has been seen in a relocatable, non-IR, object file,
1022 // it's known to be referenced from outside the IR. A reference from
1023 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1024 // mark the symbol as "visible" from outside the IR. The compiler
1025 // can use this distinction to guide its handling of COMDAT symbols.
1026 bool in_real_elf_ : 1;
1027 // True if this symbol is defined in a section which was discarded
1028 // (bit 31).
1029 bool is_defined_in_discarded_section_ : 1;
1030 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1031 bool undef_binding_set_ : 1;
1032 // True if this symbol was a weak undef resolved by a dynamic def
1033 // (bit 33).
1034 bool undef_binding_weak_ : 1;
1035 // True if this symbol is a predefined linker symbol (bit 34).
1036 bool is_predefined_ : 1;
1037 };
1038
1039 // The parts of a symbol which are size specific. Using a template
1040 // derived class like this helps us use less space on a 32-bit system.
1041
1042 template<int size>
1043 class Sized_symbol : public Symbol
1044 {
1045 public:
1046 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1047 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1048
1049 Sized_symbol()
1050 { }
1051
1052 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1053 // section index, IS_ORDINARY is whether it is a normal section
1054 // index rather than a special code.
1055 template<bool big_endian>
1056 void
1057 init_object(const char* name, const char* version, Object* object,
1058 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1059 bool is_ordinary);
1060
1061 // Initialize fields for an Output_data.
1062 void
1063 init_output_data(const char* name, const char* version, Output_data*,
1064 Value_type value, Size_type symsize, elfcpp::STT,
1065 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1066 bool offset_is_from_end, bool is_predefined);
1067
1068 // Initialize fields for an Output_segment.
1069 void
1070 init_output_segment(const char* name, const char* version, Output_segment*,
1071 Value_type value, Size_type symsize, elfcpp::STT,
1072 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1073 Segment_offset_base offset_base, bool is_predefined);
1074
1075 // Initialize fields for a constant.
1076 void
1077 init_constant(const char* name, const char* version, Value_type value,
1078 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1079 unsigned char nonvis, bool is_predefined);
1080
1081 // Initialize fields for an undefined symbol.
1082 void
1083 init_undefined(const char* name, const char* version, elfcpp::STT,
1084 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1085
1086 // Override existing symbol.
1087 template<bool big_endian>
1088 void
1089 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1090 bool is_ordinary, Object* object, const char* version);
1091
1092 // Override existing symbol with a special symbol.
1093 void
1094 override_with_special(const Sized_symbol<size>*);
1095
1096 // Return the symbol's value.
1097 Value_type
1098 value() const
1099 { return this->value_; }
1100
1101 // Return the symbol's size (we can't call this 'size' because that
1102 // is a template parameter).
1103 Size_type
1104 symsize() const
1105 { return this->symsize_; }
1106
1107 // Set the symbol size. This is used when resolving common symbols.
1108 void
1109 set_symsize(Size_type symsize)
1110 { this->symsize_ = symsize; }
1111
1112 // Set the symbol value. This is called when we store the final
1113 // values of the symbols into the symbol table.
1114 void
1115 set_value(Value_type value)
1116 { this->value_ = value; }
1117
1118 // Allocate a common symbol by giving it a location in the output
1119 // file.
1120 void
1121 allocate_common(Output_data*, Value_type value);
1122
1123 private:
1124 Sized_symbol(const Sized_symbol&);
1125 Sized_symbol& operator=(const Sized_symbol&);
1126
1127 // Symbol value. Before Layout::finalize this is the offset in the
1128 // input section. This is set to the final value during
1129 // Layout::finalize.
1130 Value_type value_;
1131 // Symbol size.
1132 Size_type symsize_;
1133 };
1134
1135 // A struct describing a symbol defined by the linker, where the value
1136 // of the symbol is defined based on an output section. This is used
1137 // for symbols defined by the linker, like "_init_array_start".
1138
1139 struct Define_symbol_in_section
1140 {
1141 // The symbol name.
