New Serbian translations for various binutils sub-directories.
[binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2022 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "elf-bfd.h"
45 #if BFD_SUPPORTS_PLUGINS
46 #include "plugin.h"
47 #endif /* BFD_SUPPORTS_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Convert between addresses in bytes and sizes in octets.
54 For currently supported targets, octets_per_byte is always a power
55 of two, so we can use shifts. */
56 #define TO_ADDR(X) ((X) >> opb_shift)
57 #define TO_SIZE(X) ((X) << opb_shift)
58
59 /* Local variables. */
60 static struct obstack stat_obstack;
61 static struct obstack map_obstack;
62
63 #define obstack_chunk_alloc xmalloc
64 #define obstack_chunk_free free
65 static const char *entry_symbol_default = "start";
66 static bool map_head_is_link_order = false;
67 static lang_output_section_statement_type *default_common_section;
68 static bool map_option_f;
69 static bfd_vma print_dot;
70 static lang_input_statement_type *first_file;
71 static const char *current_target;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bool sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bool);
89 static bool lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (bool);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 /* Header for list of statements corresponding to any files involved in the
100 link, either specified from the command-line or added implicitely (eg.
101 archive member used to resolved undefined symbol, wildcard statement from
102 linker script, etc.). Next pointer is in next field of a
103 lang_statement_header_type (reached via header field in a
104 lang_statement_union). */
105 lang_statement_list_type statement_list;
106 lang_statement_list_type lang_os_list;
107 lang_statement_list_type *stat_ptr = &statement_list;
108 /* Header for list of statements corresponding to files used in the final
109 executable. This can be either object file specified on the command-line
110 or library member resolving an undefined reference. Next pointer is in next
111 field of a lang_input_statement_type (reached via input_statement field in a
112 lang_statement_union). */
113 lang_statement_list_type file_chain = { NULL, NULL };
114 /* Header for list of statements corresponding to files specified on the
115 command-line for linking. It thus contains real object files and archive
116 but not archive members. Next pointer is in next_real_file field of a
117 lang_input_statement_type statement (reached via input_statement field in a
118 lang_statement_union). */
119 lang_statement_list_type input_file_chain;
120 static const char *current_input_file;
121 struct bfd_elf_dynamic_list **current_dynamic_list_p;
122 struct bfd_sym_chain entry_symbol = { NULL, NULL };
123 const char *entry_section = ".text";
124 struct lang_input_statement_flags input_flags;
125 bool entry_from_cmdline;
126 bool lang_has_input_file = false;
127 bool had_output_filename = false;
128 bool lang_float_flag = false;
129 bool delete_output_file_on_failure = false;
130 struct lang_phdr *lang_phdr_list;
131 struct lang_nocrossrefs *nocrossref_list;
132 struct asneeded_minfo **asneeded_list_tail;
133 #ifdef ENABLE_LIBCTF
134 static ctf_dict_t *ctf_output;
135 #endif
136
137 /* Functions that traverse the linker script and might evaluate
138 DEFINED() need to increment this at the start of the traversal. */
139 int lang_statement_iteration = 0;
140
141 /* Count times through one_lang_size_sections_pass after mark phase. */
142 static int lang_sizing_iteration = 0;
143
144 /* Return TRUE if the PATTERN argument is a wildcard pattern.
145 Although backslashes are treated specially if a pattern contains
146 wildcards, we do not consider the mere presence of a backslash to
147 be enough to cause the pattern to be treated as a wildcard.
148 That lets us handle DOS filenames more naturally. */
149 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
150
151 #define new_stat(x, y) \
152 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
153
154 #define outside_section_address(q) \
155 ((q)->output_offset + (q)->output_section->vma)
156
157 #define outside_symbol_address(q) \
158 ((q)->value + outside_section_address (q->section))
159
160 /* CTF sections smaller than this are not compressed: compression of
161 dictionaries this small doesn't gain much, and this lets consumers mmap the
162 sections directly out of the ELF file and use them with no decompression
163 overhead if they want to. */
164 #define CTF_COMPRESSION_THRESHOLD 4096
165
166 void *
167 stat_alloc (size_t size)
168 {
169 return obstack_alloc (&stat_obstack, size);
170 }
171
172 static int
173 name_match (const char *pattern, const char *name)
174 {
175 if (wildcardp (pattern))
176 return fnmatch (pattern, name, 0);
177 return strcmp (pattern, name);
178 }
179
180 static char *
181 ldirname (const char *name)
182 {
183 const char *base = lbasename (name);
184 char *dirname;
185
186 while (base > name && IS_DIR_SEPARATOR (base[-1]))
187 --base;
188 if (base == name)
189 return strdup (".");
190 dirname = strdup (name);
191 dirname[base - name] = '\0';
192 return dirname;
193 }
194
195 /* If PATTERN is of the form archive:file, return a pointer to the
196 separator. If not, return NULL. */
197
198 static char *
199 archive_path (const char *pattern)
200 {
201 char *p = NULL;
202
203 if (link_info.path_separator == 0)
204 return p;
205
206 p = strchr (pattern, link_info.path_separator);
207 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
208 if (p == NULL || link_info.path_separator != ':')
209 return p;
210
211 /* Assume a match on the second char is part of drive specifier,
212 as in "c:\silly.dos". */
213 if (p == pattern + 1 && ISALPHA (*pattern))
214 p = strchr (p + 1, link_info.path_separator);
215 #endif
216 return p;
217 }
218
219 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
220 return whether F matches FILE_SPEC. */
221
222 static bool
223 input_statement_is_archive_path (const char *file_spec, char *sep,
224 lang_input_statement_type *f)
225 {
226 bool match = false;
227
228 if ((*(sep + 1) == 0
229 || name_match (sep + 1, f->filename) == 0)
230 && ((sep != file_spec)
231 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
232 {
233 match = true;
234
235 if (sep != file_spec)
236 {
237 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
238 *sep = 0;
239 match = name_match (file_spec, aname) == 0;
240 *sep = link_info.path_separator;
241 }
242 }
243 return match;
244 }
245
246 static bool
247 unique_section_p (const asection *sec,
248 const lang_output_section_statement_type *os)
249 {
250 struct unique_sections *unam;
251 const char *secnam;
252
253 if (!link_info.resolve_section_groups
254 && sec->owner != NULL
255 && bfd_is_group_section (sec->owner, sec))
256 return !(os != NULL
257 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
258
259 secnam = sec->name;
260 for (unam = unique_section_list; unam; unam = unam->next)
261 if (name_match (unam->name, secnam) == 0)
262 return true;
263
264 return false;
265 }
266
267 /* Generic traversal routines for finding matching sections. */
268
269 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
270 false. */
271
272 static bool
273 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
274 lang_input_statement_type *file)
275 {
276 struct name_list *list_tmp;
277
278 for (list_tmp = exclude_list;
279 list_tmp;
280 list_tmp = list_tmp->next)
281 {
282 char *p = archive_path (list_tmp->name);
283
284 if (p != NULL)
285 {
286 if (input_statement_is_archive_path (list_tmp->name, p, file))
287 return true;
288 }
289
290 else if (name_match (list_tmp->name, file->filename) == 0)
291 return true;
292
293 /* FIXME: Perhaps remove the following at some stage? Matching
294 unadorned archives like this was never documented and has
295 been superceded by the archive:path syntax. */
296 else if (file->the_bfd != NULL
297 && file->the_bfd->my_archive != NULL
298 && name_match (list_tmp->name,
299 bfd_get_filename (file->the_bfd->my_archive)) == 0)
300 return true;
301 }
302
303 return false;
304 }
305
306 /* Try processing a section against a wildcard. This just calls
307 the callback unless the filename exclusion list is present
308 and excludes the file. It's hardly ever present so this
309 function is very fast. */
310
311 static void
312 walk_wild_consider_section (lang_wild_statement_type *ptr,
313 lang_input_statement_type *file,
314 asection *s,
315 struct wildcard_list *sec,
316 callback_t callback,
317 void *data)
318 {
319 /* Don't process sections from files which were excluded. */
320 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
321 return;
322
323 (*callback) (ptr, sec, s, file, data);
324 }
325
326 /* Lowest common denominator routine that can handle everything correctly,
327 but slowly. */
328
329 static void
330 walk_wild_section_general (lang_wild_statement_type *ptr,
331 lang_input_statement_type *file,
332 callback_t callback,
333 void *data)
334 {
335 asection *s;
336 struct wildcard_list *sec;
337
338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
339 {
340 sec = ptr->section_list;
341 if (sec == NULL)
342 (*callback) (ptr, sec, s, file, data);
343
344 while (sec != NULL)
345 {
346 bool skip = false;
347
348 if (sec->spec.name != NULL)
349 {
350 const char *sname = bfd_section_name (s);
351
352 skip = name_match (sec->spec.name, sname) != 0;
353 }
354
355 if (!skip)
356 walk_wild_consider_section (ptr, file, s, sec, callback, data);
357
358 sec = sec->next;
359 }
360 }
361 }
362
363 /* Routines to find a single section given its name. If there's more
364 than one section with that name, we report that. */
365
366 typedef struct
367 {
368 asection *found_section;
369 bool multiple_sections_found;
370 } section_iterator_callback_data;
371
372 static bool
373 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
374 {
375 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
376
377 if (d->found_section != NULL)
378 {
379 d->multiple_sections_found = true;
380 return true;
381 }
382
383 d->found_section = s;
384 return false;
385 }
386
387 static asection *
388 find_section (lang_input_statement_type *file,
389 struct wildcard_list *sec,
390 bool *multiple_sections_found)
391 {
392 section_iterator_callback_data cb_data = { NULL, false };
393
394 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
395 section_iterator_callback, &cb_data);
396 *multiple_sections_found = cb_data.multiple_sections_found;
397 return cb_data.found_section;
398 }
399
400 /* Code for handling simple wildcards without going through fnmatch,
401 which can be expensive because of charset translations etc. */
402
403 /* A simple wild is a literal string followed by a single '*',
404 where the literal part is at least 4 characters long. */
405
406 static bool
407 is_simple_wild (const char *name)
408 {
409 size_t len = strcspn (name, "*?[");
410 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
411 }
412
413 static bool
414 match_simple_wild (const char *pattern, const char *name)
415 {
416 /* The first four characters of the pattern are guaranteed valid
417 non-wildcard characters. So we can go faster. */
418 if (pattern[0] != name[0] || pattern[1] != name[1]
419 || pattern[2] != name[2] || pattern[3] != name[3])
420 return false;
421
422 pattern += 4;
423 name += 4;
424 while (*pattern != '*')
425 if (*name++ != *pattern++)
426 return false;
427
428 return true;
429 }
430
431 /* Return the numerical value of the init_priority attribute from
432 section name NAME. */
433
434 static int
435 get_init_priority (const asection *sec)
436 {
437 const char *name = bfd_section_name (sec);
438 const char *dot;
439
440 /* GCC uses the following section names for the init_priority
441 attribute with numerical values 101 to 65535 inclusive. A
442 lower value means a higher priority.
443
444 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
445 decimal numerical value of the init_priority attribute.
446 The order of execution in .init_array is forward and
447 .fini_array is backward.
448 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
449 decimal numerical value of the init_priority attribute.
450 The order of execution in .ctors is backward and .dtors
451 is forward.
452
453 .init_array.NNNNN sections would normally be placed in an output
454 .init_array section, .fini_array.NNNNN in .fini_array,
455 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
456 we should sort by increasing number (and could just use
457 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
458 being placed in .init_array (which may also contain
459 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
460 placed in .fini_array then we need to extract the init_priority
461 attribute and sort on that. */
462 dot = strrchr (name, '.');
463 if (dot != NULL && ISDIGIT (dot[1]))
464 {
465 char *end;
466 unsigned long init_priority = strtoul (dot + 1, &end, 10);
467 if (*end == 0)
468 {
469 if (dot == name + 6
470 && (strncmp (name, ".ctors", 6) == 0
471 || strncmp (name, ".dtors", 6) == 0))
472 init_priority = 65535 - init_priority;
473 if (init_priority <= INT_MAX)
474 return init_priority;
475 }
476 }
477 return -1;
478 }
479
480 /* Compare sections ASEC and BSEC according to SORT. */
481
482 static int
483 compare_section (sort_type sort, asection *asec, asection *bsec)
484 {
485 int ret;
486 int a_priority, b_priority;
487
488 switch (sort)
489 {
490 default:
491 abort ();
492
493 case by_init_priority:
494 a_priority = get_init_priority (asec);
495 b_priority = get_init_priority (bsec);
496 if (a_priority < 0 || b_priority < 0)
497 goto sort_by_name;
498 ret = a_priority - b_priority;
499 if (ret)
500 break;
501 else
502 goto sort_by_name;
503
504 case by_alignment_name:
505 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
506 if (ret)
507 break;
508 /* Fall through. */
509
510 case by_name:
511 sort_by_name:
512 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
513 break;
514
515 case by_name_alignment:
516 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
517 if (ret)
518 break;
519 /* Fall through. */
520
521 case by_alignment:
522 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
523 break;
524 }
525
526 return ret;
527 }
528
529 /* Build a Binary Search Tree to sort sections, unlike insertion sort
530 used in wild_sort(). BST is considerably faster if the number of
531 of sections are large. */
532
533 static lang_section_bst_type **
534 wild_sort_fast (lang_wild_statement_type *wild,
535 struct wildcard_list *sec,
536 lang_input_statement_type *file ATTRIBUTE_UNUSED,
537 asection *section)
538 {
539 lang_section_bst_type **tree;
540
541 tree = &wild->tree;
542 if (!wild->filenames_sorted
543 && (sec == NULL || sec->spec.sorted == none))
544 {
545 /* Append at the right end of tree. */
546 while (*tree)
547 tree = &((*tree)->right);
548 return tree;
549 }
550
551 while (*tree)
552 {
553 /* Find the correct node to append this section. */
554 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
555 tree = &((*tree)->left);
556 else
557 tree = &((*tree)->right);
558 }
559
560 return tree;
561 }
562
563 /* Use wild_sort_fast to build a BST to sort sections. */
564
565 static void
566 output_section_callback_fast (lang_wild_statement_type *ptr,
567 struct wildcard_list *sec,
568 asection *section,
569 lang_input_statement_type *file,
570 void *output)
571 {
572 lang_section_bst_type *node;
573 lang_section_bst_type **tree;
574 lang_output_section_statement_type *os;
575
576 os = (lang_output_section_statement_type *) output;
577
578 if (unique_section_p (section, os))
579 return;
580
581 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
582 node->left = 0;
583 node->right = 0;
584 node->section = section;
585 node->pattern = ptr->section_list;
586
587 tree = wild_sort_fast (ptr, sec, file, section);
588 if (tree != NULL)
589 *tree = node;
590 }
591
592 /* Convert a sorted sections' BST back to list form. */
593
594 static void
595 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
596 lang_section_bst_type *tree,
597 void *output)
598 {
599 if (tree->left)
600 output_section_callback_tree_to_list (ptr, tree->left, output);
601
602 lang_add_section (&ptr->children, tree->section, tree->pattern, NULL,
603 (lang_output_section_statement_type *) output);
604
605 if (tree->right)
606 output_section_callback_tree_to_list (ptr, tree->right, output);
607
608 free (tree);
609 }
610
611 /* Specialized, optimized routines for handling different kinds of
612 wildcards */
613
614 static void
615 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
616 lang_input_statement_type *file,
617 callback_t callback,
618 void *data)
619 {
620 /* We can just do a hash lookup for the section with the right name.
621 But if that lookup discovers more than one section with the name
622 (should be rare), we fall back to the general algorithm because
623 we would otherwise have to sort the sections to make sure they
624 get processed in the bfd's order. */
625 bool multiple_sections_found;
626 struct wildcard_list *sec0 = ptr->handler_data[0];
627 asection *s0 = find_section (file, sec0, &multiple_sections_found);
628
629 if (multiple_sections_found)
630 walk_wild_section_general (ptr, file, callback, data);
631 else if (s0)
632 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
633 }
634
635 static void
636 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
637 lang_input_statement_type *file,
638 callback_t callback,
639 void *data)
640 {
641 asection *s;
642 struct wildcard_list *wildsec0 = ptr->handler_data[0];
643
644 for (s = file->the_bfd->sections; s != NULL; s = s->next)
645 {
646 const char *sname = bfd_section_name (s);
647 bool skip = !match_simple_wild (wildsec0->spec.name, sname);
648
649 if (!skip)
650 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
651 }
652 }
653
654 static void
655 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
656 lang_input_statement_type *file,
657 callback_t callback,
658 void *data)
659 {
660 asection *s;
661 struct wildcard_list *sec0 = ptr->handler_data[0];
662 struct wildcard_list *wildsec1 = ptr->handler_data[1];
663 bool multiple_sections_found;
664 asection *s0 = find_section (file, sec0, &multiple_sections_found);
665
666 if (multiple_sections_found)
667 {
668 walk_wild_section_general (ptr, file, callback, data);
669 return;
670 }
671
672 /* Note that if the section was not found, s0 is NULL and
673 we'll simply never succeed the s == s0 test below. */
674 for (s = file->the_bfd->sections; s != NULL; s = s->next)
675 {
676 /* Recall that in this code path, a section cannot satisfy more
677 than one spec, so if s == s0 then it cannot match
678 wildspec1. */
679 if (s == s0)
680 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
681 else
682 {
683 const char *sname = bfd_section_name (s);
684 bool skip = !match_simple_wild (wildsec1->spec.name, sname);
685
686 if (!skip)
687 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
688 data);
689 }
690 }
691 }
692
693 static void
694 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
695 lang_input_statement_type *file,
696 callback_t callback,
697 void *data)
698 {
699 asection *s;
700 struct wildcard_list *sec0 = ptr->handler_data[0];
701 struct wildcard_list *wildsec1 = ptr->handler_data[1];
702 struct wildcard_list *wildsec2 = ptr->handler_data[2];
703 bool multiple_sections_found;
704 asection *s0 = find_section (file, sec0, &multiple_sections_found);
705
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 {
718 const char *sname = bfd_section_name (s);
719 bool skip = !match_simple_wild (wildsec1->spec.name, sname);
720
721 if (!skip)
722 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
723 else
724 {
725 skip = !match_simple_wild (wildsec2->spec.name, sname);
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 }
730 }
731 }
732 }
733
734 static void
735 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
736 lang_input_statement_type *file,
737 callback_t callback,
738 void *data)
739 {
740 asection *s;
741 struct wildcard_list *sec0 = ptr->handler_data[0];
742 struct wildcard_list *sec1 = ptr->handler_data[1];
743 struct wildcard_list *wildsec2 = ptr->handler_data[2];
744 struct wildcard_list *wildsec3 = ptr->handler_data[3];
745 bool multiple_sections_found;
746 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
747
748 if (multiple_sections_found)
749 {
750 walk_wild_section_general (ptr, file, callback, data);
751 return;
752 }
753
754 s1 = find_section (file, sec1, &multiple_sections_found);
755 if (multiple_sections_found)
756 {
757 walk_wild_section_general (ptr, file, callback, data);
758 return;
759 }
760
761 for (s = file->the_bfd->sections; s != NULL; s = s->next)
762 {
763 if (s == s0)
764 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
765 else
766 if (s == s1)
767 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
768 else
769 {
770 const char *sname = bfd_section_name (s);
771 bool skip = !match_simple_wild (wildsec2->spec.name, sname);
772
773 if (!skip)
774 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
775 data);
776 else
777 {
778 skip = !match_simple_wild (wildsec3->spec.name, sname);
779 if (!skip)
780 walk_wild_consider_section (ptr, file, s, wildsec3,
781 callback, data);
782 }
783 }
784 }
785 }
786
787 static void
788 walk_wild_section (lang_wild_statement_type *ptr,
789 lang_input_statement_type *file,
790 callback_t callback,
791 void *data)
792 {
793 if (file->flags.just_syms)
794 return;
795
796 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
797 }
798
799 /* Returns TRUE when name1 is a wildcard spec that might match
800 something name2 can match. We're conservative: we return FALSE
801 only if the prefixes of name1 and name2 are different up to the
802 first wildcard character. */
803
804 static bool
805 wild_spec_can_overlap (const char *name1, const char *name2)
806 {
807 size_t prefix1_len = strcspn (name1, "?*[");
808 size_t prefix2_len = strcspn (name2, "?*[");
809 size_t min_prefix_len;
810
811 /* Note that if there is no wildcard character, then we treat the
812 terminating 0 as part of the prefix. Thus ".text" won't match
813 ".text." or ".text.*", for example. */
814 if (name1[prefix1_len] == '\0')
815 prefix1_len++;
816 if (name2[prefix2_len] == '\0')
817 prefix2_len++;
818
819 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
820
821 return memcmp (name1, name2, min_prefix_len) == 0;
822 }
823
824 /* Select specialized code to handle various kinds of wildcard
825 statements. */
826
827 static void
828 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
829 {
830 int sec_count = 0;
831 int wild_name_count = 0;
832 struct wildcard_list *sec;
833 int signature;
834 int data_counter;
835
836 ptr->walk_wild_section_handler = walk_wild_section_general;
837 ptr->handler_data[0] = NULL;
838 ptr->handler_data[1] = NULL;
839 ptr->handler_data[2] = NULL;
840 ptr->handler_data[3] = NULL;
841 ptr->tree = NULL;
842
843 /* Count how many wildcard_specs there are, and how many of those
844 actually use wildcards in the name. Also, bail out if any of the
845 wildcard names are NULL. (Can this actually happen?
846 walk_wild_section used to test for it.) And bail out if any
847 of the wildcards are more complex than a simple string
848 ending in a single '*'. */
849 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
850 {
851 ++sec_count;
852 if (sec->spec.name == NULL)
853 return;
854 if (wildcardp (sec->spec.name))
855 {
856 ++wild_name_count;
857 if (!is_simple_wild (sec->spec.name))
858 return;
859 }
860 }
861
862 /* The zero-spec case would be easy to optimize but it doesn't
863 happen in practice. Likewise, more than 4 specs doesn't
864 happen in practice. */
865 if (sec_count == 0 || sec_count > 4)
866 return;
867
868 /* Check that no two specs can match the same section. */
869 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
870 {
871 struct wildcard_list *sec2;
872 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
873 {
874 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
875 return;
876 }
877 }
878
879 signature = (sec_count << 8) + wild_name_count;
880 switch (signature)
881 {
882 case 0x0100:
883 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
884 break;
885 case 0x0101:
886 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
887 break;
888 case 0x0201:
889 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
890 break;
891 case 0x0302:
892 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
893 break;
894 case 0x0402:
895 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
896 break;
897 default:
898 return;
899 }
900
901 /* Now fill the data array with pointers to the specs, first the
902 specs with non-wildcard names, then the specs with wildcard
903 names. It's OK to process the specs in different order from the
904 given order, because we've already determined that no section
905 will match more than one spec. */
906 data_counter = 0;
907 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
908 if (!wildcardp (sec->spec.name))
909 ptr->handler_data[data_counter++] = sec;
910 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
911 if (wildcardp (sec->spec.name))
912 ptr->handler_data[data_counter++] = sec;
913 }
914
915 /* Handle a wild statement for a single file F. */
916
917 static void
918 walk_wild_file (lang_wild_statement_type *s,
919 lang_input_statement_type *f,
920 callback_t callback,
921 void *data)
922 {
923 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
924 return;
925
926 if (f->the_bfd == NULL
927 || !bfd_check_format (f->the_bfd, bfd_archive))
928 walk_wild_section (s, f, callback, data);
929 else
930 {
931 bfd *member;
932
933 /* This is an archive file. We must map each member of the
934 archive separately. */
935 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
936 while (member != NULL)
937 {
938 /* When lookup_name is called, it will call the add_symbols
939 entry point for the archive. For each element of the
940 archive which is included, BFD will call ldlang_add_file,
941 which will set the usrdata field of the member to the
942 lang_input_statement. */
943 if (bfd_usrdata (member) != NULL)
944 walk_wild_section (s, bfd_usrdata (member), callback, data);
945
946 member = bfd_openr_next_archived_file (f->the_bfd, member);
947 }
948 }
949 }
950
951 static void
952 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
953 {
954 const char *file_spec = s->filename;
955 char *p;
956
957 if (file_spec == NULL)
958 {
959 /* Perform the iteration over all files in the list. */
960 LANG_FOR_EACH_INPUT_STATEMENT (f)
961 {
962 walk_wild_file (s, f, callback, data);
963 }
964 }
965 else if ((p = archive_path (file_spec)) != NULL)
966 {
967 LANG_FOR_EACH_INPUT_STATEMENT (f)
968 {
969 if (input_statement_is_archive_path (file_spec, p, f))
970 walk_wild_file (s, f, callback, data);
971 }
972 }
973 else if (wildcardp (file_spec))
974 {
975 LANG_FOR_EACH_INPUT_STATEMENT (f)
976 {
977 if (fnmatch (file_spec, f->filename, 0) == 0)
978 walk_wild_file (s, f, callback, data);
979 }
980 }
981 else
982 {
983 lang_input_statement_type *f;
984
985 /* Perform the iteration over a single file. */
986 f = lookup_name (file_spec);
987 if (f)
988 walk_wild_file (s, f, callback, data);
989 }
990 }
991
992 /* lang_for_each_statement walks the parse tree and calls the provided
993 function for each node, except those inside output section statements
994 with constraint set to -1. */
995
996 void
997 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
998 lang_statement_union_type *s)
999 {
1000 for (; s != NULL; s = s->header.next)
1001 {
1002 func (s);
1003
1004 switch (s->header.type)
1005 {
1006 case lang_constructors_statement_enum:
1007 lang_for_each_statement_worker (func, constructor_list.head);
1008 break;
1009 case lang_output_section_statement_enum:
1010 if (s->output_section_statement.constraint != -1)
1011 lang_for_each_statement_worker
1012 (func, s->output_section_statement.children.head);
1013 break;
1014 case lang_wild_statement_enum:
1015 lang_for_each_statement_worker (func,
1016 s->wild_statement.children.head);
1017 break;
1018 case lang_group_statement_enum:
1019 lang_for_each_statement_worker (func,
1020 s->group_statement.children.head);
1021 break;
1022 case lang_data_statement_enum:
1023 case lang_reloc_statement_enum:
1024 case lang_object_symbols_statement_enum:
1025 case lang_output_statement_enum:
1026 case lang_target_statement_enum:
1027 case lang_input_section_enum:
1028 case lang_input_statement_enum:
1029 case lang_assignment_statement_enum:
1030 case lang_padding_statement_enum:
1031 case lang_address_statement_enum:
1032 case lang_fill_statement_enum:
1033 case lang_insert_statement_enum:
1034 break;
1035 default:
1036 FAIL ();
1037 break;
1038 }
1039 }
1040 }
1041
1042 void
1043 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1044 {
1045 lang_for_each_statement_worker (func, statement_list.head);
1046 }
1047
1048 /*----------------------------------------------------------------------*/
1049
1050 void
1051 lang_list_init (lang_statement_list_type *list)
1052 {
1053 list->head = NULL;
1054 list->tail = &list->head;
1055 }
1056
1057 static void
1058 lang_statement_append (lang_statement_list_type *list,
1059 void *element,
1060 void *field)
1061 {
1062 *(list->tail) = element;
1063 list->tail = field;
1064 }
1065
1066 void
1067 push_stat_ptr (lang_statement_list_type *new_ptr)
1068 {
1069 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1070 abort ();
1071 *stat_save_ptr++ = stat_ptr;
1072 stat_ptr = new_ptr;
1073 }
1074
1075 void
1076 pop_stat_ptr (void)
1077 {
1078 if (stat_save_ptr <= stat_save)
1079 abort ();
1080 stat_ptr = *--stat_save_ptr;
1081 }
1082
1083 /* Build a new statement node for the parse tree. */
1084
1085 static lang_statement_union_type *
1086 new_statement (enum statement_enum type,
1087 size_t size,
1088 lang_statement_list_type *list)
1089 {
1090 lang_statement_union_type *new_stmt;
1091
1092 new_stmt = stat_alloc (size);
1093 new_stmt->header.type = type;
1094 new_stmt->header.next = NULL;
1095 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1096 return new_stmt;
1097 }
1098
1099 /* Build a new input file node for the language. There are several
1100 ways in which we treat an input file, eg, we only look at symbols,
1101 or prefix it with a -l etc.
1102
1103 We can be supplied with requests for input files more than once;
1104 they may, for example be split over several lines like foo.o(.text)
1105 foo.o(.data) etc, so when asked for a file we check that we haven't
1106 got it already so we don't duplicate the bfd. */
1107
1108 static lang_input_statement_type *
1109 new_afile (const char *name,
1110 lang_input_file_enum_type file_type,
1111 const char *target,
1112 const char *from_filename)
1113 {
1114 lang_input_statement_type *p;
1115
1116 lang_has_input_file = true;
1117
1118 p = new_stat (lang_input_statement, stat_ptr);
1119 memset (&p->the_bfd, 0,
1120 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1121 p->extra_search_path = NULL;
1122 p->target = target;
1123 p->flags.dynamic = input_flags.dynamic;
1124 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1125 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1126 p->flags.whole_archive = input_flags.whole_archive;
1127 p->flags.sysrooted = input_flags.sysrooted;
1128 p->sort_key = NULL;
1129
1130 switch (file_type)
1131 {
1132 case lang_input_file_is_symbols_only_enum:
1133 p->filename = name;
1134 p->local_sym_name = name;
1135 p->flags.real = true;
1136 p->flags.just_syms = true;
1137 break;
1138 case lang_input_file_is_fake_enum:
1139 p->filename = name;
1140 p->local_sym_name = name;
1141 break;
1142 case lang_input_file_is_l_enum:
1143 if (name[0] == ':' && name[1] != '\0')
1144 {
1145 p->filename = name + 1;
1146 p->flags.full_name_provided = true;
1147 }
1148 else
1149 p->filename = name;
1150 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1151 p->flags.maybe_archive = true;
1152 p->flags.real = true;
1153 p->flags.search_dirs = true;
1154 break;
1155 case lang_input_file_is_marker_enum:
1156 p->filename = name;
1157 p->local_sym_name = name;
1158 p->flags.search_dirs = true;
1159 break;
1160 case lang_input_file_is_search_file_enum:
1161 p->filename = name;
1162 p->local_sym_name = name;
1163 /* If name is a relative path, search the directory of the current linker
1164 script first. */
1165 if (from_filename && !IS_ABSOLUTE_PATH (name))
1166 p->extra_search_path = ldirname (from_filename);
1167 p->flags.real = true;
1168 p->flags.search_dirs = true;
1169 break;
1170 case lang_input_file_is_file_enum:
1171 p->filename = name;
1172 p->local_sym_name = name;
1173 p->flags.real = true;
1174 break;
1175 default:
1176 FAIL ();
1177 }
1178
1179 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1180 return p;
1181 }
1182
1183 lang_input_statement_type *
1184 lang_add_input_file (const char *name,
1185 lang_input_file_enum_type file_type,
1186 const char *target)
1187 {
1188 if (name != NULL
1189 && (*name == '=' || startswith (name, "$SYSROOT")))
1190 {
1191 lang_input_statement_type *ret;
1192 char *sysrooted_name
1193 = concat (ld_sysroot,
1194 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1195 (const char *) NULL);
1196
1197 /* We've now forcibly prepended the sysroot, making the input
1198 file independent of the context. Therefore, temporarily
1199 force a non-sysrooted context for this statement, so it won't
1200 get the sysroot prepended again when opened. (N.B. if it's a
1201 script, any child nodes with input files starting with "/"
1202 will be handled as "sysrooted" as they'll be found to be
1203 within the sysroot subdirectory.) */
1204 unsigned int outer_sysrooted = input_flags.sysrooted;
1205 input_flags.sysrooted = 0;
1206 ret = new_afile (sysrooted_name, file_type, target, NULL);
1207 input_flags.sysrooted = outer_sysrooted;
1208 return ret;
1209 }
1210
1211 return new_afile (name, file_type, target, current_input_file);
1212 }
1213
1214 struct out_section_hash_entry
1215 {
1216 struct bfd_hash_entry root;
1217 lang_statement_union_type s;
1218 };
1219
1220 /* The hash table. */
1221
1222 static struct bfd_hash_table output_section_statement_table;
1223
1224 /* Support routines for the hash table used by lang_output_section_find,
1225 initialize the table, fill in an entry and remove the table. */
1226
1227 static struct bfd_hash_entry *
1228 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1229 struct bfd_hash_table *table,
1230 const char *string)
1231 {
1232 lang_output_section_statement_type **nextp;
1233 struct out_section_hash_entry *ret;
1234
1235 if (entry == NULL)
1236 {
1237 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1238 sizeof (*ret));
1239 if (entry == NULL)
1240 return entry;
1241 }
1242
1243 entry = bfd_hash_newfunc (entry, table, string);
1244 if (entry == NULL)
1245 return entry;
1246
1247 ret = (struct out_section_hash_entry *) entry;
1248 memset (&ret->s, 0, sizeof (ret->s));
1249 ret->s.header.type = lang_output_section_statement_enum;
1250 ret->s.output_section_statement.subsection_alignment = NULL;
1251 ret->s.output_section_statement.section_alignment = NULL;
1252 ret->s.output_section_statement.block_value = 1;
1253 lang_list_init (&ret->s.output_section_statement.children);
1254 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1255
1256 /* For every output section statement added to the list, except the
1257 first one, lang_os_list.tail points to the "next"
1258 field of the last element of the list. */
1259 if (lang_os_list.head != NULL)
1260 ret->s.output_section_statement.prev
1261 = ((lang_output_section_statement_type *)
1262 ((char *) lang_os_list.tail
1263 - offsetof (lang_output_section_statement_type, next)));
1264
1265 /* GCC's strict aliasing rules prevent us from just casting the
1266 address, so we store the pointer in a variable and cast that
1267 instead. */
1268 nextp = &ret->s.output_section_statement.next;
1269 lang_statement_append (&lang_os_list, &ret->s, nextp);
1270 return &ret->root;
1271 }
1272
1273 static void
1274 output_section_statement_table_init (void)
1275 {
1276 if (!bfd_hash_table_init_n (&output_section_statement_table,
1277 output_section_statement_newfunc,
1278 sizeof (struct out_section_hash_entry),
1279 61))
1280 einfo (_("%F%P: can not create hash table: %E\n"));
1281 }
1282
1283 static void
1284 output_section_statement_table_free (void)
1285 {
1286 bfd_hash_table_free (&output_section_statement_table);
1287 }
1288
1289 /* Build enough state so that the parser can build its tree. */
1290
1291 void
1292 lang_init (void)
1293 {
1294 obstack_begin (&stat_obstack, 1000);
1295
1296 stat_ptr = &statement_list;
1297
1298 output_section_statement_table_init ();
1299
1300 lang_list_init (stat_ptr);
1301
1302 lang_list_init (&input_file_chain);
1303 lang_list_init (&lang_os_list);
1304 lang_list_init (&file_chain);
1305 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1306 NULL);
1307 abs_output_section =
1308 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1309
1310 abs_output_section->bfd_section = bfd_abs_section_ptr;
1311
1312 asneeded_list_head = NULL;
1313 asneeded_list_tail = &asneeded_list_head;
1314 }
1315
1316 void
1317 lang_finish (void)
1318 {
1319 output_section_statement_table_free ();
1320 }
1321
1322 /*----------------------------------------------------------------------
1323 A region is an area of memory declared with the
1324 MEMORY { name:org=exp, len=exp ... }
1325 syntax.
1326
1327 We maintain a list of all the regions here.
1328
1329 If no regions are specified in the script, then the default is used
1330 which is created when looked up to be the entire data space.
