b60256e90a12dca867afe2c8bd9db285eda890a3
[binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Version_script_info;
50 class Input_objects;
51 class Output_data;
52 class Output_section;
53 class Output_segment;
54 class Output_file;
55
56 // The base class of an entry in the symbol table. The symbol table
57 // can have a lot of entries, so we don't want this class to big.
58 // Size dependent fields can be found in the template class
59 // Sized_symbol. Targets may support their own derived classes.
60
61 class Symbol
62 {
63 public:
64 // Because we want the class to be small, we don't use any virtual
65 // functions. But because symbols can be defined in different
66 // places, we need to classify them. This enum is the different
67 // sources of symbols we support.
68 enum Source
69 {
70 // Symbol defined in a relocatable or dynamic input file--this is
71 // the most common case.
72 FROM_OBJECT,
73 // Symbol defined in an Output_data, a special section created by
74 // the target.
75 IN_OUTPUT_DATA,
76 // Symbol defined in an Output_segment, with no associated
77 // section.
78 IN_OUTPUT_SEGMENT,
79 // Symbol value is constant.
80 CONSTANT
81 };
82
83 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
84 // the offset means.
85 enum Segment_offset_base
86 {
87 // From the start of the segment.
88 SEGMENT_START,
89 // From the end of the segment.
90 SEGMENT_END,
91 // From the filesz of the segment--i.e., after the loaded bytes
92 // but before the bytes which are allocated but zeroed.
93 SEGMENT_BSS
94 };
95
96 // Return the symbol name.
97 const char*
98 name() const
99 { return this->name_; }
100
101 // Return the (ANSI) demangled version of the name, if
102 // parameters.demangle() is true. Otherwise, return the name. This
103 // is intended to be used only for logging errors, so it's not
104 // super-efficient.
105 std::string
106 demangled_name() const;
107
108 // Return the symbol version. This will return NULL for an
109 // unversioned symbol.
110 const char*
111 version() const
112 { return this->version_; }
113
114 // Return whether this version is the default for this symbol name
115 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
116 // meaningful for versioned symbols.
117 bool
118 is_default() const
119 {
120 gold_assert(this->version_ != NULL);
121 return this->is_def_;
122 }
123
124 // Set whether this version is the default for this symbol name.
125 void
126 set_is_default(bool def)
127 { this->is_def_ = def; }
128
129 // Return the symbol source.
130 Source
131 source() const
132 { return this->source_; }
133
134 // Return the object with which this symbol is associated.
135 Object*
136 object() const
137 {
138 gold_assert(this->source_ == FROM_OBJECT);
139 return this->u_.from_object.object;
140 }
141
142 // Return the index of the section in the input relocatable or
143 // dynamic object file.
144 unsigned int
145 shndx() const
146 {
147 gold_assert(this->source_ == FROM_OBJECT);
148 return this->u_.from_object.shndx;
149 }
150
151 // Return the output data section with which this symbol is
152 // associated, if the symbol was specially defined with respect to
153 // an output data section.
154 Output_data*
155 output_data() const
156 {
157 gold_assert(this->source_ == IN_OUTPUT_DATA);
158 return this->u_.in_output_data.output_data;
159 }
160
161 // If this symbol was defined with respect to an output data
162 // section, return whether the value is an offset from end.
163 bool
164 offset_is_from_end() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.offset_is_from_end;
168 }
169
170 // Return the output segment with which this symbol is associated,
171 // if the symbol was specially defined with respect to an output
172 // segment.
173 Output_segment*
174 output_segment() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
177 return this->u_.in_output_segment.output_segment;
178 }
179
180 // If this symbol was defined with respect to an output segment,
181 // return the offset base.
182 Segment_offset_base
183 offset_base() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.offset_base;
187 }
188
189 // Return the symbol binding.
190 elfcpp::STB
191 binding() const
192 { return this->binding_; }
193
194 // Return the symbol type.
195 elfcpp::STT
196 type() const
197 { return this->type_; }
198
199 // Return the symbol visibility.
200 elfcpp::STV
201 visibility() const
202 { return this->visibility_; }
203
204 // Return the non-visibility part of the st_other field.
205 unsigned char
206 nonvis() const
207 { return this->nonvis_; }
208
209 // Return whether this symbol is a forwarder. This will never be
210 // true of a symbol found in the hash table, but may be true of
211 // symbol pointers attached to object files.
212 bool
213 is_forwarder() const
214 { return this->is_forwarder_; }
215
216 // Mark this symbol as a forwarder.
217 void
218 set_forwarder()
219 { this->is_forwarder_ = true; }
220
221 // Return whether this symbol has an alias in the weak aliases table
222 // in Symbol_table.
223 bool
224 has_alias() const
225 { return this->has_alias_; }
226
227 // Mark this symbol as having an alias.
228 void
229 set_has_alias()
230 { this->has_alias_ = true; }
231
232 // Return whether this symbol needs an entry in the dynamic symbol
233 // table.
234 bool
235 needs_dynsym_entry() const
236 {
237 return (this->needs_dynsym_entry_
238 || (this->in_reg() && this->in_dyn()));
239 }
240
241 // Mark this symbol as needing an entry in the dynamic symbol table.
242 void
243 set_needs_dynsym_entry()
244 { this->needs_dynsym_entry_ = true; }
245
246 // Return whether this symbol should be added to the dynamic symbol
247 // table.
248 bool
249 should_add_dynsym_entry() const;
250
251 // Return whether this symbol has been seen in a regular object.
252 bool
253 in_reg() const
254 { return this->in_reg_; }
255
256 // Mark this symbol as having been seen in a regular object.