1142 const char* name;
1143 // The name of the output section with which this symbol should be
1144 // associated. If there is no output section with that name, the
1145 // symbol will be defined as zero.
1146 const char* output_section;
1147 // The offset of the symbol within the output section. This is an
1148 // offset from the start of the output section, unless start_at_end
1149 // is true, in which case this is an offset from the end of the
1150 // output section.
1151 uint64_t value;
1152 // The size of the symbol.
1153 uint64_t size;
1154 // The symbol type.
1155 elfcpp::STT type;
1156 // The symbol binding.
1157 elfcpp::STB binding;
1158 // The symbol visibility.
1159 elfcpp::STV visibility;
1160 // The rest of the st_other field.
1161 unsigned char nonvis;
1162 // If true, the value field is an offset from the end of the output
1163 // section.
1164 bool offset_is_from_end;
1165 // If true, this symbol is defined only if we see a reference to it.
1166 bool only_if_ref;
1167 };
1168
1169 // A struct describing a symbol defined by the linker, where the value
1170 // of the symbol is defined based on a segment. This is used for
1171 // symbols defined by the linker, like "_end". We describe the
1172 // segment with which the symbol should be associated by its
1173 // characteristics. If no segment meets these characteristics, the
1174 // symbol will be defined as zero. If there is more than one segment
1175 // which meets these characteristics, we will use the first one.
1176
1177 struct Define_symbol_in_segment
1178 {
1179 // The symbol name.
1180 const char* name;
1181 // The segment type where the symbol should be defined, typically
1182 // PT_LOAD.
1183 elfcpp::PT segment_type;
1184 // Bitmask of segment flags which must be set.
1185 elfcpp::PF segment_flags_set;
1186 // Bitmask of segment flags which must be clear.
1187 elfcpp::PF segment_flags_clear;
1188 // The offset of the symbol within the segment. The offset is
1189 // calculated from the position set by offset_base.
1190 uint64_t value;
1191 // The size of the symbol.
1192 uint64_t size;
1193 // The symbol type.
1194 elfcpp::STT type;
1195 // The symbol binding.
1196 elfcpp::STB binding;
1197 // The symbol visibility.
1198 elfcpp::STV visibility;
1199 // The rest of the st_other field.
1200 unsigned char nonvis;
1201 // The base from which we compute the offset.
1202 Symbol::Segment_offset_base offset_base;
1203 // If true, this symbol is defined only if we see a reference to it.
1204 bool only_if_ref;
1205 };
1206
1207 // Specify an object/section/offset location. Used by ODR code.
1208
1209 struct Symbol_location
1210 {
1211 // Object where the symbol is defined.
1212 Object* object;
1213 // Section-in-object where the symbol is defined.
1214 unsigned int shndx;
1215 // For relocatable objects, offset-in-section where the symbol is defined.
1216 // For dynamic objects, address where the symbol is defined.
1217 off_t offset;
1218 bool operator==(const Symbol_location& that) const
1219 {
1220 return (this->object == that.object
1221 && this->shndx == that.shndx
1222 && this->offset == that.offset);
1223 }
1224 };
1225
1226 // This class manages warnings. Warnings are a GNU extension. When
1227 // we see a section named .gnu.warning.SYM in an object file, and if
1228 // we wind using the definition of SYM from that object file, then we
1229 // will issue a warning for any relocation against SYM from a
1230 // different object file. The text of the warning is the contents of
1231 // the section. This is not precisely the definition used by the old
1232 // GNU linker; the old GNU linker treated an occurrence of
1233 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1234 // would trigger a warning on any reference. However, it was
1235 // inconsistent in that a warning in a dynamic object only triggered
1236 // if there was no definition in a regular object. This linker is
1237 // different in that we only issue a warning if we use the symbol
1238 // definition from the same object file as the warning section.
1239
1240 class Warnings
1241 {
1242 public:
1243 Warnings()
1244 : warnings_()
1245 { }
1246
1247 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1248 // of the warning.