1331
1332 If create is true we are creating a region inside a MEMORY block.
1333 In this case it is probably an error to create a region that has
1334 already been created. If we are not inside a MEMORY block it is
1335 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1336 and so we issue a warning.
1337
1338 Each region has at least one name. The first name is either
1339 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1340 alias names to an existing region within a script with
1341 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1342 region. */
1343
1344 static lang_memory_region_type *lang_memory_region_list;
1345 static lang_memory_region_type **lang_memory_region_list_tail
1346 = &lang_memory_region_list;
1347
1348 lang_memory_region_type *
1349 lang_memory_region_lookup (const char *const name, bool create)
1350 {
1351 lang_memory_region_name *n;
1352 lang_memory_region_type *r;
1353 lang_memory_region_type *new_region;
1354
1355 /* NAME is NULL for LMA memspecs if no region was specified. */
1356 if (name == NULL)
1357 return NULL;
1358
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 if (strcmp (n->name, name) == 0)
1362 {
1363 if (create)
1364 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1365 NULL, name);
1366 return r;
1367 }
1368
1369 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1370 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1371 NULL, name);
1372
1373 new_region = stat_alloc (sizeof (lang_memory_region_type));
1374
1375 new_region->name_list.name = xstrdup (name);
1376 new_region->name_list.next = NULL;
1377 new_region->next = NULL;
1378 new_region->origin_exp = NULL;
1379 new_region->origin = 0;
1380 new_region->length_exp = NULL;
1381 new_region->length = ~(bfd_size_type) 0;
1382 new_region->current = 0;
1383 new_region->last_os = NULL;
1384 new_region->flags = 0;
1385 new_region->not_flags = 0;
1386 new_region->had_full_message = false;
1387
1388 *lang_memory_region_list_tail = new_region;
1389 lang_memory_region_list_tail = &new_region->next;
1390
1391 return new_region;
1392 }
1393
1394 void
1395 lang_memory_region_alias (const char *alias, const char *region_name)
1396 {
1397 lang_memory_region_name *n;
1398 lang_memory_region_type *r;
1399 lang_memory_region_type *region;
1400
1401 /* The default region must be unique. This ensures that it is not necessary
1402 to iterate through the name list if someone wants the check if a region is
1403 the default memory region. */
1404 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1405 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1406 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1407
1408 /* Look for the target region and check if the alias is not already
1409 in use. */
1410 region = NULL;
1411 for (r = lang_memory_region_list; r != NULL; r = r->next)
1412 for (n = &r->name_list; n != NULL; n = n->next)
1413 {
1414 if (region == NULL && strcmp (n->name, region_name) == 0)
1415 region = r;
1416 if (strcmp (n->name, alias) == 0)
1417 einfo (_("%F%P:%pS: error: redefinition of memory region "
1418 "alias `%s'\n"),
1419 NULL, alias);
1420 }
1421
1422 /* Check if the target region exists. */
1423 if (region == NULL)
1424 einfo (_("%F%P:%pS: error: memory region `%s' "
1425 "for alias `%s' does not exist\n"),
1426 NULL, region_name, alias);
1427
1428 /* Add alias to region name list. */
1429 n = stat_alloc (sizeof (lang_memory_region_name));
1430 n->name = xstrdup (alias);
1431 n->next = region->name_list.next;
1432 region->name_list.next = n;
1433 }
1434
1435 static lang_memory_region_type *
1436 lang_memory_default (asection *section)
1437 {
1438 lang_memory_region_type *p;
1439
1440 flagword sec_flags = section->flags;
1441
1442 /* Override SEC_DATA to mean a writable section. */
1443 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1444 sec_flags |= SEC_DATA;
1445
1446 for (p = lang_memory_region_list; p != NULL; p = p->next)
1447 {
1448 if ((p->flags & sec_flags) != 0
1449 && (p->not_flags & sec_flags) == 0)
1450 {
1451 return p;
1452 }
1453 }
1454 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
1455 }
1456
1457 /* Get the output section statement directly from the userdata. */
1458
1459 lang_output_section_statement_type *
1460 lang_output_section_get (const asection *output_section)
1461 {
1462 return bfd_section_userdata (output_section);
1463 }
1464
1465 /* Find or create an output_section_statement with the given NAME.
1466 If CONSTRAINT is non-zero match one with that constraint, otherwise
1467 match any non-negative constraint. If CREATE is 0 return NULL when
1468 no match exists. If CREATE is 1, create an output_section_statement
1469 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1470 always make a new output_section_statement. */
1471
1472 lang_output_section_statement_type *
1473 lang_output_section_statement_lookup (const char *name,
1474 int constraint,
1475 int create)
1476 {
1477 struct out_section_hash_entry *entry;
1478
1479 entry = ((struct out_section_hash_entry *)
1480 bfd_hash_lookup (&output_section_statement_table, name,
1481 create != 0, false));
1482 if (entry == NULL)
1483 {
1484 if (create)
1485 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1486 return NULL;
1487 }
1488
1489 if (entry->s.output_section_statement.name != NULL)
1490 {
1491 /* We have a section of this name, but it might not have the correct
1492 constraint. */
1493 struct out_section_hash_entry *last_ent;
1494
1495 name = entry->s.output_section_statement.name;
1496 do
1497 {
1498 if (create != 2
1499 && !(create && constraint == SPECIAL)
1500 && (constraint == entry->s.output_section_statement.constraint
1501 || (constraint == 0
1502 && entry->s.output_section_statement.constraint >= 0)))
1503 return &entry->s.output_section_statement;
1504 last_ent = entry;
1505 entry = (struct out_section_hash_entry *) entry->root.next;
1506 }
1507 while (entry != NULL
1508 && name == entry->s.output_section_statement.name);
1509
1510 if (!create)
1511 return NULL;
1512
1513 entry
1514 = ((struct out_section_hash_entry *)
1515 output_section_statement_newfunc (NULL,
1516 &output_section_statement_table,
1517 name));
1518 if (entry == NULL)
1519 {
1520 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1521 return NULL;
1522 }
1523 entry->root = last_ent->root;
1524 last_ent->root.next = &entry->root;
1525 }
1526
1527 entry->s.output_section_statement.name = name;
1528 entry->s.output_section_statement.constraint = constraint;
1529 entry->s.output_section_statement.dup_output = (create == 2
1530 || constraint == SPECIAL);
1531 return &entry->s.output_section_statement;
1532 }
1533
1534 /* Find the next output_section_statement with the same name as OS.
1535 If CONSTRAINT is non-zero, find one with that constraint otherwise
1536 match any non-negative constraint. */
1537
1538 lang_output_section_statement_type *
1539 next_matching_output_section_statement (lang_output_section_statement_type *os,
1540 int constraint)
1541 {
1542 /* All output_section_statements are actually part of a
1543 struct out_section_hash_entry. */
1544 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1545 ((char *) os
1546 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1547 const char *name = os->name;
1548
1549 ASSERT (name == entry->root.string);
1550 do
1551 {
1552 entry = (struct out_section_hash_entry *) entry->root.next;
1553 if (entry == NULL
1554 || name != entry->s.output_section_statement.name)
1555 return NULL;
1556 }
1557 while (constraint != entry->s.output_section_statement.constraint
1558 && (constraint != 0
1559 || entry->s.output_section_statement.constraint < 0));
1560
1561 return &entry->s.output_section_statement;
1562 }
1563
1564 /* A variant of lang_output_section_find used by place_orphan.
1565 Returns the output statement that should precede a new output
1566 statement for SEC. If an exact match is found on certain flags,
1567 sets *EXACT too. */
1568
1569 lang_output_section_statement_type *
1570 lang_output_section_find_by_flags (const asection *sec,
1571 flagword sec_flags,
1572 lang_output_section_statement_type **exact,
1573 lang_match_sec_type_func match_type)
1574 {
1575 lang_output_section_statement_type *first, *look, *found;
1576 flagword look_flags, differ;
1577
1578 /* We know the first statement on this list is *ABS*. May as well
1579 skip it. */
1580 first = (void *) lang_os_list.head;
1581 first = first->next;
1582
1583 /* First try for an exact match. */
1584 found = NULL;
1585 for (look = first; look; look = look->next)
1586 {
1587 look_flags = look->flags;
1588 if (look->bfd_section != NULL)
1589 {
1590 look_flags = look->bfd_section->flags;
1591 if (match_type && !match_type (link_info.output_bfd,
1592 look->bfd_section,
1593 sec->owner, sec))
1594 continue;
1595 }
1596 differ = look_flags ^ sec_flags;
1597 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1598 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1599 found = look;
1600 }
1601 if (found != NULL)
1602 {
1603 if (exact != NULL)
1604 *exact = found;
1605 return found;
1606 }
1607
1608 if ((sec_flags & SEC_CODE) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* Try for a rw code section. */
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 }
1629 else if ((sec_flags & SEC_READONLY) != 0
1630 && (sec_flags & SEC_ALLOC) != 0)
1631 {
1632 /* .rodata can go after .text, .sdata2 after .rodata. */
1633 for (look = first; look; look = look->next)
1634 {
1635 look_flags = look->flags;
1636 if (look->bfd_section != NULL)
1637 {
1638 look_flags = look->bfd_section->flags;
1639 if (match_type && !match_type (link_info.output_bfd,
1640 look->bfd_section,
1641 sec->owner, sec))
1642 continue;
1643 }
1644 differ = look_flags ^ sec_flags;
1645 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1646 | SEC_READONLY | SEC_SMALL_DATA))
1647 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1648 | SEC_READONLY))
1649 && !(look_flags & SEC_SMALL_DATA)))
1650 found = look;
1651 }
1652 }
1653 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1654 && (sec_flags & SEC_ALLOC) != 0)
1655 {
1656 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1657 as if it were a loaded section, and don't use match_type. */
1658 bool seen_thread_local = false;
1659
1660 match_type = NULL;
1661 for (look = first; look; look = look->next)
1662 {
1663 look_flags = look->flags;
1664 if (look->bfd_section != NULL)
1665 look_flags = look->bfd_section->flags;
1666
1667 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1668 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1669 {
1670 /* .tdata and .tbss must be adjacent and in that order. */
1671 if (!(look_flags & SEC_LOAD)
1672 && (sec_flags & SEC_LOAD))
1673 /* ..so if we're at a .tbss section and we're placing
1674 a .tdata section stop looking and return the
1675 previous section. */
1676 break;
1677 found = look;
1678 seen_thread_local = true;
1679 }
1680 else if (seen_thread_local)
1681 break;
1682 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_SMALL_DATA) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .sdata goes after .data, .sbss after .sdata. */
1690 for (look = first; look; look = look->next)
1691 {
1692 look_flags = look->flags;
1693 if (look->bfd_section != NULL)
1694 {
1695 look_flags = look->bfd_section->flags;
1696 if (match_type && !match_type (link_info.output_bfd,
1697 look->bfd_section,
1698 sec->owner, sec))
1699 continue;
1700 }
1701 differ = look_flags ^ sec_flags;
1702 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1703 | SEC_THREAD_LOCAL))
1704 || ((look_flags & SEC_SMALL_DATA)
1705 && !(sec_flags & SEC_HAS_CONTENTS)))
1706 found = look;
1707 }
1708 }
1709 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1710 && (sec_flags & SEC_ALLOC) != 0)
1711 {
1712 /* .data goes after .rodata. */
1713 for (look = first; look; look = look->next)
1714 {
1715 look_flags = look->flags;
1716 if (look->bfd_section != NULL)
1717 {
1718 look_flags = look->bfd_section->flags;
1719 if (match_type && !match_type (link_info.output_bfd,
1720 look->bfd_section,
1721 sec->owner, sec))
1722 continue;
1723 }
1724 differ = look_flags ^ sec_flags;
1725 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1726 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1727 found = look;
1728 }
1729 }
1730 else if ((sec_flags & SEC_ALLOC) != 0)
1731 {
1732 /* .bss goes after any other alloc section. */
1733 for (look = first; look; look = look->next)
1734 {
1735 look_flags = look->flags;
1736 if (look->bfd_section != NULL)
1737 {
1738 look_flags = look->bfd_section->flags;
1739 if (match_type && !match_type (link_info.output_bfd,
1740 look->bfd_section,
1741 sec->owner, sec))
1742 continue;
1743 }
1744 differ = look_flags ^ sec_flags;
1745 if (!(differ & SEC_ALLOC))
1746 found = look;
1747 }
1748 }
1749 else
1750 {
1751 /* non-alloc go last. */
1752 for (look = first; look; look = look->next)
1753 {
1754 look_flags = look->flags;
1755 if (look->bfd_section != NULL)
1756 look_flags = look->bfd_section->flags;
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & SEC_DEBUGGING))
1759 found = look;
1760 }
1761 return found;
1762 }
1763
1764 if (found || !match_type)
1765 return found;
1766
1767 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1768 }
1769
1770 /* Find the last output section before given output statement.
1771 Used by place_orphan. */
1772
1773 static asection *
1774 output_prev_sec_find (lang_output_section_statement_type *os)
1775 {
1776 lang_output_section_statement_type *lookup;
1777
1778 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1779 {
1780 if (lookup->constraint < 0)
1781 continue;
1782
1783 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1784 return lookup->bfd_section;
1785 }
1786
1787 return NULL;
1788 }
1789
1790 /* Look for a suitable place for a new output section statement. The
1791 idea is to skip over anything that might be inside a SECTIONS {}
1792 statement in a script, before we find another output section
1793 statement. Assignments to "dot" before an output section statement
1794 are assumed to belong to it, except in two cases; The first
1795 assignment to dot, and assignments before non-alloc sections.
1796 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1797 similar assignments that set the initial address, or we might
1798 insert non-alloc note sections among assignments setting end of
1799 image symbols. */
1800
1801 static lang_statement_union_type **
1802 insert_os_after (lang_output_section_statement_type *after)
1803 {
1804 lang_statement_union_type **where;
1805 lang_statement_union_type **assign = NULL;
1806 bool ignore_first;
1807
1808 ignore_first = after == (void *) lang_os_list.head;
1809
1810 for (where = &after->header.next;
1811 *where != NULL;
1812 where = &(*where)->header.next)
1813 {
1814 switch ((*where)->header.type)
1815 {
1816 case lang_assignment_statement_enum:
1817 if (assign == NULL)
1818 {
1819 lang_assignment_statement_type *ass;
1820
1821 ass = &(*where)->assignment_statement;
1822 if (ass->exp->type.node_class != etree_assert
1823 && ass->exp->assign.dst[0] == '.'
1824 && ass->exp->assign.dst[1] == 0)
1825 {
1826 if (!ignore_first)
1827 assign = where;
1828 ignore_first = false;
1829 }
1830 }
1831 continue;
1832 case lang_wild_statement_enum:
1833 case lang_input_section_enum:
1834 case lang_object_symbols_statement_enum:
1835 case lang_fill_statement_enum:
1836 case lang_data_statement_enum:
1837 case lang_reloc_statement_enum:
1838 case lang_padding_statement_enum:
1839 case lang_constructors_statement_enum:
1840 assign = NULL;
1841 ignore_first = false;
1842 continue;
1843 case lang_output_section_statement_enum:
1844 if (assign != NULL)
1845 {
1846 asection *s = (*where)->output_section_statement.bfd_section;
1847
1848 if (s == NULL
1849 || s->map_head.s == NULL
1850 || (s->flags & SEC_ALLOC) != 0)
1851 where = assign;
1852 }
1853 break;
1854 case lang_input_statement_enum:
1855 case lang_address_statement_enum:
1856 case lang_target_statement_enum:
1857 case lang_output_statement_enum:
1858 case lang_group_statement_enum:
1859 case lang_insert_statement_enum:
1860 continue;
1861 }
1862 break;
1863 }
1864
1865 return where;
1866 }
1867
1868 lang_output_section_statement_type *
1869 lang_insert_orphan (asection *s,
1870 const char *secname,
1871 int constraint,
1872 lang_output_section_statement_type *after,
1873 struct orphan_save *place,
1874 etree_type *address,
1875 lang_statement_list_type *add_child)
1876 {
1877 lang_statement_list_type add;
1878 lang_output_section_statement_type *os;
1879 lang_output_section_statement_type **os_tail;
1880
1881 /* If we have found an appropriate place for the output section
1882 statements for this orphan, add them to our own private list,
1883 inserting them later into the global statement list. */
1884 if (after != NULL)
1885 {
1886 lang_list_init (&add);
1887 push_stat_ptr (&add);
1888 }
1889
1890 if (bfd_link_relocatable (&link_info)
1891 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1892 address = exp_intop (0);
1893
1894 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1895 os = lang_enter_output_section_statement (
1896 secname, address, normal_section, 0, NULL, NULL, NULL, constraint, 0);
1897
1898 if (add_child == NULL)
1899 add_child = &os->children;
1900 lang_add_section (add_child, s, NULL, NULL, os);
1901
1902 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1903 {
1904 const char *region = (after->region
1905 ? after->region->name_list.name
1906 : DEFAULT_MEMORY_REGION);
1907 const char *lma_region = (after->lma_region
1908 ? after->lma_region->name_list.name
1909 : NULL);
1910 lang_leave_output_section_statement (NULL, region, after->phdrs,
1911 lma_region);
1912 }
1913 else
1914 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1915 NULL);
1916
1917 /* Restore the global list pointer. */
1918 if (after != NULL)
1919 pop_stat_ptr ();
1920
1921 if (after != NULL && os->bfd_section != NULL)
1922 {
1923 asection *snew, *as;
1924 bool place_after = place->stmt == NULL;
1925 bool insert_after = true;
1926
1927 snew = os->bfd_section;
1928
1929 /* Shuffle the bfd section list to make the output file look
1930 neater. This is really only cosmetic. */
1931 if (place->section == NULL
1932 && after != (void *) lang_os_list.head)
1933 {
1934 asection *bfd_section = after->bfd_section;
1935
1936 /* If the output statement hasn't been used to place any input
1937 sections (and thus doesn't have an output bfd_section),
1938 look for the closest prior output statement having an
1939 output section. */
1940 if (bfd_section == NULL)
1941 bfd_section = output_prev_sec_find (after);
1942
1943 if (bfd_section != NULL && bfd_section != snew)
1944 place->section = &bfd_section->next;
1945 }
1946
1947 if (place->section == NULL)
1948 place->section = &link_info.output_bfd->sections;
1949
1950 as = *place->section;
1951
1952 if (!as)
1953 {
1954 /* Put the section at the end of the list. */
1955
1956 /* Unlink the section. */
1957 bfd_section_list_remove (link_info.output_bfd, snew);
1958
1959 /* Now tack it back on in the right place. */
1960 bfd_section_list_append (link_info.output_bfd, snew);
1961 }
1962 else if ((bfd_get_flavour (link_info.output_bfd)
1963 == bfd_target_elf_flavour)
1964 && (bfd_get_flavour (s->owner)
1965 == bfd_target_elf_flavour)
1966 && ((elf_section_type (s) == SHT_NOTE
1967 && (s->flags & SEC_LOAD) != 0)
1968 || (elf_section_type (as) == SHT_NOTE
1969 && (as->flags & SEC_LOAD) != 0)))
1970 {
1971 /* Make sure that output note sections are grouped and sorted
1972 by alignments when inserting a note section or insert a
1973 section after a note section, */
1974 asection *sec;
1975 /* A specific section after which the output note section
1976 should be placed. */
1977 asection *after_sec;
1978 /* True if we need to insert the orphan section after a
1979 specific section to maintain output note section order. */
1980 bool after_sec_note = false;
1981
1982 static asection *first_orphan_note = NULL;
1983
1984 /* Group and sort output note section by alignments in
1985 ascending order. */
1986 after_sec = NULL;
1987 if (elf_section_type (s) == SHT_NOTE
1988 && (s->flags & SEC_LOAD) != 0)
1989 {
1990 /* Search from the beginning for the last output note
1991 section with equal or larger alignments. NB: Don't
1992 place orphan note section after non-note sections. */
1993
1994 first_orphan_note = NULL;
1995 for (sec = link_info.output_bfd->sections;
1996 (sec != NULL
1997 && !bfd_is_abs_section (sec));
1998 sec = sec->next)
1999 if (sec != snew
2000 && elf_section_type (sec) == SHT_NOTE
2001 && (sec->flags & SEC_LOAD) != 0)
2002 {
2003 if (!first_orphan_note)
2004 first_orphan_note = sec;
2005 if (sec->alignment_power >= s->alignment_power)
2006 after_sec = sec;
2007 }
2008 else if (first_orphan_note)
2009 {
2010 /* Stop if there is non-note section after the first
2011 orphan note section. */
2012 break;
2013 }
2014
2015 /* If this will be the first orphan note section, it can
2016 be placed at the default location. */
2017 after_sec_note = first_orphan_note != NULL;
2018 if (after_sec == NULL && after_sec_note)
2019 {
2020 /* If all output note sections have smaller
2021 alignments, place the section before all
2022 output orphan note sections. */
2023 after_sec = first_orphan_note;
2024 insert_after = false;
2025 }
2026 }
2027 else if (first_orphan_note)
2028 {
2029 /* Don't place non-note sections in the middle of orphan
2030 note sections. */
2031 after_sec_note = true;
2032 after_sec = as;
2033 for (sec = as->next;
2034 (sec != NULL
2035 && !bfd_is_abs_section (sec));
2036 sec = sec->next)
2037 if (elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 after_sec = sec;
2040 }
2041
2042 if (after_sec_note)
2043 {
2044 if (after_sec)
2045 {
2046 /* Search forward to insert OS after AFTER_SEC output
2047 statement. */
2048 lang_output_section_statement_type *stmt, *next;
2049 bool found = false;
2050 for (stmt = after; stmt != NULL; stmt = next)
2051 {
2052 next = stmt->next;
2053 if (insert_after)
2054 {
2055 if (stmt->bfd_section == after_sec)
2056 {
2057 place_after = true;
2058 found = true;
2059 after = stmt;
2060 break;
2061 }
2062 }
2063 else
2064 {
2065 /* If INSERT_AFTER is FALSE, place OS before
2066 AFTER_SEC output statement. */
2067 if (next && next->bfd_section == after_sec)
2068 {
2069 place_after = true;
2070 found = true;
2071 after = stmt;
2072 break;
2073 }
2074 }
2075 }
2076
2077 /* Search backward to insert OS after AFTER_SEC output
2078 statement. */
2079 if (!found)
2080 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2081 {
2082 if (insert_after)
2083 {
2084 if (stmt->bfd_section == after_sec)
2085 {
2086 place_after = true;
2087 after = stmt;
2088 break;
2089 }
2090 }
2091 else
2092 {
2093 /* If INSERT_AFTER is FALSE, place OS before
2094 AFTER_SEC output statement. */
2095 if (stmt->next->bfd_section == after_sec)
2096 {
2097 place_after = true;
2098 after = stmt;
2099 break;
2100 }
2101 }
2102 }
2103 }
2104
2105 if (after_sec == NULL
2106 || (insert_after && after_sec->next != snew)
2107 || (!insert_after && after_sec->prev != snew))
2108 {
2109 /* Unlink the section. */
2110 bfd_section_list_remove (link_info.output_bfd, snew);
2111
2112 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2113 prepend SNEW. */
2114 if (after_sec)
2115 {
2116 if (insert_after)
2117 bfd_section_list_insert_after (link_info.output_bfd,
2118 after_sec, snew);
2119 else
2120 bfd_section_list_insert_before (link_info.output_bfd,
2121 after_sec, snew);
2122 }
2123 else
2124 bfd_section_list_prepend (link_info.output_bfd, snew);
2125 }
2126 }
2127 else if (as != snew && as->prev != snew)
2128 {
2129 /* Unlink the section. */
2130 bfd_section_list_remove (link_info.output_bfd, snew);
2131
2132 /* Now tack it back on in the right place. */
2133 bfd_section_list_insert_before (link_info.output_bfd,
2134 as, snew);
2135 }
2136 }
2137 else if (as != snew && as->prev != snew)
2138 {
2139 /* Unlink the section. */
2140 bfd_section_list_remove (link_info.output_bfd, snew);
2141
2142 /* Now tack it back on in the right place. */
2143 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2144 }
2145
2146 /* Save the end of this list. Further ophans of this type will
2147 follow the one we've just added. */
2148 place->section = &snew->next;
2149
2150 /* The following is non-cosmetic. We try to put the output
2151 statements in some sort of reasonable order here, because they
2152 determine the final load addresses of the orphan sections.
2153 In addition, placing output statements in the wrong order may
2154 require extra segments. For instance, given a typical
2155 situation of all read-only sections placed in one segment and
2156 following that a segment containing all the read-write
2157 sections, we wouldn't want to place an orphan read/write
2158 section before or amongst the read-only ones. */
2159 if (add.head != NULL)
2160 {
2161 lang_output_section_statement_type *newly_added_os;
2162
2163 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2164 if (place_after)
2165 {
2166 lang_statement_union_type **where = insert_os_after (after);
2167
2168 *add.tail = *where;
2169 *where = add.head;
2170
2171 place->os_tail = &after->next;
2172 }
2173 else
2174 {
2175 /* Put it after the last orphan statement we added. */
2176 *add.tail = *place->stmt;
2177 *place->stmt = add.head;
2178 }
2179
2180 /* Fix the global list pointer if we happened to tack our
2181 new list at the tail. */
2182 if (*stat_ptr->tail == add.head)
2183 stat_ptr->tail = add.tail;
2184
2185 /* Save the end of this list. */
2186 place->stmt = add.tail;
2187
2188 /* Do the same for the list of output section statements. */
2189 newly_added_os = *os_tail;
2190 *os_tail = NULL;
2191 newly_added_os->prev = (lang_output_section_statement_type *)
2192 ((char *) place->os_tail
2193 - offsetof (lang_output_section_statement_type, next));
2194 newly_added_os->next = *place->os_tail;
2195 if (newly_added_os->next != NULL)
2196 newly_added_os->next->prev = newly_added_os;
2197 *place->os_tail = newly_added_os;
2198 place->os_tail = &newly_added_os->next;
2199
2200 /* Fixing the global list pointer here is a little different.
2201 We added to the list in lang_enter_output_section_statement,
2202 trimmed off the new output_section_statment above when
2203 assigning *os_tail = NULL, but possibly added it back in
2204 the same place when assigning *place->os_tail. */
2205 if (*os_tail == NULL)
2206 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2207 }
2208 }
2209 return os;
2210 }
2211
2212 static void
2213 lang_print_asneeded (void)
2214 {
2215 struct asneeded_minfo *m;
2216
2217 if (asneeded_list_head == NULL)
2218 return;
2219
2220 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2221
2222 for (m = asneeded_list_head; m != NULL; m = m->next)
2223 {
2224 int len;
2225
2226 minfo ("%s", m->soname);
2227 len = strlen (m->soname);
2228
2229 if (len >= 29)
2230 {
2231 print_nl ();
2232 len = 0;
2233 }
2234 print_spaces (30 - len);
2235
2236 if (m->ref != NULL)
2237 minfo ("%pB ", m->ref);
2238 minfo ("(%pT)\n", m->name);
2239 }
2240 }
2241
2242 static void
2243 lang_map_flags (flagword flag)
2244 {
2245 if (flag & SEC_ALLOC)
2246 minfo ("a");
2247
2248 if (flag & SEC_CODE)
2249 minfo ("x");
2250
2251 if (flag & SEC_READONLY)
2252 minfo ("r");
2253
2254 if (flag & SEC_DATA)
2255 minfo ("w");
2256
2257 if (flag & SEC_LOAD)
2258 minfo ("l");
2259 }
2260
2261 void
2262 lang_map (void)
2263 {
2264 lang_memory_region_type *m;
2265 bool dis_header_printed = false;
2266
2267 LANG_FOR_EACH_INPUT_STATEMENT (file)
2268 {
2269 asection *s;
2270
2271 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2272 || file->flags.just_syms)
2273 continue;
2274
2275 if (config.print_map_discarded)
2276 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2277 if ((s->output_section == NULL
2278 || s->output_section->owner != link_info.output_bfd)
2279 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2280 {
2281 if (! dis_header_printed)
2282 {
2283 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2284 dis_header_printed = true;
2285 }
2286
2287 print_input_section (s, true);
2288 }
2289 }
2290
2291 minfo (_("\nMemory Configuration\n\n"));
2292 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2293 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2294
2295 for (m = lang_memory_region_list; m != NULL; m = m->next)
2296 {
2297 fprintf (config.map_file, "%-16s", m->name_list.name);
2298
2299 char buf[32];
2300 bfd_sprintf_vma (link_info.output_bfd, buf, m->origin);
2301 fprintf (config.map_file, " 0x%-16s", buf);
2302 bfd_sprintf_vma (link_info.output_bfd, buf, m->length);
2303 fprintf (config.map_file,
2304 " 0x%*s", m->flags || m->not_flags ? -17 : 0, buf);
2305 if (m->flags)
2306 lang_map_flags (m->flags);
2307
2308 if (m->not_flags)
2309 {
2310 minfo ("!");
2311 lang_map_flags (m->not_flags);
2312 }
2313
2314 print_nl ();
2315 }
2316
2317 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2318
2319 if (!link_info.reduce_memory_overheads)
2320 {
2321 obstack_begin (&map_obstack, 1000);
2322 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2323 }
2324 expld.phase = lang_fixed_phase_enum;
2325 lang_statement_iteration++;
2326 print_statements ();
2327
2328 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2329 config.map_file);
2330 }
2331
2332 static bool
2333 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2334 void *info ATTRIBUTE_UNUSED)
2335 {
2336 if ((hash_entry->type == bfd_link_hash_defined
2337 || hash_entry->type == bfd_link_hash_defweak)
2338 && hash_entry->u.def.section->owner != link_info.output_bfd
2339 && hash_entry->u.def.section->owner != NULL)
2340 {
2341 input_section_userdata_type *ud;
2342 struct map_symbol_def *def;
2343
2344 ud = bfd_section_userdata (hash_entry->u.def.section);
2345 if (!ud)
2346 {
2347 ud = stat_alloc (sizeof (*ud));
2348 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2349 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2350 ud->map_symbol_def_count = 0;
2351 }
2352 else if (!ud->map_symbol_def_tail)
2353 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2354
2355 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2356 def->entry = hash_entry;
2357 *(ud->map_symbol_def_tail) = def;
2358 ud->map_symbol_def_tail = &def->next;
2359 ud->map_symbol_def_count++;
2360 }
2361 return true;
2362 }
2363
2364 /* Initialize an output section. */
2365
2366 static void
2367 init_os (lang_output_section_statement_type *s, flagword flags)
2368 {
2369 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2370 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2371
2372 if (!s->dup_output)
2373 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2374 if (s->bfd_section == NULL)
2375 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2376 s->name, flags);
2377 if (s->bfd_section == NULL)
2378 {
2379 einfo (_("%F%P: output format %s cannot represent section"
2380 " called %s: %E\n"),
2381 link_info.output_bfd->xvec->name, s->name);
2382 }
2383 s->bfd_section->output_section = s->bfd_section;
2384 s->bfd_section->output_offset = 0;
2385
2386 /* Set the userdata of the output section to the output section
2387 statement to avoid lookup. */
2388 bfd_set_section_userdata (s->bfd_section, s);
2389
2390 /* If there is a base address, make sure that any sections it might
2391 mention are initialized. */
2392 if (s->addr_tree != NULL)
2393 exp_init_os (s->addr_tree);
2394
2395 if (s->load_base != NULL)
2396 exp_init_os (s->load_base);
2397
2398 /* If supplied an alignment, set it. */
2399 if (s->section_alignment != NULL)
2400 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2401 "section alignment");
2402 }
2403
2404 /* Make sure that all output sections mentioned in an expression are
2405 initialized. */
2406
2407 static void
2408 exp_init_os (etree_type *exp)
2409 {
2410 switch (exp->type.node_class)
2411 {
2412 case etree_assign:
2413 case etree_provide:
2414 case etree_provided:
2415 exp_init_os (exp->assign.src);
2416 break;
2417
2418 case etree_binary:
2419 exp_init_os (exp->binary.lhs);
2420 exp_init_os (exp->binary.rhs);
2421 break;
2422
2423 case etree_trinary:
2424 exp_init_os (exp->trinary.cond);
2425 exp_init_os (exp->trinary.lhs);
2426 exp_init_os (exp->trinary.rhs);
2427 break;
2428
2429 case etree_assert:
2430 exp_init_os (exp->assert_s.child);
2431 break;
2432
2433 case etree_unary:
2434 exp_init_os (exp->unary.child);
2435 break;
2436
2437 case etree_name:
2438 switch (exp->type.node_code)
2439 {
2440 case ADDR:
2441 case LOADADDR:
2442 {
2443 lang_output_section_statement_type *os;
2444
2445 os = lang_output_section_find (exp->name.name);
2446 if (os != NULL && os->bfd_section == NULL)
2447 init_os (os, 0);
2448 }
2449 }
2450 break;
2451
2452 default:
2453 break;
2454 }
2455 }
2456 \f
2457 static void
2458 section_already_linked (bfd *abfd, asection *sec, void *data)
2459 {
2460 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2461
2462 /* If we are only reading symbols from this object, then we want to
2463 discard all sections. */
2464 if (entry->flags.just_syms)
2465 {
2466 bfd_link_just_syms (abfd, sec, &link_info);
2467 return;
2468 }
2469
2470 /* Deal with SHF_EXCLUDE ELF sections. */
2471 if (!bfd_link_relocatable (&link_info)
2472 && (abfd->flags & BFD_PLUGIN) == 0
2473 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2474 sec->output_section = bfd_abs_section_ptr;
2475
2476 if (!(abfd->flags & DYNAMIC))
2477 bfd_section_already_linked (abfd, sec, &link_info);
2478 }
2479 \f
2480
2481 /* Returns true if SECTION is one we know will be discarded based on its
2482 section flags, otherwise returns false. */
2483
2484 static bool
2485 lang_discard_section_p (asection *section)
2486 {
2487 bool discard;
2488 flagword flags = section->flags;
2489
2490 /* Discard sections marked with SEC_EXCLUDE. */
2491 discard = (flags & SEC_EXCLUDE) != 0;
2492
2493 /* Discard the group descriptor sections when we're finally placing the
2494 sections from within the group. */
2495 if ((flags & SEC_GROUP) != 0
2496 && link_info.resolve_section_groups)
2497 discard = true;
2498
2499 /* Discard debugging sections if we are stripping debugging
2500 information. */
2501 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2502 && (flags & SEC_DEBUGGING) != 0)
2503 discard = true;
2504
2505 return discard;
2506 }
2507
2508 /* The wild routines.
