bfd/
[binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43
44 #ifndef offsetof
45 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
46 #endif
47
48 /* Locals variables. */
49 static struct obstack stat_obstack;
50 static struct obstack map_obstack;
51
52 #define obstack_chunk_alloc xmalloc
53 #define obstack_chunk_free free
54 static const char *startup_file;
55 static const char *entry_symbol_default = "start";
56 static bfd_boolean placed_commons = FALSE;
57 static bfd_boolean stripped_excluded_sections = FALSE;
58 static lang_output_section_statement_type *default_common_section;
59 static bfd_boolean map_option_f;
60 static bfd_vma print_dot;
61 static lang_input_statement_type *first_file;
62 static const char *current_target;
63 static lang_statement_list_type statement_list;
64 static struct bfd_hash_table lang_definedness_table;
65 static lang_statement_list_type *stat_save[10];
66 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
67 static struct unique_sections *unique_section_list;
68 static bfd_boolean ldlang_sysrooted_script = FALSE;
69
70 /* Forward declarations. */
71 static void exp_init_os (etree_type *);
72 static void init_map_userdata (bfd *, asection *, void *);
73 static lang_input_statement_type *lookup_name (const char *);
74 static struct bfd_hash_entry *lang_definedness_newfunc
75 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
76 static void insert_undefined (const char *);
77 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
78 static void print_statement (lang_statement_union_type *,
79 lang_output_section_statement_type *);
80 static void print_statement_list (lang_statement_union_type *,
81 lang_output_section_statement_type *);
82 static void print_statements (void);
83 static void print_input_section (asection *, bfd_boolean);
84 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
85 static void lang_record_phdrs (void);
86 static void lang_do_version_exports_section (void);
87 static void lang_finalize_version_expr_head
88 (struct bfd_elf_version_expr_head *);
89
90 /* Exported variables. */
91 const char *output_target;
92 lang_output_section_statement_type *abs_output_section;
93 lang_statement_list_type lang_output_section_statement;
94 lang_statement_list_type *stat_ptr = &statement_list;
95 lang_statement_list_type file_chain = { NULL, NULL };
96 lang_statement_list_type input_file_chain;
97 struct bfd_sym_chain entry_symbol = { NULL, NULL };
98 const char *entry_section = ".text";
99 bfd_boolean entry_from_cmdline;
100 bfd_boolean lang_has_input_file = FALSE;
101 bfd_boolean had_output_filename = FALSE;
102 bfd_boolean lang_float_flag = FALSE;
103 bfd_boolean delete_output_file_on_failure = FALSE;
104 struct lang_phdr *lang_phdr_list;
105 struct lang_nocrossrefs *nocrossref_list;
106 bfd_boolean missing_file = FALSE;
107
108 /* Functions that traverse the linker script and might evaluate
109 DEFINED() need to increment this. */
110 int lang_statement_iteration = 0;
111
112 etree_type *base; /* Relocation base - or null */
113
114 /* Return TRUE if the PATTERN argument is a wildcard pattern.
115 Although backslashes are treated specially if a pattern contains
116 wildcards, we do not consider the mere presence of a backslash to
117 be enough to cause the pattern to be treated as a wildcard.
