From Craig Silverstein: Support -o -.
[binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
12
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
21
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
26
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
31
32 #include "gold.h"
33
34 #include <cstring>
35
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
48
49 namespace
50 {
51
52 using namespace gold;
53
54 class Output_data_plt_x86_64;
55
56 // The x86_64 target class.
57 // See the ABI at
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
62
63 class Target_x86_64 : public Sized_target<64, false>
64 {
65 public:
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 Output_section* output_section,
87 bool needs_special_offset_handling,
88 size_t local_symbol_count,
89 const unsigned char* plocal_symbols);
90
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
94
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
99
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
106 Output_section* output_section,
107 bool needs_special_offset_handling,
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 off_t view_size);
111
112 // Return a string used to fill a code section with nops.
113 std::string
114 do_code_fill(off_t length);
115
116 // Return whether SYM is defined by the ABI.
117 bool
118 do_is_defined_by_abi(Symbol* sym) const
119 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
121 // Return the size of the GOT section.
122 off_t
123 got_size()
124 {
125 gold_assert(this->got_ != NULL);
126 return this->got_->data_size();
127 }
128
129 private:
130 // The class which scans relocations.
131 struct Scan
132 {
133 inline void
134 local(const General_options& options, Symbol_table* symtab,
135 Layout* layout, Target_x86_64* target,
136 Sized_relobj<64, false>* object,
137 unsigned int data_shndx,
138 Output_section* output_section,
139 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140 const elfcpp::Sym<64, false>& lsym);
141
142 inline void
143 global(const General_options& options, Symbol_table* symtab,
144 Layout* layout, Target_x86_64* target,
145 Sized_relobj<64, false>* object,
146 unsigned int data_shndx,
147 Output_section* output_section,
148 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
149 Symbol* gsym);
150
151 static void
152 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
153
154 static void
155 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
156 Symbol*);
157 };
158
159 // The class which implements relocation.
160 class Relocate
161 {
162 public:
163 Relocate()
164 : skip_call_tls_get_addr_(false)
165 { }
166
167 ~Relocate()
168 {
169 if (this->skip_call_tls_get_addr_)
170 {
171 // FIXME: This needs to specify the location somehow.
172 gold_error(_("missing expected TLS relocation"));
173 }
174 }
175
176 // Do a relocation. Return false if the caller should not issue
177 // any warnings about this relocation.
178 inline bool
179 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180 const elfcpp::Rela<64, false>&,
181 unsigned int r_type, const Sized_symbol<64>*,
182 const Symbol_value<64>*,
183 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
184 off_t);
185
186 private:
187 // Do a TLS relocation.
188 inline void
189 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
190 const elfcpp::Rela<64, false>&,
191 unsigned int r_type, const Sized_symbol<64>*,
192 const Symbol_value<64>*,
193 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
194
195 // Do a TLS General-Dynamic to Local-Exec transition.
196 inline void
197 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
198 Output_segment* tls_segment,
199 const elfcpp::Rela<64, false>&, unsigned int r_type,
200 elfcpp::Elf_types<64>::Elf_Addr value,
201 unsigned char* view,
202 off_t view_size);
203
204 // Do a TLS Local-Dynamic to Local-Exec transition.
205 inline void
206 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
207 Output_segment* tls_segment,
208 const elfcpp::Rela<64, false>&, unsigned int r_type,
209 elfcpp::Elf_types<64>::Elf_Addr value,
210 unsigned char* view,
211 off_t view_size);
212
213 // Do a TLS Initial-Exec to Local-Exec transition.
214 static inline void
215 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
216 Output_segment* tls_segment,
217 const elfcpp::Rela<64, false>&, unsigned int r_type,
218 elfcpp::Elf_types<64>::Elf_Addr value,
219 unsigned char* view,
220 off_t view_size);
221
222 // This is set if we should skip the next reloc, which should be a
223 // PLT32 reloc against ___tls_get_addr.
224 bool skip_call_tls_get_addr_;
225 };
226
227 // Adjust TLS relocation type based on the options and whether this
228 // is a local symbol.
229 static tls::Tls_optimization
230 optimize_tls_reloc(bool is_final, int r_type);
231
232 // Get the GOT section, creating it if necessary.
233 Output_data_got<64, false>*
234 got_section(Symbol_table*, Layout*);
235
236 // Get the GOT PLT section.
237 Output_data_space*
238 got_plt_section() const
239 {
240 gold_assert(this->got_plt_ != NULL);
241 return this->got_plt_;
242 }
243
244 // Create a PLT entry for a global symbol.
245 void
246 make_plt_entry(Symbol_table*, Layout*, Symbol*);
247
248 // Get the PLT section.
249 Output_data_plt_x86_64*
250 plt_section() const
251 {
252 gold_assert(this->plt_ != NULL);
253 return this->plt_;
254 }
255
256 // Get the dynamic reloc section, creating it if necessary.
257 Reloc_section*
258 rela_dyn_section(Layout*);
259
260 // Return true if the symbol may need a COPY relocation.
261 // References from an executable object to non-function symbols
262 // defined in a dynamic object may need a COPY relocation.
263 bool
264 may_need_copy_reloc(Symbol* gsym)
265 {
266 return (!parameters->output_is_shared()
267 && gsym->is_from_dynobj()
268 && gsym->type() != elfcpp::STT_FUNC);
269 }
270
271 // Copy a relocation against a global symbol.
272 void
273 copy_reloc(const General_options*, Symbol_table*, Layout*,
274 Sized_relobj<64, false>*, unsigned int,
275 Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
276
277 // Information about this specific target which we pass to the
278 // general Target structure.
279 static const Target::Target_info x86_64_info;
280
281 // The GOT section.
282 Output_data_got<64, false>* got_;
283 // The PLT section.
284 Output_data_plt_x86_64* plt_;
285 // The GOT PLT section.
286 Output_data_space* got_plt_;
287 // The dynamic reloc section.
288 Reloc_section* rela_dyn_;
289 // Relocs saved to avoid a COPY reloc.
290 Copy_relocs<64, false>* copy_relocs_;
291 // Space for variables copied with a COPY reloc.
292 Output_data_space* dynbss_;
293 };
294
295 const Target::Target_info Target_x86_64::x86_64_info =
296 {
297 64, // size
298 false, // is_big_endian
299 elfcpp::EM_X86_64, // machine_code
300 false, // has_make_symbol
301 false, // has_resolve
302 true, // has_code_fill
303 true, // is_default_stack_executable
304 "/lib/ld64.so.1", // program interpreter
305 0x400000, // default_text_segment_address
306 0x1000, // abi_pagesize
307 0x1000 // common_pagesize
308 };
309
310 // Get the GOT section, creating it if necessary.