2509
2510 These expand statements like *(.text) and foo.o to a list of
2511 explicit actions, like foo.o(.text), bar.o(.text) and
2512 foo.o(.text, .data). */
2513
2514 /* Add SECTION to the output section OUTPUT. Do this by creating a
2515 lang_input_section statement which is placed at PTR. */
2516
2517 void
2518 lang_add_section (lang_statement_list_type *ptr,
2519 asection *section,
2520 struct wildcard_list *pattern,
2521 struct flag_info *sflag_info,
2522 lang_output_section_statement_type *output)
2523 {
2524 flagword flags = section->flags;
2525
2526 bool discard;
2527 lang_input_section_type *new_section;
2528 bfd *abfd = link_info.output_bfd;
2529
2530 /* Is this section one we know should be discarded? */
2531 discard = lang_discard_section_p (section);
2532
2533 /* Discard input sections which are assigned to a section named
2534 DISCARD_SECTION_NAME. */
2535 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2536 discard = true;
2537
2538 if (discard)
2539 {
2540 if (section->output_section == NULL)
2541 {
2542 /* This prevents future calls from assigning this section. */
2543 section->output_section = bfd_abs_section_ptr;
2544 }
2545 else if (link_info.non_contiguous_regions_warnings)
2546 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2547 "section `%pA' from '%pB' match /DISCARD/ clause.\n"),
2548 NULL, section, section->owner);
2549
2550 return;
2551 }
2552
2553 if (sflag_info)
2554 {
2555 bool keep;
2556
2557 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2558 if (!keep)
2559 return;
2560 }
2561
2562 if (section->output_section != NULL)
2563 {
2564 if (!link_info.non_contiguous_regions)
2565 return;
2566
2567 /* SECTION has already been handled in a special way
2568 (eg. LINK_ONCE): skip it. */
2569 if (bfd_is_abs_section (section->output_section))
2570 return;
2571
2572 /* Already assigned to the same output section, do not process
2573 it again, to avoid creating loops between duplicate sections
2574 later. */
2575 if (section->output_section == output->bfd_section)
2576 return;
2577
2578 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2579 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2580 "change behaviour for section `%pA' from '%pB' (assigned to "
2581 "%pA, but additional match: %pA)\n"),
2582 NULL, section, section->owner, section->output_section,
2583 output->bfd_section);
2584
2585 /* SECTION has already been assigned to an output section, but
2586 the user allows it to be mapped to another one in case it
2587 overflows. We'll later update the actual output section in
2588 size_input_section as appropriate. */
2589 }
2590
2591 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2592 to an output section, because we want to be able to include a
2593 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2594 section (I don't know why we want to do this, but we do).
2595 build_link_order in ldwrite.c handles this case by turning
2596 the embedded SEC_NEVER_LOAD section into a fill. */
2597 flags &= ~ SEC_NEVER_LOAD;
2598
2599 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2600 already been processed. One reason to do this is that on pe
2601 format targets, .text$foo sections go into .text and it's odd
2602 to see .text with SEC_LINK_ONCE set. */
2603 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2604 {
2605 if (link_info.resolve_section_groups)
2606 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2607 else
2608 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2609 }
2610 else if (!bfd_link_relocatable (&link_info))
2611 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2612
2613 switch (output->sectype)
2614 {
2615 case normal_section:
2616 case overlay_section:
2617 case first_overlay_section:
2618 case type_section:
2619 break;
2620 case noalloc_section:
2621 flags &= ~SEC_ALLOC;
2622 break;
2623 case typed_readonly_section:
2624 case readonly_section:
2625 flags |= SEC_READONLY;
2626 break;
2627 case noload_section:
2628 flags &= ~SEC_LOAD;
2629 flags |= SEC_NEVER_LOAD;
2630 /* Unfortunately GNU ld has managed to evolve two different
2631 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2632 alloc, no contents section. All others get a noload, noalloc
2633 section. */
2634 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2635 flags &= ~SEC_HAS_CONTENTS;
2636 else
2637 flags &= ~SEC_ALLOC;
2638 break;
2639 }
2640
2641 if (output->bfd_section == NULL)
2642 init_os (output, flags);
2643
2644 /* If SEC_READONLY is not set in the input section, then clear
2645 it from the output section. */
2646 output->bfd_section->flags &= flags | ~SEC_READONLY;
2647
2648 if (output->bfd_section->linker_has_input)
2649 {
2650 /* Only set SEC_READONLY flag on the first input section. */
2651 flags &= ~ SEC_READONLY;
2652
2653 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2654 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2655 != (flags & (SEC_MERGE | SEC_STRINGS))
2656 || ((flags & SEC_MERGE) != 0
2657 && output->bfd_section->entsize != section->entsize))
2658 {
2659 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2660 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2661 }
2662 }
2663 output->bfd_section->flags |= flags;
2664
2665 if (!output->bfd_section->linker_has_input)
2666 {
2667 output->bfd_section->linker_has_input = 1;
2668 /* This must happen after flags have been updated. The output
2669 section may have been created before we saw its first input
2670 section, eg. for a data statement. */
2671 bfd_init_private_section_data (section->owner, section,
2672 link_info.output_bfd,
2673 output->bfd_section,
2674 &link_info);
2675 if ((flags & SEC_MERGE) != 0)
2676 output->bfd_section->entsize = section->entsize;
2677 }
2678
2679 if ((flags & SEC_TIC54X_BLOCK) != 0
2680 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2681 {
2682 /* FIXME: This value should really be obtained from the bfd... */
2683 output->block_value = 128;
2684 }
2685
2686 /* When a .ctors section is placed in .init_array it must be copied
2687 in reverse order. Similarly for .dtors. Set that up. */
2688 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
2689 && ((startswith (section->name, ".ctors")
2690 && strcmp (output->bfd_section->name, ".init_array") == 0)
2691 || (startswith (section->name, ".dtors")
2692 && strcmp (output->bfd_section->name, ".fini_array") == 0))
2693 && (section->name[6] == 0 || section->name[6] == '.'))
2694 section->flags |= SEC_ELF_REVERSE_COPY;
2695
2696 if (section->alignment_power > output->bfd_section->alignment_power)
2697 output->bfd_section->alignment_power = section->alignment_power;
2698
2699 section->output_section = output->bfd_section;
2700
2701 if (!map_head_is_link_order)
2702 {
2703 asection *s = output->bfd_section->map_tail.s;
2704 output->bfd_section->map_tail.s = section;
2705 section->map_head.s = NULL;
2706 section->map_tail.s = s;
2707 if (s != NULL)
2708 s->map_head.s = section;
2709 else
2710 output->bfd_section->map_head.s = section;
2711 }
2712
2713 /* Add a section reference to the list. */
2714 new_section = new_stat (lang_input_section, ptr);
2715 new_section->section = section;
2716 new_section->pattern = pattern;
2717 }
2718
2719 /* PE puts the sort key in the input statement. */
2720
2721 static const char *
2722 sort_filename (bfd *abfd)
2723 {
2724 lang_input_statement_type *is = bfd_usrdata (abfd);
2725 if (is->sort_key)
2726 return is->sort_key;
2727 return bfd_get_filename (abfd);
2728 }
2729
2730 /* Handle wildcard sorting. This returns the lang_input_section which
2731 should follow the one we are going to create for SECTION and FILE,
2732 based on the sorting requirements of WILD. It returns NULL if the
2733 new section should just go at the end of the current list. */
2734
2735 static lang_statement_union_type *
2736 wild_sort (lang_wild_statement_type *wild,
2737 struct wildcard_list *sec,
2738 lang_input_statement_type *file,
2739 asection *section)
2740 {
2741 lang_statement_union_type *l;
2742
2743 if (!wild->filenames_sorted
2744 && (sec == NULL || sec->spec.sorted == none))
2745 return NULL;
2746
2747 for (l = wild->children.head; l != NULL; l = l->header.next)
2748 {
2749 lang_input_section_type *ls;
2750
2751 if (l->header.type != lang_input_section_enum)
2752 continue;
2753 ls = &l->input_section;
2754
2755 /* Sorting by filename takes precedence over sorting by section
2756 name. */
2757
2758 if (wild->filenames_sorted)
2759 {
2760 const char *fn, *ln;
2761 bool fa, la;
2762 int i;
2763
2764 /* The PE support for the .idata section as generated by
2765 dlltool assumes that files will be sorted by the name of
2766 the archive and then the name of the file within the
2767 archive. */
2768
2769 fa = file->the_bfd->my_archive != NULL;
2770 if (fa)
2771 fn = sort_filename (file->the_bfd->my_archive);
2772 else
2773 fn = sort_filename (file->the_bfd);
2774
2775 la = ls->section->owner->my_archive != NULL;
2776 if (la)
2777 ln = sort_filename (ls->section->owner->my_archive);
2778 else
2779 ln = sort_filename (ls->section->owner);
2780
2781 i = filename_cmp (fn, ln);
2782 if (i > 0)
2783 continue;
2784 else if (i < 0)
2785 break;
2786
2787 if (fa || la)
2788 {
2789 if (fa)
2790 fn = sort_filename (file->the_bfd);
2791 if (la)
2792 ln = sort_filename (ls->section->owner);
2793
2794 i = filename_cmp (fn, ln);
2795 if (i > 0)
2796 continue;
2797 else if (i < 0)
2798 break;
2799 }
2800 }
2801
2802 /* Here either the files are not sorted by name, or we are
2803 looking at the sections for this file. */
2804
2805 if (sec != NULL
2806 && sec->spec.sorted != none
2807 && sec->spec.sorted != by_none)
2808 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2809 break;
2810 }
2811
2812 return l;
2813 }
2814
2815 /* Expand a wild statement for a particular FILE. SECTION may be
2816 NULL, in which case it is a wild card. */
2817
2818 static void
2819 output_section_callback (lang_wild_statement_type *ptr,
2820 struct wildcard_list *sec,
2821 asection *section,
2822 lang_input_statement_type *file,
2823 void *output)
2824 {
2825 lang_statement_union_type *before;
2826 lang_output_section_statement_type *os;
2827
2828 os = (lang_output_section_statement_type *) output;
2829
2830 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2831 if (unique_section_p (section, os))
2832 return;
2833
2834 before = wild_sort (ptr, sec, file, section);
2835
2836 /* Here BEFORE points to the lang_input_section which
2837 should follow the one we are about to add. If BEFORE
2838 is NULL, then the section should just go at the end
2839 of the current list. */
2840
2841 if (before == NULL)
2842 lang_add_section (&ptr->children, section, ptr->section_list,
2843 ptr->section_flag_list, os);
2844 else
2845 {
2846 lang_statement_list_type list;
2847 lang_statement_union_type **pp;
2848
2849 lang_list_init (&list);
2850 lang_add_section (&list, section, ptr->section_list,
2851 ptr->section_flag_list, os);
2852
2853 /* If we are discarding the section, LIST.HEAD will
2854 be NULL. */
2855 if (list.head != NULL)
2856 {
2857 ASSERT (list.head->header.next == NULL);
2858
2859 for (pp = &ptr->children.head;
2860 *pp != before;
2861 pp = &(*pp)->header.next)
2862 ASSERT (*pp != NULL);
2863
2864 list.head->header.next = *pp;
2865 *pp = list.head;
2866 }
2867 }
2868 }
2869
2870 /* Check if all sections in a wild statement for a particular FILE
2871 are readonly. */
2872
2873 static void
2874 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2875 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2876 asection *section,
2877 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2878 void *output)
2879 {
2880 lang_output_section_statement_type *os;
2881
2882 os = (lang_output_section_statement_type *) output;
2883
2884 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2885 if (unique_section_p (section, os))
2886 return;
2887
2888 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2889 os->all_input_readonly = false;
2890 }
2891
2892 /* This is passed a file name which must have been seen already and
2893 added to the statement tree. We will see if it has been opened
2894 already and had its symbols read. If not then we'll read it. */
2895
2896 static lang_input_statement_type *
2897 lookup_name (const char *name)
2898 {
2899 lang_input_statement_type *search;
2900
2901 for (search = (void *) input_file_chain.head;
2902 search != NULL;
2903 search = search->next_real_file)
2904 {
2905 /* Use the local_sym_name as the name of the file that has
2906 already been loaded as filename might have been transformed
2907 via the search directory lookup mechanism. */
2908 const char *filename = search->local_sym_name;
2909
2910 if (filename != NULL
2911 && filename_cmp (filename, name) == 0)
2912 break;
2913 }
2914
2915 if (search == NULL)
2916 {
2917 /* Arrange to splice the input statement added by new_afile into
2918 statement_list after the current input_file_chain tail.
2919 We know input_file_chain is not an empty list, and that
2920 lookup_name was called via open_input_bfds. Later calls to
2921 lookup_name should always match an existing input_statement. */
2922 lang_statement_union_type **tail = stat_ptr->tail;
2923 lang_statement_union_type **after
2924 = (void *) ((char *) input_file_chain.tail
2925 - offsetof (lang_input_statement_type, next_real_file)
2926 + offsetof (lang_input_statement_type, header.next));
2927 lang_statement_union_type *rest = *after;
2928 stat_ptr->tail = after;
2929 search = new_afile (name, lang_input_file_is_search_file_enum,
2930 default_target, NULL);
2931 *stat_ptr->tail = rest;
2932 if (*tail == NULL)
2933 stat_ptr->tail = tail;
2934 }
2935
2936 /* If we have already added this file, or this file is not real
2937 don't add this file. */
2938 if (search->flags.loaded || !search->flags.real)
2939 return search;
2940
2941 if (!load_symbols (search, NULL))
2942 return NULL;
2943
2944 return search;
2945 }
2946
2947 /* Save LIST as a list of libraries whose symbols should not be exported. */
2948
2949 struct excluded_lib
2950 {
2951 char *name;
2952 struct excluded_lib *next;
2953 };
2954 static struct excluded_lib *excluded_libs;
2955
2956 void
2957 add_excluded_libs (const char *list)
2958 {
2959 const char *p = list, *end;
2960
2961 while (*p != '\0')
2962 {
2963 struct excluded_lib *entry;
2964 end = strpbrk (p, ",:");
2965 if (end == NULL)
2966 end = p + strlen (p);
2967 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2968 entry->next = excluded_libs;
2969 entry->name = (char *) xmalloc (end - p + 1);
2970 memcpy (entry->name, p, end - p);
2971 entry->name[end - p] = '\0';
2972 excluded_libs = entry;
2973 if (*end == '\0')
2974 break;
2975 p = end + 1;
2976 }
2977 }
2978
2979 static void
2980 check_excluded_libs (bfd *abfd)
2981 {
2982 struct excluded_lib *lib = excluded_libs;
2983
2984 while (lib)
2985 {
2986 int len = strlen (lib->name);
2987 const char *filename = lbasename (bfd_get_filename (abfd));
2988
2989 if (strcmp (lib->name, "ALL") == 0)
2990 {
2991 abfd->no_export = true;
2992 return;
2993 }
2994
2995 if (filename_ncmp (lib->name, filename, len) == 0
2996 && (filename[len] == '\0'
2997 || (filename[len] == '.' && filename[len + 1] == 'a'
2998 && filename[len + 2] == '\0')))
2999 {
3000 abfd->no_export = true;
3001 return;
3002 }
3003
3004 lib = lib->next;
3005 }
3006 }
3007
3008 /* Get the symbols for an input file. */
3009
3010 bool
3011 load_symbols (lang_input_statement_type *entry,
3012 lang_statement_list_type *place)
3013 {
3014 char **matching;
3015
3016 if (entry->flags.loaded)
3017 return true;
3018
3019 ldfile_open_file (entry);
3020
3021 /* Do not process further if the file was missing. */
3022 if (entry->flags.missing_file)
3023 return true;
3024
3025 if (trace_files || verbose)
3026 info_msg ("%pI\n", entry);
3027
3028 if (!bfd_check_format (entry->the_bfd, bfd_archive)
3029 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
3030 {
3031 bfd_error_type err;
3032 struct lang_input_statement_flags save_flags;
3033 extern FILE *yyin;
3034
3035 err = bfd_get_error ();
3036
3037 /* See if the emulation has some special knowledge. */
3038 if (ldemul_unrecognized_file (entry))
3039 {
3040 if (err == bfd_error_file_ambiguously_recognized)
3041 free (matching);
3042 return true;
3043 }
3044
3045 if (err == bfd_error_file_ambiguously_recognized)
3046 {
3047 char **p;
3048
3049 einfo (_("%P: %pB: file not recognized: %E;"
3050 " matching formats:"), entry->the_bfd);
3051 for (p = matching; *p != NULL; p++)
3052 einfo (" %s", *p);
3053 free (matching);
3054 einfo ("%F\n");
3055 }
3056 else if (err != bfd_error_file_not_recognized
3057 || place == NULL)
3058 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3059
3060 bfd_close (entry->the_bfd);
3061 entry->the_bfd = NULL;
3062
3063 /* Try to interpret the file as a linker script. */
3064 save_flags = input_flags;
3065 ldfile_open_command_file (entry->filename);
3066
3067 push_stat_ptr (place);
3068 input_flags.add_DT_NEEDED_for_regular
3069 = entry->flags.add_DT_NEEDED_for_regular;
3070 input_flags.add_DT_NEEDED_for_dynamic
3071 = entry->flags.add_DT_NEEDED_for_dynamic;
3072 input_flags.whole_archive = entry->flags.whole_archive;
3073 input_flags.dynamic = entry->flags.dynamic;
3074
3075 ldfile_assumed_script = true;
3076 parser_input = input_script;
3077 current_input_file = entry->filename;
3078 yyparse ();
3079 current_input_file = NULL;
3080 ldfile_assumed_script = false;
3081
3082 /* missing_file is sticky. sysrooted will already have been
3083 restored when seeing EOF in yyparse, but no harm to restore
3084 again. */
3085 save_flags.missing_file |= input_flags.missing_file;
3086 input_flags = save_flags;
3087 pop_stat_ptr ();
3088 fclose (yyin);
3089 yyin = NULL;
3090 entry->flags.loaded = true;
3091
3092 return true;
3093 }
3094
3095 if (ldemul_recognized_file (entry))
3096 return true;
3097
3098 /* We don't call ldlang_add_file for an archive. Instead, the
3099 add_symbols entry point will call ldlang_add_file, via the
3100 add_archive_element callback, for each element of the archive
3101 which is used. */
3102 switch (bfd_get_format (entry->the_bfd))
3103 {
3104 default:
3105 break;
3106
3107 case bfd_object:
3108 if (!entry->flags.reload)
3109 ldlang_add_file (entry);
3110 break;
3111
3112 case bfd_archive:
3113 check_excluded_libs (entry->the_bfd);
3114
3115 bfd_set_usrdata (entry->the_bfd, entry);
3116 if (entry->flags.whole_archive)
3117 {
3118 bfd *member = NULL;
3119 bool loaded = true;
3120
3121 for (;;)
3122 {
3123 bfd *subsbfd;
3124 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3125
3126 if (member == NULL)
3127 break;
3128
3129 if (!bfd_check_format (member, bfd_object))
3130 {
3131 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3132 entry->the_bfd, member);
3133 loaded = false;
3134 }
3135
3136 subsbfd = member;
3137 if (!(*link_info.callbacks
3138 ->add_archive_element) (&link_info, member,
3139 "--whole-archive", &subsbfd))
3140 abort ();
3141
3142 /* Potentially, the add_archive_element hook may have set a
3143 substitute BFD for us. */
3144 if (!bfd_link_add_symbols (subsbfd, &link_info))
3145 {
3146 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3147 loaded = false;
3148 }
3149 }
3150
3151 entry->flags.loaded = loaded;
3152 return loaded;
3153 }
3154 break;
3155 }
3156
3157 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3158 entry->flags.loaded = true;
3159 else
3160 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3161
3162 return entry->flags.loaded;
3163 }
3164
3165 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3166 may be NULL, indicating that it is a wildcard. Separate
3167 lang_input_section statements are created for each part of the
3168 expansion; they are added after the wild statement S. OUTPUT is
3169 the output section. */
3170
3171 static void
3172 wild (lang_wild_statement_type *s,
3173 const char *target ATTRIBUTE_UNUSED,
3174 lang_output_section_statement_type *output)
3175 {
3176 struct wildcard_list *sec;
3177
3178 if (s->handler_data[0]
3179 && s->handler_data[0]->spec.sorted == by_name
3180 && !s->filenames_sorted)
3181 {
3182 lang_section_bst_type *tree;
3183
3184 walk_wild (s, output_section_callback_fast, output);
3185
3186 tree = s->tree;
3187 if (tree)
3188 {
3189 output_section_callback_tree_to_list (s, tree, output);
3190 s->tree = NULL;
3191 }
3192 }
3193 else
3194 walk_wild (s, output_section_callback, output);
3195
3196 if (default_common_section == NULL)
3197 for (sec = s->section_list; sec != NULL; sec = sec->next)
3198 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3199 {
3200 /* Remember the section that common is going to in case we
3201 later get something which doesn't know where to put it. */
3202 default_common_section = output;
3203 break;
3204 }
3205 }
3206
3207 /* Return TRUE iff target is the sought target. */
3208
3209 static int
3210 get_target (const bfd_target *target, void *data)
3211 {
3212 const char *sought = (const char *) data;
3213
3214 return strcmp (target->name, sought) == 0;
3215 }
3216
3217 /* Like strcpy() but convert to lower case as well. */
3218
3219 static void
3220 stricpy (char *dest, const char *src)
3221 {
3222 char c;
3223
3224 while ((c = *src++) != 0)
3225 *dest++ = TOLOWER (c);
3226
3227 *dest = 0;
3228 }
3229
3230 /* Remove the first occurrence of needle (if any) in haystack
3231 from haystack. */
3232
3233 static void
3234 strcut (char *haystack, const char *needle)
3235 {
3236 haystack = strstr (haystack, needle);
3237
3238 if (haystack)
3239 {
3240 char *src;
3241
3242 for (src = haystack + strlen (needle); *src;)
3243 *haystack++ = *src++;
3244
3245 *haystack = 0;
3246 }
3247 }
3248
3249 /* Compare two target format name strings.
3250 Return a value indicating how "similar" they are. */
3251
3252 static int
3253 name_compare (const char *first, const char *second)
3254 {
3255 char *copy1;
3256 char *copy2;
3257 int result;
3258
3259 copy1 = (char *) xmalloc (strlen (first) + 1);
3260 copy2 = (char *) xmalloc (strlen (second) + 1);
3261
3262 /* Convert the names to lower case. */
3263 stricpy (copy1, first);
3264 stricpy (copy2, second);
3265
3266 /* Remove size and endian strings from the name. */
3267 strcut (copy1, "big");
3268 strcut (copy1, "little");
3269 strcut (copy2, "big");
3270 strcut (copy2, "little");
3271
3272 /* Return a value based on how many characters match,
3273 starting from the beginning. If both strings are
3274 the same then return 10 * their length. */
3275 for (result = 0; copy1[result] == copy2[result]; result++)
3276 if (copy1[result] == 0)
3277 {
3278 result *= 10;
3279 break;
3280 }
3281
3282 free (copy1);
3283 free (copy2);
3284
3285 return result;
3286 }
3287
3288 /* Set by closest_target_match() below. */
3289 static const bfd_target *winner;
3290
3291 /* Scan all the valid bfd targets looking for one that has the endianness
3292 requirement that was specified on the command line, and is the nearest
3293 match to the original output target. */
3294
3295 static int
3296 closest_target_match (const bfd_target *target, void *data)
3297 {
3298 const bfd_target *original = (const bfd_target *) data;
3299
3300 if (command_line.endian == ENDIAN_BIG
3301 && target->byteorder != BFD_ENDIAN_BIG)
3302 return 0;
3303
3304 if (command_line.endian == ENDIAN_LITTLE
3305 && target->byteorder != BFD_ENDIAN_LITTLE)
3306 return 0;
3307
3308 /* Must be the same flavour. */
3309 if (target->flavour != original->flavour)
3310 return 0;
3311
3312 /* Ignore generic big and little endian elf vectors. */
3313 if (strcmp (target->name, "elf32-big") == 0
3314 || strcmp (target->name, "elf64-big") == 0
3315 || strcmp (target->name, "elf32-little") == 0
3316 || strcmp (target->name, "elf64-little") == 0)
3317 return 0;
3318
3319 /* If we have not found a potential winner yet, then record this one. */
3320 if (winner == NULL)
3321 {
3322 winner = target;
3323 return 0;
3324 }
3325
3326 /* Oh dear, we now have two potential candidates for a successful match.
3327 Compare their names and choose the better one. */
3328 if (name_compare (target->name, original->name)
3329 > name_compare (winner->name, original->name))
3330 winner = target;
3331
3332 /* Keep on searching until wqe have checked them all. */
3333 return 0;
3334 }
3335
3336 /* Return the BFD target format of the first input file. */
3337
3338 static const char *
3339 get_first_input_target (void)
3340 {
3341 const char *target = NULL;
3342
3343 LANG_FOR_EACH_INPUT_STATEMENT (s)
3344 {
3345 if (s->header.type == lang_input_statement_enum
3346 && s->flags.real)
3347 {
3348 ldfile_open_file (s);
3349
3350 if (s->the_bfd != NULL
3351 && bfd_check_format (s->the_bfd, bfd_object))
3352 {
3353 target = bfd_get_target (s->the_bfd);
3354
3355 if (target != NULL)
3356 break;
3357 }
3358 }
3359 }
3360
3361 return target;
3362 }
3363
3364 const char *
3365 lang_get_output_target (void)
3366 {
3367 const char *target;
3368
3369 /* Has the user told us which output format to use? */
3370 if (output_target != NULL)
3371 return output_target;
3372
3373 /* No - has the current target been set to something other than
3374 the default? */
3375 if (current_target != default_target && current_target != NULL)
3376 return current_target;
3377
3378 /* No - can we determine the format of the first input file? */
3379 target = get_first_input_target ();
3380 if (target != NULL)
3381 return target;
3382
3383 /* Failed - use the default output target. */
3384 return default_target;
3385 }
3386
3387 /* Open the output file. */
3388
3389 static void
3390 open_output (const char *name)
3391 {
3392 lang_input_statement_type *f;
3393 char *out = lrealpath (name);
3394
3395 for (f = (void *) input_file_chain.head;
3396 f != NULL;
3397 f = f->next_real_file)
3398 if (f->flags.real)
3399 {
3400 char *in = lrealpath (f->local_sym_name);
3401 if (filename_cmp (in, out) == 0)
3402 einfo (_("%F%P: input file '%s' is the same as output file\n"),
3403 f->filename);
3404 free (in);
3405 }
3406 free (out);
3407
3408 output_target = lang_get_output_target ();
3409
3410 /* Has the user requested a particular endianness on the command
3411 line? */
3412 if (command_line.endian != ENDIAN_UNSET)
3413 {
3414 /* Get the chosen target. */
3415 const bfd_target *target
3416 = bfd_iterate_over_targets (get_target, (void *) output_target);
3417
3418 /* If the target is not supported, we cannot do anything. */
3419 if (target != NULL)
3420 {
3421 enum bfd_endian desired_endian;
3422
3423 if (command_line.endian == ENDIAN_BIG)
3424 desired_endian = BFD_ENDIAN_BIG;
3425 else
3426 desired_endian = BFD_ENDIAN_LITTLE;
3427
3428 /* See if the target has the wrong endianness. This should
3429 not happen if the linker script has provided big and
3430 little endian alternatives, but some scrips don't do
3431 this. */
3432 if (target->byteorder != desired_endian)
3433 {
3434 /* If it does, then see if the target provides
3435 an alternative with the correct endianness. */
3436 if (target->alternative_target != NULL
3437 && (target->alternative_target->byteorder == desired_endian))
3438 output_target = target->alternative_target->name;
3439 else
3440 {
3441 /* Try to find a target as similar as possible to
3442 the default target, but which has the desired
3443 endian characteristic. */
3444 bfd_iterate_over_targets (closest_target_match,
3445 (void *) target);
3446
3447 /* Oh dear - we could not find any targets that
3448 satisfy our requirements. */
3449 if (winner == NULL)
3450 einfo (_("%P: warning: could not find any targets"
3451 " that match endianness requirement\n"));
3452 else
3453 output_target = winner->name;
3454 }
3455 }
3456 }
3457 }
3458
3459 link_info.output_bfd = bfd_openw (name, output_target);
3460
3461 if (link_info.output_bfd == NULL)
3462 {
3463 if (bfd_get_error () == bfd_error_invalid_target)
3464 einfo (_("%F%P: target %s not found\n"), output_target);
3465
3466 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3467 }
3468
3469 delete_output_file_on_failure = true;
3470
3471 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3472 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3473 if (!bfd_set_arch_mach (link_info.output_bfd,
3474 ldfile_output_architecture,
3475 ldfile_output_machine))
3476 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3477
3478 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3479 if (link_info.hash == NULL)
3480 einfo (_("%F%P: can not create hash table: %E\n"));
3481
3482 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3483 }
3484
3485 static void
3486 ldlang_open_output (lang_statement_union_type *statement)
3487 {
3488 switch (statement->header.type)
3489 {
3490 case lang_output_statement_enum:
3491 ASSERT (link_info.output_bfd == NULL);
3492 open_output (statement->output_statement.name);
3493 ldemul_set_output_arch ();
3494 if (config.magic_demand_paged
3495 && !bfd_link_relocatable (&link_info))
3496 link_info.output_bfd->flags |= D_PAGED;
3497 else
3498 link_info.output_bfd->flags &= ~D_PAGED;
3499 if (config.text_read_only)
3500 link_info.output_bfd->flags |= WP_TEXT;
3501 else
3502 link_info.output_bfd->flags &= ~WP_TEXT;
3503 if (link_info.traditional_format)
3504 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3505 else
3506 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3507 break;
3508
3509 case lang_target_statement_enum:
3510 current_target = statement->target_statement.target;
3511 break;
3512 default:
3513 break;
3514 }
3515 }
3516
3517 static void
3518 init_opb (asection *s)
3519 {
3520 unsigned int x;
3521
3522 opb_shift = 0;
3523 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3524 && s != NULL
3525 && (s->flags & SEC_ELF_OCTETS) != 0)
3526 return;
3527
3528 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3529 ldfile_output_machine);
3530 if (x > 1)
3531 while ((x & 1) == 0)
3532 {
3533 x >>= 1;
3534 ++opb_shift;
3535 }
3536 ASSERT (x == 1);
3537 }
3538
3539 /* Open all the input files. */
3540
3541 enum open_bfd_mode
3542 {
3543 OPEN_BFD_NORMAL = 0,
3544 OPEN_BFD_FORCE = 1,
3545 OPEN_BFD_RESCAN = 2
3546 };
3547 #if BFD_SUPPORTS_PLUGINS
3548 static lang_input_statement_type *plugin_insert = NULL;
3549 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3550 #endif
3551
3552 static void
3553 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3554 {
3555 for (; s != NULL; s = s->header.next)
3556 {
3557 switch (s->header.type)
3558 {
3559 case lang_constructors_statement_enum:
3560 open_input_bfds (constructor_list.head, mode);
3561 break;
3562 case lang_output_section_statement_enum:
3563 open_input_bfds (s->output_section_statement.children.head, mode);
3564 break;
3565 case lang_wild_statement_enum:
3566 /* Maybe we should load the file's symbols. */
3567 if ((mode & OPEN_BFD_RESCAN) == 0
3568 && s->wild_statement.filename
3569 && !wildcardp (s->wild_statement.filename)
3570 && !archive_path (s->wild_statement.filename))
3571 lookup_name (s->wild_statement.filename);
3572 open_input_bfds (s->wild_statement.children.head, mode);
3573 break;
3574 case lang_group_statement_enum:
3575 {
3576 struct bfd_link_hash_entry *undefs;
3577 #if BFD_SUPPORTS_PLUGINS
3578 lang_input_statement_type *plugin_insert_save;
3579 #endif
3580
3581 /* We must continually search the entries in the group
3582 until no new symbols are added to the list of undefined
3583 symbols. */
3584
3585 do
3586 {
3587 #if BFD_SUPPORTS_PLUGINS
3588 plugin_insert_save = plugin_insert;
3589 #endif
3590 undefs = link_info.hash->undefs_tail;
3591 open_input_bfds (s->group_statement.children.head,
3592 mode | OPEN_BFD_FORCE);
3593 }
3594 while (undefs != link_info.hash->undefs_tail
3595 #if BFD_SUPPORTS_PLUGINS
3596 /* Objects inserted by a plugin, which are loaded
3597 before we hit this loop, may have added new
3598 undefs. */
3599 || (plugin_insert != plugin_insert_save && plugin_undefs)
3600 #endif
3601 );
3602 }
3603 break;
3604 case lang_target_statement_enum:
3605 current_target = s->target_statement.target;
3606 break;
3607 case lang_input_statement_enum:
3608 if (s->input_statement.flags.real)
3609 {
3610 lang_statement_union_type **os_tail;
3611 lang_statement_list_type add;
3612 bfd *abfd;
3613
3614 s->input_statement.target = current_target;
3615
3616 /* If we are being called from within a group, and this
3617 is an archive which has already been searched, then
3618 force it to be researched unless the whole archive
3619 has been loaded already. Do the same for a rescan.
3620 Likewise reload --as-needed shared libs. */
3621 if (mode != OPEN_BFD_NORMAL
3622 #if BFD_SUPPORTS_PLUGINS
3623 && ((mode & OPEN_BFD_RESCAN) == 0
3624 || plugin_insert == NULL)
3625 #endif
3626 && s->input_statement.flags.loaded
3627 && (abfd = s->input_statement.the_bfd) != NULL
3628 && ((bfd_get_format (abfd) == bfd_archive
3629 && !s->input_statement.flags.whole_archive)
3630 || (bfd_get_format (abfd) == bfd_object
3631 && ((abfd->flags) & DYNAMIC) != 0
3632 && s->input_statement.flags.add_DT_NEEDED_for_regular
3633 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3634 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3635 {
3636 s->input_statement.flags.loaded = false;
3637 s->input_statement.flags.reload = true;
3638 }
3639
3640 os_tail = lang_os_list.tail;
3641 lang_list_init (&add);
3642
3643 if (!load_symbols (&s->input_statement, &add))
3644 config.make_executable = false;
3645
3646 if (add.head != NULL)
3647 {
3648 /* If this was a script with output sections then
3649 tack any added statements on to the end of the
3650 list. This avoids having to reorder the output
3651 section statement list. Very likely the user
3652 forgot -T, and whatever we do here will not meet
3653 naive user expectations. */
3654 if (os_tail != lang_os_list.tail)
3655 {
3656 einfo (_("%P: warning: %s contains output sections;"
3657 " did you forget -T?\n"),
3658 s->input_statement.filename);
3659 *stat_ptr->tail = add.head;
3660 stat_ptr->tail = add.tail;
3661 }
3662 else
3663 {
3664 *add.tail = s->header.next;
3665 s->header.next = add.head;
3666 }
3667 }
3668 }
3669 #if BFD_SUPPORTS_PLUGINS
3670 /* If we have found the point at which a plugin added new
3671 files, clear plugin_insert to enable archive rescan. */
3672 if (&s->input_statement == plugin_insert)
3673 plugin_insert = NULL;
3674 #endif
3675 break;
3676 case lang_assignment_statement_enum:
3677 if (s->assignment_statement.exp->type.node_class != etree_assert)
3678 exp_fold_tree_no_dot (s->assignment_statement.exp);
3679 break;
3680 default:
3681 break;
3682 }
3683 }
3684
3685 /* Exit if any of the files were missing. */
3686 if (input_flags.missing_file)
3687 einfo ("%F");
3688 }
3689
3690 #ifdef ENABLE_LIBCTF
3691 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3692 that happened specifically at CTF open time. */
3693 static void
3694 lang_ctf_errs_warnings (ctf_dict_t *fp)
3695 {
3696 ctf_next_t *i = NULL;
3697 char *text;
3698 int is_warning;
3699 int err;
3700
3701 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3702 {
3703 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3704 text);
3705 free (text);
3706 }
3707 if (err != ECTF_NEXT_END)
3708 {
3709 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3710 ctf_errmsg (err));
3711 }
3712
3713 /* `err' returns errors from the error/warning iterator in particular.