1249 void
1250 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1251 const std::string& warning);
1252
1253 // For each symbol for which we should give a warning, make a note
1254 // on the symbol.
1255 void
1256 note_warnings(Symbol_table* symtab);
1257
1258 // Issue a warning for a reference to SYM at RELINFO's location.
1259 template<int size, bool big_endian>
1260 void
1261 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1262 size_t relnum, off_t reloffset) const;
1263
1264 private:
1265 Warnings(const Warnings&);
1266 Warnings& operator=(const Warnings&);
1267
1268 // What we need to know to get the warning text.
1269 struct Warning_location
1270 {
1271 // The object the warning is in.
1272 Object* object;
1273 // The warning text.
1274 std::string text;
1275
1276 Warning_location()
1277 : object(NULL), text()
1278 { }
1279
1280 void
1281 set(Object* o, const std::string& t)
1282 {
1283 this->object = o;
1284 this->text = t;
1285 }
1286 };
1287
1288 // A mapping from warning symbol names (canonicalized in
1289 // Symbol_table's namepool_ field) to warning information.
1290 typedef Unordered_map<const char*, Warning_location> Warning_table;
1291
1292 Warning_table warnings_;
1293 };
1294
1295 // The main linker symbol table.
1296
1297 class Symbol_table
1298 {
1299 public:
1300 // The different places where a symbol definition can come from.
1301 enum Defined
1302 {
1303 // Defined in an object file--the normal case.
1304 OBJECT,
1305 // Defined for a COPY reloc.
1306 COPY,
1307 // Defined on the command line using --defsym.
1308 DEFSYM,
1309 // Defined (so to speak) on the command line using -u.
1310 UNDEFINED,
1311 // Defined in a linker script.
1312 SCRIPT,
1313 // Predefined by the linker.
1314 PREDEFINED,
1315 // Defined by the linker during an incremental base link, but not
1316 // a predefined symbol (e.g., common, defined in script).
1317 INCREMENTAL_BASE,
1318 };
1319
1320 // The order in which we sort common symbols.
1321 enum Sort_commons_order
1322 {
1323 SORT_COMMONS_BY_SIZE_DESCENDING,
1324 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1325 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1326 };
1327
1328 // COUNT is an estimate of how many symbols will be inserted in the
1329 // symbol table. It's ok to put 0 if you don't know; a correct
1330 // guess will just save some CPU by reducing hashtable resizes.
1331 Symbol_table(unsigned int count, const Version_script_info& version_script);
1332
1333 ~Symbol_table();
1334
1335 void
1336 set_icf(Icf* icf)
1337 { this->icf_ = icf;}
1338
1339 Icf*
1340 icf() const
1341 { return this->icf_; }
1342
1343 // Returns true if ICF determined that this is a duplicate section.
1344 bool
1345 is_section_folded(Object* obj, unsigned int shndx) const;
1346
1347 void
1348 set_gc(Garbage_collection* gc)
1349 { this->gc_ = gc; }
1350
1351 Garbage_collection*
1352 gc() const
1353 { return this->gc_; }
1354
1355 // During garbage collection, this keeps undefined symbols.
1356 void
1357 gc_mark_undef_symbols(Layout*);
1358
1359 // This tells garbage collection that this symbol is referenced.
1360 void
1361 gc_mark_symbol(Symbol* sym);
1362
1363 // During garbage collection, this keeps sections that correspond to
1364 // symbols seen in dynamic objects.
1365 inline void
1366 gc_mark_dyn_syms(Symbol* sym);
1367
1368 // Add COUNT external symbols from the relocatable object RELOBJ to
1369 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1370 // offset in the symbol table of the first symbol, SYM_NAMES is
1371 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1372 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1373 // *DEFINED to the number of defined symbols.
1374 template<int size, bool big_endian>
1375 void
1376 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1377 const unsigned char* syms, size_t count,
1378 size_t symndx_offset, const char* sym_names,
1379 size_t sym_name_size,
1380 typename Sized_relobj_file<size, big_endian>::Symbols*,
1381 size_t* defined);
1382
1383 // Add one external symbol from the plugin object OBJ to the symbol table.