311
312 Output_data_got<64, false>*
313 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
314 {
315 if (this->got_ == NULL)
316 {
317 gold_assert(symtab != NULL && layout != NULL);
318
319 this->got_ = new Output_data_got<64, false>();
320
321 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
322 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
323 this->got_);
324
325 // The old GNU linker creates a .got.plt section. We just
326 // create another set of data in the .got section. Note that we
327 // always create a PLT if we create a GOT, although the PLT
328 // might be empty.
329 this->got_plt_ = new Output_data_space(8);
330 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
331 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
332 this->got_plt_);
333
334 // The first three entries are reserved.
335 this->got_plt_->set_current_data_size(3 * 8);
336
337 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
338 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
339 this->got_plt_,
340 0, 0, elfcpp::STT_OBJECT,
341 elfcpp::STB_LOCAL,
342 elfcpp::STV_HIDDEN, 0,
343 false, false);
344 }
345
346 return this->got_;
347 }
348
349 // Get the dynamic reloc section, creating it if necessary.
350
351 Target_x86_64::Reloc_section*
352 Target_x86_64::rela_dyn_section(Layout* layout)
353 {
354 if (this->rela_dyn_ == NULL)
355 {
356 gold_assert(layout != NULL);
357 this->rela_dyn_ = new Reloc_section();
358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
359 elfcpp::SHF_ALLOC, this->rela_dyn_);
360 }
361 return this->rela_dyn_;
362 }
363
364 // A class to handle the PLT data.
365
366 class Output_data_plt_x86_64 : public Output_section_data
367 {
368 public:
369 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
370
371 Output_data_plt_x86_64(Layout*, Output_data_space*);
372
373 // Add an entry to the PLT.
374 void
375 add_entry(Symbol* gsym);
376
377 // Return the .rel.plt section data.
378 const Reloc_section*
379 rel_plt() const
380 { return this->rel_; }
381
382 protected:
383 void
384 do_adjust_output_section(Output_section* os);
385
386 private:
387 // The size of an entry in the PLT.
388 static const int plt_entry_size = 16;
389
390 // The first entry in the PLT.
391 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392 // procedure linkage table for both programs and shared objects."
393 static unsigned char first_plt_entry[plt_entry_size];
394
395 // Other entries in the PLT for an executable.
396 static unsigned char plt_entry[plt_entry_size];
397
398 // Set the final size.
399 void
400 set_final_data_size()
401 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
402
403 // Write out the PLT data.
404 void
405 do_write(Output_file*);
406
407 // The reloc section.
408 Reloc_section* rel_;
409 // The .got.plt section.
410 Output_data_space* got_plt_;
411 // The number of PLT entries.
412 unsigned int count_;
413 };
414
415 // Create the PLT section. The ordinary .got section is an argument,
416 // since we need to refer to the start. We also create our own .got
417 // section just for PLT entries.
418
419 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
420 Output_data_space* got_plt)
421 : Output_section_data(8), got_plt_(got_plt), count_(0)
422 {
423 this->rel_ = new Reloc_section();
424 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
425 elfcpp::SHF_ALLOC, this->rel_);
426 }
427
428 void
429 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
430 {
431 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
432 // linker, and so do we.
433 os->set_entsize(4);
434 }
435
436 // Add an entry to the PLT.
437
438 void
439 Output_data_plt_x86_64::add_entry(Symbol* gsym)
440 {
441 gold_assert(!gsym->has_plt_offset());
442
443 // Note that when setting the PLT offset we skip the initial
444 // reserved PLT entry.
445 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
446
447 ++this->count_;
448
449 off_t got_offset = this->got_plt_->current_data_size();
450
451 // Every PLT entry needs a GOT entry which points back to the PLT
452 // entry (this will be changed by the dynamic linker, normally
453 // lazily when the function is called).
454 this->got_plt_->set_current_data_size(got_offset + 8);
455
456 // Every PLT entry needs a reloc.
457 gsym->set_needs_dynsym_entry();
458 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
459 got_offset, 0);
460
461 // Note that we don't need to save the symbol. The contents of the
462 // PLT are independent of which symbols are used. The symbols only
463 // appear in the relocations.
464 }
465
466 // The first entry in the PLT for an executable.
467
468 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
469 {
470 // From AMD64 ABI Draft 0.98, page 76
471 0xff, 0x35, // pushq contents of memory address
472 0, 0, 0, 0, // replaced with address of .got + 4
473 0xff, 0x25, // jmp indirect
474 0, 0, 0, 0, // replaced with address of .got + 8
475 0x90, 0x90, 0x90, 0x90 // noop (x4)
476 };
477
478 // Subsequent entries in the PLT for an executable.
479
480 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
481 {
482 // From AMD64 ABI Draft 0.98, page 76
483 0xff, 0x25, // jmpq indirect
484 0, 0, 0, 0, // replaced with address of symbol in .got
485 0x68, // pushq immediate
486 0, 0, 0, 0, // replaced with offset into relocation table
487 0xe9, // jmpq relative
488 0, 0, 0, 0 // replaced with offset to start of .plt
489 };
490
491 // Write out the PLT. This uses the hand-coded instructions above,
492 // and adjusts them as needed. This is specified by the AMD64 ABI.
493
494 void
495 Output_data_plt_x86_64::do_write(Output_file* of)
496 {
497 const off_t offset = this->offset();
498 const off_t oview_size = this->data_size();
499 unsigned char* const oview = of->get_output_view(offset, oview_size);
500
501 const off_t got_file_offset = this->got_plt_->offset();
502 const off_t got_size = this->got_plt_->data_size();
503 unsigned char* const got_view = of->get_output_view(got_file_offset,
504 got_size);
505
506 unsigned char* pov = oview;
507
508 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
509 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
510
511 memcpy(pov, first_plt_entry, plt_entry_size);
512 if (!parameters->output_is_shared())
513 {
514 // We do a jmp relative to the PC at the end of this instruction.
515 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
516 - (plt_address + 6));
517 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
518 - (plt_address + 12));
519 }
520 pov += plt_entry_size;
521
522 unsigned char* got_pov = got_view;
523
524 memset(got_pov, 0, 24);
525 got_pov += 24;
526
527 unsigned int plt_offset = plt_entry_size;
528 unsigned int got_offset = 24;
529 const unsigned int count = this->count_;
530 for (unsigned int plt_index = 0;
531 plt_index < count;
532 ++plt_index,
533 pov += plt_entry_size,
534 got_pov += 8,
535 plt_offset += plt_entry_size,
536 got_offset += 8)
537 {
538 // Set and adjust the PLT entry itself.
539 memcpy(pov, plt_entry, plt_entry_size);
540 if (parameters->output_is_shared())
541 // FIXME(csilvers): what's the right thing to write here?