3714 These never assert. But if we have an fp, that could have recorded
3715 an assertion failure: assert if it has done so. */
3716 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3717 }
3718
3719 /* Open the CTF sections in the input files with libctf: if any were opened,
3720 create a fake input file that we'll write the merged CTF data to later
3721 on. */
3722
3723 static void
3724 ldlang_open_ctf (void)
3725 {
3726 int any_ctf = 0;
3727 int err;
3728
3729 LANG_FOR_EACH_INPUT_STATEMENT (file)
3730 {
3731 asection *sect;
3732
3733 /* Incoming files from the compiler have a single ctf_dict_t in them
3734 (which is presented to us by the libctf API in a ctf_archive_t
3735 wrapper): files derived from a previous relocatable link have a CTF
3736 archive containing possibly many CTF files. */
3737
3738 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3739 {
3740 if (err != ECTF_NOCTFDATA)
3741 {
3742 lang_ctf_errs_warnings (NULL);
3743 einfo (_("%P: warning: CTF section in %pB not loaded; "
3744 "its types will be discarded: %s\n"), file->the_bfd,
3745 ctf_errmsg (err));
3746 }
3747 continue;
3748 }
3749
3750 /* Prevent the contents of this section from being written, while
3751 requiring the section itself to be duplicated in the output, but only
3752 once. */
3753 /* This section must exist if ctf_bfdopen() succeeded. */
3754 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3755 sect->size = 0;
3756 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3757
3758 if (any_ctf)
3759 sect->flags |= SEC_EXCLUDE;
3760 any_ctf = 1;
3761 }
3762
3763 if (!any_ctf)
3764 {
3765 ctf_output = NULL;
3766 return;
3767 }
3768
3769 if ((ctf_output = ctf_create (&err)) != NULL)
3770 return;
3771
3772 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3773 ctf_errmsg (err));
3774
3775 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3776 ctf_close (errfile->the_ctf);
3777 }
3778
3779 /* Merge together CTF sections. After this, only the symtab-dependent
3780 function and data object sections need adjustment. */
3781
3782 static void
3783 lang_merge_ctf (void)
3784 {
3785 asection *output_sect;
3786 int flags = 0;
3787
3788 if (!ctf_output)
3789 return;
3790
3791 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3792
3793 /* If the section was discarded, don't waste time merging. */
3794 if (output_sect == NULL)
3795 {
3796 ctf_dict_close (ctf_output);
3797 ctf_output = NULL;
3798
3799 LANG_FOR_EACH_INPUT_STATEMENT (file)
3800 {
3801 ctf_close (file->the_ctf);
3802 file->the_ctf = NULL;
3803 }
3804 return;
3805 }
3806
3807 LANG_FOR_EACH_INPUT_STATEMENT (file)
3808 {
3809 if (!file->the_ctf)
3810 continue;
3811
3812 /* Takes ownership of file->the_ctf. */
3813 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3814 {
3815 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3816 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3817 ctf_close (file->the_ctf);
3818 file->the_ctf = NULL;
3819 continue;
3820 }
3821 }
3822
3823 if (!config.ctf_share_duplicated)
3824 flags = CTF_LINK_SHARE_UNCONFLICTED;
3825 else
3826 flags = CTF_LINK_SHARE_DUPLICATED;
3827 if (!config.ctf_variables)
3828 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3829 if (bfd_link_relocatable (&link_info))
3830 flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
3831
3832 if (ctf_link (ctf_output, flags) < 0)
3833 {
3834 lang_ctf_errs_warnings (ctf_output);
3835 einfo (_("%P: warning: CTF linking failed; "
3836 "output will have no CTF section: %s\n"),
3837 ctf_errmsg (ctf_errno (ctf_output)));
3838 if (output_sect)
3839 {
3840 output_sect->size = 0;
3841 output_sect->flags |= SEC_EXCLUDE;
3842 }
3843 }
3844 /* Output any lingering errors that didn't come from ctf_link. */
3845 lang_ctf_errs_warnings (ctf_output);
3846 }
3847
3848 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3849 the CTF, if supported. */
3850
3851 void
3852 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3853 {
3854 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3855 }
3856
3857 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3858 internal format. */
3859 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3860 {
3861 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3862 }
3863
3864 /* Write out the CTF section. Called early, if the emulation isn't going to
3865 need to dedup against the strtab and symtab, then possibly called from the
3866 target linker code if the dedup has happened. */
3867 static void
3868 lang_write_ctf (int late)
3869 {
3870 size_t output_size;
3871 asection *output_sect;
3872
3873 if (!ctf_output)
3874 return;
3875
3876 if (late)
3877 {
3878 /* Emit CTF late if this emulation says it can do so. */
3879 if (ldemul_emit_ctf_early ())
3880 return;
3881 }
3882 else
3883 {
3884 if (!ldemul_emit_ctf_early ())
3885 return;
3886 }
3887
3888 /* Inform the emulation that all the symbols that will be received have
3889 been. */
3890
3891 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3892
3893 /* Emit CTF. */
3894
3895 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3896 if (output_sect)
3897 {
3898 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3899 CTF_COMPRESSION_THRESHOLD);
3900 output_sect->size = output_size;
3901 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3902
3903 lang_ctf_errs_warnings (ctf_output);
3904 if (!output_sect->contents)
3905 {
3906 einfo (_("%P: warning: CTF section emission failed; "
3907 "output will have no CTF section: %s\n"),
3908 ctf_errmsg (ctf_errno (ctf_output)));
3909 output_sect->size = 0;
3910 output_sect->flags |= SEC_EXCLUDE;
3911 }
3912 }
3913
3914 /* This also closes every CTF input file used in the link. */
3915 ctf_dict_close (ctf_output);
3916 ctf_output = NULL;
3917
3918 LANG_FOR_EACH_INPUT_STATEMENT (file)
3919 file->the_ctf = NULL;
3920 }
3921
3922 /* Write out the CTF section late, if the emulation needs that. */
3923
3924 void
3925 ldlang_write_ctf_late (void)
3926 {
3927 /* Trigger a "late call", if the emulation needs one. */
3928
3929 lang_write_ctf (1);
3930 }
3931 #else
3932 static void
3933 ldlang_open_ctf (void)
3934 {
3935 LANG_FOR_EACH_INPUT_STATEMENT (file)
3936 {
3937 asection *sect;
3938
3939 /* If built without CTF, warn and delete all CTF sections from the output.
3940 (The alternative would be to simply concatenate them, which does not
3941 yield a valid CTF section.) */
3942
3943 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3944 {
3945 einfo (_("%P: warning: CTF section in %pB not linkable: "
3946 "%P was built without support for CTF\n"), file->the_bfd);
3947 sect->size = 0;
3948 sect->flags |= SEC_EXCLUDE;
3949 }
3950 }
3951 }
3952
3953 static void lang_merge_ctf (void) {}
3954 void
3955 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3956 ATTRIBUTE_UNUSED) {}
3957 void
3958 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3959 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3960 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3961 void ldlang_write_ctf_late (void) {}
3962 #endif
3963
3964 /* Add the supplied name to the symbol table as an undefined reference.
3965 This is a two step process as the symbol table doesn't even exist at
3966 the time the ld command line is processed. First we put the name
3967 on a list, then, once the output file has been opened, transfer the
3968 name to the symbol table. */
3969
3970 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3971
3972 #define ldlang_undef_chain_list_head entry_symbol.next
3973
3974 void
3975 ldlang_add_undef (const char *const name, bool cmdline ATTRIBUTE_UNUSED)
3976 {
3977 ldlang_undef_chain_list_type *new_undef;
3978
3979 new_undef = stat_alloc (sizeof (*new_undef));
3980 new_undef->next = ldlang_undef_chain_list_head;
3981 ldlang_undef_chain_list_head = new_undef;
3982
3983 new_undef->name = xstrdup (name);
3984
3985 if (link_info.output_bfd != NULL)
3986 insert_undefined (new_undef->name);
3987 }
3988
3989 /* Insert NAME as undefined in the symbol table. */
3990
3991 static void
3992 insert_undefined (const char *name)
3993 {
3994 struct bfd_link_hash_entry *h;
3995
3996 h = bfd_link_hash_lookup (link_info.hash, name, true, false, true);
3997 if (h == NULL)
3998 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3999 if (h->type == bfd_link_hash_new)
4000 {
4001 h->type = bfd_link_hash_undefined;
4002 h->u.undef.abfd = NULL;
4003 h->non_ir_ref_regular = true;
4004 bfd_link_add_undef (link_info.hash, h);
4005 }
4006 }
4007
4008 /* Run through the list of undefineds created above and place them
4009 into the linker hash table as undefined symbols belonging to the
4010 script file. */
4011
4012 static void
4013 lang_place_undefineds (void)
4014 {
4015 ldlang_undef_chain_list_type *ptr;
4016
4017 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4018 insert_undefined (ptr->name);
4019 }
4020
4021 /* Mark -u symbols against garbage collection. */
4022
4023 static void
4024 lang_mark_undefineds (void)
4025 {
4026 ldlang_undef_chain_list_type *ptr;
4027
4028 if (is_elf_hash_table (link_info.hash))
4029 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
4030 {
4031 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
4032 bfd_link_hash_lookup (link_info.hash, ptr->name, false, false, true);
4033 if (h != NULL)
4034 h->mark = 1;
4035 }
4036 }
4037
4038 /* Structure used to build the list of symbols that the user has required
4039 be defined. */
4040
4041 struct require_defined_symbol
4042 {
4043 const char *name;
4044 struct require_defined_symbol *next;
4045 };
4046
4047 /* The list of symbols that the user has required be defined. */
4048
4049 static struct require_defined_symbol *require_defined_symbol_list;
4050
4051 /* Add a new symbol NAME to the list of symbols that are required to be
4052 defined. */
4053
4054 void
4055 ldlang_add_require_defined (const char *const name)
4056 {
4057 struct require_defined_symbol *ptr;
4058
4059 ldlang_add_undef (name, true);
4060 ptr = stat_alloc (sizeof (*ptr));
4061 ptr->next = require_defined_symbol_list;
4062 ptr->name = strdup (name);
4063 require_defined_symbol_list = ptr;
4064 }
4065
4066 /* Check that all symbols the user required to be defined, are defined,
4067 raise an error if we find a symbol that is not defined. */
4068
4069 static void
4070 ldlang_check_require_defined_symbols (void)
4071 {
4072 struct require_defined_symbol *ptr;
4073
4074 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4075 {
4076 struct bfd_link_hash_entry *h;
4077
4078 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4079 false, false, true);
4080 if (h == NULL
4081 || (h->type != bfd_link_hash_defined
4082 && h->type != bfd_link_hash_defweak))
4083 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4084 }
4085 }
4086
4087 /* Check for all readonly or some readwrite sections. */
4088
4089 static void
4090 check_input_sections
4091 (lang_statement_union_type *s,
4092 lang_output_section_statement_type *output_section_statement)
4093 {
4094 for (; s != NULL; s = s->header.next)
4095 {
4096 switch (s->header.type)
4097 {
4098 case lang_wild_statement_enum:
4099 walk_wild (&s->wild_statement, check_section_callback,
4100 output_section_statement);
4101 if (!output_section_statement->all_input_readonly)
4102 return;
4103 break;
4104 case lang_constructors_statement_enum:
4105 check_input_sections (constructor_list.head,
4106 output_section_statement);
4107 if (!output_section_statement->all_input_readonly)
4108 return;
4109 break;
4110 case lang_group_statement_enum:
4111 check_input_sections (s->group_statement.children.head,
4112 output_section_statement);
4113 if (!output_section_statement->all_input_readonly)
4114 return;
4115 break;
4116 default:
4117 break;
4118 }
4119 }
4120 }
4121
4122 /* Update wildcard statements if needed. */
4123
4124 static void
4125 update_wild_statements (lang_statement_union_type *s)
4126 {
4127 struct wildcard_list *sec;
4128
4129 switch (sort_section)
4130 {
4131 default:
4132 FAIL ();
4133
4134 case none:
4135 break;
4136
4137 case by_name:
4138 case by_alignment:
4139 for (; s != NULL; s = s->header.next)
4140 {
4141 switch (s->header.type)
4142 {
4143 default:
4144 break;
4145
4146 case lang_wild_statement_enum:
4147 for (sec = s->wild_statement.section_list; sec != NULL;
4148 sec = sec->next)
4149 /* Don't sort .init/.fini sections. */
4150 if (strcmp (sec->spec.name, ".init") != 0
4151 && strcmp (sec->spec.name, ".fini") != 0)
4152 switch (sec->spec.sorted)
4153 {
4154 case none:
4155 sec->spec.sorted = sort_section;
4156 break;
4157 case by_name:
4158 if (sort_section == by_alignment)
4159 sec->spec.sorted = by_name_alignment;
4160 break;
4161 case by_alignment:
4162 if (sort_section == by_name)
4163 sec->spec.sorted = by_alignment_name;
4164 break;
4165 default:
4166 break;
4167 }
4168 break;
4169
4170 case lang_constructors_statement_enum:
4171 update_wild_statements (constructor_list.head);
4172 break;
4173
4174 case lang_output_section_statement_enum:
4175 update_wild_statements
4176 (s->output_section_statement.children.head);
4177 break;
4178
4179 case lang_group_statement_enum:
4180 update_wild_statements (s->group_statement.children.head);
4181 break;
4182 }
4183 }
4184 break;
4185 }
4186 }
4187
4188 /* Open input files and attach to output sections. */
4189
4190 static void
4191 map_input_to_output_sections
4192 (lang_statement_union_type *s, const char *target,
4193 lang_output_section_statement_type *os)
4194 {
4195 for (; s != NULL; s = s->header.next)
4196 {
4197 lang_output_section_statement_type *tos;
4198 flagword flags;
4199 unsigned int type = 0;
4200
4201 switch (s->header.type)
4202 {
4203 case lang_wild_statement_enum:
4204 wild (&s->wild_statement, target, os);
4205 break;
4206 case lang_constructors_statement_enum:
4207 map_input_to_output_sections (constructor_list.head,
4208 target,
4209 os);
4210 break;
4211 case lang_output_section_statement_enum:
4212 tos = &s->output_section_statement;
4213 if (tos->constraint == ONLY_IF_RW
4214 || tos->constraint == ONLY_IF_RO)
4215 {
4216 tos->all_input_readonly = true;
4217 check_input_sections (tos->children.head, tos);
4218 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4219 tos->constraint = -1;
4220 }
4221 if (tos->constraint >= 0)
4222 map_input_to_output_sections (tos->children.head,
4223 target,
4224 tos);
4225 break;
4226 case lang_output_statement_enum:
4227 break;
4228 case lang_target_statement_enum:
4229 target = s->target_statement.target;
4230 break;
4231 case lang_group_statement_enum:
4232 map_input_to_output_sections (s->group_statement.children.head,
4233 target,
4234 os);
4235 break;
4236 case lang_data_statement_enum:
4237 /* Make sure that any sections mentioned in the expression
4238 are initialized. */
4239 exp_init_os (s->data_statement.exp);
4240 /* The output section gets CONTENTS, ALLOC and LOAD, but
4241 these may be overridden by the script. */
4242 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4243 switch (os->sectype)
4244 {
4245 case normal_section:
4246 case overlay_section:
4247 case first_overlay_section:
4248 break;
4249 case noalloc_section:
4250 flags = SEC_HAS_CONTENTS;
4251 break;
4252 case readonly_section:
4253 flags |= SEC_READONLY;
4254 break;
4255 case typed_readonly_section:
4256 flags |= SEC_READONLY;
4257 /* Fall through. */
4258 case type_section:
4259 if (os->sectype_value->type.node_class == etree_name
4260 && os->sectype_value->type.node_code == NAME)
4261 {
4262 const char *name = os->sectype_value->name.name;
4263 if (strcmp (name, "SHT_PROGBITS") == 0)
4264 type = SHT_PROGBITS;
4265 else if (strcmp (name, "SHT_STRTAB") == 0)
4266 type = SHT_STRTAB;
4267 else if (strcmp (name, "SHT_NOTE") == 0)
4268 type = SHT_NOTE;
4269 else if (strcmp (name, "SHT_NOBITS") == 0)
4270 type = SHT_NOBITS;
4271 else if (strcmp (name, "SHT_INIT_ARRAY") == 0)
4272 type = SHT_INIT_ARRAY;
4273 else if (strcmp (name, "SHT_FINI_ARRAY") == 0)
4274 type = SHT_FINI_ARRAY;
4275 else if (strcmp (name, "SHT_PREINIT_ARRAY") == 0)
4276 type = SHT_PREINIT_ARRAY;
4277 else
4278 einfo (_ ("%F%P: invalid type for output section `%s'\n"),
4279 os->name);
4280 }
4281 else
4282 {
4283 exp_fold_tree_no_dot (os->sectype_value);
4284 if (expld.result.valid_p)
4285 type = expld.result.value;
4286 else
4287 einfo (_ ("%F%P: invalid type for output section `%s'\n"),
4288 os->name);
4289 }
4290 break;
4291 case noload_section:
4292 if (bfd_get_flavour (link_info.output_bfd)
4293 == bfd_target_elf_flavour)
4294 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4295 else
4296 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4297 break;
4298 }
4299 if (os->bfd_section == NULL)
4300 init_os (os, flags | SEC_READONLY);
4301 else
4302 os->bfd_section->flags |= flags;
4303 os->bfd_section->type = type;
4304 break;
4305 case lang_input_section_enum:
4306 break;
4307 case lang_fill_statement_enum:
4308 case lang_object_symbols_statement_enum:
4309 case lang_reloc_statement_enum:
4310 case lang_padding_statement_enum:
4311 case lang_input_statement_enum:
4312 if (os != NULL && os->bfd_section == NULL)
4313 init_os (os, 0);
4314 break;
4315 case lang_assignment_statement_enum:
4316 if (os != NULL && os->bfd_section == NULL)
4317 init_os (os, 0);
4318
4319 /* Make sure that any sections mentioned in the assignment
4320 are initialized. */
4321 exp_init_os (s->assignment_statement.exp);
4322 break;
4323 case lang_address_statement_enum:
4324 /* Mark the specified section with the supplied address.
4325 If this section was actually a segment marker, then the
4326 directive is ignored if the linker script explicitly
4327 processed the segment marker. Originally, the linker
4328 treated segment directives (like -Ttext on the
4329 command-line) as section directives. We honor the
4330 section directive semantics for backwards compatibility;
4331 linker scripts that do not specifically check for
4332 SEGMENT_START automatically get the old semantics. */
4333 if (!s->address_statement.segment
4334 || !s->address_statement.segment->used)
4335 {
4336 const char *name = s->address_statement.section_name;
4337
4338 /* Create the output section statement here so that
4339 orphans with a set address will be placed after other
4340 script sections. If we let the orphan placement code
4341 place them in amongst other sections then the address
4342 will affect following script sections, which is
4343 likely to surprise naive users. */
4344 tos = lang_output_section_statement_lookup (name, 0, 1);
4345 tos->addr_tree = s->address_statement.address;
4346 if (tos->bfd_section == NULL)
4347 init_os (tos, 0);
4348 }
4349 break;
4350 case lang_insert_statement_enum:
4351 break;
4352 }
4353 }
4354 }
4355
4356 /* An insert statement snips out all the linker statements from the
4357 start of the list and places them after the output section
4358 statement specified by the insert. This operation is complicated
4359 by the fact that we keep a doubly linked list of output section
4360 statements as well as the singly linked list of all statements.
4361 FIXME someday: Twiddling with the list not only moves statements
4362 from the user's script but also input and group statements that are
4363 built from command line object files and --start-group. We only
4364 get away with this because the list pointers used by file_chain
4365 and input_file_chain are not reordered, and processing via
4366 statement_list after this point mostly ignores input statements.
4367 One exception is the map file, where LOAD and START GROUP/END GROUP
4368 can end up looking odd. */
4369
4370 static void
4371 process_insert_statements (lang_statement_union_type **start)
4372 {
4373 lang_statement_union_type **s;
4374 lang_output_section_statement_type *first_os = NULL;
4375 lang_output_section_statement_type *last_os = NULL;
4376 lang_output_section_statement_type *os;
4377
4378 s = start;
4379 while (*s != NULL)
4380 {
4381 if ((*s)->header.type == lang_output_section_statement_enum)
4382 {
4383 /* Keep pointers to the first and last output section
4384 statement in the sequence we may be about to move. */
4385 os = &(*s)->output_section_statement;
4386
4387 ASSERT (last_os == NULL || last_os->next == os);
4388 last_os = os;
4389
4390 /* Set constraint negative so that lang_output_section_find
4391 won't match this output section statement. At this
4392 stage in linking constraint has values in the range
4393 [-1, ONLY_IN_RW]. */
4394 last_os->constraint = -2 - last_os->constraint;
4395 if (first_os == NULL)
4396 first_os = last_os;
4397 }
4398 else if ((*s)->header.type == lang_group_statement_enum)
4399 {
4400 /* A user might put -T between --start-group and
4401 --end-group. One way this odd construct might arise is
4402 from a wrapper around ld to change library search
4403 behaviour. For example:
4404 #! /bin/sh
4405 exec real_ld --start-group "$@" --end-group
4406 This isn't completely unreasonable so go looking inside a
4407 group statement for insert statements. */
4408 process_insert_statements (&(*s)->group_statement.children.head);
4409 }
4410 else if ((*s)->header.type == lang_insert_statement_enum)
4411 {
4412 lang_insert_statement_type *i = &(*s)->insert_statement;
4413 lang_output_section_statement_type *where;
4414 lang_statement_union_type **ptr;
4415 lang_statement_union_type *first;
4416
4417 if (link_info.non_contiguous_regions)
4418 {
4419 einfo (_("warning: INSERT statement in linker script is "
4420 "incompatible with --enable-non-contiguous-regions.\n"));
4421 }
4422
4423 where = lang_output_section_find (i->where);
4424 if (where != NULL && i->is_before)
4425 {
4426 do
4427 where = where->prev;
4428 while (where != NULL && where->constraint < 0);
4429 }
4430 if (where == NULL)
4431 {
4432 einfo (_("%F%P: %s not found for insert\n"), i->where);
4433 return;
4434 }
4435
4436 /* Deal with reordering the output section statement list. */
4437 if (last_os != NULL)
4438 {
4439 asection *first_sec, *last_sec;
4440 struct lang_output_section_statement_struct **next;
4441
4442 /* Snip out the output sections we are moving. */
4443 first_os->prev->next = last_os->next;
4444 if (last_os->next == NULL)
4445 {
4446 next = &first_os->prev->next;
4447 lang_os_list.tail = (lang_statement_union_type **) next;
4448 }
4449 else
4450 last_os->next->prev = first_os->prev;
4451 /* Add them in at the new position. */
4452 last_os->next = where->next;
4453 if (where->next == NULL)
4454 {
4455 next = &last_os->next;
4456 lang_os_list.tail = (lang_statement_union_type **) next;
4457 }
4458 else
4459 where->next->prev = last_os;
4460 first_os->prev = where;
4461 where->next = first_os;
4462
4463 /* Move the bfd sections in the same way. */
4464 first_sec = NULL;
4465 last_sec = NULL;
4466 for (os = first_os; os != NULL; os = os->next)
4467 {
4468 os->constraint = -2 - os->constraint;
4469 if (os->bfd_section != NULL
4470 && os->bfd_section->owner != NULL)
4471 {
4472 last_sec = os->bfd_section;
4473 if (first_sec == NULL)
4474 first_sec = last_sec;
4475 }
4476 if (os == last_os)
4477 break;
4478 }
4479 if (last_sec != NULL)
4480 {
4481 asection *sec = where->bfd_section;
4482 if (sec == NULL)
4483 sec = output_prev_sec_find (where);
4484
4485 /* The place we want to insert must come after the
4486 sections we are moving. So if we find no
4487 section or if the section is the same as our
4488 last section, then no move is needed. */
4489 if (sec != NULL && sec != last_sec)
4490 {
4491 /* Trim them off. */
4492 if (first_sec->prev != NULL)
4493 first_sec->prev->next = last_sec->next;
4494 else
4495 link_info.output_bfd->sections = last_sec->next;
4496 if (last_sec->next != NULL)
4497 last_sec->next->prev = first_sec->prev;
4498 else
4499 link_info.output_bfd->section_last = first_sec->prev;
4500 /* Add back. */
4501 last_sec->next = sec->next;
4502 if (sec->next != NULL)
4503 sec->next->prev = last_sec;
4504 else
4505 link_info.output_bfd->section_last = last_sec;
4506 first_sec->prev = sec;
4507 sec->next = first_sec;
4508 }
4509 }
4510
4511 first_os = NULL;
4512 last_os = NULL;
4513 }
4514
4515 ptr = insert_os_after (where);
4516 /* Snip everything from the start of the list, up to and
4517 including the insert statement we are currently processing. */
4518 first = *start;
4519 *start = (*s)->header.next;
4520 /* Add them back where they belong, minus the insert. */
4521 *s = *ptr;
4522 if (*s == NULL)
4523 statement_list.tail = s;
4524 *ptr = first;
4525 s = start;
4526 continue;
4527 }
4528 s = &(*s)->header.next;
4529 }
4530
4531 /* Undo constraint twiddling. */
4532 for (os = first_os; os != NULL; os = os->next)
4533 {
4534 os->constraint = -2 - os->constraint;
4535 if (os == last_os)
4536 break;
4537 }
4538 }
4539
4540 /* An output section might have been removed after its statement was
4541 added. For example, ldemul_before_allocation can remove dynamic
4542 sections if they turn out to be not needed. Clean them up here. */
4543
4544 void
4545 strip_excluded_output_sections (void)
4546 {
4547 lang_output_section_statement_type *os;
4548
4549 /* Run lang_size_sections (if not already done). */
4550 if (expld.phase != lang_mark_phase_enum)
4551 {
4552 expld.phase = lang_mark_phase_enum;
4553 expld.dataseg.phase = exp_seg_none;
4554 one_lang_size_sections_pass (NULL, false);
4555 lang_reset_memory_regions ();
4556 }
4557
4558 for (os = (void *) lang_os_list.head;
4559 os != NULL;
4560 os = os->next)
4561 {
4562 asection *output_section;
4563 bool exclude;
4564
4565 if (os->constraint < 0)
4566 continue;
4567
4568 output_section = os->bfd_section;
4569 if (output_section == NULL)
4570 continue;
4571
4572 exclude = (output_section->rawsize == 0
4573 && (output_section->flags & SEC_KEEP) == 0
4574 && !bfd_section_removed_from_list (link_info.output_bfd,
4575 output_section));
4576
4577 /* Some sections have not yet been sized, notably .gnu.version,
4578 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4579 input sections, so don't drop output sections that have such
4580 input sections unless they are also marked SEC_EXCLUDE. */
4581 if (exclude && output_section->map_head.s != NULL)
4582 {
4583 asection *s;
4584
4585 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4586 if ((s->flags & SEC_EXCLUDE) == 0
4587 && ((s->flags & SEC_LINKER_CREATED) != 0
4588 || link_info.emitrelocations))
4589 {
4590 exclude = false;
4591 break;
4592 }
4593 }
4594
4595 if (exclude)
4596 {
4597 /* We don't set bfd_section to NULL since bfd_section of the
4598 removed output section statement may still be used. */
4599 if (!os->update_dot)
4600 os->ignored = true;
4601 output_section->flags |= SEC_EXCLUDE;
4602 bfd_section_list_remove (link_info.output_bfd, output_section);
4603 link_info.output_bfd->section_count--;
4604 }
4605 }
4606 }
4607
4608 /* Called from ldwrite to clear out asection.map_head and
4609 asection.map_tail for use as link_orders in ldwrite. */
4610
4611 void
4612 lang_clear_os_map (void)
4613 {
4614 lang_output_section_statement_type *os;
4615
4616 if (map_head_is_link_order)
4617 return;
4618
4619 for (os = (void *) lang_os_list.head;
4620 os != NULL;
4621 os = os->next)
4622 {
4623 asection *output_section;
4624
4625 if (os->constraint < 0)
4626 continue;
4627
4628 output_section = os->bfd_section;
4629 if (output_section == NULL)
4630 continue;
4631
4632 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4633 output_section->map_head.link_order = NULL;
4634 output_section->map_tail.link_order = NULL;
4635 }
4636
4637 /* Stop future calls to lang_add_section from messing with map_head
4638 and map_tail link_order fields. */
4639 map_head_is_link_order = true;
4640 }
4641
4642 static void
4643 print_output_section_statement
4644 (lang_output_section_statement_type *output_section_statement)
4645 {
4646 asection *section = output_section_statement->bfd_section;
4647 int len;
4648
4649 if (output_section_statement != abs_output_section)
4650 {
4651 minfo ("\n%s", output_section_statement->name);
4652
4653 if (section != NULL)
4654 {
4655 print_dot = section->vma;
4656
4657 len = strlen (output_section_statement->name);
4658 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4659 {
4660 print_nl ();
4661 len = 0;
4662 }
4663 print_spaces (SECTION_NAME_MAP_LENGTH - len);
4664
4665 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4666
4667 if (section->vma != section->lma)
4668 minfo (_(" load address 0x%V"), section->lma);
4669
4670 if (output_section_statement->update_dot_tree != NULL)
4671 exp_fold_tree (output_section_statement->update_dot_tree,
4672 bfd_abs_section_ptr, &print_dot);
4673 }
4674
4675 print_nl ();
4676 }
4677
4678 print_statement_list (output_section_statement->children.head,
4679 output_section_statement);
4680 }
4681
4682 static void
4683 print_assignment (lang_assignment_statement_type *assignment,
4684 lang_output_section_statement_type *output_section)
4685 {
4686 bool is_dot;
4687 etree_type *tree;
4688 asection *osec;
4689
4690 print_spaces (SECTION_NAME_MAP_LENGTH);
4691
4692 if (assignment->exp->type.node_class == etree_assert)
4693 {
4694 is_dot = false;
4695 tree = assignment->exp->assert_s.child;
4696 }
4697 else
4698 {
4699 const char *dst = assignment->exp->assign.dst;
4700
4701 is_dot = (dst[0] == '.' && dst[1] == 0);
4702 tree = assignment->exp;
4703 }
4704
4705 osec = output_section->bfd_section;
4706 if (osec == NULL)
4707 osec = bfd_abs_section_ptr;
4708
4709 if (assignment->exp->type.node_class != etree_provide)
4710 exp_fold_tree (tree, osec, &print_dot);
4711 else
4712 expld.result.valid_p = false;
4713
4714 char buf[32];
4715 const char *str = buf;
4716 if (expld.result.valid_p)
4717 {
4718 bfd_vma value;
4719
4720 if (assignment->exp->type.node_class == etree_assert
4721 || is_dot
4722 || expld.assign_name != NULL)
4723 {
4724 value = expld.result.value;
4725
4726 if (expld.result.section != NULL)
4727 value += expld.result.section->vma;
4728
4729 buf[0] = '0';
4730 buf[1] = 'x';
4731 bfd_sprintf_vma (link_info.output_bfd, buf + 2, value);
4732 if (is_dot)
4733 print_dot = value;
4734 }
4735 else
4736 {
4737 struct bfd_link_hash_entry *h;
4738
4739 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4740 false, false, true);
4741 if (h != NULL
4742 && (h->type == bfd_link_hash_defined
4743 || h->type == bfd_link_hash_defweak))
4744 {
4745 value = h->u.def.value;
4746 value += h->u.def.section->output_section->vma;
4747 value += h->u.def.section->output_offset;
4748
4749 buf[0] = '[';
4750 buf[1] = '0';
4751 buf[2] = 'x';
4752 bfd_sprintf_vma (link_info.output_bfd, buf + 3, value);
4753 strcat (buf, "]");
4754 }
4755 else
4756 str = "[unresolved]";
4757 }
4758 }
4759 else
4760 {
4761 if (assignment->exp->type.node_class == etree_provide)
4762 str = "[!provide]";
4763 else
4764 str = "*undef*";
4765 }
4766 expld.assign_name = NULL;
4767
4768 fprintf (config.map_file, "%-34s", str);
4769 exp_print_tree (assignment->exp);
4770 print_nl ();
4771 }
4772
4773 static void
4774 print_input_statement (lang_input_statement_type *statm)
4775 {
4776 if (statm->filename != NULL)
4777 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4778 }
4779
4780 /* Print all symbols defined in a particular section. This is called
4781 via bfd_link_hash_traverse, or by print_all_symbols. */
4782
4783 bool
4784 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4785 {
4786 asection *sec = (asection *) ptr;
4787
4788 if ((hash_entry->type == bfd_link_hash_defined
4789 || hash_entry->type == bfd_link_hash_defweak)
4790 && sec == hash_entry->u.def.section)
4791 {
4792 print_spaces (SECTION_NAME_MAP_LENGTH);
4793 minfo ("0x%V ",
4794 (hash_entry->u.def.value
4795 + hash_entry->u.def.section->output_offset
4796 + hash_entry->u.def.section->output_section->vma));
4797
4798 minfo (" %pT\n", hash_entry->root.string);
4799 }
4800
4801 return true;
4802 }
4803
4804 static int
4805 hash_entry_addr_cmp (const void *a, const void *b)
4806 {
4807 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4808 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4809
4810 if (l->u.def.value < r->u.def.value)
4811 return -1;
4812 else if (l->u.def.value > r->u.def.value)
4813 return 1;
4814 else
4815 return 0;
4816 }
4817
4818 static void
4819 print_all_symbols (asection *sec)
4820 {
4821 input_section_userdata_type *ud = bfd_section_userdata (sec);
4822 struct map_symbol_def *def;
4823 struct bfd_link_hash_entry **entries;
4824 unsigned int i;
4825
4826 if (!ud)
4827 return;
4828
4829 *ud->map_symbol_def_tail = 0;
4830
4831 /* Sort the symbols by address. */
4832 entries = (struct bfd_link_hash_entry **)
4833 obstack_alloc (&map_obstack,
4834 ud->map_symbol_def_count * sizeof (*entries));
4835
4836 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4837 entries[i] = def->entry;
4838
4839 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4840 hash_entry_addr_cmp);
4841
4842 /* Print the symbols. */
4843 for (i = 0; i < ud->map_symbol_def_count; i++)
4844 ldemul_print_symbol (entries[i], sec);
4845
4846 obstack_free (&map_obstack, entries);
4847 }
4848
4849 /* Print information about an input section to the map file. */
4850
4851 static void
4852 print_input_section (asection *i, bool is_discarded)
4853 {
4854 bfd_size_type size = i->size;
4855 int len;
4856 bfd_vma addr;
4857
4858 init_opb (i);
4859
4860 minfo (" %s", i->name);
4861
4862 len = 1 + strlen (i->name);
4863 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4864 {
4865 print_nl ();
4866 len = 0;
4867 }
4868 print_spaces (SECTION_NAME_MAP_LENGTH - len);
4869
4870 if (i->output_section != NULL
4871 && i->output_section->owner == link_info.output_bfd)
4872 addr = i->output_section->vma + i->output_offset;
4873 else
4874 {
4875 addr = print_dot;
4876 if (!is_discarded)
4877 size = 0;
4878 }
4879
4880 char buf[32];
4881 bfd_sprintf_vma (link_info.output_bfd, buf, addr);
4882 minfo ("0x%s %W %pB\n", buf, TO_ADDR (size), i->owner);
4883
4884 if (size != i->rawsize && i->rawsize != 0)
4885 {
4886 len = SECTION_NAME_MAP_LENGTH + 3 + strlen (buf);
4887 print_spaces (len);
4888 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4889 }
4890
4891 if (i->output_section != NULL
4892 && i->output_section->owner == link_info.output_bfd)
4893 {
4894 if (link_info.reduce_memory_overheads)
4895 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4896 else
4897 print_all_symbols (i);
4898
4899 /* Update print_dot, but make sure that we do not move it
4900 backwards - this could happen if we have overlays and a
4901 later overlay is shorter than an earier one. */
4902 if (addr + TO_ADDR (size) > print_dot)
4903 print_dot = addr + TO_ADDR (size);
4904 }
4905 }
4906
4907 static void
4908 print_fill_statement (lang_fill_statement_type *fill)
4909 {
4910 size_t size;
4911 unsigned char *p;
4912 fputs (" FILL mask 0x", config.map_file);
4913 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4914 fprintf (config.map_file, "%02x", *p);
4915 fputs ("\n", config.map_file);
4916 }
4917
4918 static void
4919 print_data_statement (lang_data_statement_type *data)
4920 {
4921 bfd_vma addr;
4922 bfd_size_type size;
4923 const char *name;
4924
4925 init_opb (data->output_section);
4926 print_spaces (SECTION_NAME_MAP_LENGTH);
4927
4928 addr = data->output_offset;
4929 if (data->output_section != NULL)
4930 addr += data->output_section->vma;
4931
4932 switch (data->type)
4933 {
4934 default:
4935 abort ();
4936 case BYTE:
4937 size = BYTE_SIZE;
4938 name = "BYTE";
4939 break;
4940 case SHORT:
4941 size = SHORT_SIZE;
4942 name = "SHORT";
4943 break;
4944 case LONG:
4945 size = LONG_SIZE;
4946 name = "LONG";
4947 break;
4948 case QUAD:
4949 size = QUAD_SIZE;
4950 name = "QUAD";
4951 break;
4952 case SQUAD:
4953 size = QUAD_SIZE;
4954 name = "SQUAD";
4955 break;
4956 }
4957
4958 if (size < TO_SIZE ((unsigned) 1))
4959 size = TO_SIZE ((unsigned) 1);
4960 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4961
4962 if (data->exp->type.node_class != etree_value)
4963 {
4964 print_space ();
4965 exp_print_tree (data->exp);
4966 }
4967
4968 print_nl ();
4969
4970 print_dot = addr + TO_ADDR (size);
4971 }
4972
4973 /* Print an address statement. These are generated by options like
4974 -Ttext. */
4975
4976 static void
4977 print_address_statement (lang_address_statement_type *address)
4978 {
4979 minfo (_("Address of section %s set to "), address->section_name);
4980 exp_print_tree (address->address);
4981 print_nl ();
4982 }
4983
4984 /* Print a reloc statement. */
4985
4986 static void
4987 print_reloc_statement (lang_reloc_statement_type *reloc)
4988 {
4989 bfd_vma addr;
4990 bfd_size_type size;
4991
4992 init_opb (reloc->output_section);
4993 print_spaces (SECTION_NAME_MAP_LENGTH);
4994
4995 addr = reloc->output_offset;
4996 if (reloc->output_section != NULL)
4997 addr += reloc->output_section->vma;
4998
4999 size = bfd_get_reloc_size (reloc->howto);
5000
5001 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
5002
5003 if (reloc->name != NULL)
5004 minfo ("%s+", reloc->name);
5005 else
5006 minfo ("%s+", reloc->section->name);
5007
5008 exp_print_tree (reloc->addend_exp);
5009
5010 print_nl ();
5011
5012 print_dot = addr + TO_ADDR (size);
5013 }
5014
5015 static void
5016 print_padding_statement (lang_padding_statement_type *s)
5017 {
5018 int len;
5019 bfd_vma addr;
5020
5021 init_opb (s->output_section);
5022 minfo (" *fill*");
5023
5024 len = sizeof " *fill*" - 1;
5025 print_spaces (SECTION_NAME_MAP_LENGTH - len);
5026
5027 addr = s->output_offset;
5028 if (s->output_section != NULL)
5029 addr += s->output_section->vma;
5030 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
5031
5032 if (s->fill->size != 0)
5033 {
5034 size_t size;
5035 unsigned char *p;
5036 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
5037 fprintf (config.map_file, "%02x", *p);
5038 }
5039
5040 print_nl ();
5041
5042 print_dot = addr + TO_ADDR (s->size);
5043 }
5044
5045 static void
5046 print_wild_statement (lang_wild_statement_type *w,
5047 lang_output_section_statement_type *os)
5048 {
5049 struct wildcard_list *sec;
5050
5051 print_space ();
5052
5053 if (w->exclude_name_list)
5054 {
5055 name_list *tmp;
5056 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5057 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5058 minfo (" %s", tmp->name);
5059 minfo (") ");
5060 }
5061
5062 if (w->filenames_sorted)
5063 minfo ("SORT_BY_NAME(");
5064 if (w->filename != NULL)
5065 minfo ("%s", w->filename);
5066 else
5067 minfo ("*");
5068 if (w->filenames_sorted)
5069 minfo (")");
5070
5071 minfo ("(");
5072 for (sec = w->section_list; sec; sec = sec->next)
5073 {
5074 int closing_paren = 0;
5075
5076 switch (sec->spec.sorted)
5077 {
5078 case none:
5079 break;
5080
5081 case by_name:
5082 minfo ("SORT_BY_NAME(");
5083 closing_paren = 1;
5084 break;
5085
5086 case by_alignment:
5087 minfo ("SORT_BY_ALIGNMENT(");
5088 closing_paren = 1;
5089 break;
5090
5091 case by_name_alignment:
5092 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5093 closing_paren = 2;
5094 break;
5095
5096 case by_alignment_name:
5097 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5098 closing_paren = 2;
5099 break;
5100
5101 case by_none:
5102 minfo ("SORT_NONE(");
5103 closing_paren = 1;
5104 break;
5105
5106 case by_init_priority:
5107 minfo ("SORT_BY_INIT_PRIORITY(");
5108 closing_paren = 1;
5109 break;
5110 }
5111
5112 if (sec->spec.exclude_name_list != NULL)
5113 {
5114 name_list *tmp;
5115 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5116 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5117 minfo (" %s", tmp->name);
5118 minfo (") ");
5119 }
5120 if (sec->spec.name != NULL)
5121 minfo ("%s", sec->spec.name);
5122 else
5123 minfo ("*");
5124 for (;closing_paren > 0; closing_paren--)
5125 minfo (")");
5126 if (sec->next)
5127 minfo (" ");
5128 }
5129 minfo (")");
5130
5131 print_nl ();
5132
5133 print_statement_list (w->children.head, os);
5134 }
5135
5136 /* Print a group statement. */
5137
5138 static void
5139 print_group (lang_group_statement_type *s,
5140 lang_output_section_statement_type *os)
5141 {
5142 fprintf (config.map_file, "START GROUP\n");
5143 print_statement_list (s->children.head, os);
5144 fprintf (config.map_file, "END GROUP\n");
5145 }
5146
5147 /* Print the list of statements in S.