1384 // Returns a pointer to the resolved symbol in the symbol table.
1385 template<int size, bool big_endian>
1386 Symbol*
1387 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1388 const char* name, const char* ver,
1389 elfcpp::Sym<size, big_endian>* sym);
1390
1391 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1392 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1393 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1394 // symbol version data.
1395 template<int size, bool big_endian>
1396 void
1397 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1398 const unsigned char* syms, size_t count,
1399 const char* sym_names, size_t sym_name_size,
1400 const unsigned char* versym, size_t versym_size,
1401 const std::vector<const char*>*,
1402 typename Sized_relobj_file<size, big_endian>::Symbols*,
1403 size_t* defined);
1404
1405 // Add one external symbol from the incremental object OBJ to the symbol
1406 // table. Returns a pointer to the resolved symbol in the symbol table.
1407 template<int size, bool big_endian>
1408 Sized_symbol<size>*
1409 add_from_incrobj(Object* obj, const char* name,
1410 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1411
1412 // Define a special symbol based on an Output_data. It is a
1413 // multiple definition error if this symbol is already defined.
1414 Symbol*
1415 define_in_output_data(const char* name, const char* version, Defined,
1416 Output_data*, uint64_t value, uint64_t symsize,
1417 elfcpp::STT type, elfcpp::STB binding,
1418 elfcpp::STV visibility, unsigned char nonvis,
1419 bool offset_is_from_end, bool only_if_ref);
1420
1421 // Define a special symbol based on an Output_segment. It is a
1422 // multiple definition error if this symbol is already defined.
1423 Symbol*
1424 define_in_output_segment(const char* name, const char* version, Defined,
1425 Output_segment*, uint64_t value, uint64_t symsize,
1426 elfcpp::STT type, elfcpp::STB binding,
1427 elfcpp::STV visibility, unsigned char nonvis,
1428 Symbol::Segment_offset_base, bool only_if_ref);
1429
1430 // Define a special symbol with a constant value. It is a multiple
1431 // definition error if this symbol is already defined.
1432 Symbol*
1433 define_as_constant(const char* name, const char* version, Defined,
1434 uint64_t value, uint64_t symsize, elfcpp::STT type,
1435 elfcpp::STB binding, elfcpp::STV visibility,
1436 unsigned char nonvis, bool only_if_ref,
1437 bool force_override);
1438
1439 // Define a set of symbols in output sections. If ONLY_IF_REF is
1440 // true, only define them if they are referenced.
1441 void
1442 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1443 bool only_if_ref);
1444
1445 // Define a set of symbols in output segments. If ONLY_IF_REF is
1446 // true, only defined them if they are referenced.
1447 void
1448 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1449 bool only_if_ref);
1450
1451 // Define SYM using a COPY reloc. POSD is the Output_data where the
1452 // symbol should be defined--typically a .dyn.bss section. VALUE is
1453 // the offset within POSD.
1454 template<int size>
1455 void
1456 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1457 typename elfcpp::Elf_types<size>::Elf_Addr);
1458
1459 // Look up a symbol.
1460 Symbol*
1461 lookup(const char*, const char* version = NULL) const;
1462
1463 // Return the real symbol associated with the forwarder symbol FROM.
1464 Symbol*
1465 resolve_forwards(const Symbol* from) const;
1466
1467 // Return the sized version of a symbol in this table.
1468 template<int size>
1469 Sized_symbol<size>*
1470 get_sized_symbol(Symbol*) const;
1471
1472 template<int size>
1473 const Sized_symbol<size>*
1474 get_sized_symbol(const Symbol*) const;
1475
1476 // Return the count of undefined symbols seen.
1477 size_t
1478 saw_undefined() const
1479 { return this->saw_undefined_; }
1480
1481 // Allocate the common symbols
1482 void
1483 allocate_commons(Layout*, Mapfile*);
1484
1485 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1486 // of the warning.