257 void
258 set_in_reg()
259 { this->in_reg_ = true; }
260
261 // Return whether this symbol has been seen in a dynamic object.
262 bool
263 in_dyn() const
264 { return this->in_dyn_; }
265
266 // Mark this symbol as having been seen in a dynamic object.
267 void
268 set_in_dyn()
269 { this->in_dyn_ = true; }
270
271 // Return the index of this symbol in the output file symbol table.
272 // A value of -1U means that this symbol is not going into the
273 // output file. This starts out as zero, and is set to a non-zero
274 // value by Symbol_table::finalize. It is an error to ask for the
275 // symbol table index before it has been set.
276 unsigned int
277 symtab_index() const
278 {
279 gold_assert(this->symtab_index_ != 0);
280 return this->symtab_index_;
281 }
282
283 // Set the index of the symbol in the output file symbol table.
284 void
285 set_symtab_index(unsigned int index)
286 {
287 gold_assert(index != 0);
288 this->symtab_index_ = index;
289 }
290
291 // Return whether this symbol already has an index in the output
292 // file symbol table.
293 bool
294 has_symtab_index() const
295 { return this->symtab_index_ != 0; }
296
297 // Return the index of this symbol in the dynamic symbol table. A
298 // value of -1U means that this symbol is not going into the dynamic
299 // symbol table. This starts out as zero, and is set to a non-zero
300 // during Layout::finalize. It is an error to ask for the dynamic
301 // symbol table index before it has been set.
302 unsigned int
303 dynsym_index() const
304 {
305 gold_assert(this->dynsym_index_ != 0);
306 return this->dynsym_index_;
307 }
308
309 // Set the index of the symbol in the dynamic symbol table.
310 void
311 set_dynsym_index(unsigned int index)
312 {
313 gold_assert(index != 0);
314 this->dynsym_index_ = index;
315 }
316
317 // Return whether this symbol already has an index in the dynamic
318 // symbol table.
319 bool
320 has_dynsym_index() const
321 { return this->dynsym_index_ != 0; }
322
323 // Return whether this symbol has an entry in the GOT section.
324 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
325 bool
326 has_got_offset() const
327 { return this->has_got_offset_; }
328
329 // Return the offset into the GOT section of this symbol.
330 unsigned int
331 got_offset() const
332 {
333 gold_assert(this->has_got_offset());
334 return this->got_offset_;
335 }
336
337 // Set the GOT offset of this symbol.
338 void
339 set_got_offset(unsigned int got_offset)
340 {
341 this->has_got_offset_ = true;
342 this->got_offset_ = got_offset;
343 }
344
345 // Return whether this TLS symbol has an entry in the GOT section for
346 // its module index or, if NEED_PAIR is true, has a pair of entries
347 // for its module index and dtv-relative offset.
348 bool
349 has_tls_got_offset(bool need_pair) const
350 {
351 return (this->has_tls_mod_got_offset_
352 && (!need_pair || this->has_tls_pair_got_offset_));
353 }
354
355 // Return the offset into the GOT section for this symbol's TLS module
356 // index or, if NEED_PAIR is true, for the pair of entries for the
357 // module index and dtv-relative offset.
358 unsigned int
359 tls_got_offset(bool need_pair) const
360 {
361 gold_assert(this->has_tls_got_offset(need_pair));
362 return this->tls_mod_got_offset_;
363 }
364
365 // Set the GOT offset of this symbol.
366 void
367 set_tls_got_offset(unsigned int got_offset, bool have_pair)
368 {
369 this->has_tls_mod_got_offset_ = true;
370 this->has_tls_pair_got_offset_ = have_pair;
371 this->tls_mod_got_offset_ = got_offset;
372 }
373
374 // Return whether this symbol has an entry in the PLT section.
375 bool
376 has_plt_offset() const
377 { return this->has_plt_offset_; }
378
379 // Return the offset into the PLT section of this symbol.
380 unsigned int
381 plt_offset() const
382 {
383 gold_assert(this->has_plt_offset());
384 return this->plt_offset_;
385 }
386
387 // Set the PLT offset of this symbol.
388 void
389 set_plt_offset(unsigned int plt_offset)
390 {
391 this->has_plt_offset_ = true;
392 this->plt_offset_ = plt_offset;
393 }
394
395 // Return whether this dynamic symbol needs a special value in the
396 // dynamic symbol table.
397 bool
398 needs_dynsym_value() const
399 { return this->needs_dynsym_value_; }
400
401 // Set that this dynamic symbol needs a special value in the dynamic
402 // symbol table.
403 void
404 set_needs_dynsym_value()
405 {
406 gold_assert(this->object()->is_dynamic());
407 this->needs_dynsym_value_ = true;
408 }
409
410 // Return true if the final value of this symbol is known at link
411 // time.
412 bool
413 final_value_is_known() const;
414
415 // Return whether this is a defined symbol (not undefined or
416 // common).
417 bool
418 is_defined() const
419 {
420 return (this->source_ != FROM_OBJECT
421 || (this->shndx() != elfcpp::SHN_UNDEF
422 && this->shndx() != elfcpp::SHN_COMMON));
423 }
424
425 // Return true if this symbol is from a dynamic object.
426 bool
427 is_from_dynobj() const
428 {
429 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
430 }
431
432 // Return whether this is an undefined symbol.
433 bool
434 is_undefined() const
435 {
436 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
437 }
438
439 // Return whether this is a common symbol.
440 bool
441 is_common() const
442 {
443 return (this->source_ == FROM_OBJECT
444 && (this->shndx() == elfcpp::SHN_COMMON
445 || this->type_ == elfcpp::STT_COMMON));
446 }
447
448 // Return whether this symbol can be seen outside this object.