5148 This can be called for any statement type. */
5149
5150 static void
5151 print_statement_list (lang_statement_union_type *s,
5152 lang_output_section_statement_type *os)
5153 {
5154 while (s != NULL)
5155 {
5156 print_statement (s, os);
5157 s = s->header.next;
5158 }
5159 }
5160
5161 /* Print the first statement in statement list S.
5162 This can be called for any statement type. */
5163
5164 static void
5165 print_statement (lang_statement_union_type *s,
5166 lang_output_section_statement_type *os)
5167 {
5168 switch (s->header.type)
5169 {
5170 default:
5171 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5172 FAIL ();
5173 break;
5174 case lang_constructors_statement_enum:
5175 if (constructor_list.head != NULL)
5176 {
5177 if (constructors_sorted)
5178 minfo (" SORT (CONSTRUCTORS)\n");
5179 else
5180 minfo (" CONSTRUCTORS\n");
5181 print_statement_list (constructor_list.head, os);
5182 }
5183 break;
5184 case lang_wild_statement_enum:
5185 print_wild_statement (&s->wild_statement, os);
5186 break;
5187 case lang_address_statement_enum:
5188 print_address_statement (&s->address_statement);
5189 break;
5190 case lang_object_symbols_statement_enum:
5191 minfo (" CREATE_OBJECT_SYMBOLS\n");
5192 break;
5193 case lang_fill_statement_enum:
5194 print_fill_statement (&s->fill_statement);
5195 break;
5196 case lang_data_statement_enum:
5197 print_data_statement (&s->data_statement);
5198 break;
5199 case lang_reloc_statement_enum:
5200 print_reloc_statement (&s->reloc_statement);
5201 break;
5202 case lang_input_section_enum:
5203 print_input_section (s->input_section.section, false);
5204 break;
5205 case lang_padding_statement_enum:
5206 print_padding_statement (&s->padding_statement);
5207 break;
5208 case lang_output_section_statement_enum:
5209 print_output_section_statement (&s->output_section_statement);
5210 break;
5211 case lang_assignment_statement_enum:
5212 print_assignment (&s->assignment_statement, os);
5213 break;
5214 case lang_target_statement_enum:
5215 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5216 break;
5217 case lang_output_statement_enum:
5218 minfo ("OUTPUT(%s", s->output_statement.name);
5219 if (output_target != NULL)
5220 minfo (" %s", output_target);
5221 minfo (")\n");
5222 break;
5223 case lang_input_statement_enum:
5224 print_input_statement (&s->input_statement);
5225 break;
5226 case lang_group_statement_enum:
5227 print_group (&s->group_statement, os);
5228 break;
5229 case lang_insert_statement_enum:
5230 minfo ("INSERT %s %s\n",
5231 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5232 s->insert_statement.where);
5233 break;
5234 }
5235 }
5236
5237 static void
5238 print_statements (void)
5239 {
5240 print_statement_list (statement_list.head, abs_output_section);
5241 }
5242
5243 /* Print the first N statements in statement list S to STDERR.
5244 If N == 0, nothing is printed.
5245 If N < 0, the entire list is printed.
5246 Intended to be called from GDB. */
5247
5248 void
5249 dprint_statement (lang_statement_union_type *s, int n)
5250 {
5251 FILE *map_save = config.map_file;
5252
5253 config.map_file = stderr;
5254
5255 if (n < 0)
5256 print_statement_list (s, abs_output_section);
5257 else
5258 {
5259 while (s && --n >= 0)
5260 {
5261 print_statement (s, abs_output_section);
5262 s = s->header.next;
5263 }
5264 }
5265
5266 config.map_file = map_save;
5267 }
5268
5269 static void
5270 insert_pad (lang_statement_union_type **ptr,
5271 fill_type *fill,
5272 bfd_size_type alignment_needed,
5273 asection *output_section,
5274 bfd_vma dot)
5275 {
5276 static fill_type zero_fill;
5277 lang_statement_union_type *pad = NULL;
5278
5279 if (ptr != &statement_list.head)
5280 pad = ((lang_statement_union_type *)
5281 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5282 if (pad != NULL
5283 && pad->header.type == lang_padding_statement_enum
5284 && pad->padding_statement.output_section == output_section)
5285 {
5286 /* Use the existing pad statement. */
5287 }
5288 else if ((pad = *ptr) != NULL
5289 && pad->header.type == lang_padding_statement_enum
5290 && pad->padding_statement.output_section == output_section)
5291 {
5292 /* Use the existing pad statement. */
5293 }
5294 else
5295 {
5296 /* Make a new padding statement, linked into existing chain. */
5297 pad = stat_alloc (sizeof (lang_padding_statement_type));
5298 pad->header.next = *ptr;
5299 *ptr = pad;
5300 pad->header.type = lang_padding_statement_enum;
5301 pad->padding_statement.output_section = output_section;
5302 if (fill == NULL)
5303 fill = &zero_fill;
5304 pad->padding_statement.fill = fill;
5305 }
5306 pad->padding_statement.output_offset = dot - output_section->vma;
5307 pad->padding_statement.size = alignment_needed;
5308 if (!(output_section->flags & SEC_FIXED_SIZE))
5309 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5310 - output_section->vma);
5311 }
5312
5313 /* Work out how much this section will move the dot point. */
5314
5315 static bfd_vma
5316 size_input_section
5317 (lang_statement_union_type **this_ptr,
5318 lang_output_section_statement_type *output_section_statement,
5319 fill_type *fill,
5320 bool *removed,
5321 bfd_vma dot)
5322 {
5323 lang_input_section_type *is = &((*this_ptr)->input_section);
5324 asection *i = is->section;
5325 asection *o = output_section_statement->bfd_section;
5326 *removed = 0;
5327
5328 if (link_info.non_contiguous_regions)
5329 {
5330 /* If the input section I has already been successfully assigned
5331 to an output section other than O, don't bother with it and
5332 let the caller remove it from the list. Keep processing in
5333 case we have already handled O, because the repeated passes
5334 have reinitialized its size. */
5335 if (i->already_assigned && i->already_assigned != o)
5336 {
5337 *removed = 1;
5338 return dot;
5339 }
5340 }
5341
5342 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5343 i->output_offset = i->vma - o->vma;
5344 else if (((i->flags & SEC_EXCLUDE) != 0)
5345 || output_section_statement->ignored)
5346 i->output_offset = dot - o->vma;
5347 else
5348 {
5349 bfd_size_type alignment_needed;
5350
5351 /* Align this section first to the input sections requirement,
5352 then to the output section's requirement. If this alignment
5353 is greater than any seen before, then record it too. Perform
5354 the alignment by inserting a magic 'padding' statement. */
5355
5356 if (output_section_statement->subsection_alignment != NULL)
5357 i->alignment_power
5358 = exp_get_power (output_section_statement->subsection_alignment,
5359 "subsection alignment");
5360
5361 if (o->alignment_power < i->alignment_power)
5362 o->alignment_power = i->alignment_power;
5363
5364 alignment_needed = align_power (dot, i->alignment_power) - dot;
5365
5366 if (alignment_needed != 0)
5367 {
5368 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5369 dot += alignment_needed;
5370 }
5371
5372 if (link_info.non_contiguous_regions)
5373 {
5374 /* If I would overflow O, let the caller remove I from the
5375 list. */
5376 if (output_section_statement->region)
5377 {
5378 bfd_vma end = output_section_statement->region->origin
5379 + output_section_statement->region->length;
5380
5381 if (dot + TO_ADDR (i->size) > end)
5382 {
5383 if (i->flags & SEC_LINKER_CREATED)
5384 einfo (_("%F%P: Output section '%s' not large enough for the "
5385 "linker-created stubs section '%s'.\n"),
5386 i->output_section->name, i->name);
5387
5388 if (i->rawsize && i->rawsize != i->size)
5389 einfo (_("%F%P: Relaxation not supported with "
5390 "--enable-non-contiguous-regions (section '%s' "
5391 "would overflow '%s' after it changed size).\n"),
5392 i->name, i->output_section->name);
5393
5394 *removed = 1;
5395 dot = end;
5396 i->output_section = NULL;
5397 return dot;
5398 }
5399 }
5400 }
5401
5402 /* Remember where in the output section this input section goes. */
5403 i->output_offset = dot - o->vma;
5404
5405 /* Mark how big the output section must be to contain this now. */
5406 dot += TO_ADDR (i->size);
5407 if (!(o->flags & SEC_FIXED_SIZE))
5408 o->size = TO_SIZE (dot - o->vma);
5409
5410 if (link_info.non_contiguous_regions)
5411 {
5412 /* Record that I was successfully assigned to O, and update
5413 its actual output section too. */
5414 i->already_assigned = o;
5415 i->output_section = o;
5416 }
5417 }
5418
5419 return dot;
5420 }
5421
5422 struct check_sec
5423 {
5424 asection *sec;
5425 bool warned;
5426 };
5427
5428 static int
5429 sort_sections_by_lma (const void *arg1, const void *arg2)
5430 {
5431 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5432 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5433
5434 if (sec1->lma < sec2->lma)
5435 return -1;
5436 else if (sec1->lma > sec2->lma)
5437 return 1;
5438 else if (sec1->id < sec2->id)
5439 return -1;
5440 else if (sec1->id > sec2->id)
5441 return 1;
5442
5443 return 0;
5444 }
5445
5446 static int
5447 sort_sections_by_vma (const void *arg1, const void *arg2)
5448 {
5449 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5450 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5451
5452 if (sec1->vma < sec2->vma)
5453 return -1;
5454 else if (sec1->vma > sec2->vma)
5455 return 1;
5456 else if (sec1->id < sec2->id)
5457 return -1;
5458 else if (sec1->id > sec2->id)
5459 return 1;
5460
5461 return 0;
5462 }
5463
5464 #define IS_TBSS(s) \
5465 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5466
5467 #define IGNORE_SECTION(s) \
5468 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5469
5470 /* Check to see if any allocated sections overlap with other allocated
5471 sections. This can happen if a linker script specifies the output
5472 section addresses of the two sections. Also check whether any memory
5473 region has overflowed. */
5474
5475 static void
5476 lang_check_section_addresses (void)
5477 {
5478 asection *s, *p;
5479 struct check_sec *sections;
5480 size_t i, count;
5481 bfd_vma addr_mask;
5482 bfd_vma s_start;
5483 bfd_vma s_end;
5484 bfd_vma p_start = 0;
5485 bfd_vma p_end = 0;
5486 lang_memory_region_type *m;
5487 bool overlays;
5488
5489 /* Detect address space overflow on allocated sections. */
5490 addr_mask = ((bfd_vma) 1 <<
5491 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5492 addr_mask = (addr_mask << 1) + 1;
5493 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5494 if ((s->flags & SEC_ALLOC) != 0)
5495 {
5496 s_end = (s->vma + s->size) & addr_mask;
5497 if (s_end != 0 && s_end < (s->vma & addr_mask))
5498 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5499 s->name);
5500 else
5501 {
5502 s_end = (s->lma + s->size) & addr_mask;
5503 if (s_end != 0 && s_end < (s->lma & addr_mask))
5504 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5505 s->name);
5506 }
5507 }
5508
5509 if (bfd_count_sections (link_info.output_bfd) <= 1)
5510 return;
5511
5512 count = bfd_count_sections (link_info.output_bfd);
5513 sections = XNEWVEC (struct check_sec, count);
5514
5515 /* Scan all sections in the output list. */
5516 count = 0;
5517 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5518 {
5519 if (IGNORE_SECTION (s)
5520 || s->size == 0)
5521 continue;
5522
5523 sections[count].sec = s;
5524 sections[count].warned = false;
5525 count++;
5526 }
5527
5528 if (count <= 1)
5529 {
5530 free (sections);
5531 return;
5532 }
5533
5534 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5535
5536 /* First check section LMAs. There should be no overlap of LMAs on
5537 loadable sections, even with overlays. */
5538 for (p = NULL, i = 0; i < count; i++)
5539 {
5540 s = sections[i].sec;
5541 init_opb (s);
5542 if ((s->flags & SEC_LOAD) != 0)
5543 {
5544 s_start = s->lma;
5545 s_end = s_start + TO_ADDR (s->size) - 1;
5546
5547 /* Look for an overlap. We have sorted sections by lma, so
5548 we know that s_start >= p_start. Besides the obvious
5549 case of overlap when the current section starts before
5550 the previous one ends, we also must have overlap if the
5551 previous section wraps around the address space. */
5552 if (p != NULL
5553 && (s_start <= p_end
5554 || p_end < p_start))
5555 {
5556 einfo (_("%X%P: section %s LMA [%V,%V]"
5557 " overlaps section %s LMA [%V,%V]\n"),
5558 s->name, s_start, s_end, p->name, p_start, p_end);
5559 sections[i].warned = true;
5560 }
5561 p = s;
5562 p_start = s_start;
5563 p_end = s_end;
5564 }
5565 }
5566
5567 /* If any non-zero size allocated section (excluding tbss) starts at
5568 exactly the same VMA as another such section, then we have
5569 overlays. Overlays generated by the OVERLAY keyword will have
5570 this property. It is possible to intentionally generate overlays
5571 that fail this test, but it would be unusual. */
5572 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5573 overlays = false;
5574 p_start = sections[0].sec->vma;
5575 for (i = 1; i < count; i++)
5576 {
5577 s_start = sections[i].sec->vma;
5578 if (p_start == s_start)
5579 {
5580 overlays = true;
5581 break;
5582 }
5583 p_start = s_start;
5584 }
5585
5586 /* Now check section VMAs if no overlays were detected. */
5587 if (!overlays)
5588 {
5589 for (p = NULL, i = 0; i < count; i++)
5590 {
5591 s = sections[i].sec;
5592 init_opb (s);
5593 s_start = s->vma;
5594 s_end = s_start + TO_ADDR (s->size) - 1;
5595
5596 if (p != NULL
5597 && !sections[i].warned
5598 && (s_start <= p_end
5599 || p_end < p_start))
5600 einfo (_("%X%P: section %s VMA [%V,%V]"
5601 " overlaps section %s VMA [%V,%V]\n"),
5602 s->name, s_start, s_end, p->name, p_start, p_end);
5603 p = s;
5604 p_start = s_start;
5605 p_end = s_end;
5606 }
5607 }
5608
5609 free (sections);
5610
5611 /* If any memory region has overflowed, report by how much.
5612 We do not issue this diagnostic for regions that had sections
5613 explicitly placed outside their bounds; os_region_check's
5614 diagnostics are adequate for that case.
5615
5616 FIXME: It is conceivable that m->current - (m->origin + m->length)
5617 might overflow a 32-bit integer. There is, alas, no way to print
5618 a bfd_vma quantity in decimal. */
5619 for (m = lang_memory_region_list; m; m = m->next)
5620 if (m->had_full_message)
5621 {
5622 unsigned long over = m->current - (m->origin + m->length);
5623 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5624 "%X%P: region `%s' overflowed by %lu bytes\n",
5625 over),
5626 m->name_list.name, over);
5627 }
5628 }
5629
5630 /* Make sure the new address is within the region. We explicitly permit the
5631 current address to be at the exact end of the region when the address is
5632 non-zero, in case the region is at the end of addressable memory and the
5633 calculation wraps around. */
5634
5635 static void
5636 os_region_check (lang_output_section_statement_type *os,
5637 lang_memory_region_type *region,
5638 etree_type *tree,
5639 bfd_vma rbase)
5640 {
5641 if ((region->current < region->origin
5642 || (region->current - region->origin > region->length))
5643 && ((region->current != region->origin + region->length)
5644 || rbase == 0))
5645 {
5646 if (tree != NULL)
5647 {
5648 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5649 " is not within region `%s'\n"),
5650 region->current,
5651 os->bfd_section->owner,
5652 os->bfd_section->name,
5653 region->name_list.name);
5654 }
5655 else if (!region->had_full_message)
5656 {
5657 region->had_full_message = true;
5658
5659 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5660 os->bfd_section->owner,
5661 os->bfd_section->name,
5662 region->name_list.name);
5663 }
5664 }
5665 }
5666
5667 static void
5668 ldlang_check_relro_region (lang_statement_union_type *s)
5669 {
5670 seg_align_type *seg = &expld.dataseg;
5671
5672 if (seg->relro == exp_seg_relro_start)
5673 {
5674 if (!seg->relro_start_stat)
5675 seg->relro_start_stat = s;
5676 else
5677 {
5678 ASSERT (seg->relro_start_stat == s);
5679 }
5680 }
5681 else if (seg->relro == exp_seg_relro_end)
5682 {
5683 if (!seg->relro_end_stat)
5684 seg->relro_end_stat = s;
5685 else
5686 {
5687 ASSERT (seg->relro_end_stat == s);
5688 }
5689 }
5690 }
5691
5692 /* Set the sizes for all the output sections. */
5693
5694 static bfd_vma
5695 lang_size_sections_1
5696 (lang_statement_union_type **prev,
5697 lang_output_section_statement_type *output_section_statement,
5698 fill_type *fill,
5699 bfd_vma dot,
5700 bool *relax,
5701 bool check_regions)
5702 {
5703 lang_statement_union_type *s;
5704 lang_statement_union_type *prev_s = NULL;
5705 bool removed_prev_s = false;
5706
5707 /* Size up the sections from their constituent parts. */
5708 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5709 {
5710 bool removed = false;
5711
5712 switch (s->header.type)
5713 {
5714 case lang_output_section_statement_enum:
5715 {
5716 bfd_vma newdot, after, dotdelta;
5717 lang_output_section_statement_type *os;
5718 lang_memory_region_type *r;
5719 int section_alignment = 0;
5720
5721 os = &s->output_section_statement;
5722 init_opb (os->bfd_section);
5723 if (os->constraint == -1)
5724 break;
5725
5726 /* FIXME: We shouldn't need to zero section vmas for ld -r
5727 here, in lang_insert_orphan, or in the default linker scripts.
5728 This is covering for coff backend linker bugs. See PR6945. */
5729 if (os->addr_tree == NULL
5730 && bfd_link_relocatable (&link_info)
5731 && (bfd_get_flavour (link_info.output_bfd)
5732 == bfd_target_coff_flavour))
5733 os->addr_tree = exp_intop (0);
5734 if (os->addr_tree != NULL)
5735 {
5736 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5737
5738 if (expld.result.valid_p)
5739 {
5740 dot = expld.result.value;
5741 if (expld.result.section != NULL)
5742 dot += expld.result.section->vma;
5743 }
5744 else if (expld.phase != lang_mark_phase_enum)
5745 einfo (_("%F%P:%pS: non constant or forward reference"
5746 " address expression for section %s\n"),
5747 os->addr_tree, os->name);
5748 }
5749
5750 if (os->bfd_section == NULL)
5751 /* This section was removed or never actually created. */
5752 break;
5753
5754 /* If this is a COFF shared library section, use the size and
5755 address from the input section. FIXME: This is COFF
5756 specific; it would be cleaner if there were some other way
5757 to do this, but nothing simple comes to mind. */
5758 if (((bfd_get_flavour (link_info.output_bfd)
5759 == bfd_target_ecoff_flavour)
5760 || (bfd_get_flavour (link_info.output_bfd)
5761 == bfd_target_coff_flavour))
5762 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5763 {
5764 asection *input;
5765
5766 if (os->children.head == NULL
5767 || os->children.head->header.next != NULL
5768 || (os->children.head->header.type
5769 != lang_input_section_enum))
5770 einfo (_("%X%P: internal error on COFF shared library"
5771 " section %s\n"), os->name);
5772
5773 input = os->children.head->input_section.section;
5774 bfd_set_section_vma (os->bfd_section,
5775 bfd_section_vma (input));
5776 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5777 os->bfd_section->size = input->size;
5778 break;
5779 }
5780
5781 newdot = dot;
5782 dotdelta = 0;
5783 if (bfd_is_abs_section (os->bfd_section))
5784 {
5785 /* No matter what happens, an abs section starts at zero. */
5786 ASSERT (os->bfd_section->vma == 0);
5787 }
5788 else
5789 {
5790 if (os->addr_tree == NULL)
5791 {
5792 /* No address specified for this section, get one
5793 from the region specification. */
5794 if (os->region == NULL
5795 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5796 && os->region->name_list.name[0] == '*'
5797 && strcmp (os->region->name_list.name,
5798 DEFAULT_MEMORY_REGION) == 0))
5799 {
5800 os->region = lang_memory_default (os->bfd_section);
5801 }
5802
5803 /* If a loadable section is using the default memory
5804 region, and some non default memory regions were
5805 defined, issue an error message. */
5806 if (!os->ignored
5807 && !IGNORE_SECTION (os->bfd_section)
5808 && !bfd_link_relocatable (&link_info)
5809 && check_regions
5810 && strcmp (os->region->name_list.name,
5811 DEFAULT_MEMORY_REGION) == 0
5812 && lang_memory_region_list != NULL
5813 && (strcmp (lang_memory_region_list->name_list.name,
5814 DEFAULT_MEMORY_REGION) != 0
5815 || lang_memory_region_list->next != NULL)
5816 && lang_sizing_iteration == 1)
5817 {
5818 /* By default this is an error rather than just a
5819 warning because if we allocate the section to the
5820 default memory region we can end up creating an
5821 excessively large binary, or even seg faulting when
5822 attempting to perform a negative seek. See
5823 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5824 for an example of this. This behaviour can be
5825 overridden by the using the --no-check-sections
5826 switch. */
5827 if (command_line.check_section_addresses)
5828 einfo (_("%F%P: error: no memory region specified"
5829 " for loadable section `%s'\n"),
5830 bfd_section_name (os->bfd_section));
5831 else
5832 einfo (_("%P: warning: no memory region specified"
5833 " for loadable section `%s'\n"),
5834 bfd_section_name (os->bfd_section));
5835 }
5836
5837 newdot = os->region->current;
5838 section_alignment = os->bfd_section->alignment_power;
5839 }
5840 else
5841 section_alignment = exp_get_power (os->section_alignment,
5842 "section alignment");
5843
5844 /* Align to what the section needs. */
5845 if (section_alignment > 0)
5846 {
5847 bfd_vma savedot = newdot;
5848 bfd_vma diff = 0;
5849
5850 newdot = align_power (newdot, section_alignment);
5851 dotdelta = newdot - savedot;
5852
5853 if (lang_sizing_iteration == 1)
5854 diff = dotdelta;
5855 else if (lang_sizing_iteration > 1)
5856 {
5857 /* Only report adjustments that would change
5858 alignment from what we have already reported. */
5859 diff = newdot - os->bfd_section->vma;
5860 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5861 diff = 0;
5862 }
5863 if (diff != 0
5864 && (config.warn_section_align
5865 || os->addr_tree != NULL))
5866 einfo (_("%P: warning: "
5867 "start of section %s changed by %ld\n"),
5868 os->name, (long) diff);
5869 }
5870
5871 bfd_set_section_vma (os->bfd_section, newdot);
5872
5873 os->bfd_section->output_offset = 0;
5874 }
5875
5876 lang_size_sections_1 (&os->children.head, os,
5877 os->fill, newdot, relax, check_regions);
5878
5879 os->processed_vma = true;
5880
5881 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5882 /* Except for some special linker created sections,
5883 no output section should change from zero size
5884 after strip_excluded_output_sections. A non-zero
5885 size on an ignored section indicates that some
5886 input section was not sized early enough. */
5887 ASSERT (os->bfd_section->size == 0);
5888 else
5889 {
5890 dot = os->bfd_section->vma;
5891
5892 /* Put the section within the requested block size, or
5893 align at the block boundary. */
5894 after = ((dot
5895 + TO_ADDR (os->bfd_section->size)
5896 + os->block_value - 1)
5897 & - (bfd_vma) os->block_value);
5898
5899 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5900 os->bfd_section->size = TO_SIZE (after
5901 - os->bfd_section->vma);
5902 }
5903
5904 /* Set section lma. */
5905 r = os->region;
5906 if (r == NULL)
5907 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
5908
5909 if (os->load_base)
5910 {
5911 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5912 os->bfd_section->lma = lma;
5913 }
5914 else if (os->lma_region != NULL)
5915 {
5916 bfd_vma lma = os->lma_region->current;
5917
5918 if (os->align_lma_with_input)
5919 lma += dotdelta;
5920 else
5921 {
5922 /* When LMA_REGION is the same as REGION, align the LMA
5923 as we did for the VMA, possibly including alignment
5924 from the bfd section. If a different region, then
5925 only align according to the value in the output
5926 statement. */
5927 if (os->lma_region != os->region)
5928 section_alignment = exp_get_power (os->section_alignment,
5929 "section alignment");
5930 if (section_alignment > 0)
5931 lma = align_power (lma, section_alignment);
5932 }
5933 os->bfd_section->lma = lma;
5934 }
5935 else if (r->last_os != NULL
5936 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5937 {
5938 bfd_vma lma;
5939 asection *last;
5940
5941 last = r->last_os->output_section_statement.bfd_section;
5942
5943 /* A backwards move of dot should be accompanied by
5944 an explicit assignment to the section LMA (ie.
5945 os->load_base set) because backwards moves can
5946 create overlapping LMAs. */
5947 if (dot < last->vma
5948 && os->bfd_section->size != 0
5949 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5950 {
5951 /* If dot moved backwards then leave lma equal to
5952 vma. This is the old default lma, which might
5953 just happen to work when the backwards move is
5954 sufficiently large. Nag if this changes anything,
5955 so people can fix their linker scripts. */
5956
5957 if (last->vma != last->lma)
5958 einfo (_("%P: warning: dot moved backwards "
5959 "before `%s'\n"), os->name);
5960 }
5961 else
5962 {
5963 /* If this is an overlay, set the current lma to that
5964 at the end of the previous section. */
5965 if (os->sectype == overlay_section)
5966 lma = last->lma + TO_ADDR (last->size);
5967
5968 /* Otherwise, keep the same lma to vma relationship
5969 as the previous section. */
5970 else
5971 lma = os->bfd_section->vma + last->lma - last->vma;
5972
5973 if (section_alignment > 0)
5974 lma = align_power (lma, section_alignment);
5975 os->bfd_section->lma = lma;
5976 }
5977 }
5978 os->processed_lma = true;
5979
5980 /* Keep track of normal sections using the default
5981 lma region. We use this to set the lma for
5982 following sections. Overlays or other linker
5983 script assignment to lma might mean that the
5984 default lma == vma is incorrect.
5985 To avoid warnings about dot moving backwards when using
5986 -Ttext, don't start tracking sections until we find one
5987 of non-zero size or with lma set differently to vma.
5988 Do this tracking before we short-cut the loop so that we
5989 track changes for the case where the section size is zero,
5990 but the lma is set differently to the vma. This is
5991 important, if an orphan section is placed after an
5992 otherwise empty output section that has an explicit lma
5993 set, we want that lma reflected in the orphans lma. */
5994 if (((!IGNORE_SECTION (os->bfd_section)
5995 && (os->bfd_section->size != 0
5996 || (r->last_os == NULL
5997 && os->bfd_section->vma != os->bfd_section->lma)
5998 || (r->last_os != NULL
5999 && dot >= (r->last_os->output_section_statement
6000 .bfd_section->vma))))
6001 || os->sectype == first_overlay_section)
6002 && os->lma_region == NULL
6003 && !bfd_link_relocatable (&link_info))
6004 r->last_os = s;
6005
6006 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
6007 break;
6008
6009 /* .tbss sections effectively have zero size. */
6010 if (!IS_TBSS (os->bfd_section)
6011 || bfd_link_relocatable (&link_info))
6012 dotdelta = TO_ADDR (os->bfd_section->size);
6013 else
6014 dotdelta = 0;
6015 dot += dotdelta;
6016
6017 if (os->update_dot_tree != 0)
6018 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
6019
6020 /* Update dot in the region ?