1487 void
1488 add_warning(const char* name, Object* obj, const std::string& warning)
1489 { this->warnings_.add_warning(this, name, obj, warning); }
1490
1491 // Canonicalize a symbol name for use in the hash table.
1492 const char*
1493 canonicalize_name(const char* name)
1494 { return this->namepool_.add(name, true, NULL); }
1495
1496 // Possibly issue a warning for a reference to SYM at LOCATION which
1497 // is in OBJ.
1498 template<int size, bool big_endian>
1499 void
1500 issue_warning(const Symbol* sym,
1501 const Relocate_info<size, big_endian>* relinfo,
1502 size_t relnum, off_t reloffset) const
1503 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1504
1505 // Check candidate_odr_violations_ to find symbols with the same name
1506 // but apparently different definitions (different source-file/line-no).
1507 void
1508 detect_odr_violations(const Task*, const char* output_file_name) const;
1509
1510 // Add any undefined symbols named on the command line to the symbol
1511 // table.
1512 void
1513 add_undefined_symbols_from_command_line(Layout*);
1514
1515 // SYM is defined using a COPY reloc. Return the dynamic object
1516 // where the original definition was found.
1517 Dynobj*
1518 get_copy_source(const Symbol* sym) const;
1519
1520 // Set the dynamic symbol indexes. INDEX is the index of the first
1521 // global dynamic symbol. Pointers to the symbols are stored into
1522 // the vector. The names are stored into the Stringpool. This
1523 // returns an updated dynamic symbol index.
1524 unsigned int
1525 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1526 Stringpool*, Versions*);
1527
1528 // Finalize the symbol table after we have set the final addresses
1529 // of all the input sections. This sets the final symbol indexes,
1530 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1531 // index of the first global symbol. OFF is the file offset of the
1532 // global symbol table, DYNOFF is the offset of the globals in the
1533 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1534 // global dynamic symbol, and DYNCOUNT is the number of global
1535 // dynamic symbols. This records the parameters, and returns the
1536 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1537 // local symbols.
1538 off_t
1539 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1540 Stringpool* pool, unsigned int* plocal_symcount);
1541
1542 // Set the final file offset of the symbol table.
1543 void
1544 set_file_offset(off_t off)
1545 { this->offset_ = off; }
1546
1547 // Status code of Symbol_table::compute_final_value.
1548 enum Compute_final_value_status
1549 {
1550 // No error.
1551 CFVS_OK,
1552 // Unsupported symbol section.
1553 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1554 // No output section.
1555 CFVS_NO_OUTPUT_SECTION
1556 };
1557
1558 // Compute the final value of SYM and store status in location PSTATUS.
1559 // During relaxation, this may be called multiple times for a symbol to
1560 // compute its would-be final value in each relaxation pass.
1561
1562 template<int size>
1563 typename Sized_symbol<size>::Value_type
1564 compute_final_value(const Sized_symbol<size>* sym,
1565 Compute_final_value_status* pstatus) const;
1566
1567 // Return the index of the first global symbol.
1568 unsigned int
1569 first_global_index() const
1570 { return this->first_global_index_; }
1571
1572 // Return the total number of symbols in the symbol table.
1573 unsigned int
1574 output_count() const
1575 { return this->output_count_; }
1576
1577 // Write out the global symbols.
1578 void
1579 write_globals(const Stringpool*, const Stringpool*,
1580 Output_symtab_xindex*, Output_symtab_xindex*,
1581 Output_file*) const;
1582
1583 // Write out a section symbol. Return the updated offset.
1584 void
1585 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1586 Output_file*, off_t) const;
1587
1588 // Loop over all symbols, applying the function F to each.
1589 template<int size, typename F>
1590 void
1591 for_all_symbols(F f) const
1592 {
1593 for (Symbol_table_type::const_iterator p = this->table_.begin();
1594 p != this->table_.end();
1595 ++p)
1596 {
1597 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1598 f(sym);
1599 }
1600 }
1601
1602 // Dump statistical information to stderr.