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
543 else
544 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
545 (got_address + got_offset
546 - (plt_address + plt_offset
547 + 6)));
548
549 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
550 elfcpp::Swap<32, false>::writeval(pov + 12,
551 - (plt_offset + plt_entry_size));
552
553 // Set the entry in the GOT.
554 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
555 }
556
557 gold_assert(pov - oview == oview_size);
558 gold_assert(got_pov - got_view == got_size);
559
560 of->write_output_view(offset, oview_size, oview);
561 of->write_output_view(got_file_offset, got_size, got_view);
562 }
563
564 // Create a PLT entry for a global symbol.
565
566 void
567 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
568 Symbol* gsym)
569 {
570 if (gsym->has_plt_offset())
571 return;
572
573 if (this->plt_ == NULL)
574 {
575 // Create the GOT sections first.
576 this->got_section(symtab, layout);
577
578 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
579 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
580 (elfcpp::SHF_ALLOC
581 | elfcpp::SHF_EXECINSTR),
582 this->plt_);
583 }
584
585 this->plt_->add_entry(gsym);
586 }
587
588 // Handle a relocation against a non-function symbol defined in a
589 // dynamic object. The traditional way to handle this is to generate
590 // a COPY relocation to copy the variable at runtime from the shared
591 // object into the executable's data segment. However, this is
592 // undesirable in general, as if the size of the object changes in the
593 // dynamic object, the executable will no longer work correctly. If
594 // this relocation is in a writable section, then we can create a
595 // dynamic reloc and the dynamic linker will resolve it to the correct
596 // address at runtime. However, we do not want do that if the
597 // relocation is in a read-only section, as it would prevent the
598 // readonly segment from being shared. And if we have to eventually
599 // generate a COPY reloc, then any dynamic relocations will be
600 // useless. So this means that if this is a writable section, we need
601 // to save the relocation until we see whether we have to create a
602 // COPY relocation for this symbol for any other relocation.
603
604 void
605 Target_x86_64::copy_reloc(const General_options* options,
606 Symbol_table* symtab,
607 Layout* layout,
608 Sized_relobj<64, false>* object,
609 unsigned int data_shndx,
610 Output_section* output_section,
611 Symbol* gsym,
612 const elfcpp::Rela<64, false>& rela)
613 {
614 Sized_symbol<64>* ssym;
615 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
616 SELECT_SIZE(64));
617
618 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
619 data_shndx, ssym))
620 {
621 // So far we do not need a COPY reloc. Save this relocation.
622 // If it turns out that we never need a COPY reloc for this
623 // symbol, then we will emit the relocation.
624 if (this->copy_relocs_ == NULL)
625 this->copy_relocs_ = new Copy_relocs<64, false>();
626 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
627 }
628 else
629 {
630 // Allocate space for this symbol in the .bss section.
631
632 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
633
634 // There is no defined way to determine the required alignment
635 // of the symbol. We pick the alignment based on the size. We
636 // set an arbitrary maximum of 256.
637 unsigned int align;
638 for (align = 1; align < 512; align <<= 1)
639 if ((symsize & align) != 0)
640 break;
641
642 if (this->dynbss_ == NULL)
643 {
644 this->dynbss_ = new Output_data_space(align);
645 layout->add_output_section_data(".bss",
646 elfcpp::SHT_NOBITS,
647 (elfcpp::SHF_ALLOC
648 | elfcpp::SHF_WRITE),
649 this->dynbss_);
650 }
651
652 Output_data_space* dynbss = this->dynbss_;
653
654 if (align > dynbss->addralign())
655 dynbss->set_space_alignment(align);
656
657 off_t dynbss_size = dynbss->current_data_size();
658 dynbss_size = align_address(dynbss_size, align);
659 off_t offset = dynbss_size;
660 dynbss->set_current_data_size(dynbss_size + symsize);
661
662 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
663
664 // Add the COPY reloc.
665 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
666 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
667 }
668 }
669
670
671 // Optimize the TLS relocation type based on what we know about the
672 // symbol. IS_FINAL is true if the final address of this symbol is
673 // known at link time.
674
675 tls::Tls_optimization
676 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
677 {
678 // If we are generating a shared library, then we can't do anything
679 // in the linker.
680 if (parameters->output_is_shared())
681 return tls::TLSOPT_NONE;
682
683 switch (r_type)
684 {
685 case elfcpp::R_X86_64_TLSGD:
686 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
687 case elfcpp::R_X86_64_TLSDESC_CALL:
688 // These are General-Dynamic which permits fully general TLS
689 // access. Since we know that we are generating an executable,
690 // we can convert this to Initial-Exec. If we also know that
691 // this is a local symbol, we can further switch to Local-Exec.
692 if (is_final)
693 return tls::TLSOPT_TO_LE;
694 return tls::TLSOPT_TO_IE;
695
696 case elfcpp::R_X86_64_TLSLD:
697 // This is Local-Dynamic, which refers to a local symbol in the
698 // dynamic TLS block. Since we know that we generating an
699 // executable, we can switch to Local-Exec.
700 return tls::TLSOPT_TO_LE;
701
702 case elfcpp::R_X86_64_DTPOFF32:
703 case elfcpp::R_X86_64_DTPOFF64:
704 // Another Local-Dynamic reloc.
705 return tls::TLSOPT_TO_LE;
706
707 case elfcpp::R_X86_64_GOTTPOFF:
708 // These are Initial-Exec relocs which get the thread offset
709 // from the GOT. If we know that we are linking against the
710 // local symbol, we can switch to Local-Exec, which links the
711 // thread offset into the instruction.
712 if (is_final)
713 return tls::TLSOPT_TO_LE;
714 return tls::TLSOPT_NONE;
715
716 case elfcpp::R_X86_64_TPOFF32:
717 // When we already have Local-Exec, there is nothing further we
718 // can do.
719 return tls::TLSOPT_NONE;
720
721 default:
722 gold_unreachable();
723 }
724 }
725
726 // Report an unsupported relocation against a local symbol.
727
728 void
729 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
730 unsigned int r_type)
731 {
732 gold_error(_("%s: unsupported reloc %u against local symbol"),
733 object->name().c_str(), r_type);
734 }
735
736 // Scan a relocation for a local symbol.
737
738 inline void
739 Target_x86_64::Scan::local(const General_options&,
740 Symbol_table* symtab,
741 Layout* layout,
742 Target_x86_64* target,
743 Sized_relobj<64, false>* object,
744 unsigned int data_shndx,
745 Output_section* output_section,
746 const elfcpp::Rela<64, false>& reloc,
747 unsigned int r_type,
748 const elfcpp::Sym<64, false>&)
749 {
750 switch (r_type)
751 {
752 case elfcpp::R_X86_64_NONE:
753 case elfcpp::R_386_GNU_VTINHERIT:
754 case elfcpp::R_386_GNU_VTENTRY:
755 break;
756
757 case elfcpp::R_X86_64_64:
758 // If building a shared library (or a position-independent
759 // executable), we need to create a dynamic relocation for
760 // this location. The relocation applied at link time will
761 // apply the link-time value, so we flag the location with
762 // an R_386_RELATIVE relocation so the dynamic loader can
763 // relocate it easily.