449 bool
450 is_externally_visible() const
451 {
452 return (this->visibility_ == elfcpp::STV_DEFAULT
453 || this->visibility_ == elfcpp::STV_PROTECTED);
454 }
455
456 // Return true if this symbol can be preempted by a definition in
457 // another link unit.
458 bool
459 is_preemptible() const
460 {
461 // It doesn't make sense to ask whether a symbol defined in
462 // another object is preemptible.
463 gold_assert(!this->is_from_dynobj());
464
465 return (this->visibility_ != elfcpp::STV_INTERNAL
466 && this->visibility_ != elfcpp::STV_HIDDEN
467 && this->visibility_ != elfcpp::STV_PROTECTED
468 && !this->is_forced_local_
469 && parameters->output_is_shared()
470 && !parameters->symbolic());
471 }
472
473 // Return true if this symbol is a function that needs a PLT entry.
474 // If the symbol is defined in a dynamic object or if it is subject
475 // to pre-emption, we need to make a PLT entry.
476 bool
477 needs_plt_entry() const
478 {
479 return (this->type() == elfcpp::STT_FUNC
480 && (this->is_from_dynobj() || this->is_preemptible()));
481 }
482
483 // When determining whether a reference to a symbol needs a dynamic
484 // relocation, we need to know several things about the reference.
485 // These flags may be or'ed together.
486 enum Reference_flags
487 {
488 // Reference to the symbol's absolute address.
489 ABSOLUTE_REF = 1,
490 // A non-PIC reference.
491 NON_PIC_REF = 2,
492 // A function call.
493 FUNCTION_CALL = 4
494 };
495
496 // Given a direct absolute or pc-relative static relocation against
497 // the global symbol, this function returns whether a dynamic relocation
498 // is needed.
499
500 bool
501 needs_dynamic_reloc(int flags) const
502 {
503 // An absolute reference within a position-independent output file
504 // will need a dynamic relocation.
505 if ((flags & ABSOLUTE_REF)
506 && parameters->output_is_position_independent())
507 return true;
508
509 // A function call that can branch to a local PLT entry does not need
510 // a dynamic relocation. A non-pic pc-relative function call in a
511 // shared library cannot use a PLT entry.
512 if ((flags & FUNCTION_CALL)
513 && this->has_plt_offset()
514 && !((flags & NON_PIC_REF) && parameters->output_is_shared()))
515 return false;
516
517 // A reference to any PLT entry in a non-position-independent executable
518 // does not need a dynamic relocation.
519 if (!parameters->output_is_position_independent()
520 && this->has_plt_offset())
521 return false;
522
523 // A reference to a symbol defined in a dynamic object or to a
524 // symbol that is preemptible will need a dynamic relocation.
525 if (this->is_from_dynobj() || this->is_preemptible())
526 return true;
527
528 // For all other cases, return FALSE.
529 return false;
530 }
531
532 // Given a direct absolute static relocation against
533 // the global symbol, where a dynamic relocation is needed, this
534 // function returns whether a relative dynamic relocation can be used.
535 // The caller must determine separately whether the static relocation
536 // is compatible with a relative relocation.
537
538 bool
539 can_use_relative_reloc(bool is_function_call) const
540 {
541 // A function call that can branch to a local PLT entry can
542 // use a RELATIVE relocation.
543 if (is_function_call && this->has_plt_offset())
544 return true;
545
546 // A reference to a symbol defined in a dynamic object or to a
547 // symbol that is preemptible can not use a RELATIVE relocaiton.
548 if (this->is_from_dynobj() || this->is_preemptible())
549 return false;
550
551 // For all other cases, return TRUE.
552 return true;
553 }
554
555 // Return whether this symbol currently has an absolute value.
556 bool
557 value_is_absolute() const;
558
559 // Return whether there should be a warning for references to this
560 // symbol.
561 bool
562 has_warning() const
563 { return this->has_warning_; }
564
565 // Mark this symbol as having a warning.
566 void
567 set_has_warning()
568 { this->has_warning_ = true; }
569
570 // Return whether this symbol is defined by a COPY reloc from a
571 // dynamic object.
572 bool
573 is_copied_from_dynobj() const
574 { return this->is_copied_from_dynobj_; }
575
576 // Mark this symbol as defined by a COPY reloc.
577 void
578 set_is_copied_from_dynobj()
579 { this->is_copied_from_dynobj_ = true; }
580
581 // Return whether this symbol is forced to visibility STB_LOCAL
582 // by a "local:" entry in a version script.
583 bool
584 is_forced_local() const
585 { return this->is_forced_local_; }
586
587 // Mark this symbol as forced to STB_LOCAL visibility.
588 void
589 set_is_forced_local()
590 { this->is_forced_local_ = true; }
591
592 protected:
593 // Instances of this class should always be created at a specific
594 // size.
595 Symbol()
596 { memset(this, 0, sizeof *this); }
597
598 // Initialize the general fields.
599 void
600 init_fields(const char* name, const char* version,
601 elfcpp::STT type, elfcpp::STB binding,
602 elfcpp::STV visibility, unsigned char nonvis);
603
604 // Initialize fields from an ELF symbol in OBJECT.
605 template<int size, bool big_endian>
606 void
607 init_base(const char *name, const char* version, Object* object,
608 const elfcpp::Sym<size, big_endian>&);
609
610 // Initialize fields for an Output_data.
611 void
612 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
613 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
614
615 // Initialize fields for an Output_segment.
616 void
617 init_base(const char* name, Output_segment* os, elfcpp::STT type,
618 elfcpp::STB binding, elfcpp::STV visibility,
619 unsigned char nonvis, Segment_offset_base offset_base);
620
621 // Initialize fields for a constant.