118 That lets us handle DOS filenames more naturally. */
119 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
120
121 #define new_stat(x, y) \
122 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
123
124 #define outside_section_address(q) \
125 ((q)->output_offset + (q)->output_section->vma)
126
127 #define outside_symbol_address(q) \
128 ((q)->value + outside_section_address (q->section))
129
130 #define SECTION_NAME_MAP_LENGTH (16)
131
132 void *
133 stat_alloc (size_t size)
134 {
135 return obstack_alloc (&stat_obstack, size);
136 }
137
138 static int
139 name_match (const char *pattern, const char *name)
140 {
141 if (wildcardp (pattern))
142 return fnmatch (pattern, name, 0);
143 return strcmp (pattern, name);
144 }
145
146 /* If PATTERN is of the form archive:file, return a pointer to the
147 separator. If not, return NULL. */
148
149 static char *
150 archive_path (const char *pattern)
151 {
152 char *p = NULL;
153
154 if (link_info.path_separator == 0)
155 return p;
156
157 p = strchr (pattern, link_info.path_separator);
158 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
159 if (p == NULL || link_info.path_separator != ':')
160 return p;
161
162 /* Assume a match on the second char is part of drive specifier,
163 as in "c:\silly.dos". */
164 if (p == pattern + 1 && ISALPHA (*pattern))
165 p = strchr (p + 1, link_info.path_separator);
166 #endif
167 return p;
168 }
169
170 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
171 return whether F matches FILE_SPEC. */
172
173 static bfd_boolean
174 input_statement_is_archive_path (const char *file_spec, char *sep,
175 lang_input_statement_type *f)
176 {
177 bfd_boolean match = FALSE;
178
179 if ((*(sep + 1) == 0
180 || name_match (sep + 1, f->filename) == 0)
181 && ((sep != file_spec)
182 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
183 {
184 match = TRUE;
185
186 if (sep != file_spec)
187 {
188 const char *aname = f->the_bfd->my_archive->filename;
189 *sep = 0;
190 match = name_match (file_spec, aname) == 0;
191 *sep = link_info.path_separator;
192 }
193 }
194 return match;
195 }
196
197 static bfd_boolean
198 unique_section_p (const asection *sec,
199 const lang_output_section_statement_type *os)
200 {
201 struct unique_sections *unam;
202 const char *secnam;
203
204 if (link_info.relocatable
205 && sec->owner != NULL
206 && bfd_is_group_section (sec->owner, sec))
207 return !(os != NULL
208 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
209
210 secnam = sec->name;
211 for (unam = unique_section_list; unam; unam = unam->next)
212 if (name_match (unam->name, secnam) == 0)
213 return TRUE;
214
215 return FALSE;
216 }
217
218 /* Generic traversal routines for finding matching sections. */
219
220 /* Try processing a section against a wildcard. This just calls
221 the callback unless the filename exclusion list is present
222 and excludes the file. It's hardly ever present so this
223 function is very fast. */
224
225 static void
226 walk_wild_consider_section (lang_wild_statement_type *ptr,
227 lang_input_statement_type *file,
228 asection *s,
229 struct wildcard_list *sec,
230 callback_t callback,
231 void *data)
232 {
233 struct name_list *list_tmp;
234
235 /* Don't process sections from files which were excluded. */
236 for (list_tmp = sec->spec.exclude_name_list;
237 list_tmp;
238 list_tmp = list_tmp->next)
239 {
240 char *p = archive_path (list_tmp->name);
241
242 if (p != NULL)
243 {
244 if (input_statement_is_archive_path (list_tmp->name, p, file))
245 return;
246 }
247
248 else if (name_match (list_tmp->name, file->filename) == 0)
249 return;
250
251 /* FIXME: Perhaps remove the following at some stage? Matching
252 unadorned archives like this was never documented and has
253 been superceded by the archive:path syntax. */
254 else if (file->the_bfd != NULL
255 && file->the_bfd->my_archive != NULL
256 && name_match (list_tmp->name,
257 file->the_bfd->my_archive->filename) == 0)
258 return;
259 }
260
261 (*callback) (ptr, sec, s, file, data);
262 }
263
264 /* Lowest common denominator routine that can handle everything correctly,
265 but slowly. */
266
267 static void
268 walk_wild_section_general (lang_wild_statement_type *ptr,
269 lang_input_statement_type *file,
270 callback_t callback,
271 void *data)
272 {
273 asection *s;
274 struct wildcard_list *sec;
275
276 for (s = file->the_bfd->sections; s != NULL; s = s->next)
277 {
278 sec = ptr->section_list;
279 if (sec == NULL)
280 (*callback) (ptr, sec, s, file, data);
281
282 while (sec != NULL)
283 {
284 bfd_boolean skip = FALSE;
285
286 if (sec->spec.name != NULL)
287 {
288 const char *sname = bfd_get_section_name (file->the_bfd, s);
289
290 skip = name_match (sec->spec.name, sname) != 0;
291 }
292
293 if (!skip)
294 walk_wild_consider_section (ptr, file, s, sec, callback, data);
295
296 sec = sec->next;
297 }
298 }
299 }
300
301 /* Routines to find a single section given its name. If there's more
302 than one section with that name, we report that. */
303
304 typedef struct
305 {
306 asection *found_section;
307 bfd_boolean multiple_sections_found;