764 if (parameters->output_is_position_independent())
765 {
766 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
767 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
768 output_section, data_shndx,
769 reloc.get_r_offset(), 0);
770 }
771 break;
772
773 case elfcpp::R_X86_64_32:
774 case elfcpp::R_X86_64_32S:
775 case elfcpp::R_X86_64_16:
776 case elfcpp::R_X86_64_8:
777 // If building a shared library (or a position-independent
778 // executable), we need to create a dynamic relocation for
779 // this location. The relocation applied at link time will
780 // apply the link-time value, so we flag the location with
781 // an R_386_RELATIVE relocation so the dynamic loader can
782 // relocate it easily.
783 if (parameters->output_is_position_independent())
784 {
785 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
786 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
787 rela_dyn->add_local(object, r_sym, r_type, output_section,
788 data_shndx, reloc.get_r_offset(),
789 reloc.get_r_addend());
790 }
791 break;
792
793 case elfcpp::R_X86_64_PC64:
794 case elfcpp::R_X86_64_PC32:
795 case elfcpp::R_X86_64_PC16:
796 case elfcpp::R_X86_64_PC8:
797 break;
798
799 case elfcpp::R_X86_64_PLT32:
800 // Since we know this is a local symbol, we can handle this as a
801 // PC32 reloc.
802 break;
803
804 case elfcpp::R_X86_64_GOTPC32:
805 case elfcpp::R_X86_64_GOTOFF64:
806 case elfcpp::R_X86_64_GOTPC64:
807 case elfcpp::R_X86_64_PLTOFF64:
808 // We need a GOT section.
809 target->got_section(symtab, layout);
810 // For PLTOFF64, we'd normally want a PLT section, but since we
811 // know this is a local symbol, no PLT is needed.
812 break;
813
814 case elfcpp::R_X86_64_GOT64:
815 case elfcpp::R_X86_64_GOT32:
816 case elfcpp::R_X86_64_GOTPCREL64:
817 case elfcpp::R_X86_64_GOTPCREL:
818 case elfcpp::R_X86_64_GOTPLT64:
819 {
820 // The symbol requires a GOT entry.
821 Output_data_got<64, false>* got = target->got_section(symtab, layout);
822 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
823 if (got->add_local(object, r_sym))
824 {
825 // If we are generating a shared object, we need to add a
826 // dynamic RELATIVE relocation for this symbol.
827 if (parameters->output_is_position_independent())
828 {
829 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
830 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
831
832 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
833 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
834 output_section, data_shndx,
835 reloc.get_r_offset(), 0);
836 }
837 }
838 // For GOTPLT64, we'd normally want a PLT section, but since
839 // we know this is a local symbol, no PLT is needed.
840 }
841 break;
842
843 case elfcpp::R_X86_64_COPY:
844 case elfcpp::R_X86_64_GLOB_DAT:
845 case elfcpp::R_X86_64_JUMP_SLOT:
846 case elfcpp::R_X86_64_RELATIVE:
847 // These are outstanding tls relocs, which are unexpected when linking
848 case elfcpp::R_X86_64_TPOFF64:
849 case elfcpp::R_X86_64_DTPMOD64:
850 case elfcpp::R_X86_64_TLSDESC:
851 gold_error(_("%s: unexpected reloc %u in object file"),
852 object->name().c_str(), r_type);
853 break;
854
855 // These are initial tls relocs, which are expected when linking
856 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
857 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
858 case elfcpp::R_X86_64_TLSDESC_CALL:
859 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
860 case elfcpp::R_X86_64_DTPOFF32:
861 case elfcpp::R_X86_64_DTPOFF64:
862 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
863 case elfcpp::R_X86_64_TPOFF32: // Local-exec
864 {
865 bool output_is_shared = parameters->output_is_shared();
866 const tls::Tls_optimization optimized_type
867 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
868 switch (r_type)
869 {
870 case elfcpp::R_X86_64_TLSGD: // General-dynamic
871 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
872 case elfcpp::R_X86_64_TLSDESC_CALL:
873 // FIXME: If not relaxing to LE, we need to generate
874 // DTPMOD64 and DTPOFF64 relocs.
875 if (optimized_type != tls::TLSOPT_TO_LE)
876 unsupported_reloc_local(object, r_type);
877 break;
878
879 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
880 case elfcpp::R_X86_64_DTPOFF32:
881 case elfcpp::R_X86_64_DTPOFF64:
882 // FIXME: If not relaxing to LE, we need to generate a
883 // DTPMOD64 reloc.
884 if (optimized_type != tls::TLSOPT_TO_LE)
885 unsupported_reloc_local(object, r_type);
886 break;
887
888 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
889 // FIXME: If not relaxing to LE, we need to generate a
890 // TPOFF64 reloc.
891 if (optimized_type != tls::TLSOPT_TO_LE)
892 unsupported_reloc_local(object, r_type);
893 break;
894
895 case elfcpp::R_X86_64_TPOFF32: // Local-exec
896 // FIXME: If generating a shared object, we need to copy
897 // this relocation into the object.
898 gold_assert(!output_is_shared);
899 break;
900
901 default:
902 gold_unreachable();
903 }
904 }
905 break;
906
907 case elfcpp::R_X86_64_SIZE32:
908 case elfcpp::R_X86_64_SIZE64:
909 default:
910 gold_error(_("%s: unsupported reloc %u against local symbol"),
911 object->name().c_str(), r_type);
912 break;
913 }
914 }
915
916
917 // Report an unsupported relocation against a global symbol.
918
919 void
920 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
921 unsigned int r_type,
922 Symbol* gsym)
923 {
924 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
925 object->name().c_str(), r_type, gsym->demangled_name().c_str());
926 }
927
928 // Scan a relocation for a global symbol.
929
930 inline void
931 Target_x86_64::Scan::global(const General_options& options,
932 Symbol_table* symtab,
933 Layout* layout,
934 Target_x86_64* target,
935 Sized_relobj<64, false>* object,
936 unsigned int data_shndx,
937 Output_section* output_section,
938 const elfcpp::Rela<64, false>& reloc,
939 unsigned int r_type,
940 Symbol* gsym)
941 {
942 switch (r_type)
943 {
944 case elfcpp::R_X86_64_NONE:
945 case elfcpp::R_386_GNU_VTINHERIT:
946 case elfcpp::R_386_GNU_VTENTRY:
947 break;
948
949 case elfcpp::R_X86_64_64:
950 case elfcpp::R_X86_64_32:
951 case elfcpp::R_X86_64_32S:
952 case elfcpp::R_X86_64_16:
953 case elfcpp::R_X86_64_8:
954 {
955 // Make a PLT entry if necessary.