622 void
623 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
624 elfcpp::STV visibility, unsigned char nonvis);
625
626 // Override existing symbol.
627 template<int size, bool big_endian>
628 void
629 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
630 const char* version);
631
632 // Override existing symbol with a special symbol.
633 void
634 override_base_with_special(const Symbol* from);
635
636 // Allocate a common symbol by giving it a location in the output
637 // file.
638 void
639 allocate_base_common(Output_data*);
640
641 private:
642 Symbol(const Symbol&);
643 Symbol& operator=(const Symbol&);
644
645 // Symbol name (expected to point into a Stringpool).
646 const char* name_;
647 // Symbol version (expected to point into a Stringpool). This may
648 // be NULL.
649 const char* version_;
650
651 union
652 {
653 // This struct is used if SOURCE_ == FROM_OBJECT.
654 struct
655 {
656 // Object in which symbol is defined, or in which it was first
657 // seen.
658 Object* object;
659 // Section number in object_ in which symbol is defined.
660 unsigned int shndx;
661 } from_object;
662
663 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
664 struct
665 {
666 // Output_data in which symbol is defined. Before
667 // Layout::finalize the symbol's value is an offset within the
668 // Output_data.
669 Output_data* output_data;
670 // True if the offset is from the end, false if the offset is
671 // from the beginning.
672 bool offset_is_from_end;
673 } in_output_data;
674
675 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
676 struct
677 {
678 // Output_segment in which the symbol is defined. Before
679 // Layout::finalize the symbol's value is an offset.
680 Output_segment* output_segment;
681 // The base to use for the offset before Layout::finalize.
682 Segment_offset_base offset_base;
683 } in_output_segment;
684 } u_;
685
686 // The index of this symbol in the output file. If the symbol is
687 // not going into the output file, this value is -1U. This field
688 // starts as always holding zero. It is set to a non-zero value by
689 // Symbol_table::finalize.
690 unsigned int symtab_index_;
691
692 // The index of this symbol in the dynamic symbol table. If the
693 // symbol is not going into the dynamic symbol table, this value is
694 // -1U. This field starts as always holding zero. It is set to a
695 // non-zero value during Layout::finalize.
696 unsigned int dynsym_index_;
697
698 // If this symbol has an entry in the GOT section (has_got_offset_
699 // is true), this is the offset from the start of the GOT section.
700 // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
701 // serves as the GOT offset for the GOT entry that holds its
702 // TP-relative offset.
703 unsigned int got_offset_;
704
705 // If this is a TLS symbol and has an entry in the GOT section
706 // for a module index or a pair of entries (module index,
707 // dtv-relative offset), these are the offsets from the start
708 // of the GOT section.
709 unsigned int tls_mod_got_offset_;
710 unsigned int tls_pair_got_offset_;
711
712 // If this symbol has an entry in the PLT section (has_plt_offset_
713 // is true), then this is the offset from the start of the PLT
714 // section.
715 unsigned int plt_offset_;
716
717 // Symbol type.
718 elfcpp::STT type_ : 4;
719 // Symbol binding.
720 elfcpp::STB binding_ : 4;
721 // Symbol visibility.
722 elfcpp::STV visibility_ : 2;
723 // Rest of symbol st_other field.
724 unsigned int nonvis_ : 6;
725 // The type of symbol.
726 Source source_ : 3;
727 // True if this symbol always requires special target-specific
728 // handling.
729 bool is_target_special_ : 1;
730 // True if this is the default version of the symbol.
731 bool is_def_ : 1;
732 // True if this symbol really forwards to another symbol. This is
733 // used when we discover after the fact that two different entries
734 // in the hash table really refer to the same symbol. This will
735 // never be set for a symbol found in the hash table, but may be set
736 // for a symbol found in the list of symbols attached to an Object.
737 // It forwards to the symbol found in the forwarders_ map of
738 // Symbol_table.
739 bool is_forwarder_ : 1;
740 // True if the symbol has an alias in the weak_aliases table in
741 // Symbol_table.
742 bool has_alias_ : 1;
743 // True if this symbol needs to be in the dynamic symbol table.
744 bool needs_dynsym_entry_ : 1;
745 // True if we've seen this symbol in a regular object.
746 bool in_reg_ : 1;
747 // True if we've seen this symbol in a dynamic object.
748 bool in_dyn_ : 1;
749 // True if the symbol has an entry in the GOT section.
750 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
751 bool has_got_offset_ : 1;
752 // True if the symbol has an entry in the GOT section for its
753 // module index.
754 bool has_tls_mod_got_offset_ : 1;
755 // True if the symbol has a pair of entries in the GOT section for its
756 // module index and dtv-relative offset.
757 bool has_tls_pair_got_offset_ : 1;
758 // True if the symbol has an entry in the PLT section.
759 bool has_plt_offset_ : 1;
760 // True if this is a dynamic symbol which needs a special value in
761 // the dynamic symbol table.
762 bool needs_dynsym_value_ : 1;
763 // True if there is a warning for this symbol.
764 bool has_warning_ : 1;
765 // True if we are using a COPY reloc for this symbol, so that the
766 // real definition lives in a dynamic object.
767 bool is_copied_from_dynobj_ : 1;
768 // True if this symbol was forced to local visibility by a version
769 // script.
770 bool is_forced_local_ : 1;
771 };
772
773 // The parts of a symbol which are size specific. Using a template
774 // derived class like this helps us use less space on a 32-bit system.
775
776 template<int size>
777 class Sized_symbol : public Symbol
778 {
779 public:
780 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
781 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
782
783 Sized_symbol()
784 { }
785
786 // Initialize fields from an ELF symbol in OBJECT.
