Added support for Minisat::SimpSolver + ezSAT frezze() API
[yosys.git] / kernel / satgen.h
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
5 *
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20 #ifndef SATGEN_H
21 #define SATGEN_H
22
23 #include "kernel/rtlil.h"
24 #include "kernel/sigtools.h"
25 #include "kernel/celltypes.h"
26
27 #ifdef YOSYS_ENABLE_MINISAT
28 # include "libs/ezsat/ezminisat.h"
29 typedef ezMiniSAT ezDefaultSAT;
30 #else
31 # include "libs/ezsat/ezsat.h"
32 typedef ezSAT ezDefaultSAT;
33 #endif
34
35 struct SatGen
36 {
37 ezSAT *ez;
38 SigMap *sigmap;
39 std::string prefix;
40 SigPool initial_state;
41 std::map<std::string, RTLIL::SigSpec> asserts_a, asserts_en;
42 bool ignore_div_by_zero;
43 bool model_undef;
44
45 SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) :
46 ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false)
47 {
48 }
49
50 void setContext(SigMap *sigmap, std::string prefix = std::string())
51 {
52 this->sigmap = sigmap;
53 this->prefix = prefix;
54 }
55
56 std::vector<int> importSigSpecWorker(RTLIL::SigSpec &sig, std::string &pf, bool undef_mode, bool dup_undef)
57 {
58 log_assert(!undef_mode || model_undef);
59 sigmap->apply(sig);
60 sig.expand();
61
62 std::vector<int> vec;
63 vec.reserve(sig.chunks.size());
64
65 for (auto &c : sig.chunks)
66 if (c.wire == NULL) {
67 RTLIL::State bit = c.data.bits.at(0);
68 if (model_undef && dup_undef && bit == RTLIL::State::Sx)
69 vec.push_back(ez->literal());
70 else
71 vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE);
72 } else {
73 std::string name = pf + stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset);
74 vec.push_back(ez->literal(name));
75 ez->freeze(vec.back());
76 }
77 return vec;
78 }
79
80 std::vector<int> importSigSpec(RTLIL::SigSpec sig, int timestep = -1)
81 {
82 log_assert(timestep != 0);
83 std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
84 return importSigSpecWorker(sig, pf, false, false);
85 }
86
87 std::vector<int> importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
88 {
89 log_assert(timestep != 0);
90 std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
91 return importSigSpecWorker(sig, pf, false, true);
92 }
93
94 std::vector<int> importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1)
95 {
96 log_assert(timestep != 0);
97 std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
98 return importSigSpecWorker(sig, pf, true, false);
99 }
100
101 void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1)
102 {
103 std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
104 sig_a = asserts_a[pf];
105 sig_en = asserts_en[pf];
106 }
107
108 int importAsserts(int timestep = -1)
109 {
110 std::vector<int> check_bits, enable_bits;
111 std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
112 if (model_undef) {
113 check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep));
114 enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep));
115 } else {
116 check_bits = importDefSigSpec(asserts_a[pf], timestep);
117 enable_bits = importDefSigSpec(asserts_en[pf], timestep);
118 }
119 return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits)));
120 }
121
122 int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1)
123 {
124 if (timestep_rhs < 0)
125 timestep_rhs = timestep_lhs;
126
127 assert(lhs.width == rhs.width);
128
129 std::vector<int> vec_lhs = importSigSpec(lhs, timestep_lhs);
130 std::vector<int> vec_rhs = importSigSpec(rhs, timestep_rhs);
131
132 if (!model_undef)
133 return ez->vec_eq(vec_lhs, vec_rhs);
134
135 std::vector<int> undef_lhs = importUndefSigSpec(lhs, timestep_lhs);
136 std::vector<int> undef_rhs = importUndefSigSpec(rhs, timestep_rhs);
137
138 std::vector<int> eq_bits;
139 for (int i = 0; i < lhs.width; i++)
140 eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)),
141 ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i)))));
142 return ez->expression(ezSAT::OpAnd, eq_bits);
143 }
144
145 void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false)
146 {
147 bool is_signed = forced_signed;
148 if (!forced_signed && cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters.count("\\B_SIGNED") > 0)
149 is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
150 while (vec_a.size() < vec_b.size() || vec_a.size() < y_width)
151 vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE);
152 while (vec_b.size() < vec_a.size() || vec_b.size() < y_width)
153 vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->FALSE);
154 }
155
156 void extendSignalWidth(std::vector<int> &vec_a, std::vector<int> &vec_b, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
157 {
158 extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed);
159 while (vec_y.size() < vec_a.size())
160 vec_y.push_back(ez->literal());
161 }
162