956 if (gsym->needs_plt_entry())
957 {
958 target->make_plt_entry(symtab, layout, gsym);
959 // Since this is not a PC-relative relocation, we may be
960 // taking the address of a function. In that case we need to
961 // set the entry in the dynamic symbol table to the address of
962 // the PLT entry.
963 if (gsym->is_from_dynobj())
964 gsym->set_needs_dynsym_value();
965 }
966 // Make a dynamic relocation if necessary.
967 if (gsym->needs_dynamic_reloc(true, false))
968 {
969 if (target->may_need_copy_reloc(gsym))
970 {
971 target->copy_reloc(&options, symtab, layout, object, data_shndx,
972 output_section, gsym, reloc);
973 }
974 else if (r_type == elfcpp::R_X86_64_64
975 && gsym->can_use_relative_reloc(false))
976 {
977 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
978 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
979 output_section, data_shndx,
980 reloc.get_r_offset(), 0);
981 }
982 else
983 {
984 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
985 rela_dyn->add_global(gsym, r_type, output_section, object,
986 data_shndx, reloc.get_r_offset(),
987 reloc.get_r_addend());
988 }
989 }
990 }
991 break;
992
993 case elfcpp::R_X86_64_PC64:
994 case elfcpp::R_X86_64_PC32:
995 case elfcpp::R_X86_64_PC16:
996 case elfcpp::R_X86_64_PC8:
997 {
998 // Make a PLT entry if necessary.
999 if (gsym->needs_plt_entry())
1000 target->make_plt_entry(symtab, layout, gsym);
1001 // Make a dynamic relocation if necessary.
1002 bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
1003 if (gsym->needs_dynamic_reloc(true, is_function_call))
1004 {
1005 if (target->may_need_copy_reloc(gsym))
1006 {
1007 target->copy_reloc(&options, symtab, layout, object, data_shndx,
1008 output_section, gsym, reloc);
1009 }
1010 else
1011 {
1012 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1013 rela_dyn->add_global(gsym, r_type, output_section, object,
1014 data_shndx, reloc.get_r_offset(),
1015 reloc.get_r_addend());
1016 }
1017 }
1018 }
1019 break;
1020
1021 case elfcpp::R_X86_64_GOT64:
1022 case elfcpp::R_X86_64_GOT32:
1023 case elfcpp::R_X86_64_GOTPCREL64:
1024 case elfcpp::R_X86_64_GOTPCREL:
1025 case elfcpp::R_X86_64_GOTPLT64:
1026 {
1027 // The symbol requires a GOT entry.
1028 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1029 if (got->add_global(gsym))
1030 {
1031 // If this symbol is not fully resolved, we need to add a
1032 // dynamic relocation for it.
1033 if (!gsym->final_value_is_known())
1034 {
1035 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1036 if (gsym->is_from_dynobj()
1037 || gsym->is_preemptible())
1038 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1039 gsym->got_offset(), 0);
1040 else
1041 {
1042 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
1043 got, gsym->got_offset(), 0);
1044 // Make sure we write the link-time value to the GOT.
1045 gsym->set_needs_value_in_got();
1046 }
1047 }
1048 }
1049 // For GOTPLT64, we also need a PLT entry (but only if the
1050 // symbol is not fully resolved).
1051 if (r_type == elfcpp::R_X86_64_GOTPLT64
1052 && !gsym->final_value_is_known())
1053 target->make_plt_entry(symtab, layout, gsym);
1054 }
1055 break;
1056
1057 case elfcpp::R_X86_64_PLT32:
1058 // If the symbol is fully resolved, this is just a PC32 reloc.
1059 // Otherwise we need a PLT entry.
1060 if (gsym->final_value_is_known())
1061 break;
1062 // If building a shared library, we can also skip the PLT entry
1063 // if the symbol is defined in the output file and is protected
1064 // or hidden.
1065 if (gsym->is_defined()
1066 && !gsym->is_from_dynobj()
1067 && !gsym->is_preemptible())
1068 break;
1069 target->make_plt_entry(symtab, layout, gsym);
1070 break;
1071
1072 case elfcpp::R_X86_64_GOTPC32:
1073 case elfcpp::R_X86_64_GOTOFF64:
1074 case elfcpp::R_X86_64_GOTPC64:
1075 case elfcpp::R_X86_64_PLTOFF64:
1076 // We need a GOT section.
1077 target->got_section(symtab, layout);
1078 // For PLTOFF64, we also need a PLT entry (but only if the
1079 // symbol is not fully resolved).
1080 if (r_type == elfcpp::R_X86_64_PLTOFF64
1081 && !gsym->final_value_is_known())
1082 target->make_plt_entry(symtab, layout, gsym);
1083 break;
1084
1085 case elfcpp::R_X86_64_COPY:
1086 case elfcpp::R_X86_64_GLOB_DAT:
1087 case elfcpp::R_X86_64_JUMP_SLOT:
1088 case elfcpp::R_X86_64_RELATIVE:
1089 // These are outstanding tls relocs, which are unexpected when linking
1090 case elfcpp::R_X86_64_TPOFF64:
1091 case elfcpp::R_X86_64_DTPMOD64:
1092 case elfcpp::R_X86_64_TLSDESC:
1093 gold_error(_("%s: unexpected reloc %u in object file"),
1094 object->name().c_str(), r_type);
1095 break;
1096
1097 // These are initial tls relocs, which are expected for global()
1098 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1099 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1100 case elfcpp::R_X86_64_TLSDESC_CALL:
1101 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1102 case elfcpp::R_X86_64_DTPOFF32:
1103 case elfcpp::R_X86_64_DTPOFF64:
1104 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1105 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1106 {
1107 const bool is_final = gsym->final_value_is_known();
1108 const tls::Tls_optimization optimized_type
1109 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1110 switch (r_type)
1111 {
1112 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1113 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1114 case elfcpp::R_X86_64_TLSDESC_CALL:
1115 // FIXME: If not relaxing to LE, we need to generate
1116 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1117 if (optimized_type != tls::TLSOPT_TO_LE)
1118 unsupported_reloc_global(object, r_type, gsym);
1119 break;
1120
1121 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1122 case elfcpp::R_X86_64_DTPOFF32:
1123 case elfcpp::R_X86_64_DTPOFF64:
1124 // FIXME: If not relaxing to LE, we need to generate a
1125 // DTPMOD64 reloc.