787 template<bool big_endian>
788 void
789 init(const char *name, const char* version, Object* object,
790 const elfcpp::Sym<size, big_endian>&);
791
792 // Initialize fields for an Output_data.
793 void
794 init(const char* name, Output_data*, Value_type value, Size_type symsize,
795 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
796 bool offset_is_from_end);
797
798 // Initialize fields for an Output_segment.
799 void
800 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
801 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
802 Segment_offset_base offset_base);
803
804 // Initialize fields for a constant.
805 void
806 init(const char* name, Value_type value, Size_type symsize,
807 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
808
809 // Override existing symbol.
810 template<bool big_endian>
811 void
812 override(const elfcpp::Sym<size, big_endian>&, Object* object,
813 const char* version);
814
815 // Override existing symbol with a special symbol.
816 void
817 override_with_special(const Sized_symbol<size>*);
818
819 // Return the symbol's value.
820 Value_type
821 value() const
822 { return this->value_; }
823
824 // Return the symbol's size (we can't call this 'size' because that
825 // is a template parameter).
826 Size_type
827 symsize() const
828 { return this->symsize_; }
829
830 // Set the symbol size. This is used when resolving common symbols.
831 void
832 set_symsize(Size_type symsize)
833 { this->symsize_ = symsize; }
834
835 // Set the symbol value. This is called when we store the final
836 // values of the symbols into the symbol table.
837 void
838 set_value(Value_type value)
839 { this->value_ = value; }
840
841 // Allocate a common symbol by giving it a location in the output
842 // file.
843 void
844 allocate_common(Output_data*, Value_type value);
845
846 private:
847 Sized_symbol(const Sized_symbol&);
848 Sized_symbol& operator=(const Sized_symbol&);
849
850 // Symbol value. Before Layout::finalize this is the offset in the
851 // input section. This is set to the final value during
852 // Layout::finalize.
853 Value_type value_;
854 // Symbol size.
855 Size_type symsize_;
856 };
857
858 // A struct describing a symbol defined by the linker, where the value
859 // of the symbol is defined based on an output section. This is used
860 // for symbols defined by the linker, like "_init_array_start".
861
862 struct Define_symbol_in_section
863 {
864 // The symbol name.
865 const char* name;
866 // The name of the output section with which this symbol should be
867 // associated. If there is no output section with that name, the
868 // symbol will be defined as zero.
869 const char* output_section;
870 // The offset of the symbol within the output section. This is an
871 // offset from the start of the output section, unless start_at_end
872 // is true, in which case this is an offset from the end of the
873 // output section.
874 uint64_t value;
875 // The size of the symbol.
876 uint64_t size;
877 // The symbol type.
878 elfcpp::STT type;
879 // The symbol binding.
880 elfcpp::STB binding;
881 // The symbol visibility.
882 elfcpp::STV visibility;
883 // The rest of the st_other field.
884 unsigned char nonvis;
885 // If true, the value field is an offset from the end of the output
886 // section.
887 bool offset_is_from_end;
888 // If true, this symbol is defined only if we see a reference to it.
889 bool only_if_ref;
890 };
891
892 // A struct describing a symbol defined by the linker, where the value
893 // of the symbol is defined based on a segment. This is used for
894 // symbols defined by the linker, like "_end". We describe the
895 // segment with which the symbol should be associated by its
896 // characteristics. If no segment meets these characteristics, the
897 // symbol will be defined as zero. If there is more than one segment
898 // which meets these characteristics, we will use the first one.
899
900 struct Define_symbol_in_segment
901 {
902 // The symbol name.
903 const char* name;
904 // The segment type where the symbol should be defined, typically
905 // PT_LOAD.
906 elfcpp::PT segment_type;
907 // Bitmask of segment flags which must be set.
908 elfcpp::PF segment_flags_set;
909 // Bitmask of segment flags which must be clear.
910 elfcpp::PF segment_flags_clear;
911 // The offset of the symbol within the segment. The offset is
912 // calculated from the position set by offset_base.
913 uint64_t value;
914 // The size of the symbol.
915 uint64_t size;
916 // The symbol type.
917 elfcpp::STT type;
918 // The symbol binding.
919 elfcpp::STB binding;
920 // The symbol visibility.
921 elfcpp::STV visibility;
922 // The rest of the st_other field.
923 unsigned char nonvis;
924 // The base from which we compute the offset.
925 Symbol::Segment_offset_base offset_base;
926 // If true, this symbol is defined only if we see a reference to it.
927 bool only_if_ref;
928 };
929
930 // This class manages warnings. Warnings are a GNU extension. When
931 // we see a section named .gnu.warning.SYM in an object file, and if
932 // we wind using the definition of SYM from that object file, then we
933 // will issue a warning for any relocation against SYM from a
934 // different object file. The text of the warning is the contents of
935 // the section. This is not precisely the definition used by the old
936 // GNU linker; the old GNU linker treated an occurrence of
937 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
938 // would trigger a warning on any reference. However, it was
939 // inconsistent in that a warning in a dynamic object only triggered
940 // if there was no definition in a regular object. This linker is
941 // different in that we only issue a warning if we use the symbol
942 // definition from the same object file as the warning section.
943
944 class Warnings
945 {
946 public:
947 Warnings()
948 : warnings_()
949 { }
950
951 // Add a warning for symbol NAME in object OBJ. WARNING is the text
952 // of the warning.
953 void
954 add_warning(Symbol_table* symtab, const char* name, Object* obj,
955 const std::string& warning);
956
957 // For each symbol for which we should give a warning, make a note
958 // on the symbol.