163 void extendSignalWidthUnary(std::vector<int> &vec_a, std::vector<int> &vec_y, RTLIL::Cell *cell, bool forced_signed = false)
164 {
165 bool is_signed = forced_signed || (cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters["\\A_SIGNED"].as_bool());
166 while (vec_a.size() < vec_y.size())
167 vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE);
168 while (vec_y.size() < vec_a.size())
169 vec_y.push_back(ez->literal());
170 }
171
172 void undefGating(std::vector<int> &vec_y, std::vector<int> &vec_yy, std::vector<int> &vec_undef)
173 {
174 assert(model_undef);
175 ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy))));
176 }
177
178 bool importCell(RTLIL::Cell *cell, int timestep = -1)
179 {
180 bool arith_undef_handled = false;
181 bool is_arith_compare = cell->type == "$lt" || cell->type == "$le" || cell->type == "$ge" || cell->type == "$gt";
182
183 if (model_undef && (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || is_arith_compare))
184 {
185 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
186 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
187 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
188 if (is_arith_compare)
189 extendSignalWidth(undef_a, undef_b, cell, true);
190 else
191 extendSignalWidth(undef_a, undef_b, undef_y, cell, true);
192
193 int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
194 int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
195 int undef_y_bit = ez->OR(undef_any_a, undef_any_b);
196
197 if (cell->type == "$div" || cell->type == "$mod") {
198 std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
199 undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b)));
200 }
201
202 if (is_arith_compare) {
203 for (size_t i = 1; i < undef_y.size(); i++)
204 ez->SET(ez->FALSE, undef_y.at(i));
205 ez->SET(undef_y_bit, undef_y.at(0));
206 } else {
207 std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit);
208 ez->assume(ez->vec_eq(undef_y_bits, undef_y));
209 }
210
211 arith_undef_handled = true;
212 }
213
214 if (cell->type == "$_AND_" || cell->type == "$_OR_" || cell->type == "$_XOR_" ||
215 cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" ||
216 cell->type == "$add" || cell->type == "$sub")
217 {
218 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
219 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
220 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
221 extendSignalWidth(a, b, y, cell);
222
223 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
224
225 if (cell->type == "$and" || cell->type == "$_AND_")
226 ez->assume(ez->vec_eq(ez->vec_and(a, b), yy));
227 if (cell->type == "$or" || cell->type == "$_OR_")
228 ez->assume(ez->vec_eq(ez->vec_or(a, b), yy));
229 if (cell->type == "$xor" || cell->type == "$_XOR_")
230 ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy));
231 if (cell->type == "$xnor")
232 ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy));
233 if (cell->type == "$add")
234 ez->assume(ez->vec_eq(ez->vec_add(a, b), yy));
235 if (cell->type == "$sub")
236 ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy));
237
238 if (model_undef && !arith_undef_handled)
239 {
240 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
241 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
242 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
243 extendSignalWidth(undef_a, undef_b, undef_y, cell, false);
244
245 if (cell->type == "$and" || cell->type == "$_AND_") {
246 std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a));
247 std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b));
248 std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0)));
249 ez->assume(ez->vec_eq(yX, undef_y));
250 }
251 else if (cell->type == "$or" || cell->type == "$_OR_") {
252 std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a));
253 std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b));
254 std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1)));
255 ez->assume(ez->vec_eq(yX, undef_y));
256 }
257 else if (cell->type == "$xor" || cell->type == "$_XOR_" || cell->type == "$xnor") {
258 std::vector<int> yX = ez->vec_or(undef_a, undef_b);
259 ez->assume(ez->vec_eq(yX, undef_y));
260 }
261 else
262 log_abort();
263
264 undefGating(y, yy, undef_y);
265 }
266 else if (model_undef)
267 {
268 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
269 undefGating(y, yy, undef_y);
270 }
271 return true;
272 }
273
274 if (cell->type == "$_INV_" || cell->type == "$not")
275 {
276 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
277 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
278 extendSignalWidthUnary(a, y, cell);
279
280 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
281 ez->assume(ez->vec_eq(ez->vec_not(a), yy));
282
283 if (model_undef) {
284 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