6021 We only do this if the section is going to be allocated,
6022 since unallocated sections do not contribute to the region's
6023 overall size in memory. */
6024 if (os->region != NULL
6025 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
6026 {
6027 os->region->current = dot;
6028
6029 if (check_regions)
6030 /* Make sure the new address is within the region. */
6031 os_region_check (os, os->region, os->addr_tree,
6032 os->bfd_section->vma);
6033
6034 if (os->lma_region != NULL && os->lma_region != os->region
6035 && ((os->bfd_section->flags & SEC_LOAD)
6036 || os->align_lma_with_input))
6037 {
6038 os->lma_region->current = os->bfd_section->lma + dotdelta;
6039
6040 if (check_regions)
6041 os_region_check (os, os->lma_region, NULL,
6042 os->bfd_section->lma);
6043 }
6044 }
6045 }
6046 break;
6047
6048 case lang_constructors_statement_enum:
6049 dot = lang_size_sections_1 (&constructor_list.head,
6050 output_section_statement,
6051 fill, dot, relax, check_regions);
6052 break;
6053
6054 case lang_data_statement_enum:
6055 {
6056 unsigned int size = 0;
6057
6058 s->data_statement.output_offset =
6059 dot - output_section_statement->bfd_section->vma;
6060 s->data_statement.output_section =
6061 output_section_statement->bfd_section;
6062
6063 /* We might refer to provided symbols in the expression, and
6064 need to mark them as needed. */
6065 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6066
6067 switch (s->data_statement.type)
6068 {
6069 default:
6070 abort ();
6071 case QUAD:
6072 case SQUAD:
6073 size = QUAD_SIZE;
6074 break;
6075 case LONG:
6076 size = LONG_SIZE;
6077 break;
6078 case SHORT:
6079 size = SHORT_SIZE;
6080 break;
6081 case BYTE:
6082 size = BYTE_SIZE;
6083 break;
6084 }
6085 if (size < TO_SIZE ((unsigned) 1))
6086 size = TO_SIZE ((unsigned) 1);
6087 dot += TO_ADDR (size);
6088 if (!(output_section_statement->bfd_section->flags
6089 & SEC_FIXED_SIZE))
6090 output_section_statement->bfd_section->size
6091 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6092
6093 }
6094 break;
6095
6096 case lang_reloc_statement_enum:
6097 {
6098 int size;
6099
6100 s->reloc_statement.output_offset =
6101 dot - output_section_statement->bfd_section->vma;
6102 s->reloc_statement.output_section =
6103 output_section_statement->bfd_section;
6104 size = bfd_get_reloc_size (s->reloc_statement.howto);
6105 dot += TO_ADDR (size);
6106 if (!(output_section_statement->bfd_section->flags
6107 & SEC_FIXED_SIZE))
6108 output_section_statement->bfd_section->size
6109 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6110 }
6111 break;
6112
6113 case lang_wild_statement_enum:
6114 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6115 output_section_statement,
6116 fill, dot, relax, check_regions);
6117 break;
6118
6119 case lang_object_symbols_statement_enum:
6120 link_info.create_object_symbols_section
6121 = output_section_statement->bfd_section;
6122 output_section_statement->bfd_section->flags |= SEC_KEEP;
6123 break;
6124
6125 case lang_output_statement_enum:
6126 case lang_target_statement_enum:
6127 break;
6128
6129 case lang_input_section_enum:
6130 {
6131 asection *i;
6132
6133 i = s->input_section.section;
6134 if (relax)
6135 {
6136 bool again;
6137
6138 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6139 einfo (_("%F%P: can't relax section: %E\n"));
6140 if (again)
6141 *relax = true;
6142 }
6143 dot = size_input_section (prev, output_section_statement,
6144 fill, &removed, dot);
6145 }
6146 break;
6147
6148 case lang_input_statement_enum:
6149 break;
6150
6151 case lang_fill_statement_enum:
6152 s->fill_statement.output_section =
6153 output_section_statement->bfd_section;
6154
6155 fill = s->fill_statement.fill;
6156 break;
6157
6158 case lang_assignment_statement_enum:
6159 {
6160 bfd_vma newdot = dot;
6161 etree_type *tree = s->assignment_statement.exp;
6162
6163 expld.dataseg.relro = exp_seg_relro_none;
6164
6165 exp_fold_tree (tree,
6166 output_section_statement->bfd_section,
6167 &newdot);
6168
6169 ldlang_check_relro_region (s);
6170
6171 expld.dataseg.relro = exp_seg_relro_none;
6172
6173 /* This symbol may be relative to this section. */
6174 if ((tree->type.node_class == etree_provided
6175 || tree->type.node_class == etree_assign)
6176 && (tree->assign.dst [0] != '.'
6177 || tree->assign.dst [1] != '\0'))
6178 output_section_statement->update_dot = 1;
6179
6180 if (!output_section_statement->ignored)
6181 {
6182 if (output_section_statement == abs_output_section)
6183 {
6184 /* If we don't have an output section, then just adjust
6185 the default memory address. */
6186 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6187 false)->current = newdot;
6188 }
6189 else if (newdot != dot)
6190 {
6191 /* Insert a pad after this statement. We can't
6192 put the pad before when relaxing, in case the
6193 assignment references dot. */
6194 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6195 output_section_statement->bfd_section, dot);
6196
6197 /* Don't neuter the pad below when relaxing. */
6198 s = s->header.next;
6199
6200 /* If dot is advanced, this implies that the section
6201 should have space allocated to it, unless the
6202 user has explicitly stated that the section
6203 should not be allocated. */
6204 if (output_section_statement->sectype != noalloc_section
6205 && (output_section_statement->sectype != noload_section
6206 || (bfd_get_flavour (link_info.output_bfd)
6207 == bfd_target_elf_flavour)))
6208 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6209 }
6210 dot = newdot;
6211 }
6212 }
6213 break;
6214
6215 case lang_padding_statement_enum:
6216 /* If this is the first time lang_size_sections is called,
6217 we won't have any padding statements. If this is the
6218 second or later passes when relaxing, we should allow
6219 padding to shrink. If padding is needed on this pass, it
6220 will be added back in. */
6221 s->padding_statement.size = 0;
6222
6223 /* Make sure output_offset is valid. If relaxation shrinks
6224 the section and this pad isn't needed, it's possible to
6225 have output_offset larger than the final size of the
6226 section. bfd_set_section_contents will complain even for
6227 a pad size of zero. */
6228 s->padding_statement.output_offset
6229 = dot - output_section_statement->bfd_section->vma;
6230 break;
6231
6232 case lang_group_statement_enum:
6233 dot = lang_size_sections_1 (&s->group_statement.children.head,
6234 output_section_statement,
6235 fill, dot, relax, check_regions);
6236 break;
6237
6238 case lang_insert_statement_enum:
6239 break;
6240
6241 /* We can only get here when relaxing is turned on. */
6242 case lang_address_statement_enum:
6243 break;
6244
6245 default:
6246 FAIL ();
6247 break;
6248 }
6249
6250 /* If an input section doesn't fit in the current output
6251 section, remove it from the list. Handle the case where we
6252 have to remove an input_section statement here: there is a
6253 special case to remove the first element of the list. */
6254 if (link_info.non_contiguous_regions && removed)
6255 {
6256 /* If we removed the first element during the previous
6257 iteration, override the loop assignment of prev_s. */
6258 if (removed_prev_s)
6259 prev_s = NULL;
6260
6261 if (prev_s)
6262 {
6263 /* If there was a real previous input section, just skip
6264 the current one. */
6265 prev_s->header.next=s->header.next;
6266 s = prev_s;
6267 removed_prev_s = false;
6268 }
6269 else
6270 {
6271 /* Remove the first input section of the list. */
6272 *prev = s->header.next;
6273 removed_prev_s = true;
6274 }
6275
6276 /* Move to next element, unless we removed the head of the
6277 list. */
6278 if (!removed_prev_s)
6279 prev = &s->header.next;
6280 }
6281 else
6282 {
6283 prev = &s->header.next;
6284 removed_prev_s = false;
6285 }
6286 }
6287 return dot;
6288 }
6289
6290 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6291 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6292 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6293 segments. We are allowed an opportunity to override this decision. */
6294
6295 bool
6296 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6297 bfd *abfd ATTRIBUTE_UNUSED,
6298 asection *current_section,
6299 asection *previous_section,
6300 bool new_segment)
6301 {
6302 lang_output_section_statement_type *cur;
6303 lang_output_section_statement_type *prev;
6304
6305 /* The checks below are only necessary when the BFD library has decided
6306 that the two sections ought to be placed into the same segment. */
6307 if (new_segment)
6308 return true;
6309
6310 /* Paranoia checks. */
6311 if (current_section == NULL || previous_section == NULL)
6312 return new_segment;
6313
6314 /* If this flag is set, the target never wants code and non-code
6315 sections comingled in the same segment. */
6316 if (config.separate_code
6317 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6318 return true;
6319
6320 /* Find the memory regions associated with the two sections.
6321 We call lang_output_section_find() here rather than scanning the list
6322 of output sections looking for a matching section pointer because if
6323 we have a large number of sections then a hash lookup is faster. */
6324 cur = lang_output_section_find (current_section->name);
6325 prev = lang_output_section_find (previous_section->name);
6326
6327 /* More paranoia. */
6328 if (cur == NULL || prev == NULL)
6329 return new_segment;
6330
6331 /* If the regions are different then force the sections to live in
6332 different segments. See the email thread starting at the following
6333 URL for the reasons why this is necessary:
6334 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6335 return cur->region != prev->region;
6336 }
6337
6338 void
6339 one_lang_size_sections_pass (bool *relax, bool check_regions)
6340 {
6341 lang_statement_iteration++;
6342 if (expld.phase != lang_mark_phase_enum)
6343 lang_sizing_iteration++;
6344 lang_size_sections_1 (&statement_list.head, abs_output_section,
6345 0, 0, relax, check_regions);
6346 }
6347
6348 static bool
6349 lang_size_segment (void)
6350 {
6351 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6352 a page could be saved in the data segment. */
6353 seg_align_type *seg = &expld.dataseg;
6354 bfd_vma first, last;
6355
6356 first = -seg->base & (seg->commonpagesize - 1);
6357 last = seg->end & (seg->commonpagesize - 1);
6358 if (first && last
6359 && ((seg->base & ~(seg->commonpagesize - 1))
6360 != (seg->end & ~(seg->commonpagesize - 1)))
6361 && first + last <= seg->commonpagesize)
6362 {
6363 seg->phase = exp_seg_adjust;
6364 return true;
6365 }
6366
6367 seg->phase = exp_seg_done;
6368 return false;
6369 }
6370
6371 static bfd_vma
6372 lang_size_relro_segment_1 (void)
6373 {
6374 seg_align_type *seg = &expld.dataseg;
6375 bfd_vma relro_end, desired_end;
6376 asection *sec;
6377
6378 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6379 relro_end = (seg->relro_end + seg->relropagesize - 1) & -seg->relropagesize;
6380
6381 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6382 desired_end = relro_end - seg->relro_offset;
6383
6384 /* For sections in the relro segment.. */
6385 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6386 if ((sec->flags & SEC_ALLOC) != 0
6387 && sec->vma >= seg->base
6388 && sec->vma < seg->relro_end - seg->relro_offset)
6389 {
6390 /* Where do we want to put this section so that it ends as
6391 desired? */
6392 bfd_vma start, end, bump;
6393
6394 end = start = sec->vma;
6395 if (!IS_TBSS (sec))
6396 end += TO_ADDR (sec->size);
6397 bump = desired_end - end;
6398 /* We'd like to increase START by BUMP, but we must heed
6399 alignment so the increase might be less than optimum. */
6400 start += bump;
6401 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6402 /* This is now the desired end for the previous section. */
6403 desired_end = start;
6404 }
6405
6406 seg->phase = exp_seg_relro_adjust;
6407 ASSERT (desired_end >= seg->base);
6408 seg->base = desired_end;
6409 return relro_end;
6410 }
6411
6412 static bool
6413 lang_size_relro_segment (bool *relax, bool check_regions)
6414 {
6415 bool do_reset = false;
6416
6417 if (link_info.relro && expld.dataseg.relro_end)
6418 {
6419 bfd_vma data_initial_base = expld.dataseg.base;
6420 bfd_vma data_relro_end = lang_size_relro_segment_1 ();
6421
6422 lang_reset_memory_regions ();
6423 one_lang_size_sections_pass (relax, check_regions);
6424
6425 /* Assignments to dot, or to output section address in a user
6426 script have increased padding over the original. Revert. */
6427 if (expld.dataseg.relro_end > data_relro_end)
6428 {
6429 expld.dataseg.base = data_initial_base;
6430 do_reset = true;
6431 }
6432 }
6433 else if (lang_size_segment ())
6434 do_reset = true;
6435
6436 return do_reset;
6437 }
6438
6439 void
6440 lang_size_sections (bool *relax, bool check_regions)
6441 {
6442 expld.phase = lang_allocating_phase_enum;
6443 expld.dataseg.phase = exp_seg_none;
6444
6445 one_lang_size_sections_pass (relax, check_regions);
6446
6447 if (expld.dataseg.phase != exp_seg_end_seen)
6448 expld.dataseg.phase = exp_seg_done;
6449
6450 if (expld.dataseg.phase == exp_seg_end_seen)
6451 {
6452 bool do_reset
6453 = lang_size_relro_segment (relax, check_regions);
6454
6455 if (do_reset)
6456 {
6457 lang_reset_memory_regions ();
6458 one_lang_size_sections_pass (relax, check_regions);
6459 }
6460
6461 if (link_info.relro && expld.dataseg.relro_end)
6462 {
6463 link_info.relro_start = expld.dataseg.base;
6464 link_info.relro_end = expld.dataseg.relro_end;
6465 }
6466 }
6467 }
6468
6469 static lang_output_section_statement_type *current_section;
6470 static lang_assignment_statement_type *current_assign;
6471 static bool prefer_next_section;
6472
6473 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6474
6475 static bfd_vma
6476 lang_do_assignments_1 (lang_statement_union_type *s,
6477 lang_output_section_statement_type *current_os,
6478 fill_type *fill,
6479 bfd_vma dot,
6480 bool *found_end)
6481 {
6482 for (; s != NULL; s = s->header.next)
6483 {
6484 switch (s->header.type)
6485 {
6486 case lang_constructors_statement_enum:
6487 dot = lang_do_assignments_1 (constructor_list.head,
6488 current_os, fill, dot, found_end);
6489 break;
6490
6491 case lang_output_section_statement_enum:
6492 {
6493 lang_output_section_statement_type *os;
6494 bfd_vma newdot;
6495
6496 os = &(s->output_section_statement);
6497 os->after_end = *found_end;
6498 init_opb (os->bfd_section);
6499 newdot = dot;
6500 if (os->bfd_section != NULL)
6501 {
6502 if (!os->ignored && (os->bfd_section->flags & SEC_ALLOC) != 0)
6503 {
6504 current_section = os;
6505 prefer_next_section = false;
6506 }
6507 newdot = os->bfd_section->vma;
6508 }
6509 newdot = lang_do_assignments_1 (os->children.head,
6510 os, os->fill, newdot, found_end);
6511 if (!os->ignored)
6512 {
6513 if (os->bfd_section != NULL)
6514 {
6515 newdot = os->bfd_section->vma;
6516
6517 /* .tbss sections effectively have zero size. */
6518 if (!IS_TBSS (os->bfd_section)
6519 || bfd_link_relocatable (&link_info))
6520 newdot += TO_ADDR (os->bfd_section->size);
6521
6522 if (os->update_dot_tree != NULL)
6523 exp_fold_tree (os->update_dot_tree,
6524 bfd_abs_section_ptr, &newdot);
6525 }
6526 dot = newdot;
6527 }
6528 }
6529 break;
6530
6531 case lang_wild_statement_enum:
6532
6533 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6534 current_os, fill, dot, found_end);
6535 break;
6536
6537 case lang_object_symbols_statement_enum:
6538 case lang_output_statement_enum:
6539 case lang_target_statement_enum:
6540 break;
6541
6542 case lang_data_statement_enum:
6543 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6544 if (expld.result.valid_p)
6545 {
6546 s->data_statement.value = expld.result.value;
6547 if (expld.result.section != NULL)
6548 s->data_statement.value += expld.result.section->vma;
6549 }
6550 else if (expld.phase == lang_final_phase_enum)
6551 einfo (_("%F%P: invalid data statement\n"));
6552 {
6553 unsigned int size;
6554 switch (s->data_statement.type)
6555 {
6556 default:
6557 abort ();
6558 case QUAD:
6559 case SQUAD:
6560 size = QUAD_SIZE;
6561 break;
6562 case LONG:
6563 size = LONG_SIZE;
6564 break;
6565 case SHORT:
6566 size = SHORT_SIZE;
6567 break;
6568 case BYTE:
6569 size = BYTE_SIZE;
6570 break;
6571 }
6572 if (size < TO_SIZE ((unsigned) 1))
6573 size = TO_SIZE ((unsigned) 1);
6574 dot += TO_ADDR (size);
6575 }
6576 break;
6577
6578 case lang_reloc_statement_enum:
6579 exp_fold_tree (s->reloc_statement.addend_exp,
6580 bfd_abs_section_ptr, &dot);
6581 if (expld.result.valid_p)
6582 s->reloc_statement.addend_value = expld.result.value;
6583 else if (expld.phase == lang_final_phase_enum)
6584 einfo (_("%F%P: invalid reloc statement\n"));
6585 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6586 break;
6587
6588 case lang_input_section_enum:
6589 {
6590 asection *in = s->input_section.section;
6591
6592 if ((in->flags & SEC_EXCLUDE) == 0)
6593 dot += TO_ADDR (in->size);
6594 }
6595 break;
6596
6597 case lang_input_statement_enum:
6598 break;
6599
6600 case lang_fill_statement_enum:
6601 fill = s->fill_statement.fill;
6602 break;
6603
6604 case lang_assignment_statement_enum:
6605 current_assign = &s->assignment_statement;
6606 if (current_assign->exp->type.node_class != etree_assert)
6607 {
6608 const char *p = current_assign->exp->assign.dst;
6609
6610 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6611 prefer_next_section = true;
6612
6613 while (*p == '_')
6614 ++p;
6615 if (strcmp (p, "end") == 0)
6616 *found_end = true;
6617 }
6618 exp_fold_tree (s->assignment_statement.exp,
6619 (current_os->bfd_section != NULL
6620 ? current_os->bfd_section : bfd_und_section_ptr),
6621 &dot);
6622 break;
6623
6624 case lang_padding_statement_enum:
6625 dot += TO_ADDR (s->padding_statement.size);
6626 break;
6627
6628 case lang_group_statement_enum:
6629 dot = lang_do_assignments_1 (s->group_statement.children.head,
6630 current_os, fill, dot, found_end);
6631 break;
6632
6633 case lang_insert_statement_enum:
6634 break;
6635
6636 case lang_address_statement_enum:
6637 break;
6638
6639 default:
6640 FAIL ();
6641 break;
6642 }
6643 }
6644 return dot;
6645 }
6646
6647 void
6648 lang_do_assignments (lang_phase_type phase)
6649 {
6650 bool found_end = false;
6651
6652 current_section = NULL;
6653 prefer_next_section = false;
6654 expld.phase = phase;
6655 lang_statement_iteration++;
6656 lang_do_assignments_1 (statement_list.head,
6657 abs_output_section, NULL, 0, &found_end);
6658 }
6659
6660 /* For an assignment statement outside of an output section statement,
6661 choose the best of neighbouring output sections to use for values
6662 of "dot". */
6663
6664 asection *
6665 section_for_dot (void)
6666 {
6667 asection *s;
6668
6669 /* Assignments belong to the previous output section, unless there
6670 has been an assignment to "dot", in which case following
6671 assignments belong to the next output section. (The assumption
6672 is that an assignment to "dot" is setting up the address for the
6673 next output section.) Except that past the assignment to "_end"
6674 we always associate with the previous section. This exception is
6675 for targets like SH that define an alloc .stack or other
6676 weirdness after non-alloc sections. */
6677 if (current_section == NULL || prefer_next_section)
6678 {
6679 lang_statement_union_type *stmt;
6680 lang_output_section_statement_type *os;
6681
6682 for (stmt = (lang_statement_union_type *) current_assign;
6683 stmt != NULL;
6684 stmt = stmt->header.next)
6685 if (stmt->header.type == lang_output_section_statement_enum)
6686 break;
6687
6688 os = stmt ? &stmt->output_section_statement : NULL;
6689 while (os != NULL
6690 && !os->after_end
6691 && (os->bfd_section == NULL
6692 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6693 || bfd_section_removed_from_list (link_info.output_bfd,
6694 os->bfd_section)))
6695 os = os->next;
6696
6697 if (current_section == NULL || os == NULL || !os->after_end)
6698 {
6699 if (os != NULL)
6700 s = os->bfd_section;
6701 else
6702 s = link_info.output_bfd->section_last;
6703 while (s != NULL
6704 && ((s->flags & SEC_ALLOC) == 0
6705 || (s->flags & SEC_THREAD_LOCAL) != 0))
6706 s = s->prev;
6707 if (s != NULL)
6708 return s;
6709
6710 return bfd_abs_section_ptr;
6711 }
6712 }
6713
6714 s = current_section->bfd_section;
6715
6716 /* The section may have been stripped. */
6717 while (s != NULL
6718 && ((s->flags & SEC_EXCLUDE) != 0
6719 || (s->flags & SEC_ALLOC) == 0
6720 || (s->flags & SEC_THREAD_LOCAL) != 0
6721 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6722 s = s->prev;
6723 if (s == NULL)
6724 s = link_info.output_bfd->sections;
6725 while (s != NULL
6726 && ((s->flags & SEC_ALLOC) == 0
6727 || (s->flags & SEC_THREAD_LOCAL) != 0))
6728 s = s->next;
6729 if (s != NULL)
6730 return s;
6731
6732 return bfd_abs_section_ptr;
6733 }
6734
6735 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6736
6737 static struct bfd_link_hash_entry **start_stop_syms;
6738 static size_t start_stop_count = 0;
6739 static size_t start_stop_alloc = 0;
6740
6741 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6742 to start_stop_syms. */
6743
6744 static void
6745 lang_define_start_stop (const char *symbol, asection *sec)
6746 {
6747 struct bfd_link_hash_entry *h;
6748
6749 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6750 if (h != NULL)
6751 {
6752 if (start_stop_count == start_stop_alloc)
6753 {
6754 start_stop_alloc = 2 * start_stop_alloc + 10;
6755 start_stop_syms
6756 = xrealloc (start_stop_syms,
6757 start_stop_alloc * sizeof (*start_stop_syms));
6758 }
6759 start_stop_syms[start_stop_count++] = h;
6760 }
6761 }
6762
6763 /* Check for input sections whose names match references to
6764 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6765 preliminary definitions. */
6766
6767 static void
6768 lang_init_start_stop (void)
6769 {
6770 bfd *abfd;
6771 asection *s;
6772 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6773
6774 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6775 for (s = abfd->sections; s != NULL; s = s->next)
6776 {
6777 const char *ps;
6778 const char *secname = s->name;
6779
6780 for (ps = secname; *ps != '\0'; ps++)
6781 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6782 break;
6783 if (*ps == '\0')
6784 {
6785 char *symbol = (char *) xmalloc (10 + strlen (secname));
6786
6787 symbol[0] = leading_char;
6788 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6789 lang_define_start_stop (symbol, s);
6790
6791 symbol[1] = leading_char;
6792 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6793 lang_define_start_stop (symbol + 1, s);
6794
6795 free (symbol);
6796 }
6797 }
6798 }
6799
6800 /* Iterate over start_stop_syms. */
6801
6802 static void
6803 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6804 {
6805 size_t i;
6806
6807 for (i = 0; i < start_stop_count; ++i)
6808 func (start_stop_syms[i]);
6809 }
6810
6811 /* __start and __stop symbols are only supposed to be defined by the
6812 linker for orphan sections, but we now extend that to sections that
6813 map to an output section of the same name. The symbols were
6814 defined early for --gc-sections, before we mapped input to output
6815 sections, so undo those that don't satisfy this rule. */
6816
6817 static void
6818 undef_start_stop (struct bfd_link_hash_entry *h)
6819 {
6820 if (h->ldscript_def)
6821 return;
6822
6823 if (h->u.def.section->output_section == NULL
6824 || h->u.def.section->output_section->owner != link_info.output_bfd
6825 || strcmp (h->u.def.section->name,
6826 h->u.def.section->output_section->name) != 0)
6827 {
6828 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6829 h->u.def.section->name);
6830 if (sec != NULL)
6831 {
6832 /* When there are more than one input sections with the same
6833 section name, SECNAME, linker picks the first one to define
6834 __start_SECNAME and __stop_SECNAME symbols. When the first
6835 input section is removed by comdat group, we need to check
6836 if there is still an output section with section name
6837 SECNAME. */
6838 asection *i;
6839 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6840 if (strcmp (h->u.def.section->name, i->name) == 0)
6841 {
6842 h->u.def.section = i;
6843 return;
6844 }
6845 }
6846 h->type = bfd_link_hash_undefined;
6847 h->u.undef.abfd = NULL;
6848 if (is_elf_hash_table (link_info.hash))
6849 {
6850 const struct elf_backend_data *bed;
6851 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
6852 unsigned int was_forced = eh->forced_local;
6853
6854 bed = get_elf_backend_data (link_info.output_bfd);
6855 (*bed->elf_backend_hide_symbol) (&link_info, eh, true);
6856 if (!eh->ref_regular_nonweak)
6857 h->type = bfd_link_hash_undefweak;
6858 eh->def_regular = 0;
6859 eh->forced_local = was_forced;
6860 }
6861 }
6862 }
6863
6864 static void
6865 lang_undef_start_stop (void)
6866 {
6867 foreach_start_stop (undef_start_stop);
6868 }
6869
6870 /* Check for output sections whose names match references to
6871 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6872 preliminary definitions. */
6873
6874 static void
6875 lang_init_startof_sizeof (void)
6876 {
6877 asection *s;
6878
6879 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6880 {
6881 const char *secname = s->name;
6882 char *symbol = (char *) xmalloc (10 + strlen (secname));
6883
6884 sprintf (symbol, ".startof.%s", secname);
6885 lang_define_start_stop (symbol, s);
6886
6887 memcpy (symbol + 1, ".size", 5);
6888 lang_define_start_stop (symbol + 1, s);
6889 free (symbol);
6890 }
6891 }
6892
6893 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6894
6895 static void
6896 set_start_stop (struct bfd_link_hash_entry *h)
6897 {
6898 if (h->ldscript_def
6899 || h->type != bfd_link_hash_defined)
6900 return;
6901
6902 if (h->root.string[0] == '.')
6903 {
6904 /* .startof. or .sizeof. symbol.
6905 .startof. already has final value. */
6906 if (h->root.string[2] == 'i')
6907 {
6908 /* .sizeof. */
6909 h->u.def.value = TO_ADDR (h->u.def.section->size);
6910 h->u.def.section = bfd_abs_section_ptr;
6911 }
6912 }
6913 else
6914 {
6915 /* __start or __stop symbol. */
6916 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6917
6918 h->u.def.section = h->u.def.section->output_section;
6919 if (h->root.string[4 + has_lead] == 'o')
6920 {
6921 /* __stop_ */
6922 h->u.def.value = TO_ADDR (h->u.def.section->size);
6923 }
6924 }
6925 }
6926
6927 static void
6928 lang_finalize_start_stop (void)
6929 {
6930 foreach_start_stop (set_start_stop);
6931 }
6932
6933 static void
6934 lang_symbol_tweaks (void)
6935 {
6936 /* Give initial values for __start and __stop symbols, so that ELF
6937 gc_sections will keep sections referenced by these symbols. Must
6938 be done before lang_do_assignments. */
6939 if (config.build_constructors)
6940 lang_init_start_stop ();
6941
6942 /* Make __ehdr_start hidden, and set def_regular even though it is
6943 likely undefined at this stage. For lang_check_relocs. */
6944 if (is_elf_hash_table (link_info.hash)
6945 && !bfd_link_relocatable (&link_info))
6946 {
6947 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
6948 bfd_link_hash_lookup (link_info.hash, "__ehdr_start",
6949 false, false, true);
6950
6951 /* Only adjust the export class if the symbol was referenced
6952 and not defined, otherwise leave it alone. */
6953 if (h != NULL
6954 && (h->root.type == bfd_link_hash_new
6955 || h->root.type == bfd_link_hash_undefined
6956 || h->root.type == bfd_link_hash_undefweak
6957 || h->root.type == bfd_link_hash_common))
6958 {
6959 const struct elf_backend_data *bed;
6960 bed = get_elf_backend_data (link_info.output_bfd);
6961 (*bed->elf_backend_hide_symbol) (&link_info, h, true);
6962 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
6963 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6964 h->def_regular = 1;
6965 h->root.linker_def = 1;
6966 h->root.rel_from_abs = 1;
6967 }
6968 }
6969 }
6970
6971 static void
6972 lang_end (void)
6973 {
6974 struct bfd_link_hash_entry *h;
6975 bool warn;
6976
6977 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6978 || bfd_link_dll (&link_info))
6979 warn = entry_from_cmdline;
6980 else
6981 warn = true;
6982
6983 /* Force the user to specify a root when generating a relocatable with
6984 --gc-sections, unless --gc-keep-exported was also given. */
6985 if (bfd_link_relocatable (&link_info)
6986 && link_info.gc_sections
6987 && !link_info.gc_keep_exported)
6988 {
6989 struct bfd_sym_chain *sym;
6990
6991 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
6992 {
6993 h = bfd_link_hash_lookup (link_info.hash, sym->name,
6994 false, false, false);
6995 if (h != NULL
6996 && (h->type == bfd_link_hash_defined
6997 || h->type == bfd_link_hash_defweak)
6998 && !bfd_is_const_section (h->u.def.section))
6999 break;
7000 }
7001 if (!sym)
7002 einfo (_("%F%P: --gc-sections requires a defined symbol root "
7003 "specified by -e or -u\n"));
7004 }
7005
7006 if (entry_symbol.name == NULL)
7007 {
7008 /* No entry has been specified. Look for the default entry, but
7009 don't warn if we don't find it. */
7010 entry_symbol.name = entry_symbol_default;
7011 warn = false;
7012 }
7013
7014 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
7015 false, false, true);
7016 if (h != NULL
7017 && (h->type == bfd_link_hash_defined
7018 || h->type == bfd_link_hash_defweak)
7019 && h->u.def.section->output_section != NULL)
7020 {
7021 bfd_vma val;
7022
7023 val = (h->u.def.value
7024 + bfd_section_vma (h->u.def.section->output_section)
7025 + h->u.def.section->output_offset);
7026 if (!bfd_set_start_address (link_info.output_bfd, val))
7027 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
7028 }
7029 else
7030 {
7031 bfd_vma val;
7032 const char *send;
7033
7034 /* We couldn't find the entry symbol. Try parsing it as a
7035 number. */
7036 val = bfd_scan_vma (entry_symbol.name, &send, 0);
7037 if (*send == '\0')
7038 {
7039 if (!bfd_set_start_address (link_info.output_bfd, val))
7040 einfo (_("%F%P: can't set start address\n"));
7041 }
7042 /* BZ 2004952: Only use the start of the entry section for executables. */
7043 else if bfd_link_executable (&link_info)
7044 {
7045 asection *ts;
7046
7047 /* Can't find the entry symbol, and it's not a number. Use
7048 the first address in the text section. */
7049 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
7050 if (ts != NULL)
7051 {
7052 if (warn)
7053 einfo (_("%P: warning: cannot find entry symbol %s;"
7054 " defaulting to %V\n"),
7055 entry_symbol.name,
7056 bfd_section_vma (ts));
7057 if (!bfd_set_start_address (link_info.output_bfd,
7058 bfd_section_vma (ts)))
7059 einfo (_("%F%P: can't set start address\n"));
7060 }
7061 else
7062 {
7063 if (warn)
7064 einfo (_("%P: warning: cannot find entry symbol %s;"
7065 " not setting start address\n"),
7066 entry_symbol.name);
7067 }
7068 }
7069 else
7070 {
7071 if (warn)
7072 einfo (_("%P: warning: cannot find entry symbol %s;"
7073 " not setting start address\n"),
7074 entry_symbol.name);
7075 }
7076 }
7077 }
7078
7079 /* This is a small function used when we want to ignore errors from
7080 BFD. */
7081
7082 static void
7083 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
7084 va_list ap ATTRIBUTE_UNUSED)
7085 {
7086 /* Don't do anything. */
7087 }
7088
7089 /* Check that the architecture of all the input files is compatible
7090 with the output file. Also call the backend to let it do any
7091 other checking that is needed. */
7092
7093 static void
7094 lang_check (void)
7095 {
7096 lang_input_statement_type *file;
7097 bfd *input_bfd;
7098 const bfd_arch_info_type *compatible;
7099
7100 for (file = (void *) file_chain.head;
7101 file != NULL;
7102 file = file->next)
7103 {
7104 #if BFD_SUPPORTS_PLUGINS
7105 /* Don't check format of files claimed by plugin. */
7106 if (file->flags.claimed)
7107 continue;
7108 #endif /* BFD_SUPPORTS_PLUGINS */
7109 input_bfd = file->the_bfd;
7110 compatible
7111 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7112 command_line.accept_unknown_input_arch);
7113
7114 /* In general it is not possible to perform a relocatable
7115 link between differing object formats when the input
7116 file has relocations, because the relocations in the
7117 input format may not have equivalent representations in
7118 the output format (and besides BFD does not translate
7119 relocs for other link purposes than a final link). */
7120 if (!file->flags.just_syms
7121 && (bfd_link_relocatable (&link_info)
7122 || link_info.emitrelocations)
7123 && (compatible == NULL
7124 || (bfd_get_flavour (input_bfd)
7125 != bfd_get_flavour (link_info.output_bfd)))
7126 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7127 {
7128 einfo (_("%F%P: relocatable linking with relocations from"
7129 " format %s (%pB) to format %s (%pB) is not supported\n"),
7130 bfd_get_target (input_bfd), input_bfd,
7131 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7132 /* einfo with %F exits. */
7133 }
7134
7135 if (compatible == NULL)
7136 {
7137 if (command_line.warn_mismatch)
7138 einfo (_("%X%P: %s architecture of input file `%pB'"
7139 " is incompatible with %s output\n"),
7140 bfd_printable_name (input_bfd), input_bfd,
7141 bfd_printable_name (link_info.output_bfd));
7142 }
7143
7144 /* If the input bfd has no contents, it shouldn't set the
7145 private data of the output bfd. */
7146 else if (!file->flags.just_syms
7147 && ((input_bfd->flags & DYNAMIC) != 0
7148 || bfd_count_sections (input_bfd) != 0))
7149 {
7150 bfd_error_handler_type pfn = NULL;
7151
7152 /* If we aren't supposed to warn about mismatched input
7153 files, temporarily set the BFD error handler to a
7154 function which will do nothing. We still want to call
7155 bfd_merge_private_bfd_data, since it may set up
7156 information which is needed in the output file. */
7157 if (!command_line.warn_mismatch)
7158 pfn = bfd_set_error_handler (ignore_bfd_errors);
7159 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7160 {
7161 if (command_line.warn_mismatch)
7162 einfo (_("%X%P: failed to merge target specific data"
7163 " of file %pB\n"), input_bfd);
7164 }
7165 if (!command_line.warn_mismatch)
7166 bfd_set_error_handler (pfn);
7167 }
7168 }
7169 }
7170
7171 /* Look through all the global common symbols and attach them to the
7172 correct section. The -sort-common command line switch may be used
7173 to roughly sort the entries by alignment. */
7174
7175 static void
7176 lang_common (void)
7177 {
7178 if (link_info.inhibit_common_definition)
7179 return;
7180 if (bfd_link_relocatable (&link_info)
7181 && !command_line.force_common_definition)
7182 return;
7183
7184 if (!config.sort_common)
7185 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7186 else
7187 {
7188 unsigned int power;
7189
7190 if (config.sort_common == sort_descending)
7191 {
7192 for (power = 4; power > 0; power--)
7193 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7194
7195 power = 0;
7196 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7197 }
7198 else
7199 {
7200 for (power = 0; power <= 4; power++)
7201 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7202
7203 power = (unsigned int) -1;
7204 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7205 }
7206 }
7207 }
7208
7209 /* Place one common symbol in the correct section. */
7210
7211 static bool
7212 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7213 {
7214 unsigned int power_of_two;
7215 bfd_vma size;
7216 asection *section;
7217
7218 if (h->type != bfd_link_hash_common)
7219 return true;
7220
7221 size = h->u.c.size;
7222 power_of_two = h->u.c.p->alignment_power;
7223
7224 if (config.sort_common == sort_descending
7225 && power_of_two < *(unsigned int *) info)
7226 return true;
7227 else if (config.sort_common == sort_ascending
7228 && power_of_two > *(unsigned int *) info)
7229 return true;
7230
7231 section = h->u.c.p->section;
7232 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7233 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7234 h->root.string);
7235
7236 if (config.map_file != NULL)
7237 {
7238 static bool header_printed;
7239 int len;
7240 char *name;
7241 char buf[32];
7242
7243 if (!header_printed)
7244 {
7245 minfo (_("\nAllocating common symbols\n"));
7246 minfo (_("Common symbol size file\n\n"));
7247 header_printed = true;
7248 }
7249
7250 name = bfd_demangle (link_info.output_bfd, h->root.string,
7251 DMGL_ANSI | DMGL_PARAMS);
7252 if (name == NULL)
7253 {
7254 minfo ("%s", h->root.string);
7255 len = strlen (h->root.string);
7256 }
7257 else
7258 {
7259 minfo ("%s", name);
7260 len = strlen (name);
7261 free (name);
7262 }
7263
7264 if (len >= 19)
7265 {
7266 print_nl ();
7267 len = 0;
7268 }
7269
7270 sprintf (buf, "%" PRIx64, (uint64_t) size);
7271 fprintf (config.map_file, "%*s0x%-16s", 20 - len, "", buf);
7272
7273 minfo ("%pB\n", section->owner);
7274 }
7275
7276 return true;
7277 }
7278
7279 /* Handle a single orphan section S, placing the orphan into an appropriate
7280 output section. The effects of the --orphan-handling command line
7281 option are handled here. */
7282
7283 static void
7284 ldlang_place_orphan (asection *s)
7285 {
7286 if (config.orphan_handling == orphan_handling_discard)
7287 {
7288 lang_output_section_statement_type *os;