959 void
960 note_warnings(Symbol_table* symtab);
961
962 // Issue a warning for a reference to SYM at RELINFO's location.
963 template<int size, bool big_endian>
964 void
965 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
966 size_t relnum, off_t reloffset) const;
967
968 private:
969 Warnings(const Warnings&);
970 Warnings& operator=(const Warnings&);
971
972 // What we need to know to get the warning text.
973 struct Warning_location
974 {
975 // The object the warning is in.
976 Object* object;
977 // The warning text.
978 std::string text;
979
980 Warning_location()
981 : object(NULL), text()
982 { }
983
984 void
985 set(Object* o, const std::string& t)
986 {
987 this->object = o;
988 this->text = t;
989 }
990 };
991
992 // A mapping from warning symbol names (canonicalized in
993 // Symbol_table's namepool_ field) to warning information.
994 typedef Unordered_map<const char*, Warning_location> Warning_table;
995
996 Warning_table warnings_;
997 };
998
999 // The main linker symbol table.
1000
1001 class Symbol_table
1002 {
1003 public:
1004 // COUNT is an estimate of how many symbosl will be inserted in the
1005 // symbol table. It's ok to put 0 if you don't know; a correct
1006 // guess will just save some CPU by reducing hashtable resizes.
1007 Symbol_table(unsigned int count, const Version_script_info& version_script);
1008
1009 ~Symbol_table();
1010
1011 // Add COUNT external symbols from the relocatable object RELOBJ to
1012 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
1013 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
1014 // point to the symbols in the symbol table.
1015 template<int size, bool big_endian>
1016 void
1017 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1018 const unsigned char* syms, size_t count,
1019 const char* sym_names, size_t sym_name_size,
1020 typename Sized_relobj<size, big_endian>::Symbols*);
1021
1022 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1023 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1024 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1025 // symbol version data.
1026 template<int size, bool big_endian>
1027 void
1028 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1029 const unsigned char* syms, size_t count,
1030 const char* sym_names, size_t sym_name_size,
1031 const unsigned char* versym, size_t versym_size,
1032 const std::vector<const char*>*);
1033
1034 // Define a special symbol based on an Output_data. It is a
1035 // multiple definition error if this symbol is already defined.
1036 Symbol*
1037 define_in_output_data(const char* name, const char* version,
1038 Output_data*, uint64_t value, uint64_t symsize,
1039 elfcpp::STT type, elfcpp::STB binding,
1040 elfcpp::STV visibility, unsigned char nonvis,
1041 bool offset_is_from_end, bool only_if_ref);
1042
1043 // Define a special symbol based on an Output_segment. It is a
1044 // multiple definition error if this symbol is already defined.
1045 Symbol*
1046 define_in_output_segment(const char* name, const char* version,
1047 Output_segment*, uint64_t value, uint64_t symsize,
1048 elfcpp::STT type, elfcpp::STB binding,
1049 elfcpp::STV visibility, unsigned char nonvis,
1050 Symbol::Segment_offset_base, bool only_if_ref);
1051
1052 // Define a special symbol with a constant value. It is a multiple
1053 // definition error if this symbol is already defined.
1054 Symbol*
1055 define_as_constant(const char* name, const char* version,
1056 uint64_t value, uint64_t symsize, elfcpp::STT type,
1057 elfcpp::STB binding, elfcpp::STV visibility,
1058 unsigned char nonvis, bool only_if_ref);
1059
1060 // Define a set of symbols in output sections. If ONLY_IF_REF is
1061 // true, only define them if they are referenced.
1062 void
1063 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1064 bool only_if_ref);
1065
1066 // Define a set of symbols in output segments. If ONLY_IF_REF is
1067 // true, only defined them if they are referenced.
1068 void
1069 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1070 bool only_if_ref);
1071
1072 // Define SYM using a COPY reloc. POSD is the Output_data where the
1073 // symbol should be defined--typically a .dyn.bss section. VALUE is
1074 // the offset within POSD.
1075 template<int size>
1076 void
1077 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1078 typename elfcpp::Elf_types<size>::Elf_Addr);
1079
1080 // Look up a symbol.
1081 Symbol*
1082 lookup(const char*, const char* version = NULL) const;
1083
1084 // Return the real symbol associated with the forwarder symbol FROM.
1085 Symbol*
1086 resolve_forwards(const Symbol* from) const;
1087
1088 // Return the sized version of a symbol in this table.
1089 template<int size>
1090 Sized_symbol<size>*
1091 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
1092
1093 template<int size>
1094 const Sized_symbol<size>*
1095 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
1096
1097 // Return the count of undefined symbols seen.
1098 int
1099 saw_undefined() const
1100 { return this->saw_undefined_; }
1101
1102 // Allocate the common symbols
1103 void
1104 allocate_commons(const General_options&, Layout*);
1105
1106 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1107 // of the warning.
1108 void
1109 add_warning(const char* name, Object* obj, const std::string& warning)
1110 { this->warnings_.add_warning(this, name, obj, warning); }
1111
1112 // Canonicalize a symbol name for use in the hash table.
1113 const char*
1114 canonicalize_name(const char* name)
1115 { return this->namepool_.add(name, true, NULL); }
1116
1117 // Possibly issue a warning for a reference to SYM at LOCATION which
1118 // is in OBJ.
1119 template<int size, bool big_endian>
1120 void
1121 issue_warning(const Symbol* sym,
1122 const Relocate_info<size, big_endian>* relinfo,
1123 size_t relnum, off_t reloffset) const
1124 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1125
1126 // Check candidate_odr_violations_ to find symbols with the same name
1127 // but apparently different definitions (different source-file/line-no).