1126 if (optimized_type != tls::TLSOPT_TO_LE)
1127 unsupported_reloc_global(object, r_type, gsym);
1128 break;
1129
1130 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1131 // FIXME: If not relaxing to LE, we need to generate a
1132 // TPOFF64 reloc.
1133 if (optimized_type != tls::TLSOPT_TO_LE)
1134 unsupported_reloc_global(object, r_type, gsym);
1135 break;
1136
1137 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1138 // FIXME: If generating a shared object, we need to copy
1139 // this relocation into the object.
1140 gold_assert(is_final);
1141 break;
1142
1143 default:
1144 gold_unreachable();
1145 }
1146 }
1147 break;
1148
1149 case elfcpp::R_X86_64_SIZE32:
1150 case elfcpp::R_X86_64_SIZE64:
1151 default:
1152 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1153 object->name().c_str(), r_type,
1154 gsym->demangled_name().c_str());
1155 break;
1156 }
1157 }
1158
1159 // Scan relocations for a section.
1160
1161 void
1162 Target_x86_64::scan_relocs(const General_options& options,
1163 Symbol_table* symtab,
1164 Layout* layout,
1165 Sized_relobj<64, false>* object,
1166 unsigned int data_shndx,
1167 unsigned int sh_type,
1168 const unsigned char* prelocs,
1169 size_t reloc_count,
1170 Output_section* output_section,
1171 bool needs_special_offset_handling,
1172 size_t local_symbol_count,
1173 const unsigned char* plocal_symbols)
1174 {
1175 if (sh_type == elfcpp::SHT_REL)
1176 {
1177 gold_error(_("%s: unsupported REL reloc section"),
1178 object->name().c_str());
1179 return;
1180 }
1181
1182 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1183 Target_x86_64::Scan>(
1184 options,
1185 symtab,
1186 layout,
1187 this,
1188 object,
1189 data_shndx,
1190 prelocs,
1191 reloc_count,
1192 output_section,
1193 needs_special_offset_handling,
1194 local_symbol_count,
1195 plocal_symbols);
1196 }
1197
1198 // Finalize the sections.
1199
1200 void
1201 Target_x86_64::do_finalize_sections(Layout* layout)
1202 {
1203 // Fill in some more dynamic tags.
1204 Output_data_dynamic* const odyn = layout->dynamic_data();
1205 if (odyn != NULL)
1206 {
1207 if (this->got_plt_ != NULL)
1208 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1209
1210 if (this->plt_ != NULL)
1211 {
1212 const Output_data* od = this->plt_->rel_plt();
1213 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1214 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1215 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1216 }
1217
1218 if (this->rela_dyn_ != NULL)
1219 {
1220 const Output_data* od = this->rela_dyn_;
1221 odyn->add_section_address(elfcpp::DT_RELA, od);
1222 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1223 odyn->add_constant(elfcpp::DT_RELAENT,
1224 elfcpp::Elf_sizes<64>::rela_size);
1225 }
1226
1227 if (!parameters->output_is_shared())
1228 {
1229 // The value of the DT_DEBUG tag is filled in by the dynamic
1230 // linker at run time, and used by the debugger.
1231 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1232 }
1233 }
1234
1235 // Emit any relocs we saved in an attempt to avoid generating COPY
1236 // relocs.
1237 if (this->copy_relocs_ == NULL)
1238 return;
1239 if (this->copy_relocs_->any_to_emit())
1240 {
1241 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1242 this->copy_relocs_->emit(rela_dyn);
1243 }
1244 delete this->copy_relocs_;
1245 this->copy_relocs_ = NULL;
1246 }
1247
1248 // Perform a relocation.
1249
1250 inline bool
1251 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1252 Target_x86_64* target,
1253 size_t relnum,
1254 const elfcpp::Rela<64, false>& rela,
1255 unsigned int r_type,
1256 const Sized_symbol<64>* gsym,
1257 const Symbol_value<64>* psymval,
1258 unsigned char* view,
1259 elfcpp::Elf_types<64>::Elf_Addr address,
1260 off_t view_size)
1261 {
1262 if (this->skip_call_tls_get_addr_)
1263 {
1264 if (r_type != elfcpp::R_X86_64_PLT32
1265 || gsym == NULL
1266 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1267 {
1268 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1269 _("missing expected TLS relocation"));
1270 }
1271 else
1272 {
1273 this->skip_call_tls_get_addr_ = false;
1274 return false;
1275 }
1276 }
1277
1278 // Pick the value to use for symbols defined in shared objects.
1279 Symbol_value<64> symval;
1280 if (gsym != NULL
1281 && (gsym->is_from_dynobj()
1282 || (parameters->output_is_shared()
1283 && gsym->is_preemptible()))
1284 && gsym->has_plt_offset())
1285 {
1286 symval.set_output_value(target->plt_section()->address()
1287 + gsym->plt_offset());
1288 psymval = &symval;
1289 }
1290
1291 const Sized_relobj<64, false>* object = relinfo->object;
1292 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1293
1294 // Get the GOT offset if needed.
1295 // The GOT pointer points to the end of the GOT section.
1296 // We need to subtract the size of the GOT section to get
1297 // the actual offset to use in the relocation.
1298 bool have_got_offset = false;
1299 unsigned int got_offset = 0;
1300 switch (r_type)
1301 {
1302 case elfcpp::R_X86_64_GOT32:
1303 case elfcpp::R_X86_64_GOT64:
1304 case elfcpp::R_X86_64_GOTPLT64:
1305 case elfcpp::R_X86_64_GOTPCREL:
1306 case elfcpp::R_X86_64_GOTPCREL64:
1307 if (gsym != NULL)
1308 {
1309 gold_assert(gsym->has_got_offset());
1310 got_offset = gsym->got_offset() - target->got_size();
1311 }
1312 else
1313 {
1314 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1315 got_offset = object->local_got_offset(r_sym) - target->got_size();
1316 }
1317 have_got_offset = true;
1318 break;
1319
1320 default:
1321 break;
1322 }
1323
1324 switch (r_type)
1325 {
1326 case elfcpp::R_X86_64_NONE:
1327 case elfcpp::R_386_GNU_VTINHERIT:
1328 case elfcpp::R_386_GNU_VTENTRY:
1329 break;
1330
1331 case elfcpp::R_X86_64_64:
1332 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1333 break;
1334
1335 case elfcpp::R_X86_64_PC64:
1336 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1337 address);
1338 break;
1339
1340 case elfcpp::R_X86_64_32:
1341 // FIXME: we need to verify that value + addend fits into 32 bits:
1342 // uint64_t x = value + addend;
1343 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1344 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1345 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1346 break;
1347
1348 case elfcpp::R_X86_64_32S:
1349 // FIXME: we need to verify that value + addend fits into 32 bits:
1350 // int64_t x = value + addend; // note this quantity is signed!