285 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
286 extendSignalWidthUnary(undef_a, undef_y, cell, true);
287 ez->assume(ez->vec_eq(undef_a, undef_y));
288 undefGating(y, yy, undef_y);
289 }
290 return true;
291 }
292
293 if (cell->type == "$_MUX_" || cell->type == "$mux")
294 {
295 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
296 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
297 std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
298 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
299
300 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
301 ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy));
302
303 if (model_undef)
304 {
305 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
306 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
307 std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
308 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
309
310 std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b));
311 std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b));
312 std::vector<int> yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a));
313 ez->assume(ez->vec_eq(yX, undef_y));
314 undefGating(y, yy, undef_y);
315 }
316 return true;
317 }
318
319 if (cell->type == "$pmux" || cell->type == "$safe_pmux")
320 {
321 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
322 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
323 std::vector<int> s = importDefSigSpec(cell->connections.at("\\S"), timestep);
324 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
325
326 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
327
328 std::vector<int> tmp = a;
329 for (size_t i = 0; i < s.size(); i++) {
330 std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
331 tmp = ez->vec_ite(s.at(i), part_of_b, tmp);
332 }
333 if (cell->type == "$safe_pmux")
334 tmp = ez->vec_ite(ez->onehot(s, true), tmp, a);
335 ez->assume(ez->vec_eq(tmp, yy));
336
337 if (model_undef)
338 {
339 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
340 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
341 std::vector<int> undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep);
342 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
343
344 int maybe_one_hot = ez->FALSE;
345 int maybe_many_hot = ez->FALSE;
346
347 int sure_one_hot = ez->FALSE;
348 int sure_many_hot = ez->FALSE;
349
350 std::vector<int> bits_set = std::vector<int>(undef_y.size(), ez->FALSE);
351 std::vector<int> bits_clr = std::vector<int>(undef_y.size(), ez->FALSE);
352
353 for (size_t i = 0; i < s.size(); i++)
354 {
355 std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
356 std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size());
357
358 int maybe_s = ez->OR(s.at(i), undef_s.at(i));
359 int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i)));
360
361 maybe_one_hot = ez->OR(maybe_one_hot, maybe_s);
362 maybe_many_hot = ez->OR(maybe_many_hot, ez->AND(maybe_one_hot, maybe_s));
363
364 sure_one_hot = ez->OR(sure_one_hot, sure_s);
365 sure_many_hot = ez->OR(sure_many_hot, ez->AND(sure_one_hot, sure_s));
366
367 bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b))), bits_set);
368 bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b))), bits_clr);
369 }
370
371 int maybe_a = ez->NOT(maybe_one_hot);
372
373 if (cell->type == "$safe_pmux") {
374 maybe_a = ez->OR(maybe_a, maybe_many_hot);
375 bits_set = ez->vec_ite(sure_many_hot, ez->vec_or(a, undef_a), bits_set);
376 bits_clr = ez->vec_ite(sure_many_hot, ez->vec_or(ez->vec_not(a), undef_a), bits_clr);
377 }
378
379 bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set);
380 bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr);
381
382 ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y));
383 undefGating(y, yy, undef_y);
384 }
385 return true;
386 }
387
388 if (cell->type == "$pos" || cell->type == "$neg")
389 {
390 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
391 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
392 extendSignalWidthUnary(a, y, cell);
393
394 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
395
396 if (cell->type == "$pos") {
397 ez->assume(ez->vec_eq(a, yy));
398 } else {
399 std::vector<int> zero(a.size(), ez->FALSE);
400 ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy));
401 }
402
403 if (model_undef)
404 {
405 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
406 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
407 extendSignalWidthUnary(undef_a, undef_y, cell, true);
408
409 if (cell->type == "$pos") {
410 ez->assume(ez->vec_eq(undef_a, undef_y));
411 } else {
412 int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
413 std::vector<int> undef_y_bits(undef_y.size(), undef_any_a);
414 ez->assume(ez->vec_eq(undef_y_bits, undef_y));
415 }
416