1128 void
1129 detect_odr_violations(const Task*, const char* output_file_name) const;
1130
1131 // SYM is defined using a COPY reloc. Return the dynamic object
1132 // where the original definition was found.
1133 Dynobj*
1134 get_copy_source(const Symbol* sym) const;
1135
1136 // Set the dynamic symbol indexes. INDEX is the index of the first
1137 // global dynamic symbol. Pointers to the symbols are stored into
1138 // the vector. The names are stored into the Stringpool. This
1139 // returns an updated dynamic symbol index.
1140 unsigned int
1141 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1142 Stringpool*, Versions*);
1143
1144 // Finalize the symbol table after we have set the final addresses
1145 // of all the input sections. This sets the final symbol indexes,
1146 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1147 // index of the first global symbol. OFF is the file offset of the
1148 // global symbol table, DYNOFF is the offset of the globals in the
1149 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1150 // global dynamic symbol, and DYNCOUNT is the number of global
1151 // dynamic symbols. This records the parameters, and returns the
1152 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1153 // local symbols.
1154 off_t
1155 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1156 Stringpool* pool, unsigned int *plocal_symcount);
1157
1158 // Write out the global symbols.
1159 void
1160 write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
1161 Output_file*) const;
1162
1163 // Write out a section symbol. Return the updated offset.
1164 void
1165 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1166
1167 // Dump statistical information to stderr.
1168 void
1169 print_stats() const;
1170
1171 // Return the version script information.
1172 const Version_script_info&
1173 version_script() const
1174 { return version_script_; }
1175
1176 private:
1177 Symbol_table(const Symbol_table&);
1178 Symbol_table& operator=(const Symbol_table&);
1179
1180 // Make FROM a forwarder symbol to TO.
1181 void
1182 make_forwarder(Symbol* from, Symbol* to);
1183
1184 // Add a symbol.
1185 template<int size, bool big_endian>
1186 Sized_symbol<size>*
1187 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1188 const char *version, Stringpool::Key version_key,
1189 bool def, const elfcpp::Sym<size, big_endian>& sym,
1190 const elfcpp::Sym<size, big_endian>& orig_sym);
1191
1192 // Resolve symbols.
1193 template<int size, bool big_endian>
1194 void
1195 resolve(Sized_symbol<size>* to,
1196 const elfcpp::Sym<size, big_endian>& sym,
1197 const elfcpp::Sym<size, big_endian>& orig_sym,
1198 Object*, const char* version);
1199
1200 template<int size, bool big_endian>
1201 void
1202 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1203 const char* version ACCEPT_SIZE_ENDIAN);
1204
1205 // Record that a symbol is forced to be local by a version script.
1206 void
1207 force_local(Symbol*);
1208
1209 // Whether we should override a symbol, based on flags in
1210 // resolve.cc.
1211 static bool
1212 should_override(const Symbol*, unsigned int, Object*, bool*);
1213
1214 // Override a symbol.
1215 template<int size, bool big_endian>
1216 void
1217 override(Sized_symbol<size>* tosym,
1218 const elfcpp::Sym<size, big_endian>& fromsym,
1219 Object* object, const char* version);
1220
1221 // Whether we should override a symbol with a special symbol which
1222 // is automatically defined by the linker.
1223 static bool
1224 should_override_with_special(const Symbol*);
1225
1226 // Override a symbol with a special symbol.
1227 template<int size>
1228 void
1229 override_with_special(Sized_symbol<size>* tosym,
1230 const Sized_symbol<size>* fromsym);
1231
1232 // Record all weak alias sets for a dynamic object.
1233 template<int size>
1234 void
1235 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1236
1237 // Define a special symbol.
1238 template<int size, bool big_endian>
1239 Sized_symbol<size>*
1240 define_special_symbol(const char** pname, const char** pversion,
1241 bool only_if_ref, Sized_symbol<size>** poldsym
1242 ACCEPT_SIZE_ENDIAN);
1243
1244 // Define a symbol in an Output_data, sized version.
1245 template<int size>
1246 Sized_symbol<size>*
1247 do_define_in_output_data(const char* name, const char* version, Output_data*,
1248 typename elfcpp::Elf_types<size>::Elf_Addr value,
1249 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1250 elfcpp::STT type, elfcpp::STB binding,
1251 elfcpp::STV visibility, unsigned char nonvis,
1252 bool offset_is_from_end, bool only_if_ref);
1253
1254 // Define a symbol in an Output_segment, sized version.
1255 template<int size>
1256 Sized_symbol<size>*
1257 do_define_in_output_segment(
1258 const char* name, const char* version, Output_segment* os,
1259 typename elfcpp::Elf_types<size>::Elf_Addr value,
1260 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1261 elfcpp::STT type, elfcpp::STB binding,
1262 elfcpp::STV visibility, unsigned char nonvis,
1263 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1264
1265 // Define a symbol as a constant, sized version.
1266 template<int size>
1267 Sized_symbol<size>*
1268 do_define_as_constant(
1269 const char* name, const char* version,
1270 typename elfcpp::Elf_types<size>::Elf_Addr value,
1271 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1272 elfcpp::STT type, elfcpp::STB binding,
1273 elfcpp::STV visibility, unsigned char nonvis,
1274 bool only_if_ref);
1275
1276 // Allocate the common symbols, sized version.
1277 template<int size>
1278 void
1279 do_allocate_commons(const General_options&, Layout*);
1280
1281 // Implement detect_odr_violations.
1282 template<int size, bool big_endian>
1283 void
1284 sized_detect_odr_violations() const;
1285
1286 // Finalize symbols specialized for size.