1351 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1352 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1353 break;
1354
1355 case elfcpp::R_X86_64_PC32:
1356 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1357 address);
1358 break;
1359
1360 case elfcpp::R_X86_64_16:
1361 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1362 break;
1363
1364 case elfcpp::R_X86_64_PC16:
1365 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1366 address);
1367 break;
1368
1369 case elfcpp::R_X86_64_8:
1370 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1371 break;
1372
1373 case elfcpp::R_X86_64_PC8:
1374 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1375 address);
1376 break;
1377
1378 case elfcpp::R_X86_64_PLT32:
1379 gold_assert(gsym == NULL
1380 || gsym->has_plt_offset()
1381 || gsym->final_value_is_known());
1382 // Note: while this code looks the same as for R_X86_64_PC32, it
1383 // behaves differently because psymval was set to point to
1384 // the PLT entry, rather than the symbol, in Scan::global().
1385 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1386 address);
1387 break;
1388
1389 case elfcpp::R_X86_64_PLTOFF64:
1390 {
1391 gold_assert(gsym);
1392 gold_assert(gsym->has_plt_offset()
1393 || gsym->final_value_is_known());
1394 elfcpp::Elf_types<64>::Elf_Addr got_address;
1395 got_address = target->got_section(NULL, NULL)->address();
1396 Relocate_functions<64, false>::rela64(view, object, psymval,
1397 addend - got_address);
1398 }
1399
1400 case elfcpp::R_X86_64_GOT32:
1401 gold_assert(have_got_offset);
1402 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1403 break;
1404
1405 case elfcpp::R_X86_64_GOTPC32:
1406 {
1407 gold_assert(gsym);
1408 elfcpp::Elf_types<64>::Elf_Addr value;
1409 value = target->got_plt_section()->address();
1410 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1411 }
1412 break;
1413
1414 case elfcpp::R_X86_64_GOT64:
1415 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1416 // Since we always add a PLT entry, this is equivalent.
1417 case elfcpp::R_X86_64_GOTPLT64:
1418 gold_assert(have_got_offset);
1419 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1420 break;
1421
1422 case elfcpp::R_X86_64_GOTPC64:
1423 {
1424 gold_assert(gsym);
1425 elfcpp::Elf_types<64>::Elf_Addr value;
1426 value = target->got_plt_section()->address();
1427 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1428 }
1429 break;
1430
1431 case elfcpp::R_X86_64_GOTOFF64:
1432 {
1433 elfcpp::Elf_types<64>::Elf_Addr value;
1434 value = (psymval->value(object, 0)
1435 - target->got_plt_section()->address());
1436 Relocate_functions<64, false>::rela64(view, value, addend);
1437 }
1438 break;
1439
1440 case elfcpp::R_X86_64_GOTPCREL:
1441 {
1442 gold_assert(have_got_offset);
1443 elfcpp::Elf_types<64>::Elf_Addr value;
1444 value = target->got_plt_section()->address() + got_offset;
1445 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1446 }
1447 break;
1448
1449 case elfcpp::R_X86_64_GOTPCREL64:
1450 {
1451 gold_assert(have_got_offset);
1452 elfcpp::Elf_types<64>::Elf_Addr value;
1453 value = target->got_plt_section()->address() + got_offset;
1454 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1455 }
1456 break;
1457
1458 case elfcpp::R_X86_64_COPY:
1459 case elfcpp::R_X86_64_GLOB_DAT:
1460 case elfcpp::R_X86_64_JUMP_SLOT:
1461 case elfcpp::R_X86_64_RELATIVE:
1462 // These are outstanding tls relocs, which are unexpected when linking
1463 case elfcpp::R_X86_64_TPOFF64:
1464 case elfcpp::R_X86_64_DTPMOD64:
1465 case elfcpp::R_X86_64_TLSDESC:
1466 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1467 _("unexpected reloc %u in object file"),
1468 r_type);
1469 break;
1470
1471 // These are initial tls relocs, which are expected when linking
1472 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1473 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1474 case elfcpp::R_X86_64_TLSDESC_CALL:
1475 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1476 case elfcpp::R_X86_64_DTPOFF32:
1477 case elfcpp::R_X86_64_DTPOFF64:
1478 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1479 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1480 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
1481 address, view_size);
1482 break;
1483
1484 case elfcpp::R_X86_64_SIZE32:
1485 case elfcpp::R_X86_64_SIZE64:
1486 default:
1487 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1488 _("unsupported reloc %u"),
1489 r_type);
1490 break;
1491 }
1492
1493 return true;
1494 }
1495
1496 // Perform a TLS relocation.
1497
1498 inline void
1499 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1500 size_t relnum,
1501 const elfcpp::Rela<64, false>& rela,
1502 unsigned int r_type,
1503 const Sized_symbol<64>* gsym,
1504 const Symbol_value<64>* psymval,
1505 unsigned char* view,
1506 elfcpp::Elf_types<64>::Elf_Addr,
1507 off_t view_size)
1508 {
1509 Output_segment* tls_segment = relinfo->layout->tls_segment();
1510 if (tls_segment == NULL)
1511 {
1512 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1513 _("TLS reloc but no TLS segment"));
1514 return;
1515 }
1516
1517 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1518
1519 const bool is_final = (gsym == NULL
1520 ? !parameters->output_is_position_independent()
1521 : gsym->final_value_is_known());
1522 const tls::Tls_optimization optimized_type
1523 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1524 switch (r_type)
1525 {
1526 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1527 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1528 case elfcpp::R_X86_64_TLSDESC_CALL:
1529 if (optimized_type == tls::TLSOPT_TO_LE)
1530 {
1531 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1532 rela, r_type, value, view,
1533 view_size);
1534 break;
1535 }
1536 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1537 _("unsupported reloc %u"), r_type);
1538 break;
1539
1540 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1541 if (optimized_type == tls::TLSOPT_TO_LE)
1542 {
1543 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1544 value, view, view_size);
1545 break;
1546 }
1547 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1548 _("unsupported reloc %u"), r_type);
1549 break;
1550
1551 case elfcpp::R_X86_64_DTPOFF32:
1552 if (optimized_type == tls::TLSOPT_TO_LE)
1553 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1554 else
1555 value = value - tls_segment->vaddr();
1556 Relocate_functions<64, false>::rel32(view, value);
1557 break;
1558
1559 case elfcpp::R_X86_64_DTPOFF64:
1560 if (optimized_type == tls::TLSOPT_TO_LE)
1561 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1562 else
1563 value = value - tls_segment->vaddr();
1564 Relocate_functions<64, false>::rel64(view, value);
1565 break;
1566
1567 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1568 if (optimized_type == tls::TLSOPT_TO_LE)
1569 {
1570 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1571 rela, r_type, value, view,
1572 view_size);
1573 break;
1574 }
1575 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1576 _("unsupported reloc type %u"),
1577 r_type);
1578 break;
1579
1580 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1581 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1582 Relocate_functions<64, false>::rel32(view, value);
1583 break;
1584 }
1585 }
1586
1587 // Do a relocation in which we convert a TLS General-Dynamic to a
1588 // Local-Exec.