308 } section_iterator_callback_data;
309
310 static bfd_boolean
311 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
312 {
313 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
314
315 if (d->found_section != NULL)
316 {
317 d->multiple_sections_found = TRUE;
318 return TRUE;
319 }
320
321 d->found_section = s;
322 return FALSE;
323 }
324
325 static asection *
326 find_section (lang_input_statement_type *file,
327 struct wildcard_list *sec,
328 bfd_boolean *multiple_sections_found)
329 {
330 section_iterator_callback_data cb_data = { NULL, FALSE };
331
332 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
333 section_iterator_callback, &cb_data);
334 *multiple_sections_found = cb_data.multiple_sections_found;
335 return cb_data.found_section;
336 }
337
338 /* Code for handling simple wildcards without going through fnmatch,
339 which can be expensive because of charset translations etc. */
340
341 /* A simple wild is a literal string followed by a single '*',
342 where the literal part is at least 4 characters long. */
343
344 static bfd_boolean
345 is_simple_wild (const char *name)
346 {
347 size_t len = strcspn (name, "*?[");
348 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
349 }
350
351 static bfd_boolean
352 match_simple_wild (const char *pattern, const char *name)
353 {
354 /* The first four characters of the pattern are guaranteed valid
355 non-wildcard characters. So we can go faster. */
356 if (pattern[0] != name[0] || pattern[1] != name[1]
357 || pattern[2] != name[2] || pattern[3] != name[3])
358 return FALSE;
359
360 pattern += 4;
361 name += 4;
362 while (*pattern != '*')
363 if (*name++ != *pattern++)
364 return FALSE;
365
366 return TRUE;
367 }
368
369 /* Compare sections ASEC and BSEC according to SORT. */
370
371 static int
372 compare_section (sort_type sort, asection *asec, asection *bsec)
373 {
374 int ret;
375
376 switch (sort)
377 {
378 default:
379 abort ();
380
381 case by_alignment_name:
382 ret = (bfd_section_alignment (bsec->owner, bsec)
383 - bfd_section_alignment (asec->owner, asec));
384 if (ret)
385 break;
386 /* Fall through. */
387
388 case by_name:
389 ret = strcmp (bfd_get_section_name (asec->owner, asec),
390 bfd_get_section_name (bsec->owner, bsec));
391 break;
392
393 case by_name_alignment:
394 ret = strcmp (bfd_get_section_name (asec->owner, asec),
395 bfd_get_section_name (bsec->owner, bsec));
396 if (ret)
397 break;
398 /* Fall through. */
399
400 case by_alignment:
401 ret = (bfd_section_alignment (bsec->owner, bsec)
402 - bfd_section_alignment (asec->owner, asec));
403 break;
404 }
405
406 return ret;
407 }
408
409 /* Build a Binary Search Tree to sort sections, unlike insertion sort
410 used in wild_sort(). BST is considerably faster if the number of
411 of sections are large. */
412
413 static lang_section_bst_type **
414 wild_sort_fast (lang_wild_statement_type *wild,
415 struct wildcard_list *sec,
416 lang_input_statement_type *file ATTRIBUTE_UNUSED,
417 asection *section)
418 {
419 lang_section_bst_type **tree;
420
421 tree = &wild->tree;
422 if (!wild->filenames_sorted
423 && (sec == NULL || sec->spec.sorted == none))
424 {
425 /* Append at the right end of tree. */
426 while (*tree)
427 tree = &((*tree)->right);
428 return tree;
429 }
430
431 while (*tree)
432 {
433 /* Find the correct node to append this section. */
434 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
435 tree = &((*tree)->left);
436 else
437 tree = &((*tree)->right);
438 }
439
440 return tree;
441 }
442
443 /* Use wild_sort_fast to build a BST to sort sections. */
444
445 static void
446 output_section_callback_fast (lang_wild_statement_type *ptr,
447 struct wildcard_list *sec,
448 asection *section,
449 lang_input_statement_type *file,
450 void *output)
451 {
452 lang_section_bst_type *node;
453 lang_section_bst_type **tree;
454 lang_output_section_statement_type *os;
455
456 os = (lang_output_section_statement_type *) output;
457
458 if (unique_section_p (section, os))
459 return;
460
461 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
462 node->left = 0;
463 node->right = 0;
464 node->section = section;
465
466 tree = wild_sort_fast (ptr, sec, file, section);
467 if (tree != NULL)
468 *tree = node;
469 }
470
471 /* Convert a sorted sections' BST back to list form. */
472
473 static void
474 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
475 lang_section_bst_type *tree,
476 void *output)
477 {
478 if (tree->left)
479 output_section_callback_tree_to_list (ptr, tree->left, output);
480
481 lang_add_section (&ptr->children, tree->section,
482 (lang_output_section_statement_type *) output);
483
484 if (tree->right)
485 output_section_callback_tree_to_list (ptr, tree->right, output);
486
487 free (tree);
488 }
489
490 /* Specialized, optimized routines for handling different kinds of
491 wildcards */
492
493 static void
494 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
495 lang_input_statement_type *file,
496 callback_t callback,
497 void *data)
498 {
499 /* We can just do a hash lookup for the section with the right name.