7289 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7290 if (os->addr_tree == NULL
7291 && (bfd_link_relocatable (&link_info)
7292 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7293 os->addr_tree = exp_intop (0);
7294 lang_add_section (&os->children, s, NULL, NULL, os);
7295 }
7296 else
7297 {
7298 lang_output_section_statement_type *os;
7299 const char *name = s->name;
7300 int constraint = 0;
7301
7302 if (config.orphan_handling == orphan_handling_error)
7303 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7304 s, s->owner);
7305
7306 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7307 constraint = SPECIAL;
7308
7309 os = ldemul_place_orphan (s, name, constraint);
7310 if (os == NULL)
7311 {
7312 os = lang_output_section_statement_lookup (name, constraint, 1);
7313 if (os->addr_tree == NULL
7314 && (bfd_link_relocatable (&link_info)
7315 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7316 os->addr_tree = exp_intop (0);
7317 lang_add_section (&os->children, s, NULL, NULL, os);
7318 }
7319
7320 if (config.orphan_handling == orphan_handling_warn)
7321 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7322 "placed in section `%s'\n"),
7323 s, s->owner, os->name);
7324 }
7325 }
7326
7327 /* Run through the input files and ensure that every input section has
7328 somewhere to go. If one is found without a destination then create
7329 an input request and place it into the statement tree. */
7330
7331 static void
7332 lang_place_orphans (void)
7333 {
7334 LANG_FOR_EACH_INPUT_STATEMENT (file)
7335 {
7336 asection *s;
7337
7338 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7339 {
7340 if (s->output_section == NULL)
7341 {
7342 /* This section of the file is not attached, root
7343 around for a sensible place for it to go. */
7344
7345 if (file->flags.just_syms)
7346 bfd_link_just_syms (file->the_bfd, s, &link_info);
7347 else if (lang_discard_section_p (s))
7348 s->output_section = bfd_abs_section_ptr;
7349 else if (strcmp (s->name, "COMMON") == 0)
7350 {
7351 /* This is a lonely common section which must have
7352 come from an archive. We attach to the section
7353 with the wildcard. */
7354 if (!bfd_link_relocatable (&link_info)
7355 || command_line.force_common_definition)
7356 {
7357 if (default_common_section == NULL)
7358 default_common_section
7359 = lang_output_section_statement_lookup (".bss", 0, 1);
7360 lang_add_section (&default_common_section->children, s,
7361 NULL, NULL, default_common_section);
7362 }
7363 }
7364 else
7365 ldlang_place_orphan (s);
7366 }
7367 }
7368 }
7369 }
7370
7371 void
7372 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7373 {
7374 flagword *ptr_flags;
7375
7376 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7377
7378 while (*flags)
7379 {
7380 switch (*flags)
7381 {
7382 /* PR 17900: An exclamation mark in the attributes reverses
7383 the sense of any of the attributes that follow. */
7384 case '!':
7385 invert = !invert;
7386 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7387 break;
7388
7389 case 'A': case 'a':
7390 *ptr_flags |= SEC_ALLOC;
7391 break;
7392
7393 case 'R': case 'r':
7394 *ptr_flags |= SEC_READONLY;
7395 break;
7396
7397 case 'W': case 'w':
7398 *ptr_flags |= SEC_DATA;
7399 break;
7400
7401 case 'X': case 'x':
7402 *ptr_flags |= SEC_CODE;
7403 break;
7404
7405 case 'L': case 'l':
7406 case 'I': case 'i':
7407 *ptr_flags |= SEC_LOAD;
7408 break;
7409
7410 default:
7411 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7412 *flags, *flags);
7413 break;
7414 }
7415 flags++;
7416 }
7417 }
7418
7419 /* Call a function on each real input file. This function will be
7420 called on an archive, but not on the elements. */
7421
7422 void
7423 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7424 {
7425 lang_input_statement_type *f;
7426
7427 for (f = (void *) input_file_chain.head;
7428 f != NULL;
7429 f = f->next_real_file)
7430 if (f->flags.real)
7431 func (f);
7432 }
7433
7434 /* Call a function on each real file. The function will be called on
7435 all the elements of an archive which are included in the link, but
7436 will not be called on the archive file itself. */
7437
7438 void
7439 lang_for_each_file (void (*func) (lang_input_statement_type *))
7440 {
7441 LANG_FOR_EACH_INPUT_STATEMENT (f)
7442 {
7443 if (f->flags.real)
7444 func (f);
7445 }
7446 }
7447
7448 void
7449 ldlang_add_file (lang_input_statement_type *entry)
7450 {
7451 lang_statement_append (&file_chain, entry, &entry->next);
7452
7453 /* The BFD linker needs to have a list of all input BFDs involved in
7454 a link. */
7455 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7456 && entry->the_bfd->link.next == NULL);
7457 ASSERT (entry->the_bfd != link_info.output_bfd);
7458
7459 *link_info.input_bfds_tail = entry->the_bfd;
7460 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7461 bfd_set_usrdata (entry->the_bfd, entry);
7462 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7463
7464 /* Look through the sections and check for any which should not be
7465 included in the link. We need to do this now, so that we can
7466 notice when the backend linker tries to report multiple
7467 definition errors for symbols which are in sections we aren't
7468 going to link. FIXME: It might be better to entirely ignore
7469 symbols which are defined in sections which are going to be
7470 discarded. This would require modifying the backend linker for
7471 each backend which might set the SEC_LINK_ONCE flag. If we do
7472 this, we should probably handle SEC_EXCLUDE in the same way. */
7473
7474 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7475 }
7476
7477 void
7478 lang_add_output (const char *name, int from_script)
7479 {
7480 /* Make -o on command line override OUTPUT in script. */
7481 if (!had_output_filename || !from_script)
7482 {
7483 output_filename = name;
7484 had_output_filename = true;
7485 }
7486 }
7487
7488 lang_output_section_statement_type *
7489 lang_enter_output_section_statement (const char *output_section_statement_name,
7490 etree_type *address_exp,
7491 enum section_type sectype,
7492 etree_type *sectype_value,
7493 etree_type *align,
7494 etree_type *subalign,
7495 etree_type *ebase,
7496 int constraint,
7497 int align_with_input)
7498 {
7499 lang_output_section_statement_type *os;
7500
7501 os = lang_output_section_statement_lookup (output_section_statement_name,
7502 constraint, 2);
7503 current_section = os;
7504
7505 if (os->addr_tree == NULL)
7506 {
7507 os->addr_tree = address_exp;
7508 }
7509 os->sectype = sectype;
7510 if (sectype == type_section || sectype == typed_readonly_section)
7511 os->sectype_value = sectype_value;
7512 else if (sectype == noload_section)
7513 os->flags = SEC_NEVER_LOAD;
7514 else
7515 os->flags = SEC_NO_FLAGS;
7516 os->block_value = 1;
7517
7518 /* Make next things chain into subchain of this. */
7519 push_stat_ptr (&os->children);
7520
7521 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7522 if (os->align_lma_with_input && align != NULL)
7523 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7524 NULL);
7525
7526 os->subsection_alignment = subalign;
7527 os->section_alignment = align;
7528
7529 os->load_base = ebase;
7530 return os;
7531 }
7532
7533 void
7534 lang_final (void)
7535 {
7536 lang_output_statement_type *new_stmt;
7537
7538 new_stmt = new_stat (lang_output_statement, stat_ptr);
7539 new_stmt->name = output_filename;
7540 }
7541
7542 /* Reset the current counters in the regions. */
7543
7544 void
7545 lang_reset_memory_regions (void)
7546 {
7547 lang_memory_region_type *p = lang_memory_region_list;
7548 asection *o;
7549 lang_output_section_statement_type *os;
7550
7551 for (p = lang_memory_region_list; p != NULL; p = p->next)
7552 {
7553 p->current = p->origin;
7554 p->last_os = NULL;
7555 }
7556
7557 for (os = (void *) lang_os_list.head;
7558 os != NULL;
7559 os = os->next)
7560 {
7561 os->processed_vma = false;
7562 os->processed_lma = false;
7563 }
7564
7565 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7566 {
7567 /* Save the last size for possible use by bfd_relax_section. */
7568 o->rawsize = o->size;
7569 if (!(o->flags & SEC_FIXED_SIZE))
7570 o->size = 0;
7571 }
7572 }
7573
7574 /* Worker for lang_gc_sections_1. */
7575
7576 static void
7577 gc_section_callback (lang_wild_statement_type *ptr,
7578 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7579 asection *section,
7580 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7581 void *data ATTRIBUTE_UNUSED)
7582 {
7583 /* If the wild pattern was marked KEEP, the member sections
7584 should be as well. */
7585 if (ptr->keep_sections)
7586 section->flags |= SEC_KEEP;
7587 }
7588
7589 /* Iterate over sections marking them against GC. */
7590
7591 static void
7592 lang_gc_sections_1 (lang_statement_union_type *s)
7593 {
7594 for (; s != NULL; s = s->header.next)
7595 {
7596 switch (s->header.type)
7597 {
7598 case lang_wild_statement_enum:
7599 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7600 break;
7601 case lang_constructors_statement_enum:
7602 lang_gc_sections_1 (constructor_list.head);
7603 break;
7604 case lang_output_section_statement_enum:
7605 lang_gc_sections_1 (s->output_section_statement.children.head);
7606 break;
7607 case lang_group_statement_enum:
7608 lang_gc_sections_1 (s->group_statement.children.head);
7609 break;
7610 default:
7611 break;
7612 }
7613 }
7614 }
7615
7616 static void
7617 lang_gc_sections (void)
7618 {
7619 /* Keep all sections so marked in the link script. */
7620 lang_gc_sections_1 (statement_list.head);
7621
7622 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7623 the special case of .stabstr debug info. (See bfd/stabs.c)
7624 Twiddle the flag here, to simplify later linker code. */
7625 if (bfd_link_relocatable (&link_info))
7626 {
7627 LANG_FOR_EACH_INPUT_STATEMENT (f)
7628 {
7629 asection *sec;
7630 #if BFD_SUPPORTS_PLUGINS
7631 if (f->flags.claimed)
7632 continue;
7633 #endif
7634 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7635 if ((sec->flags & SEC_DEBUGGING) == 0
7636 || strcmp (sec->name, ".stabstr") != 0)
7637 sec->flags &= ~SEC_EXCLUDE;
7638 }
7639 }
7640
7641 if (link_info.gc_sections)
7642 bfd_gc_sections (link_info.output_bfd, &link_info);
7643 }
7644
7645 /* Worker for lang_find_relro_sections_1. */
7646
7647 static void
7648 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7649 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7650 asection *section,
7651 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7652 void *data)
7653 {
7654 /* Discarded, excluded and ignored sections effectively have zero
7655 size. */
7656 if (section->output_section != NULL
7657 && section->output_section->owner == link_info.output_bfd
7658 && (section->output_section->flags & SEC_EXCLUDE) == 0
7659 && !IGNORE_SECTION (section)
7660 && section->size != 0)
7661 {
7662 bool *has_relro_section = (bool *) data;
7663 *has_relro_section = true;
7664 }
7665 }
7666
7667 /* Iterate over sections for relro sections. */
7668
7669 static void
7670 lang_find_relro_sections_1 (lang_statement_union_type *s,
7671 bool *has_relro_section)
7672 {
7673 if (*has_relro_section)
7674 return;
7675
7676 for (; s != NULL; s = s->header.next)
7677 {
7678 if (s == expld.dataseg.relro_end_stat)
7679 break;
7680
7681 switch (s->header.type)
7682 {
7683 case lang_wild_statement_enum:
7684 walk_wild (&s->wild_statement,
7685 find_relro_section_callback,
7686 has_relro_section);
7687 break;
7688 case lang_constructors_statement_enum:
7689 lang_find_relro_sections_1 (constructor_list.head,
7690 has_relro_section);
7691 break;
7692 case lang_output_section_statement_enum:
7693 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7694 has_relro_section);
7695 break;
7696 case lang_group_statement_enum:
7697 lang_find_relro_sections_1 (s->group_statement.children.head,
7698 has_relro_section);
7699 break;
7700 default:
7701 break;
7702 }
7703 }
7704 }
7705
7706 static void
7707 lang_find_relro_sections (void)
7708 {
7709 bool has_relro_section = false;
7710
7711 /* Check all sections in the link script. */
7712
7713 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7714 &has_relro_section);
7715
7716 if (!has_relro_section)
7717 link_info.relro = false;
7718 }
7719
7720 /* Relax all sections until bfd_relax_section gives up. */
7721
7722 void
7723 lang_relax_sections (bool need_layout)
7724 {
7725 /* NB: Also enable relaxation to layout sections for DT_RELR. */
7726 if (RELAXATION_ENABLED || link_info.enable_dt_relr)
7727 {
7728 /* We may need more than one relaxation pass. */
7729 int i = link_info.relax_pass;
7730
7731 /* The backend can use it to determine the current pass. */
7732 link_info.relax_pass = 0;
7733
7734 while (i--)
7735 {
7736 /* Keep relaxing until bfd_relax_section gives up. */
7737 bool relax_again;
7738
7739 link_info.relax_trip = -1;
7740 do
7741 {
7742 link_info.relax_trip++;
7743
7744 /* Note: pe-dll.c does something like this also. If you find
7745 you need to change this code, you probably need to change
7746 pe-dll.c also. DJ */
7747
7748 /* Do all the assignments with our current guesses as to
7749 section sizes. */
7750 lang_do_assignments (lang_assigning_phase_enum);
7751
7752 /* We must do this after lang_do_assignments, because it uses
7753 size. */
7754 lang_reset_memory_regions ();
7755
7756 /* Perform another relax pass - this time we know where the
7757 globals are, so can make a better guess. */
7758 relax_again = false;
7759 lang_size_sections (&relax_again, false);
7760 }
7761 while (relax_again);
7762
7763 link_info.relax_pass++;
7764 }
7765 need_layout = true;
7766 }
7767
7768 if (need_layout)
7769 {
7770 /* Final extra sizing to report errors. */
7771 lang_do_assignments (lang_assigning_phase_enum);
7772 lang_reset_memory_regions ();
7773 lang_size_sections (NULL, true);
7774 }
7775 }
7776
7777 #if BFD_SUPPORTS_PLUGINS
7778 /* Find the insert point for the plugin's replacement files. We
7779 place them after the first claimed real object file, or if the
7780 first claimed object is an archive member, after the last real
7781 object file immediately preceding the archive. In the event
7782 no objects have been claimed at all, we return the first dummy
7783 object file on the list as the insert point; that works, but
7784 the callee must be careful when relinking the file_chain as it
7785 is not actually on that chain, only the statement_list and the
7786 input_file list; in that case, the replacement files must be
7787 inserted at the head of the file_chain. */
7788
7789 static lang_input_statement_type *
7790 find_replacements_insert_point (bool *before)
7791 {
7792 lang_input_statement_type *claim1, *lastobject;
7793 lastobject = (void *) input_file_chain.head;
7794 for (claim1 = (void *) file_chain.head;
7795 claim1 != NULL;
7796 claim1 = claim1->next)
7797 {
7798 if (claim1->flags.claimed)
7799 {
7800 *before = claim1->flags.claim_archive;
7801 return claim1->flags.claim_archive ? lastobject : claim1;
7802 }
7803 /* Update lastobject if this is a real object file. */
7804 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7805 lastobject = claim1;
7806 }
7807 /* No files were claimed by the plugin. Choose the last object
7808 file found on the list (maybe the first, dummy entry) as the
7809 insert point. */
7810 *before = false;
7811 return lastobject;
7812 }
7813
7814 /* Find where to insert ADD, an archive element or shared library
7815 added during a rescan. */
7816
7817 static lang_input_statement_type **
7818 find_rescan_insertion (lang_input_statement_type *add)
7819 {
7820 bfd *add_bfd = add->the_bfd;
7821 lang_input_statement_type *f;
7822 lang_input_statement_type *last_loaded = NULL;
7823 lang_input_statement_type *before = NULL;
7824 lang_input_statement_type **iter = NULL;
7825
7826 if (add_bfd->my_archive != NULL)
7827 add_bfd = add_bfd->my_archive;
7828
7829 /* First look through the input file chain, to find an object file
7830 before the one we've rescanned. Normal object files always
7831 appear on both the input file chain and the file chain, so this
7832 lets us get quickly to somewhere near the correct place on the
7833 file chain if it is full of archive elements. Archives don't
7834 appear on the file chain, but if an element has been extracted
7835 then their input_statement->next points at it. */
7836 for (f = (void *) input_file_chain.head;
7837 f != NULL;
7838 f = f->next_real_file)
7839 {
7840 if (f->the_bfd == add_bfd)
7841 {
7842 before = last_loaded;
7843 if (f->next != NULL)
7844 return &f->next->next;
7845 }
7846 if (f->the_bfd != NULL && f->next != NULL)
7847 last_loaded = f;
7848 }
7849
7850 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7851 *iter != NULL;
7852 iter = &(*iter)->next)
7853 if (!(*iter)->flags.claim_archive
7854 && (*iter)->the_bfd->my_archive == NULL)
7855 break;
7856
7857 return iter;
7858 }
7859
7860 /* Insert SRCLIST into DESTLIST after given element by chaining
7861 on FIELD as the next-pointer. (Counterintuitively does not need
7862 a pointer to the actual after-node itself, just its chain field.) */
7863
7864 static void
7865 lang_list_insert_after (lang_statement_list_type *destlist,
7866 lang_statement_list_type *srclist,
7867 lang_statement_union_type **field)
7868 {
7869 *(srclist->tail) = *field;
7870 *field = srclist->head;
7871 if (destlist->tail == field)
7872 destlist->tail = srclist->tail;
7873 }
7874
7875 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7876 was taken as a copy of it and leave them in ORIGLIST. */
7877
7878 static void
7879 lang_list_remove_tail (lang_statement_list_type *destlist,
7880 lang_statement_list_type *origlist)
7881 {
7882 union lang_statement_union **savetail;
7883 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7884 ASSERT (origlist->head == destlist->head);
7885 savetail = origlist->tail;
7886 origlist->head = *(savetail);
7887 origlist->tail = destlist->tail;
7888 destlist->tail = savetail;
7889 *savetail = NULL;
7890 }
7891
7892 static lang_statement_union_type **
7893 find_next_input_statement (lang_statement_union_type **s)
7894 {
7895 for ( ; *s; s = &(*s)->header.next)
7896 {
7897 lang_statement_union_type **t;
7898 switch ((*s)->header.type)
7899 {
7900 case lang_input_statement_enum:
7901 return s;
7902 case lang_wild_statement_enum:
7903 t = &(*s)->wild_statement.children.head;
7904 break;
7905 case lang_group_statement_enum:
7906 t = &(*s)->group_statement.children.head;
7907 break;
7908 case lang_output_section_statement_enum:
7909 t = &(*s)->output_section_statement.children.head;
7910 break;
7911 default:
7912 continue;
7913 }
7914 t = find_next_input_statement (t);
7915 if (*t)
7916 return t;
7917 }
7918 return s;
7919 }
7920 #endif /* BFD_SUPPORTS_PLUGINS */
7921
7922 /* Add NAME to the list of garbage collection entry points. */
7923
7924 void
7925 lang_add_gc_name (const char *name)
7926 {
7927 struct bfd_sym_chain *sym;
7928
7929 if (name == NULL)
7930 return;
7931
7932 sym = stat_alloc (sizeof (*sym));
7933
7934 sym->next = link_info.gc_sym_list;
7935 sym->name = name;
7936 link_info.gc_sym_list = sym;
7937 }
7938
7939 /* Check relocations. */
7940
7941 static void
7942 lang_check_relocs (void)
7943 {
7944 if (link_info.check_relocs_after_open_input)
7945 {
7946 bfd *abfd;
7947
7948 for (abfd = link_info.input_bfds;
7949 abfd != (bfd *) NULL; abfd = abfd->link.next)
7950 if (!bfd_link_check_relocs (abfd, &link_info))
7951 {
7952 /* No object output, fail return. */
7953 config.make_executable = false;
7954 /* Note: we do not abort the loop, but rather
7955 continue the scan in case there are other
7956 bad relocations to report. */
7957 }
7958 }
7959 }
7960
7961 /* Look through all output sections looking for places where we can
7962 propagate forward the lma region. */
7963
7964 static void
7965 lang_propagate_lma_regions (void)
7966 {
7967 lang_output_section_statement_type *os;
7968
7969 for (os = (void *) lang_os_list.head;
7970 os != NULL;
7971 os = os->next)
7972 {
7973 if (os->prev != NULL
7974 && os->lma_region == NULL
7975 && os->load_base == NULL
7976 && os->addr_tree == NULL
7977 && os->region == os->prev->region)
7978 os->lma_region = os->prev->lma_region;
7979 }
7980 }
7981
7982 void
7983 lang_process (void)
7984 {
7985 /* Finalize dynamic list. */
7986 if (link_info.dynamic_list)
7987 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7988
7989 current_target = default_target;
7990
7991 /* Open the output file. */
7992 lang_for_each_statement (ldlang_open_output);
7993 init_opb (NULL);
7994
7995 ldemul_create_output_section_statements ();
7996
7997 /* Add to the hash table all undefineds on the command line. */
7998 lang_place_undefineds ();
7999
8000 if (!bfd_section_already_linked_table_init ())
8001 einfo (_("%F%P: can not create hash table: %E\n"));
8002
8003 /* A first pass through the memory regions ensures that if any region
8004 references a symbol for its origin or length then this symbol will be
8005 added to the symbol table. Having these symbols in the symbol table
8006 means that when we call open_input_bfds PROVIDE statements will
8007 trigger to provide any needed symbols. The regions origins and
8008 lengths are not assigned as a result of this call. */
8009 lang_do_memory_regions (false);
8010
8011 /* Create a bfd for each input file. */
8012 current_target = default_target;
8013 lang_statement_iteration++;
8014 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
8015
8016 /* Now that open_input_bfds has processed assignments and provide
8017 statements we can give values to symbolic origin/length now. */
8018 lang_do_memory_regions (true);
8019
8020 #if BFD_SUPPORTS_PLUGINS
8021 if (link_info.lto_plugin_active)
8022 {
8023 lang_statement_list_type added;
8024 lang_statement_list_type files, inputfiles;
8025
8026 ldemul_before_plugin_all_symbols_read ();
8027
8028 /* Now all files are read, let the plugin(s) decide if there
8029 are any more to be added to the link before we call the
8030 emulation's after_open hook. We create a private list of
8031 input statements for this purpose, which we will eventually
8032 insert into the global statement list after the first claimed
8033 file. */
8034 added = *stat_ptr;
8035 /* We need to manipulate all three chains in synchrony. */
8036 files = file_chain;
8037 inputfiles = input_file_chain;
8038 if (plugin_call_all_symbols_read ())
8039 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
8040 plugin_error_plugin ());
8041 link_info.lto_all_symbols_read = true;
8042 /* Open any newly added files, updating the file chains. */
8043 plugin_undefs = link_info.hash->undefs_tail;
8044 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
8045 if (plugin_undefs == link_info.hash->undefs_tail)
8046 plugin_undefs = NULL;
8047 /* Restore the global list pointer now they have all been added. */
8048 lang_list_remove_tail (stat_ptr, &added);
8049 /* And detach the fresh ends of the file lists. */
8050 lang_list_remove_tail (&file_chain, &files);
8051 lang_list_remove_tail (&input_file_chain, &inputfiles);
8052 /* Were any new files added? */
8053 if (added.head != NULL)
8054 {
8055 /* If so, we will insert them into the statement list immediately
8056 after the first input file that was claimed by the plugin,
8057 unless that file was an archive in which case it is inserted
8058 immediately before. */
8059 bool before;
8060 lang_statement_union_type **prev;
8061 plugin_insert = find_replacements_insert_point (&before);
8062 /* If a plugin adds input files without having claimed any, we
8063 don't really have a good idea where to place them. Just putting
8064 them at the start or end of the list is liable to leave them
8065 outside the crtbegin...crtend range. */
8066 ASSERT (plugin_insert != NULL);
8067 /* Splice the new statement list into the old one. */
8068 prev = &plugin_insert->header.next;
8069 if (before)
8070 {
8071 prev = find_next_input_statement (prev);
8072 if (*prev != (void *) plugin_insert->next_real_file)
8073 {
8074 /* We didn't find the expected input statement.
8075 Fall back to adding after plugin_insert. */
8076 prev = &plugin_insert->header.next;
8077 }
8078 }
8079 lang_list_insert_after (stat_ptr, &added, prev);
8080 /* Likewise for the file chains. */
8081 lang_list_insert_after (&input_file_chain, &inputfiles,
8082 (void *) &plugin_insert->next_real_file);
8083 /* We must be careful when relinking file_chain; we may need to
8084 insert the new files at the head of the list if the insert
8085 point chosen is the dummy first input file. */
8086 if (plugin_insert->filename)
8087 lang_list_insert_after (&file_chain, &files,
8088 (void *) &plugin_insert->next);
8089 else
8090 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8091
8092 /* Rescan archives in case new undefined symbols have appeared. */
8093 files = file_chain;
8094 lang_statement_iteration++;
8095 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8096 lang_list_remove_tail (&file_chain, &files);
8097 while (files.head != NULL)
8098 {
8099 lang_input_statement_type **insert;
8100 lang_input_statement_type **iter, *temp;
8101 bfd *my_arch;
8102
8103 insert = find_rescan_insertion (&files.head->input_statement);
8104 /* All elements from an archive can be added at once. */
8105 iter = &files.head->input_statement.next;
8106 my_arch = files.head->input_statement.the_bfd->my_archive;
8107 if (my_arch != NULL)
8108 for (; *iter != NULL; iter = &(*iter)->next)
8109 if ((*iter)->the_bfd->my_archive != my_arch)
8110 break;
8111 temp = *insert;
8112 *insert = &files.head->input_statement;
8113 files.head = (lang_statement_union_type *) *iter;
8114 *iter = temp;
8115 if (my_arch != NULL)
8116 {
8117 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8118 if (parent != NULL)
8119 parent->next = (lang_input_statement_type *)
8120 ((char *) iter
8121 - offsetof (lang_input_statement_type, next));
8122 }
8123 }
8124 }
8125 }
8126 #endif /* BFD_SUPPORTS_PLUGINS */
8127
8128 /* Make sure that nobody has tried to add a symbol to this list
8129 before now. */
8130 ASSERT (link_info.gc_sym_list == NULL);
8131
8132 link_info.gc_sym_list = &entry_symbol;
8133
8134 if (entry_symbol.name == NULL)
8135 {
8136 link_info.gc_sym_list = ldlang_undef_chain_list_head;
8137
8138 /* entry_symbol is normally initialied by a ENTRY definition in the
8139 linker script or the -e command line option. But if neither of
8140 these have been used, the target specific backend may still have
8141 provided an entry symbol via a call to lang_default_entry().
8142 Unfortunately this value will not be processed until lang_end()
8143 is called, long after this function has finished. So detect this
8144 case here and add the target's entry symbol to the list of starting
8145 points for garbage collection resolution. */
8146 lang_add_gc_name (entry_symbol_default);
8147 }
8148
8149 lang_add_gc_name (link_info.init_function);
8150 lang_add_gc_name (link_info.fini_function);
8151
8152 ldemul_after_open ();
8153 if (config.map_file != NULL)
8154 lang_print_asneeded ();
8155
8156 ldlang_open_ctf ();
8157
8158 bfd_section_already_linked_table_free ();
8159
8160 /* Make sure that we're not mixing architectures. We call this
8161 after all the input files have been opened, but before we do any
8162 other processing, so that any operations merge_private_bfd_data
8163 does on the output file will be known during the rest of the
8164 link. */
8165 lang_check ();
8166
8167 /* Handle .exports instead of a version script if we're told to do so. */
8168 if (command_line.version_exports_section)
8169 lang_do_version_exports_section ();
8170
8171 /* Build all sets based on the information gathered from the input
8172 files. */
8173 ldctor_build_sets ();
8174
8175 lang_symbol_tweaks ();
8176
8177 /* PR 13683: We must rerun the assignments prior to running garbage
8178 collection in order to make sure that all symbol aliases are resolved. */
8179 lang_do_assignments (lang_mark_phase_enum);
8180 expld.phase = lang_first_phase_enum;
8181
8182 /* Size up the common data. */
8183 lang_common ();
8184
8185 /* Remove unreferenced sections if asked to. */
8186 lang_gc_sections ();
8187
8188 lang_mark_undefineds ();
8189
8190 /* Check relocations. */
8191 lang_check_relocs ();
8192
8193 ldemul_after_check_relocs ();
8194
8195 /* Update wild statements. */
8196 update_wild_statements (statement_list.head);
8197
8198 /* Run through the contours of the script and attach input sections
8199 to the correct output sections. */
8200 lang_statement_iteration++;
8201 map_input_to_output_sections (statement_list.head, NULL, NULL);
8202
8203 /* Start at the statement immediately after the special abs_section
8204 output statement, so that it isn't reordered. */
8205 process_insert_statements (&lang_os_list.head->header.next);
8206
8207 ldemul_before_place_orphans ();
8208
8209 /* Find any sections not attached explicitly and handle them. */
8210 lang_place_orphans ();
8211
8212 if (!bfd_link_relocatable (&link_info))
8213 {
8214 asection *found;
8215
8216 /* Merge SEC_MERGE sections. This has to be done after GC of
8217 sections, so that GCed sections are not merged, but before
8218 assigning dynamic symbols, since removing whole input sections
8219 is hard then. */
8220 bfd_merge_sections (link_info.output_bfd, &link_info);
8221
8222 /* Look for a text section and set the readonly attribute in it. */
8223 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8224
8225 if (found != NULL)
8226 {
8227 if (config.text_read_only)
8228 found->flags |= SEC_READONLY;
8229 else
8230 found->flags &= ~SEC_READONLY;
8231 }
8232 }
8233
8234 /* Merge together CTF sections. After this, only the symtab-dependent
8235 function and data object sections need adjustment. */
8236 lang_merge_ctf ();
8237
8238 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8239 examining things laid out late, like the strtab. */
8240 lang_write_ctf (0);
8241
8242 /* Copy forward lma regions for output sections in same lma region. */
8243 lang_propagate_lma_regions ();
8244
8245 /* Defining __start/__stop symbols early for --gc-sections to work
8246 around a glibc build problem can result in these symbols being
8247 defined when they should not be. Fix them now. */
8248 if (config.build_constructors)
8249 lang_undef_start_stop ();
8250
8251 /* Define .startof./.sizeof. symbols with preliminary values before
8252 dynamic symbols are created. */
8253 if (!bfd_link_relocatable (&link_info))
8254 lang_init_startof_sizeof ();
8255
8256 /* Do anything special before sizing sections. This is where ELF
8257 and other back-ends size dynamic sections. */
8258 ldemul_before_allocation ();
8259
8260 /* We must record the program headers before we try to fix the
8261 section positions, since they will affect SIZEOF_HEADERS. */
8262 lang_record_phdrs ();
8263
8264 /* Check relro sections. */
8265 if (link_info.relro && !bfd_link_relocatable (&link_info))
8266 lang_find_relro_sections ();
8267
8268 /* Size up the sections. */
8269 lang_size_sections (NULL, !RELAXATION_ENABLED);
8270
8271 /* See if anything special should be done now we know how big
8272 everything is. This is where relaxation is done. */
8273 ldemul_after_allocation ();
8274
8275 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8276 lang_finalize_start_stop ();
8277
8278 /* Do all the assignments again, to report errors. Assignment
8279 statements are processed multiple times, updating symbols; In
8280 open_input_bfds, lang_do_assignments, and lang_size_sections.
8281 Since lang_relax_sections calls lang_do_assignments, symbols are
8282 also updated in ldemul_after_allocation. */
8283 lang_do_assignments (lang_final_phase_enum);
8284
8285 ldemul_finish ();
8286
8287 /* Convert absolute symbols to section relative. */
8288 ldexp_finalize_syms ();
8289
8290 /* Make sure that the section addresses make sense. */
8291 if (command_line.check_section_addresses)
8292 lang_check_section_addresses ();
8293
8294 /* Check any required symbols are known. */
8295 ldlang_check_require_defined_symbols ();
8296
8297 lang_end ();
8298 }
8299
8300 /* EXPORTED TO YACC */
8301
8302 void
8303 lang_add_wild (struct wildcard_spec *filespec,
8304 struct wildcard_list *section_list,
8305 bool keep_sections)
8306 {
8307 struct wildcard_list *curr, *next;
8308 lang_wild_statement_type *new_stmt;
8309
8310 /* Reverse the list as the parser puts it back to front. */
8311 for (curr = section_list, section_list = NULL;
8312 curr != NULL;
8313 section_list = curr, curr = next)
8314 {
8315 next = curr->next;
8316 curr->next = section_list;
8317 }
8318
8319 if (filespec != NULL && filespec->name != NULL)
8320 {
8321 if (strcmp (filespec->name, "*") == 0)
8322 filespec->name = NULL;
8323 else if (!wildcardp (filespec->name))
8324 lang_has_input_file = true;
8325 }
8326
8327 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8328 new_stmt->filename = NULL;
8329 new_stmt->filenames_sorted = false;
8330 new_stmt->section_flag_list = NULL;
8331 new_stmt->exclude_name_list = NULL;
8332 if (filespec != NULL)
8333 {
8334 new_stmt->filename = filespec->name;
8335 new_stmt->filenames_sorted = filespec->sorted == by_name;
8336 new_stmt->section_flag_list = filespec->section_flag_list;
8337 new_stmt->exclude_name_list = filespec->exclude_name_list;
8338 }
8339 new_stmt->section_list = section_list;
8340 new_stmt->keep_sections = keep_sections;
8341 lang_list_init (&new_stmt->children);
8342 analyze_walk_wild_section_handler (new_stmt);
8343 }
8344
8345 void
8346 lang_section_start (const char *name, etree_type *address,
8347 const segment_type *segment)
8348 {
8349 lang_address_statement_type *ad;
8350
8351 ad = new_stat (lang_address_statement, stat_ptr);
8352 ad->section_name = name;
8353 ad->address = address;
8354 ad->segment = segment;
8355 }
8356
8357 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8358 because of a -e argument on the command line, or zero if this is
8359 called by ENTRY in a linker script. Command line arguments take
8360 precedence. */
8361
8362 void
8363 lang_add_entry (const char *name, bool cmdline)
8364 {
8365 if (entry_symbol.name == NULL
8366 || cmdline
8367 || !entry_from_cmdline)
8368 {
8369 entry_symbol.name = name;
8370 entry_from_cmdline = cmdline;
8371 }
8372 }
8373
8374 /* Set the default start symbol to NAME. .em files should use this,
8375 not lang_add_entry, to override the use of "start" if neither the
8376 linker script nor the command line specifies an entry point. NAME
8377 must be permanently allocated. */
8378 void
8379 lang_default_entry (const char *name)
8380 {
8381 entry_symbol_default = name;
8382 }
8383
8384 void
8385 lang_add_target (const char *name)
8386 {
8387 lang_target_statement_type *new_stmt;
8388
8389 new_stmt = new_stat (lang_target_statement, stat_ptr);
8390 new_stmt->target = name;
8391 }
8392
8393 void
8394 lang_add_map (const char *name)
8395 {
8396 while (*name)
8397 {
8398 switch (*name)
8399 {
8400 case 'F':
8401 map_option_f = true;
8402 break;
8403 }
8404 name++;
8405 }
8406 }
8407
8408 void
8409 lang_add_fill (fill_type *fill)
8410 {
8411 lang_fill_statement_type *new_stmt;
8412
8413 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8414 new_stmt->fill = fill;
8415 }
8416
8417 void
8418 lang_add_data (int type, union etree_union *exp)
8419 {
8420 lang_data_statement_type *new_stmt;
8421
8422 new_stmt = new_stat (lang_data_statement, stat_ptr);
8423 new_stmt->exp = exp;
8424 new_stmt->type = type;
8425 }
8426
8427 /* Create a new reloc statement. RELOC is the BFD relocation type to
8428 generate. HOWTO is the corresponding howto structure (we could
8429 look this up, but the caller has already done so). SECTION is the
8430 section to generate a reloc against, or NAME is the name of the
8431 symbol to generate a reloc against. Exactly one of SECTION and
8432 NAME must be NULL. ADDEND is an expression for the addend. */
8433
8434 void
8435 lang_add_reloc (bfd_reloc_code_real_type reloc,
8436 reloc_howto_type *howto,
8437 asection *section,
8438 const char *name,
8439 union etree_union *addend)
8440 {
8441 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8442
8443 p->reloc = reloc;
8444 p->howto = howto;
8445 p->section = section;
8446 p->name = name;
8447 p->addend_exp = addend;
8448
8449 p->addend_value = 0;
8450 p->output_section = NULL;
8451 p->output_offset = 0;
8452 }
8453
8454 lang_assignment_statement_type *
8455 lang_add_assignment (etree_type *exp)
8456 {
8457 lang_assignment_statement_type *new_stmt;
8458
8459 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8460 new_stmt->exp = exp;
8461 return new_stmt;
8462 }
8463
8464 void
8465 lang_add_attribute (enum statement_enum attribute)
8466 {
8467 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8468 }
8469
8470 void
8471 lang_startup (const char *name)
8472 {
8473 if (first_file->filename != NULL)
8474 {
8475 einfo (_("%F%P: multiple STARTUP files\n"));
8476 }
8477 first_file->filename = name;
8478 first_file->local_sym_name = name;
8479 first_file->flags.real = true;
8480 }
8481
8482 void
8483 lang_float (bool maybe)
8484 {
8485 lang_float_flag = maybe;
8486 }
8487
8488
8489 /* Work out the load- and run-time regions from a script statement, and
8490 store them in *LMA_REGION and *REGION respectively.