1287 template<int size>
1288 off_t
1289 sized_finalize(off_t, Stringpool*, unsigned int*);
1290
1291 // Finalize a symbol. Return whether it should be added to the
1292 // symbol table.
1293 template<int size>
1294 bool
1295 sized_finalize_symbol(Symbol*);
1296
1297 // Add a symbol the final symtab by setting its index.
1298 template<int size>
1299 void
1300 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1301
1302 // Write globals specialized for size and endianness.
1303 template<int size, bool big_endian>
1304 void
1305 sized_write_globals(const Input_objects*, const Stringpool*,
1306 const Stringpool*, Output_file*) const;
1307
1308 // Write out a symbol to P.
1309 template<int size, bool big_endian>
1310 void
1311 sized_write_symbol(Sized_symbol<size>*,
1312 typename elfcpp::Elf_types<size>::Elf_Addr value,
1313 unsigned int shndx,
1314 const Stringpool*, unsigned char* p
1315 ACCEPT_SIZE_ENDIAN) const;
1316
1317 // Possibly warn about an undefined symbol from a dynamic object.
1318 void
1319 warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;
1320
1321 // Write out a section symbol, specialized for size and endianness.
1322 template<int size, bool big_endian>
1323 void
1324 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1325
1326 // The type of the symbol hash table.
1327
1328 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1329
1330 struct Symbol_table_hash
1331 {
1332 size_t
1333 operator()(const Symbol_table_key&) const;
1334 };
1335
1336 struct Symbol_table_eq
1337 {
1338 bool
1339 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1340 };
1341
1342 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1343 Symbol_table_eq> Symbol_table_type;
1344
1345 // The type of the list of common symbols.
1346 typedef std::vector<Symbol*> Commons_type;
1347
1348 // The type of the list of symbols which have been forced local.
1349 typedef std::vector<Symbol*> Forced_locals;
1350
1351 // A map from symbols with COPY relocs to the dynamic objects where
1352 // they are defined.
1353 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1354
1355 // A map from symbol name (as a pointer into the namepool) to all
1356 // the locations the symbols is (weakly) defined (and certain other
1357 // conditions are met). This map will be used later to detect
1358 // possible One Definition Rule (ODR) violations.
1359 struct Symbol_location
1360 {
1361 Object* object; // Object where the symbol is defined.
1362 unsigned int shndx; // Section-in-object where the symbol is defined.
1363 off_t offset; // Offset-in-section where the symbol is defined.
1364 bool operator==(const Symbol_location& that) const
1365 {
1366 return (this->object == that.object
1367 && this->shndx == that.shndx
1368 && this->offset == that.offset);
1369 }
1370 };
1371
1372 struct Symbol_location_hash
1373 {
1374 size_t operator()(const Symbol_location& loc) const
1375 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1376 };
1377
1378 typedef Unordered_map<const char*,
1379 Unordered_set<Symbol_location, Symbol_location_hash> >
1380 Odr_map;
1381
1382 // We increment this every time we see a new undefined symbol, for
1383 // use in archive groups.
1384 int saw_undefined_;
1385 // The index of the first global symbol in the output file.
1386 unsigned int first_global_index_;
1387 // The file offset within the output symtab section where we should
1388 // write the table.
1389 off_t offset_;
1390 // The number of global symbols we want to write out.
1391 unsigned int output_count_;
1392 // The file offset of the global dynamic symbols, or 0 if none.
1393 off_t dynamic_offset_;
1394 // The index of the first global dynamic symbol.
1395 unsigned int first_dynamic_global_index_;
1396 // The number of global dynamic symbols, or 0 if none.
1397 unsigned int dynamic_count_;
1398 // The symbol hash table.
1399 Symbol_table_type table_;
1400 // A pool of symbol names. This is used for all global symbols.
1401 // Entries in the hash table point into this pool.
1402 Stringpool namepool_;
1403 // Forwarding symbols.
1404 Unordered_map<const Symbol*, Symbol*> forwarders_;
1405 // Weak aliases. A symbol in this list points to the next alias.
1406 // The aliases point to each other in a circular list.
1407 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1408 // We don't expect there to be very many common symbols, so we keep
1409 // a list of them. When we find a common symbol we add it to this
1410 // list. It is possible that by the time we process the list the
1411 // symbol is no longer a common symbol. It may also have become a
1412 // forwarder.
1413 Commons_type commons_;
1414 // A list of symbols which have been forced to be local. We don't
1415 // expect there to be very many of them, so we keep a list of them
1416 // rather than walking the whole table to find them.
1417 Forced_locals forced_locals_;
1418 // Manage symbol warnings.
1419 Warnings warnings_;
1420 // Manage potential One Definition Rule (ODR) violations.
1421 Odr_map candidate_odr_violations_;
1422
1423 // When we emit a COPY reloc for a symbol, we define it in an
1424 // Output_data. When it's time to emit version information for it,
1425 // we need to know the dynamic object in which we found the original
1426 // definition. This maps symbols with COPY relocs to the dynamic
1427 // object where they were defined.
1428 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1429 // Information parsed from the version script, if any.
1430 const Version_script_info& version_script_;
1431 };
1432
1433 // We inline get_sized_symbol for efficiency.
1434
1435 template<int size>
1436 Sized_symbol<size>*
1437 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1438 {
1439 gold_assert(size == parameters->get_size());
1440 return static_cast<Sized_symbol<size>*>(sym);
1441 }
1442
1443 template<int size>
1444 const Sized_symbol<size>*
1445 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1446 {
1447 gold_assert(size == parameters->get_size());
1448 return static_cast<const Sized_symbol<size>*>(sym);
1449 }
1450
1451 } // End namespace gold.
1452
1453 #endif // !defined(GOLD_SYMTAB_H)