1589
1590 inline void
1591 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1592 size_t relnum,
1593 Output_segment* tls_segment,
1594 const elfcpp::Rela<64, false>& rela,
1595 unsigned int,
1596 elfcpp::Elf_types<64>::Elf_Addr value,
1597 unsigned char* view,
1598 off_t view_size)
1599 {
1600 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1601 // .word 0x6666; rex64; call __tls_get_addr
1602 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1603
1604 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1605 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1606
1607 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1608 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1609 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1610 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1611
1612 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1613
1614 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1615 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1616
1617 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1618 // We can skip it.
1619 this->skip_call_tls_get_addr_ = true;
1620 }
1621
1622 inline void
1623 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1624 size_t relnum,
1625 Output_segment*,
1626 const elfcpp::Rela<64, false>& rela,
1627 unsigned int,
1628 elfcpp::Elf_types<64>::Elf_Addr,
1629 unsigned char* view,
1630 off_t view_size)
1631 {
1632 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1633 // ... leq foo@dtpoff(%rax),%reg
1634 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1635
1636 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1637 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1638
1639 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1640 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1641
1642 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1643
1644 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1645
1646 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1647 // We can skip it.
1648 this->skip_call_tls_get_addr_ = true;
1649 }
1650
1651 // Do a relocation in which we convert a TLS Initial-Exec to a
1652 // Local-Exec.
1653
1654 inline void
1655 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1656 size_t relnum,
1657 Output_segment* tls_segment,
1658 const elfcpp::Rela<64, false>& rela,
1659 unsigned int,
1660 elfcpp::Elf_types<64>::Elf_Addr value,
1661 unsigned char* view,
1662 off_t view_size)
1663 {
1664 // We need to examine the opcodes to figure out which instruction we
1665 // are looking at.
1666
1667 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1668 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1669
1670 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1671 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1672
1673 unsigned char op1 = view[-3];
1674 unsigned char op2 = view[-2];
1675 unsigned char op3 = view[-1];
1676 unsigned char reg = op3 >> 3;
1677
1678 if (op2 == 0x8b)
1679 {
1680 // movq
1681 if (op1 == 0x4c)
1682 view[-3] = 0x49;
1683 view[-2] = 0xc7;
1684 view[-1] = 0xc0 | reg;
1685 }
1686 else if (reg == 4)
1687 {
1688 // Special handling for %rsp.
1689 if (op1 == 0x4c)
1690 view[-3] = 0x49;
1691 view[-2] = 0x81;
1692 view[-1] = 0xc0 | reg;
1693 }
1694 else
1695 {
1696 // addq
1697 if (op1 == 0x4c)
1698 view[-3] = 0x4d;
1699 view[-2] = 0x8d;
1700 view[-1] = 0x80 | reg | (reg << 3);
1701 }
1702
1703 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1704 Relocate_functions<64, false>::rela32(view, value, 0);
1705 }
1706
1707 // Relocate section data.
1708
1709 void
1710 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1711 unsigned int sh_type,
1712 const unsigned char* prelocs,
1713 size_t reloc_count,
1714 Output_section* output_section,
1715 bool needs_special_offset_handling,
1716 unsigned char* view,
1717 elfcpp::Elf_types<64>::Elf_Addr address,
1718 off_t view_size)
1719 {
1720 gold_assert(sh_type == elfcpp::SHT_RELA);
1721
1722 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1723 Target_x86_64::Relocate>(
1724 relinfo,
1725 this,
1726 prelocs,
1727 reloc_count,
1728 output_section,
1729 needs_special_offset_handling,
1730 view,
1731 address,
1732 view_size);
1733 }
1734
1735 // Return the value to use for a dynamic which requires special
1736 // treatment. This is how we support equality comparisons of function
1737 // pointers across shared library boundaries, as described in the
1738 // processor specific ABI supplement.
1739
1740 uint64_t
1741 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1742 {
1743 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1744 return this->plt_section()->address() + gsym->plt_offset();
1745 }
1746
1747 // Return a string used to fill a code section with nops to take up
1748 // the specified length.
1749
1750 std::string
1751 Target_x86_64::do_code_fill(off_t length)
1752 {
1753 if (length >= 16)
1754 {
1755 // Build a jmpq instruction to skip over the bytes.
1756 unsigned char jmp[5];
1757 jmp[0] = 0xe9;
1758 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1759 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1760 + std::string(length - 5, '\0'));
1761 }
1762
1763 // Nop sequences of various lengths.
1764 const char nop1[1] = { 0x90 }; // nop
1765 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1766 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1767 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1768 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1769 0x00 }; // leal 0(%esi,1),%esi
1770 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1771 0x00, 0x00 };
1772 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1773 0x00, 0x00, 0x00 };
1774 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1775 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1776 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1777 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1778 0x00 };
1779 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1780 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1781 0x00, 0x00 };
1782 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1783 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1784 0x00, 0x00, 0x00 };
1785 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1786 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1787 0x00, 0x00, 0x00, 0x00 };
1788 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1789 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1790 0x27, 0x00, 0x00, 0x00,
1791 0x00 };
1792 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1793 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1794 0xbc, 0x27, 0x00, 0x00,
1795 0x00, 0x00 };
1796 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1797 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1798 0x90, 0x90, 0x90, 0x90,
1799 0x90, 0x90, 0x90 };
1800
1801 const char* nops[16] = {
1802 NULL,
1803 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1804 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1805 };
1806
1807 return std::string(nops[length], length);
1808 }
1809
1810 // The selector for x86_64 object files.
1811
1812 class Target_selector_x86_64 : public Target_selector
1813 {
1814 public:
1815 Target_selector_x86_64()
1816 : Target_selector(elfcpp::EM_X86_64, 64, false)
1817 { }
1818
1819 Target*
1820 recognize(int machine, int osabi, int abiversion);
1821
1822 private:
1823 Target_x86_64* target_;
1824 };
1825
1826 // Recognize an x86_64 object file when we already know that the machine
1827 // number is EM_X86_64.
1828
1829 Target*
1830 Target_selector_x86_64::recognize(int, int, int)
1831 {
1832 if (this->target_ == NULL)
1833 this->target_ = new Target_x86_64();
1834 return this->target_;
1835 }
1836
1837 Target_selector_x86_64 target_selector_x86_64;
1838
1839 } // End anonymous namespace.