1603 void
1604 print_stats() const;
1605
1606 // Return the version script information.
1607 const Version_script_info&
1608 version_script() const
1609 { return version_script_; }
1610
1611 private:
1612 Symbol_table(const Symbol_table&);
1613 Symbol_table& operator=(const Symbol_table&);
1614
1615 // The type of the list of common symbols.
1616 typedef std::vector<Symbol*> Commons_type;
1617
1618 // The type of the symbol hash table.
1619
1620 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1621
1622 // The hash function. The key values are Stringpool keys.
1623 struct Symbol_table_hash
1624 {
1625 inline size_t
1626 operator()(const Symbol_table_key& key) const
1627 {
1628 return key.first ^ key.second;
1629 }
1630 };
1631
1632 struct Symbol_table_eq
1633 {
1634 bool
1635 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1636 };
1637
1638 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1639 Symbol_table_eq> Symbol_table_type;
1640
1641 // A map from symbol name (as a pointer into the namepool) to all
1642 // the locations the symbols is (weakly) defined (and certain other
1643 // conditions are met). This map will be used later to detect
1644 // possible One Definition Rule (ODR) violations.
1645 struct Symbol_location_hash
1646 {
1647 size_t operator()(const Symbol_location& loc) const
1648 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1649 };
1650
1651 typedef Unordered_map<const char*,
1652 Unordered_set<Symbol_location, Symbol_location_hash> >
1653 Odr_map;
1654
1655 // Make FROM a forwarder symbol to TO.
1656 void
1657 make_forwarder(Symbol* from, Symbol* to);
1658
1659 // Add a symbol.
1660 template<int size, bool big_endian>
1661 Sized_symbol<size>*
1662 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1663 const char* version, Stringpool::Key version_key,
1664 bool def, const elfcpp::Sym<size, big_endian>& sym,
1665 unsigned int st_shndx, bool is_ordinary,
1666 unsigned int orig_st_shndx);
1667
1668 // Define a default symbol.
1669 template<int size, bool big_endian>
1670 void
1671 define_default_version(Sized_symbol<size>*, bool,
1672 Symbol_table_type::iterator);
1673
1674 // Resolve symbols.
1675 template<int size, bool big_endian>
1676 void
1677 resolve(Sized_symbol<size>* to,
1678 const elfcpp::Sym<size, big_endian>& sym,
1679 unsigned int st_shndx, bool is_ordinary,
1680 unsigned int orig_st_shndx,
1681 Object*, const char* version);
1682
1683 template<int size, bool big_endian>
1684 void
1685 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1686
1687 // Record that a symbol is forced to be local by a version script or
1688 // by visibility.
1689 void
1690 force_local(Symbol*);
1691
1692 // Adjust NAME and *NAME_KEY for wrapping.
1693 const char*
1694 wrap_symbol(const char* name, Stringpool::Key* name_key);
1695
1696 // Whether we should override a symbol, based on flags in
1697 // resolve.cc.
1698 static bool
1699 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1700 Object*, bool*, bool*);
1701
1702 // Report a problem in symbol resolution.
1703 static void
1704 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1705 Defined, Object* object);
1706
1707 // Override a symbol.
1708 template<int size, bool big_endian>
1709 void
1710 override(Sized_symbol<size>* tosym,
1711 const elfcpp::Sym<size, big_endian>& fromsym,
1712 unsigned int st_shndx, bool is_ordinary,
1713 Object* object, const char* version);
1714
1715 // Whether we should override a symbol with a special symbol which
1716 // is automatically defined by the linker.
1717 static bool
1718 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1719
1720 // Override a symbol with a special symbol.
1721 template<int size>
1722 void
1723 override_with_special(Sized_symbol<size>* tosym,
1724 const Sized_symbol<size>* fromsym);
1725
1726 // Record all weak alias sets for a dynamic object.