417 undefGating(y, yy, undef_y);
418 }
419 return true;
420 }
421
422 if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" ||
423 cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not")
424 {
425 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
426 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
427
428 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
429
430 if (cell->type == "$reduce_and")
431 ez->SET(ez->expression(ez->OpAnd, a), yy.at(0));
432 if (cell->type == "$reduce_or" || cell->type == "$reduce_bool")
433 ez->SET(ez->expression(ez->OpOr, a), yy.at(0));
434 if (cell->type == "$reduce_xor")
435 ez->SET(ez->expression(ez->OpXor, a), yy.at(0));
436 if (cell->type == "$reduce_xnor")
437 ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0));
438 if (cell->type == "$logic_not")
439 ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0));
440 for (size_t i = 1; i < y.size(); i++)
441 ez->SET(ez->FALSE, yy.at(i));
442
443 if (model_undef)
444 {
445 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
446 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
447 int aX = ez->expression(ezSAT::OpOr, undef_a);
448
449 if (cell->type == "$reduce_and") {
450 int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)));
451 ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0)));
452 }
453 else if (cell->type == "$reduce_or" || cell->type == "$reduce_bool" || cell->type == "$logic_not") {
454 int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a)));
455 ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0)));
456 }
457 else if (cell->type == "$reduce_xor" || cell->type == "$reduce_xnor") {
458 ez->assume(ez->IFF(aX, undef_y.at(0)));
459 } else
460 log_abort();
461
462 for (size_t i = 1; i < undef_y.size(); i++)
463 ez->SET(ez->FALSE, undef_y.at(i));
464
465 undefGating(y, yy, undef_y);
466 }
467 return true;
468 }
469
470 if (cell->type == "$logic_and" || cell->type == "$logic_or")
471 {
472 std::vector<int> vec_a = importDefSigSpec(cell->connections.at("\\A"), timestep);
473 std::vector<int> vec_b = importDefSigSpec(cell->connections.at("\\B"), timestep);
474
475 int a = ez->expression(ez->OpOr, vec_a);
476 int b = ez->expression(ez->OpOr, vec_b);
477 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
478
479 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
480
481 if (cell->type == "$logic_and")
482 ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0));
483 else
484 ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0));
485 for (size_t i = 1; i < y.size(); i++)
486 ez->SET(ez->FALSE, yy.at(i));
487
488 if (model_undef)
489 {
490 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
491 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
492 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
493
494 int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a)));
495 int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b)));
496 int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a)));
497 int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b)));
498 int aX = ez->expression(ezSAT::OpOr, undef_a);
499 int bX = ez->expression(ezSAT::OpOr, undef_b);
500
501 if (cell->type == "$logic_and")
502 ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0));
503 else if (cell->type == "$logic_or")
504 ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0));
505 else
506 log_abort();
507
508 for (size_t i = 1; i < undef_y.size(); i++)
509 ez->SET(ez->FALSE, undef_y.at(i));
510
511 undefGating(y, yy, undef_y);
512 }
513 return true;
514 }
515
516 if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt")
517 {
518 bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
519 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
520 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
521 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
522 extendSignalWidth(a, b, cell);
523
524 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
525
526 if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) {
527 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
528 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
529 extendSignalWidth(undef_a, undef_b, cell, true);
530 a = ez->vec_or(a, undef_a);
531 b = ez->vec_or(b, undef_b);
532 }
533
534 if (cell->type == "$lt")
535 ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0));
536 if (cell->type == "$le")
537 ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0));
538 if (cell->type == "$eq" || cell->type == "$eqx")
539 ez->SET(ez->vec_eq(a, b), yy.at(0));
540 if (cell->type == "$ne" || cell->type == "$nex")
541 ez->SET(ez->vec_ne(a, b), yy.at(0));
542 if (cell->type == "$ge")
543 ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0));
544 if (cell->type == "$gt")
545 ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0));