8491
8492 MEMSPEC is the name of the run-time region, or the value of
8493 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8494 LMA_MEMSPEC is the name of the load-time region, or null if the
8495 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8496 had an explicit load address.
8497
8498 It is an error to specify both a load region and a load address. */
8499
8500 static void
8501 lang_get_regions (lang_memory_region_type **region,
8502 lang_memory_region_type **lma_region,
8503 const char *memspec,
8504 const char *lma_memspec,
8505 bool have_lma,
8506 bool have_vma)
8507 {
8508 *lma_region = lang_memory_region_lookup (lma_memspec, false);
8509
8510 /* If no runtime region or VMA has been specified, but the load region
8511 has been specified, then use the load region for the runtime region
8512 as well. */
8513 if (lma_memspec != NULL
8514 && !have_vma
8515 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8516 *region = *lma_region;
8517 else
8518 *region = lang_memory_region_lookup (memspec, false);
8519
8520 if (have_lma && lma_memspec != 0)
8521 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8522 NULL);
8523 }
8524
8525 void
8526 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8527 lang_output_section_phdr_list *phdrs,
8528 const char *lma_memspec)
8529 {
8530 lang_get_regions (&current_section->region,
8531 &current_section->lma_region,
8532 memspec, lma_memspec,
8533 current_section->load_base != NULL,
8534 current_section->addr_tree != NULL);
8535
8536 current_section->fill = fill;
8537 current_section->phdrs = phdrs;
8538 pop_stat_ptr ();
8539 }
8540
8541 /* Set the output format type. -oformat overrides scripts. */
8542
8543 void
8544 lang_add_output_format (const char *format,
8545 const char *big,
8546 const char *little,
8547 int from_script)
8548 {
8549 if (output_target == NULL || !from_script)
8550 {
8551 if (command_line.endian == ENDIAN_BIG
8552 && big != NULL)
8553 format = big;
8554 else if (command_line.endian == ENDIAN_LITTLE
8555 && little != NULL)
8556 format = little;
8557
8558 output_target = format;
8559 }
8560 }
8561
8562 void
8563 lang_add_insert (const char *where, int is_before)
8564 {
8565 lang_insert_statement_type *new_stmt;
8566
8567 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8568 new_stmt->where = where;
8569 new_stmt->is_before = is_before;
8570 saved_script_handle = previous_script_handle;
8571 }
8572
8573 /* Enter a group. This creates a new lang_group_statement, and sets
8574 stat_ptr to build new statements within the group. */
8575
8576 void
8577 lang_enter_group (void)
8578 {
8579 lang_group_statement_type *g;
8580
8581 g = new_stat (lang_group_statement, stat_ptr);
8582 lang_list_init (&g->children);
8583 push_stat_ptr (&g->children);
8584 }
8585
8586 /* Leave a group. This just resets stat_ptr to start writing to the
8587 regular list of statements again. Note that this will not work if
8588 groups can occur inside anything else which can adjust stat_ptr,
8589 but currently they can't. */
8590
8591 void
8592 lang_leave_group (void)
8593 {
8594 pop_stat_ptr ();
8595 }
8596
8597 /* Add a new program header. This is called for each entry in a PHDRS
8598 command in a linker script. */
8599
8600 void
8601 lang_new_phdr (const char *name,
8602 etree_type *type,
8603 bool filehdr,
8604 bool phdrs,
8605 etree_type *at,
8606 etree_type *flags)
8607 {
8608 struct lang_phdr *n, **pp;
8609 bool hdrs;
8610
8611 n = stat_alloc (sizeof (struct lang_phdr));
8612 n->next = NULL;
8613 n->name = name;
8614 n->type = exp_get_vma (type, 0, "program header type");
8615 n->filehdr = filehdr;
8616 n->phdrs = phdrs;
8617 n->at = at;
8618 n->flags = flags;
8619
8620 hdrs = n->type == 1 && (phdrs || filehdr);
8621
8622 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8623 if (hdrs
8624 && (*pp)->type == 1
8625 && !((*pp)->filehdr || (*pp)->phdrs))
8626 {
8627 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8628 " when prior PT_LOAD headers lack them\n"), NULL);
8629 hdrs = false;
8630 }
8631
8632 *pp = n;
8633 }
8634
8635 /* Record the program header information in the output BFD. FIXME: We
8636 should not be calling an ELF specific function here. */
8637
8638 static void
8639 lang_record_phdrs (void)
8640 {
8641 unsigned int alc;
8642 asection **secs;
8643 lang_output_section_phdr_list *last;
8644 struct lang_phdr *l;
8645 lang_output_section_statement_type *os;
8646
8647 alc = 10;
8648 secs = (asection **) xmalloc (alc * sizeof (asection *));
8649 last = NULL;
8650
8651 for (l = lang_phdr_list; l != NULL; l = l->next)
8652 {
8653 unsigned int c;
8654 flagword flags;
8655 bfd_vma at;
8656
8657 c = 0;
8658 for (os = (void *) lang_os_list.head;
8659 os != NULL;
8660 os = os->next)
8661 {
8662 lang_output_section_phdr_list *pl;
8663
8664 if (os->constraint < 0)
8665 continue;
8666
8667 pl = os->phdrs;
8668 if (pl != NULL)
8669 last = pl;
8670 else
8671 {
8672 if (os->sectype == noload_section
8673 || os->bfd_section == NULL
8674 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8675 continue;
8676
8677 /* Don't add orphans to PT_INTERP header. */
8678 if (l->type == 3)
8679 continue;
8680
8681 if (last == NULL)
8682 {
8683 lang_output_section_statement_type *tmp_os;
8684
8685 /* If we have not run across a section with a program
8686 header assigned to it yet, then scan forwards to find
8687 one. This prevents inconsistencies in the linker's
8688 behaviour when a script has specified just a single
8689 header and there are sections in that script which are
8690 not assigned to it, and which occur before the first
8691 use of that header. See here for more details:
8692 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8693 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8694 if (tmp_os->phdrs)
8695 {
8696 last = tmp_os->phdrs;
8697 break;
8698 }
8699 if (last == NULL)
8700 einfo (_("%F%P: no sections assigned to phdrs\n"));
8701 }
8702 pl = last;
8703 }
8704
8705 if (os->bfd_section == NULL)
8706 continue;
8707
8708 for (; pl != NULL; pl = pl->next)
8709 {
8710 if (strcmp (pl->name, l->name) == 0)
8711 {
8712 if (c >= alc)
8713 {
8714 alc *= 2;
8715 secs = (asection **) xrealloc (secs,
8716 alc * sizeof (asection *));
8717 }
8718 secs[c] = os->bfd_section;
8719 ++c;
8720 pl->used = true;
8721 }
8722 }
8723 }
8724
8725 if (l->flags == NULL)
8726 flags = 0;
8727 else
8728 flags = exp_get_vma (l->flags, 0, "phdr flags");
8729
8730 if (l->at == NULL)
8731 at = 0;
8732 else
8733 at = exp_get_vma (l->at, 0, "phdr load address");
8734
8735 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8736 l->flags != NULL, flags, l->at != NULL,
8737 at, l->filehdr, l->phdrs, c, secs))
8738 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8739 }
8740
8741 free (secs);
8742
8743 /* Make sure all the phdr assignments succeeded. */
8744 for (os = (void *) lang_os_list.head;
8745 os != NULL;
8746 os = os->next)
8747 {
8748 lang_output_section_phdr_list *pl;
8749
8750 if (os->constraint < 0
8751 || os->bfd_section == NULL)
8752 continue;
8753
8754 for (pl = os->phdrs;
8755 pl != NULL;
8756 pl = pl->next)
8757 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8758 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8759 os->name, pl->name);
8760 }
8761 }
8762
8763 /* Record a list of sections which may not be cross referenced. */
8764
8765 void
8766 lang_add_nocrossref (lang_nocrossref_type *l)
8767 {
8768 struct lang_nocrossrefs *n;
8769
8770 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8771 n->next = nocrossref_list;
8772 n->list = l;
8773 n->onlyfirst = false;
8774 nocrossref_list = n;
8775
8776 /* Set notice_all so that we get informed about all symbols. */
8777 link_info.notice_all = true;
8778 }
8779
8780 /* Record a section that cannot be referenced from a list of sections. */
8781
8782 void
8783 lang_add_nocrossref_to (lang_nocrossref_type *l)
8784 {
8785 lang_add_nocrossref (l);
8786 nocrossref_list->onlyfirst = true;
8787 }
8788 \f
8789 /* Overlay handling. We handle overlays with some static variables. */
8790
8791 /* The overlay virtual address. */
8792 static etree_type *overlay_vma;
8793 /* And subsection alignment. */
8794 static etree_type *overlay_subalign;
8795
8796 /* An expression for the maximum section size seen so far. */
8797 static etree_type *overlay_max;
8798
8799 /* A list of all the sections in this overlay. */
8800
8801 struct overlay_list {
8802 struct overlay_list *next;
8803 lang_output_section_statement_type *os;
8804 };
8805
8806 static struct overlay_list *overlay_list;
8807
8808 /* Start handling an overlay. */
8809
8810 void
8811 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8812 {
8813 /* The grammar should prevent nested overlays from occurring. */
8814 ASSERT (overlay_vma == NULL
8815 && overlay_subalign == NULL
8816 && overlay_max == NULL);
8817
8818 overlay_vma = vma_expr;
8819 overlay_subalign = subalign;
8820 }
8821
8822 /* Start a section in an overlay. We handle this by calling
8823 lang_enter_output_section_statement with the correct VMA.
8824 lang_leave_overlay sets up the LMA and memory regions. */
8825
8826 void
8827 lang_enter_overlay_section (const char *name)
8828 {
8829 struct overlay_list *n;
8830 etree_type *size;
8831
8832 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8833 0, 0, overlay_subalign, 0, 0, 0);
8834
8835 /* If this is the first section, then base the VMA of future
8836 sections on this one. This will work correctly even if `.' is
8837 used in the addresses. */
8838 if (overlay_list == NULL)
8839 overlay_vma = exp_nameop (ADDR, name);
8840
8841 /* Remember the section. */
8842 n = (struct overlay_list *) xmalloc (sizeof *n);
8843 n->os = current_section;
8844 n->next = overlay_list;
8845 overlay_list = n;
8846
8847 size = exp_nameop (SIZEOF, name);
8848
8849 /* Arrange to work out the maximum section end address. */
8850 if (overlay_max == NULL)
8851 overlay_max = size;
8852 else
8853 overlay_max = exp_binop (MAX_K, overlay_max, size);
8854 }
8855
8856 /* Finish a section in an overlay. There isn't any special to do
8857 here. */
8858
8859 void
8860 lang_leave_overlay_section (fill_type *fill,
8861 lang_output_section_phdr_list *phdrs)
8862 {
8863 const char *name;
8864 char *clean, *s2;
8865 const char *s1;
8866 char *buf;
8867
8868 name = current_section->name;
8869
8870 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8871 region and that no load-time region has been specified. It doesn't
8872 really matter what we say here, since lang_leave_overlay will
8873 override it. */
8874 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8875
8876 /* Define the magic symbols. */
8877
8878 clean = (char *) xmalloc (strlen (name) + 1);
8879 s2 = clean;
8880 for (s1 = name; *s1 != '\0'; s1++)
8881 if (ISALNUM (*s1) || *s1 == '_')
8882 *s2++ = *s1;
8883 *s2 = '\0';
8884
8885 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8886 sprintf (buf, "__load_start_%s", clean);
8887 lang_add_assignment (exp_provide (buf,
8888 exp_nameop (LOADADDR, name),
8889 false));
8890
8891 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8892 sprintf (buf, "__load_stop_%s", clean);
8893 lang_add_assignment (exp_provide (buf,
8894 exp_binop ('+',
8895 exp_nameop (LOADADDR, name),
8896 exp_nameop (SIZEOF, name)),
8897 false));
8898
8899 free (clean);
8900 }
8901
8902 /* Finish an overlay. If there are any overlay wide settings, this
8903 looks through all the sections in the overlay and sets them. */
8904
8905 void
8906 lang_leave_overlay (etree_type *lma_expr,
8907 int nocrossrefs,
8908 fill_type *fill,
8909 const char *memspec,
8910 lang_output_section_phdr_list *phdrs,
8911 const char *lma_memspec)
8912 {
8913 lang_memory_region_type *region;
8914 lang_memory_region_type *lma_region;
8915 struct overlay_list *l;
8916 lang_nocrossref_type *nocrossref;
8917
8918 lang_get_regions (&region, &lma_region,
8919 memspec, lma_memspec,
8920 lma_expr != NULL, false);
8921
8922 nocrossref = NULL;
8923
8924 /* After setting the size of the last section, set '.' to end of the
8925 overlay region. */
8926 if (overlay_list != NULL)
8927 {
8928 overlay_list->os->update_dot = 1;
8929 overlay_list->os->update_dot_tree
8930 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), false);
8931 }
8932
8933 l = overlay_list;
8934 while (l != NULL)
8935 {
8936 struct overlay_list *next;
8937
8938 if (fill != NULL && l->os->fill == NULL)
8939 l->os->fill = fill;
8940
8941 l->os->region = region;
8942 l->os->lma_region = lma_region;
8943
8944 /* The first section has the load address specified in the
8945 OVERLAY statement. The rest are worked out from that.
8946 The base address is not needed (and should be null) if
8947 an LMA region was specified. */
8948 if (l->next == 0)
8949 {
8950 l->os->load_base = lma_expr;
8951 l->os->sectype = first_overlay_section;
8952 }
8953 if (phdrs != NULL && l->os->phdrs == NULL)
8954 l->os->phdrs = phdrs;
8955
8956 if (nocrossrefs)
8957 {
8958 lang_nocrossref_type *nc;
8959
8960 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8961 nc->name = l->os->name;
8962 nc->next = nocrossref;
8963 nocrossref = nc;
8964 }
8965
8966 next = l->next;
8967 free (l);
8968 l = next;
8969 }
8970
8971 if (nocrossref != NULL)
8972 lang_add_nocrossref (nocrossref);
8973
8974 overlay_vma = NULL;
8975 overlay_list = NULL;
8976 overlay_max = NULL;
8977 overlay_subalign = NULL;
8978 }
8979 \f
8980 /* Version handling. This is only useful for ELF. */
8981
8982 /* If PREV is NULL, return first version pattern matching particular symbol.
8983 If PREV is non-NULL, return first version pattern matching particular
8984 symbol after PREV (previously returned by lang_vers_match). */
8985
8986 static struct bfd_elf_version_expr *
8987 lang_vers_match (struct bfd_elf_version_expr_head *head,
8988 struct bfd_elf_version_expr *prev,
8989 const char *sym)
8990 {
8991 const char *c_sym;
8992 const char *cxx_sym = sym;
8993 const char *java_sym = sym;
8994 struct bfd_elf_version_expr *expr = NULL;
8995 enum demangling_styles curr_style;
8996
8997 curr_style = CURRENT_DEMANGLING_STYLE;
8998 cplus_demangle_set_style (no_demangling);
8999 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
9000 if (!c_sym)
9001 c_sym = sym;
9002 cplus_demangle_set_style (curr_style);
9003
9004 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
9005 {
9006 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
9007 DMGL_PARAMS | DMGL_ANSI);
9008 if (!cxx_sym)
9009 cxx_sym = sym;
9010 }
9011 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9012 {
9013 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
9014 if (!java_sym)
9015 java_sym = sym;
9016 }
9017
9018 if (head->htab && (prev == NULL || prev->literal))
9019 {
9020 struct bfd_elf_version_expr e;
9021
9022 switch (prev ? prev->mask : 0)
9023 {
9024 case 0:
9025 if (head->mask & BFD_ELF_VERSION_C_TYPE)
9026 {
9027 e.pattern = c_sym;
9028 expr = (struct bfd_elf_version_expr *)
9029 htab_find ((htab_t) head->htab, &e);
9030 while (expr && strcmp (expr->pattern, c_sym) == 0)
9031 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
9032 goto out_ret;
9033 else
9034 expr = expr->next;
9035 }
9036 /* Fallthrough */
9037 case BFD_ELF_VERSION_C_TYPE:
9038 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
9039 {
9040 e.pattern = cxx_sym;
9041 expr = (struct bfd_elf_version_expr *)
9042 htab_find ((htab_t) head->htab, &e);
9043 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
9044 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9045 goto out_ret;
9046 else
9047 expr = expr->next;
9048 }
9049 /* Fallthrough */
9050 case BFD_ELF_VERSION_CXX_TYPE:
9051 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9052 {
9053 e.pattern = java_sym;
9054 expr = (struct bfd_elf_version_expr *)
9055 htab_find ((htab_t) head->htab, &e);
9056 while (expr && strcmp (expr->pattern, java_sym) == 0)
9057 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9058 goto out_ret;
9059 else
9060 expr = expr->next;
9061 }
9062 /* Fallthrough */
9063 default:
9064 break;
9065 }
9066 }
9067
9068 /* Finally, try the wildcards. */
9069 if (prev == NULL || prev->literal)
9070 expr = head->remaining;
9071 else
9072 expr = prev->next;
9073 for (; expr; expr = expr->next)
9074 {
9075 const char *s;
9076
9077 if (!expr->pattern)
9078 continue;
9079
9080 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9081 break;
9082
9083 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9084 s = java_sym;
9085 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9086 s = cxx_sym;
9087 else
9088 s = c_sym;
9089 if (fnmatch (expr->pattern, s, 0) == 0)
9090 break;
9091 }
9092
9093 out_ret:
9094 if (c_sym != sym)
9095 free ((char *) c_sym);
9096 if (cxx_sym != sym)
9097 free ((char *) cxx_sym);
9098 if (java_sym != sym)
9099 free ((char *) java_sym);
9100 return expr;
9101 }
9102
9103 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9104 return a pointer to the symbol name with any backslash quotes removed. */
9105
9106 static const char *
9107 realsymbol (const char *pattern)
9108 {
9109 const char *p;
9110 bool changed = false, backslash = false;
9111 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9112
9113 for (p = pattern, s = symbol; *p != '\0'; ++p)
9114 {
9115 /* It is a glob pattern only if there is no preceding
9116 backslash. */
9117 if (backslash)
9118 {
9119 /* Remove the preceding backslash. */
9120 *(s - 1) = *p;
9121 backslash = false;
9122 changed = true;
9123 }
9124 else
9125 {
9126 if (*p == '?' || *p == '*' || *p == '[')
9127 {
9128 free (symbol);
9129 return NULL;
9130 }
9131
9132 *s++ = *p;
9133 backslash = *p == '\\';
9134 }
9135 }
9136
9137 if (changed)
9138 {
9139 *s = '\0';
9140 return symbol;
9141 }
9142 else
9143 {
9144 free (symbol);
9145 return pattern;
9146 }
9147 }
9148
9149 /* This is called for each variable name or match expression. NEW_NAME is
9150 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9151 pattern to be matched against symbol names. */
9152
9153 struct bfd_elf_version_expr *
9154 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9155 const char *new_name,
9156 const char *lang,
9157 bool literal_p)
9158 {
9159 struct bfd_elf_version_expr *ret;
9160
9161 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9162 ret->next = orig;
9163 ret->symver = 0;
9164 ret->script = 0;
9165 ret->literal = true;
9166 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9167 if (ret->pattern == NULL)
9168 {
9169 ret->pattern = new_name;
9170 ret->literal = false;
9171 }
9172
9173 if (lang == NULL || strcasecmp (lang, "C") == 0)
9174 ret->mask = BFD_ELF_VERSION_C_TYPE;
9175 else if (strcasecmp (lang, "C++") == 0)
9176 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9177 else if (strcasecmp (lang, "Java") == 0)
9178 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9179 else
9180 {
9181 einfo (_("%X%P: unknown language `%s' in version information\n"),
9182 lang);
9183 ret->mask = BFD_ELF_VERSION_C_TYPE;
9184 }
9185
9186 return ldemul_new_vers_pattern (ret);
9187 }
9188
9189 /* This is called for each set of variable names and match
9190 expressions. */
9191
9192 struct bfd_elf_version_tree *
9193 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9194 struct bfd_elf_version_expr *locals)
9195 {
9196 struct bfd_elf_version_tree *ret;
9197
9198 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9199 ret->globals.list = globals;
9200 ret->locals.list = locals;
9201 ret->match = lang_vers_match;
9202 ret->name_indx = (unsigned int) -1;
9203 return ret;
9204 }
9205
9206 /* This static variable keeps track of version indices. */
9207
9208 static int version_index;
9209
9210 static hashval_t
9211 version_expr_head_hash (const void *p)
9212 {
9213 const struct bfd_elf_version_expr *e =
9214 (const struct bfd_elf_version_expr *) p;
9215
9216 return htab_hash_string (e->pattern);
9217 }
9218
9219 static int
9220 version_expr_head_eq (const void *p1, const void *p2)
9221 {
9222 const struct bfd_elf_version_expr *e1 =
9223 (const struct bfd_elf_version_expr *) p1;
9224 const struct bfd_elf_version_expr *e2 =
9225 (const struct bfd_elf_version_expr *) p2;
9226
9227 return strcmp (e1->pattern, e2->pattern) == 0;
9228 }
9229
9230 static void
9231 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9232 {
9233 size_t count = 0;
9234 struct bfd_elf_version_expr *e, *next;
9235 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9236
9237 for (e = head->list; e; e = e->next)
9238 {
9239 if (e->literal)
9240 count++;
9241 head->mask |= e->mask;
9242 }
9243
9244 if (count)
9245 {
9246 head->htab = htab_create (count * 2, version_expr_head_hash,
9247 version_expr_head_eq, NULL);
9248 list_loc = &head->list;
9249 remaining_loc = &head->remaining;
9250 for (e = head->list; e; e = next)
9251 {
9252 next = e->next;
9253 if (!e->literal)
9254 {
9255 *remaining_loc = e;
9256 remaining_loc = &e->next;
9257 }
9258 else
9259 {
9260 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9261
9262 if (*loc)
9263 {
9264 struct bfd_elf_version_expr *e1, *last;
9265
9266 e1 = (struct bfd_elf_version_expr *) *loc;
9267 last = NULL;
9268 do
9269 {
9270 if (e1->mask == e->mask)
9271 {
9272 last = NULL;
9273 break;
9274 }
9275 last = e1;
9276 e1 = e1->next;
9277 }
9278 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9279
9280 if (last == NULL)
9281 {
9282 /* This is a duplicate. */
9283 /* FIXME: Memory leak. Sometimes pattern is not
9284 xmalloced alone, but in larger chunk of memory. */
9285 /* free (e->pattern); */
9286 free (e);
9287 }
9288 else
9289 {
9290 e->next = last->next;
9291 last->next = e;
9292 }
9293 }
9294 else
9295 {
9296 *loc = e;
9297 *list_loc = e;
9298 list_loc = &e->next;
9299 }
9300 }
9301 }
9302 *remaining_loc = NULL;
9303 *list_loc = head->remaining;
9304 }
9305 else
9306 head->remaining = head->list;
9307 }
9308
9309 /* This is called when we know the name and dependencies of the
9310 version. */
9311
9312 void
9313 lang_register_vers_node (const char *name,
9314 struct bfd_elf_version_tree *version,
9315 struct bfd_elf_version_deps *deps)
9316 {
9317 struct bfd_elf_version_tree *t, **pp;
9318 struct bfd_elf_version_expr *e1;
9319
9320 if (name == NULL)
9321 name = "";
9322
9323 if (link_info.version_info != NULL
9324 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9325 {
9326 einfo (_("%X%P: anonymous version tag cannot be combined"
9327 " with other version tags\n"));
9328 free (version);
9329 return;
9330 }
9331
9332 /* Make sure this node has a unique name. */
9333 for (t = link_info.version_info; t != NULL; t = t->next)
9334 if (strcmp (t->name, name) == 0)
9335 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9336
9337 lang_finalize_version_expr_head (&version->globals);
9338 lang_finalize_version_expr_head (&version->locals);
9339
9340 /* Check the global and local match names, and make sure there
9341 aren't any duplicates. */
9342
9343 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9344 {
9345 for (t = link_info.version_info; t != NULL; t = t->next)
9346 {
9347 struct bfd_elf_version_expr *e2;
9348
9349 if (t->locals.htab && e1->literal)
9350 {
9351 e2 = (struct bfd_elf_version_expr *)
9352 htab_find ((htab_t) t->locals.htab, e1);
9353 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9354 {
9355 if (e1->mask == e2->mask)
9356 einfo (_("%X%P: duplicate expression `%s'"
9357 " in version information\n"), e1->pattern);
9358 e2 = e2->next;
9359 }
9360 }
9361 else if (!e1->literal)
9362 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9363 if (strcmp (e1->pattern, e2->pattern) == 0
9364 && e1->mask == e2->mask)
9365 einfo (_("%X%P: duplicate expression `%s'"
9366 " in version information\n"), e1->pattern);
9367 }
9368 }
9369
9370 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9371 {
9372 for (t = link_info.version_info; t != NULL; t = t->next)
9373 {
9374 struct bfd_elf_version_expr *e2;
9375
9376 if (t->globals.htab && e1->literal)
9377 {
9378 e2 = (struct bfd_elf_version_expr *)
9379 htab_find ((htab_t) t->globals.htab, e1);
9380 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9381 {
9382 if (e1->mask == e2->mask)
9383 einfo (_("%X%P: duplicate expression `%s'"
9384 " in version information\n"),
9385 e1->pattern);
9386 e2 = e2->next;
9387 }
9388 }
9389 else if (!e1->literal)
9390 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9391 if (strcmp (e1->pattern, e2->pattern) == 0
9392 && e1->mask == e2->mask)
9393 einfo (_("%X%P: duplicate expression `%s'"
9394 " in version information\n"), e1->pattern);
9395 }
9396 }
9397
9398 version->deps = deps;
9399 version->name = name;
9400 if (name[0] != '\0')
9401 {
9402 ++version_index;
9403 version->vernum = version_index;
9404 }
9405 else
9406 version->vernum = 0;
9407
9408 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9409 ;
9410 *pp = version;
9411 }
9412
9413 /* This is called when we see a version dependency. */
9414
9415 struct bfd_elf_version_deps *
9416 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9417 {
9418 struct bfd_elf_version_deps *ret;
9419 struct bfd_elf_version_tree *t;
9420
9421 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9422 ret->next = list;
9423
9424 for (t = link_info.version_info; t != NULL; t = t->next)
9425 {
9426 if (strcmp (t->name, name) == 0)
9427 {
9428 ret->version_needed = t;
9429 return ret;
9430 }
9431 }
9432
9433 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9434
9435 ret->version_needed = NULL;
9436 return ret;
9437 }
9438
9439 static void
9440 lang_do_version_exports_section (void)
9441 {
9442 struct bfd_elf_version_expr *greg = NULL, *lreg;
9443
9444 LANG_FOR_EACH_INPUT_STATEMENT (is)
9445 {
9446 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9447 char *contents, *p;
9448 bfd_size_type len;
9449
9450 if (sec == NULL)
9451 continue;
9452
9453 len = sec->size;
9454 contents = (char *) xmalloc (len);
9455 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9456 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9457
9458 p = contents;
9459 while (p < contents + len)
9460 {
9461 greg = lang_new_vers_pattern (greg, p, NULL, false);
9462 p = strchr (p, '\0') + 1;
9463 }
9464
9465 /* Do not free the contents, as we used them creating the regex. */
9466
9467 /* Do not include this section in the link. */
9468 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9469 }
9470
9471 lreg = lang_new_vers_pattern (NULL, "*", NULL, false);
9472 lang_register_vers_node (command_line.version_exports_section,
9473 lang_new_vers_node (greg, lreg), NULL);
9474 }
9475
9476 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9477 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9478 thrown, however, references to symbols in the origin and length fields
9479 will be pushed into the symbol table, this allows PROVIDE statements to
9480 then provide these symbols. This function is called a second time with
9481 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9482 data structures, and throw errors if missing symbols are encountered. */
9483
9484 static void
9485 lang_do_memory_regions (bool update_regions_p)
9486 {
9487 lang_memory_region_type *r = lang_memory_region_list;
9488
9489 for (; r != NULL; r = r->next)
9490 {
9491 if (r->origin_exp)
9492 {
9493 exp_fold_tree_no_dot (r->origin_exp);
9494 if (update_regions_p)
9495 {
9496 if (expld.result.valid_p)
9497 {
9498 r->origin = expld.result.value;
9499 r->current = r->origin;
9500 }
9501 else
9502 einfo (_("%P: invalid origin for memory region %s\n"),
9503 r->name_list.name);
9504 }
9505 }
9506 if (r->length_exp)
9507 {
9508 exp_fold_tree_no_dot (r->length_exp);
9509 if (update_regions_p)
9510 {
9511 if (expld.result.valid_p)
9512 r->length = expld.result.value;
9513 else
9514 einfo (_("%P: invalid length for memory region %s\n"),
9515 r->name_list.name);
9516 }
9517 }
9518 }
9519 }
9520
9521 void
9522 lang_add_unique (const char *name)
9523 {
9524 struct unique_sections *ent;
9525
9526 for (ent = unique_section_list; ent; ent = ent->next)
9527 if (strcmp (ent->name, name) == 0)
9528 return;
9529
9530 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9531 ent->name = xstrdup (name);
9532 ent->next = unique_section_list;
9533 unique_section_list = ent;
9534 }
9535
9536 /* Append the list of dynamic symbols to the existing one. */
9537
9538 void
9539 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9540 struct bfd_elf_version_expr *dynamic)
9541 {
9542 if (*list_p)
9543 {
9544 struct bfd_elf_version_expr *tail;
9545 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9546 ;
9547 tail->next = (*list_p)->head.list;
9548 (*list_p)->head.list = dynamic;
9549 }
9550 else
9551 {
9552 struct bfd_elf_dynamic_list *d;
9553
9554 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9555 d->head.list = dynamic;
9556 d->match = lang_vers_match;
9557 *list_p = d;
9558 }
9559 }
9560
9561 /* Append the list of C++ typeinfo dynamic symbols to the existing
9562 one. */
9563
9564 void
9565 lang_append_dynamic_list_cpp_typeinfo (void)
9566 {
9567 const char *symbols[] =
9568 {
9569 "typeinfo name for*",
9570 "typeinfo for*"
9571 };
9572 struct bfd_elf_version_expr *dynamic = NULL;
9573 unsigned int i;
9574
9575 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9576 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9577 false);
9578
9579 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9580 }
9581
9582 /* Append the list of C++ operator new and delete dynamic symbols to the
9583 existing one. */
9584
9585 void
9586 lang_append_dynamic_list_cpp_new (void)
9587 {
9588 const char *symbols[] =
9589 {
9590 "operator new*",
9591 "operator delete*"
9592 };
9593 struct bfd_elf_version_expr *dynamic = NULL;
9594 unsigned int i;
9595
9596 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9597 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9598 false);
9599
9600 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9601 }
9602
9603 /* Scan a space and/or comma separated string of features. */
9604
9605 void
9606 lang_ld_feature (char *str)
9607 {
9608 char *p, *q;
9609
9610 p = str;
9611 while (*p)
9612 {
9613 char sep;
9614 while (*p == ',' || ISSPACE (*p))
9615 ++p;
9616 if (!*p)
9617 break;
9618 q = p + 1;
9619 while (*q && *q != ',' && !ISSPACE (*q))
9620 ++q;
9621 sep = *q;
9622 *q = 0;
9623 if (strcasecmp (p, "SANE_EXPR") == 0)
9624 config.sane_expr = true;
9625 else
9626 einfo (_("%X%P: unknown feature `%s'\n"), p);
9627 *q = sep;
9628 p = q;
9629 }
9630 }
9631
9632 /* Pretty print memory amount. */
9633
9634 static void
9635 lang_print_memory_size (uint64_t sz)
9636 {
9637 if ((sz & 0x3fffffff) == 0)
9638 printf ("%10" PRIu64 " GB", sz >> 30);
9639 else if ((sz & 0xfffff) == 0)
9640 printf ("%10" PRIu64 " MB", sz >> 20);
9641 else if ((sz & 0x3ff) == 0)
9642 printf ("%10" PRIu64 " KB", sz >> 10);
9643 else
9644 printf (" %10" PRIu64 " B", sz);
9645 }
9646
9647 /* Implement --print-memory-usage: disply per region memory usage. */
9648
9649 void
9650 lang_print_memory_usage (void)
9651 {
9652 lang_memory_region_type *r;
9653
9654 printf ("Memory region Used Size Region Size %%age Used\n");
9655 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9656 {
9657 bfd_vma used_length = r->current - r->origin;
9658
9659 printf ("%16s: ",r->name_list.name);
9660 lang_print_memory_size (used_length);
9661 lang_print_memory_size (r->length);
9662
9663 if (r->length != 0)
9664 {
9665 double percent = used_length * 100.0 / r->length;
9666 printf (" %6.2f%%", percent);
9667 }
9668 printf ("\n");
9669 }
9670 }