1727 template<int size>
1728 void
1729 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1730
1731 // Define a special symbol.
1732 template<int size, bool big_endian>
1733 Sized_symbol<size>*
1734 define_special_symbol(const char** pname, const char** pversion,
1735 bool only_if_ref, Sized_symbol<size>** poldsym,
1736 bool* resolve_oldsym);
1737
1738 // Define a symbol in an Output_data, sized version.
1739 template<int size>
1740 Sized_symbol<size>*
1741 do_define_in_output_data(const char* name, const char* version, Defined,
1742 Output_data*,
1743 typename elfcpp::Elf_types<size>::Elf_Addr value,
1744 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1745 elfcpp::STT type, elfcpp::STB binding,
1746 elfcpp::STV visibility, unsigned char nonvis,
1747 bool offset_is_from_end, bool only_if_ref);
1748
1749 // Define a symbol in an Output_segment, sized version.
1750 template<int size>
1751 Sized_symbol<size>*
1752 do_define_in_output_segment(
1753 const char* name, const char* version, Defined, Output_segment* os,
1754 typename elfcpp::Elf_types<size>::Elf_Addr value,
1755 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1756 elfcpp::STT type, elfcpp::STB binding,
1757 elfcpp::STV visibility, unsigned char nonvis,
1758 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1759
1760 // Define a symbol as a constant, sized version.
1761 template<int size>
1762 Sized_symbol<size>*
1763 do_define_as_constant(
1764 const char* name, const char* version, Defined,
1765 typename elfcpp::Elf_types<size>::Elf_Addr value,
1766 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1767 elfcpp::STT type, elfcpp::STB binding,
1768 elfcpp::STV visibility, unsigned char nonvis,
1769 bool only_if_ref, bool force_override);
1770
1771 // Add any undefined symbols named on the command line to the symbol
1772 // table, sized version.
1773 template<int size>
1774 void
1775 do_add_undefined_symbols_from_command_line(Layout*);
1776
1777 // Add one undefined symbol.
1778 template<int size>
1779 void
1780 add_undefined_symbol_from_command_line(const char* name);
1781
1782 // Types of common symbols.
1783
1784 enum Commons_section_type
1785 {
1786 COMMONS_NORMAL,
1787 COMMONS_TLS,
1788 COMMONS_SMALL,
1789 COMMONS_LARGE
1790 };
1791
1792 // Allocate the common symbols, sized version.
1793 template<int size>
1794 void
1795 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1796
1797 // Allocate the common symbols from one list.
1798 template<int size>
1799 void
1800 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1801 Mapfile*, Sort_commons_order);
1802
1803 // Returns all of the lines attached to LOC, not just the one the
1804 // instruction actually came from. This helps the ODR checker avoid
1805 // false positives.
1806 static std::vector<std::string>
1807 linenos_from_loc(const Task* task, const Symbol_location& loc);
1808
1809 // Implement detect_odr_violations.
1810 template<int size, bool big_endian>
1811 void
1812 sized_detect_odr_violations() const;
1813
1814 // Finalize symbols specialized for size.
1815 template<int size>
1816 off_t
1817 sized_finalize(off_t, Stringpool*, unsigned int*);
1818
1819 // Finalize a symbol. Return whether it should be added to the
1820 // symbol table.
1821 template<int size>
1822 bool
1823 sized_finalize_symbol(Symbol*);
1824
1825 // Add a symbol the final symtab by setting its index.
1826 template<int size>
1827 void
1828 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1829
1830 // Write globals specialized for size and endianness.
1831 template<int size, bool big_endian>
1832 void
1833 sized_write_globals(const Stringpool*, const Stringpool*,
1834 Output_symtab_xindex*, Output_symtab_xindex*,
1835 Output_file*) const;
1836
1837 // Write out a symbol to P.
1838 template<int size, bool big_endian>
1839 void
1840 sized_write_symbol(Sized_symbol<size>*,
1841 typename elfcpp::Elf_types<size>::Elf_Addr value,
1842 unsigned int shndx, elfcpp::STB,
1843 const Stringpool*, unsigned char* p) const;
1844
1845 // Possibly warn about an undefined symbol from a dynamic object.