546 for (size_t i = 1; i < y.size(); i++)
547 ez->SET(ez->FALSE, yy.at(i));
548
549 if (model_undef && (cell->type == "$eqx" || cell->type == "$nex"))
550 {
551 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
552 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
553 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
554 extendSignalWidth(undef_a, undef_b, cell, true);
555
556 if (cell->type == "$eqx")
557 yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b));
558 else
559 yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b));
560
561 for (size_t i = 0; i < y.size(); i++)
562 ez->SET(ez->FALSE, undef_y.at(i));
563
564 ez->assume(ez->vec_eq(y, yy));
565 }
566 else if (model_undef && (cell->type == "$eq" || cell->type == "$ne"))
567 {
568 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
569 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
570 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
571 extendSignalWidth(undef_a, undef_b, cell, true);
572
573 int undef_any_a = ez->expression(ezSAT::OpOr, undef_a);
574 int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
575 int undef_any = ez->OR(undef_any_a, undef_any_b);
576
577 std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b));
578 std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b));
579
580 int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits);
581 int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne));
582
583 for (size_t i = 1; i < undef_y.size(); i++)
584 ez->SET(ez->FALSE, undef_y.at(i));
585 ez->SET(undef_y_bit, undef_y.at(0));
586
587 undefGating(y, yy, undef_y);
588 }
589 else
590 {
591 if (model_undef) {
592 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
593 undefGating(y, yy, undef_y);
594 }
595 log_assert(!model_undef || arith_undef_handled);
596 }
597 return true;
598 }
599
600 if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr")
601 {
602 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
603 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
604 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
605
606 char shift_left = cell->type == "$shl" || cell->type == "$sshl";
607 bool sign_extend = cell->type == "$sshr" && cell->parameters["\\A_SIGNED"].as_bool();
608
609 while (y.size() < a.size())
610 y.push_back(ez->literal());
611 while (y.size() > a.size())
612 a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? a.back() : ez->FALSE);
613
614 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
615
616 std::vector<int> tmp = a;
617 for (size_t i = 0; i < b.size(); i++)
618 {
619 std::vector<int> tmp_shifted(tmp.size());
620 for (size_t j = 0; j < tmp.size(); j++) {
621 int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1);
622 tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE;
623 }
624 tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
625 }
626 ez->assume(ez->vec_eq(tmp, yy));
627
628 if (model_undef)
629 {
630 std::vector<int> undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep);
631 std::vector<int> undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep);
632 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
633
634 while (undef_y.size() < undef_a.size())
635 undef_y.push_back(ez->literal());
636 while (undef_y.size() > undef_a.size())
637 undef_a.push_back(undef_a.back());
638
639 tmp = undef_a;
640 for (size_t i = 0; i < b.size(); i++)
641 {
642 std::vector<int> tmp_shifted(tmp.size());
643 for (size_t j = 0; j < tmp.size(); j++) {
644 int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1);
645 tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE;
646 }
647 tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp);
648 }
649
650 int undef_any_b = ez->expression(ezSAT::OpOr, undef_b);
651 std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b);
652 ez->assume(ez->vec_eq(ez->vec_or(tmp, undef_all_y_bits), undef_y));
653 undefGating(y, yy, undef_y);
654 }
655 return true;
656 }
657
658 if (cell->type == "$mul")
659 {
660 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
661 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
662 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
663 extendSignalWidth(a, b, y, cell);
664
665 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
666
667 std::vector<int> tmp(a.size(), ez->FALSE);
668 for (int i = 0; i < int(a.size()); i++)
669 {
670 std::vector<int> shifted_a(a.size(), ez->FALSE);
671 for (int j = i; j < int(a.size()); j++)
672 shifted_a.at(j) = a.at(j-i);
673 tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp);
674 }
675 ez->assume(ez->vec_eq(tmp, yy));
676
677 if (model_undef) {
678 log_assert(arith_undef_handled);
679 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
680 undefGating(y, yy, undef_y);
681 }
682 return true;
683 }
684
685 if (cell->type == "$div" || cell->type == "$mod")
686 {
687 std::vector<int> a = importDefSigSpec(cell->connections.at("\\A"), timestep);
688 std::vector<int> b = importDefSigSpec(cell->connections.at("\\B"), timestep);
689 std::vector<int> y = importDefSigSpec(cell->connections.at("\\Y"), timestep);
690 extendSignalWidth(a, b, y, cell);
691
692 std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y;
693
694 std::vector<int> a_u, b_u;
695 if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
696 a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a);
697 b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b);
698 } else {
699 a_u = a;
700 b_u = b;
701 }
702
703 std::vector<int> chain_buf = a_u;
704 std::vector<int> y_u(a_u.size(), ez->FALSE);
705 for (int i = int(a.size())-1; i >= 0; i--)
706 {
707 chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->FALSE);
708
709 std::vector<int> b_shl(i, ez->FALSE);
710 b_shl.insert(b_shl.end(), b_u.begin(), b_u.end());
711 b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->FALSE);
712
713 y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl);
714 chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf);
715
716 chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end());
717 }
718
719 std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size());
720 if (cell->type == "$div") {
721 if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
722 ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u)));
723 else
724 ez->assume(ez->vec_eq(y_tmp, y_u));
725 } else {
726 if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
727 ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf)));
728 else
729 ez->assume(ez->vec_eq(y_tmp, chain_buf));
730 }
731
732 if (ignore_div_by_zero) {
733 ez->assume(ez->expression(ezSAT::OpOr, b));
734 } else {
735 std::vector<int> div_zero_result;
736 if (cell->type == "$div") {
737 if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) {
738 std::vector<int> all_ones(y.size(), ez->TRUE);
739 std::vector<int> only_first_one(y.size(), ez->FALSE);
740 only_first_one.at(0) = ez->TRUE;
741 div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones);
742 } else {
743 div_zero_result.insert(div_zero_result.end(), cell->connections.at("\\A").width, ez->TRUE);
744 div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
745 }
746 } else {
747 int copy_a_bits = std::min(cell->connections.at("\\A").width, cell->connections.at("\\B").width);
748 div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits);
749 if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool())
750 div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back());
751 else
752 div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE);
753 }
754 ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result)));
755 }
756
757 if (model_undef) {
758 log_assert(arith_undef_handled);
759 std::vector<int> undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep);
760 undefGating(y, yy, undef_y);
761 }
762 return true;
763 }
764
765 if (cell->type == "$slice")
766 {
767 RTLIL::SigSpec a = cell->connections.at("\\A");
768 RTLIL::SigSpec y = cell->connections.at("\\Y");
769 ez->assume(signals_eq(a.extract(cell->parameters.at("\\OFFSET").as_int(), y.width), y, timestep));
770 return true;
771 }
772
773 if (cell->type == "$concat")
774 {
775 RTLIL::SigSpec a = cell->connections.at("\\A");
776 RTLIL::SigSpec b = cell->connections.at("\\B");
777 RTLIL::SigSpec y = cell->connections.at("\\Y");
778
779 RTLIL::SigSpec ab = a;
780 ab.append(b);
781
782 ez->assume(signals_eq(ab, y, timestep));
783 return true;
784 }
785
786 if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_"))
787 {
788 if (timestep == 1)
789 {
790 initial_state.add((*sigmap)(cell->connections.at("\\Q")));
791 }
792 else
793 {
794 std::vector<int> d = importDefSigSpec(cell->connections.at("\\D"), timestep-1);
795 std::vector<int> q = importDefSigSpec(cell->connections.at("\\Q"), timestep);
796
797 std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q;
798 ez->assume(ez->vec_eq(d, qq));
799
800 if (model_undef)
801 {
802 std::vector<int> undef_d = importUndefSigSpec(cell->connections.at("\\D"), timestep-1);
803 std::vector<int> undef_q = importUndefSigSpec(cell->connections.at("\\Q"), timestep);
804
805 ez->assume(ez->vec_eq(undef_d, undef_q));
806 undefGating(q, qq, undef_q);
807 }
808 }
809 return true;
810 }
811
812 if (cell->type == "$assert")
813 {
814 std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep));
815 asserts_a[pf].append((*sigmap)(cell->connections.at("\\A")));
816 asserts_en[pf].append((*sigmap)(cell->connections.at("\\EN")));
817 return true;
818 }
819
820 // Unsupported internal cell types: $pow $lut
821 // .. and all sequential cells except $dff and $_DFF_[NP]_
822 return false;
823 }
824 };
825
826 #endif
827