1846 void
1847 warn_about_undefined_dynobj_symbol(Symbol*) const;
1848
1849 // Write out a section symbol, specialized for size and endianness.
1850 template<int size, bool big_endian>
1851 void
1852 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1853 Output_file*, off_t) const;
1854
1855 // The type of the list of symbols which have been forced local.
1856 typedef std::vector<Symbol*> Forced_locals;
1857
1858 // A map from symbols with COPY relocs to the dynamic objects where
1859 // they are defined.
1860 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1861
1862 // We increment this every time we see a new undefined symbol, for
1863 // use in archive groups.
1864 size_t saw_undefined_;
1865 // The index of the first global symbol in the output file.
1866 unsigned int first_global_index_;
1867 // The file offset within the output symtab section where we should
1868 // write the table.
1869 off_t offset_;
1870 // The number of global symbols we want to write out.
1871 unsigned int output_count_;
1872 // The file offset of the global dynamic symbols, or 0 if none.
1873 off_t dynamic_offset_;
1874 // The index of the first global dynamic symbol.
1875 unsigned int first_dynamic_global_index_;
1876 // The number of global dynamic symbols, or 0 if none.
1877 unsigned int dynamic_count_;
1878 // The symbol hash table.
1879 Symbol_table_type table_;
1880 // A pool of symbol names. This is used for all global symbols.
1881 // Entries in the hash table point into this pool.
1882 Stringpool namepool_;
1883 // Forwarding symbols.
1884 Unordered_map<const Symbol*, Symbol*> forwarders_;
1885 // Weak aliases. A symbol in this list points to the next alias.
1886 // The aliases point to each other in a circular list.
1887 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1888 // We don't expect there to be very many common symbols, so we keep
1889 // a list of them. When we find a common symbol we add it to this
1890 // list. It is possible that by the time we process the list the
1891 // symbol is no longer a common symbol. It may also have become a
1892 // forwarder.
1893 Commons_type commons_;
1894 // This is like the commons_ field, except that it holds TLS common
1895 // symbols.
1896 Commons_type tls_commons_;
1897 // This is for small common symbols.
1898 Commons_type small_commons_;
1899 // This is for large common symbols.
1900 Commons_type large_commons_;
1901 // A list of symbols which have been forced to be local. We don't
1902 // expect there to be very many of them, so we keep a list of them
1903 // rather than walking the whole table to find them.
1904 Forced_locals forced_locals_;
1905 // Manage symbol warnings.
1906 Warnings warnings_;
1907 // Manage potential One Definition Rule (ODR) violations.
1908 Odr_map candidate_odr_violations_;
1909
1910 // When we emit a COPY reloc for a symbol, we define it in an
1911 // Output_data. When it's time to emit version information for it,
1912 // we need to know the dynamic object in which we found the original
1913 // definition. This maps symbols with COPY relocs to the dynamic
1914 // object where they were defined.
1915 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1916 // Information parsed from the version script, if any.
1917 const Version_script_info& version_script_;
1918 Garbage_collection* gc_;
1919 Icf* icf_;
1920 };
1921
1922 // We inline get_sized_symbol for efficiency.
1923
1924 template<int size>
1925 Sized_symbol<size>*
1926 Symbol_table::get_sized_symbol(Symbol* sym) const
1927 {
1928 gold_assert(size == parameters->target().get_size());
1929 return static_cast<Sized_symbol<size>*>(sym);
1930 }
1931
1932 template<int size>
1933 const Sized_symbol<size>*
1934 Symbol_table::get_sized_symbol(const Symbol* sym) const
1935 {
1936 gold_assert(size == parameters->target().get_size());
1937 return static_cast<const Sized_symbol<size>*>(sym);
1938 }
1939
1940 } // End namespace gold.
1941
1942 #endif // !defined(GOLD_SYMTAB_H)