500 But if that lookup discovers more than one section with the name
501 (should be rare), we fall back to the general algorithm because
502 we would otherwise have to sort the sections to make sure they
503 get processed in the bfd's order. */
504 bfd_boolean multiple_sections_found;
505 struct wildcard_list *sec0 = ptr->handler_data[0];
506 asection *s0 = find_section (file, sec0, &multiple_sections_found);
507
508 if (multiple_sections_found)
509 walk_wild_section_general (ptr, file, callback, data);
510 else if (s0)
511 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
512 }
513
514 static void
515 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
516 lang_input_statement_type *file,
517 callback_t callback,
518 void *data)
519 {
520 asection *s;
521 struct wildcard_list *wildsec0 = ptr->handler_data[0];
522
523 for (s = file->the_bfd->sections; s != NULL; s = s->next)
524 {
525 const char *sname = bfd_get_section_name (file->the_bfd, s);
526 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
527
528 if (!skip)
529 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
530 }
531 }
532
533 static void
534 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
535 lang_input_statement_type *file,
536 callback_t callback,
537 void *data)
538 {
539 asection *s;
540 struct wildcard_list *sec0 = ptr->handler_data[0];
541 struct wildcard_list *wildsec1 = ptr->handler_data[1];
542 bfd_boolean multiple_sections_found;
543 asection *s0 = find_section (file, sec0, &multiple_sections_found);
544
545 if (multiple_sections_found)
546 {
547 walk_wild_section_general (ptr, file, callback, data);
548 return;
549 }
550
551 /* Note that if the section was not found, s0 is NULL and
552 we'll simply never succeed the s == s0 test below. */
553 for (s = file->the_bfd->sections; s != NULL; s = s->next)
554 {
555 /* Recall that in this code path, a section cannot satisfy more
556 than one spec, so if s == s0 then it cannot match
557 wildspec1. */
558 if (s == s0)
559 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
560 else
561 {
562 const char *sname = bfd_get_section_name (file->the_bfd, s);
563 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
564
565 if (!skip)
566 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
567 data);
568 }
569 }
570 }
571
572 static void
573 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
574 lang_input_statement_type *file,
575 callback_t callback,
576 void *data)
577 {
578 asection *s;
579 struct wildcard_list *sec0 = ptr->handler_data[0];
580 struct wildcard_list *wildsec1 = ptr->handler_data[1];
581 struct wildcard_list *wildsec2 = ptr->handler_data[2];
582 bfd_boolean multiple_sections_found;
583 asection *s0 = find_section (file, sec0, &multiple_sections_found);
584
585 if (multiple_sections_found)
586 {
587 walk_wild_section_general (ptr, file, callback, data);
588 return;
589 }
590
591 for (s = file->the_bfd->sections; s != NULL; s = s->next)
592 {
593 if (s == s0)
594 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
595 else
596 {
597 const char *sname = bfd_get_section_name (file->the_bfd, s);
598 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
602 else
603 {
604 skip = !match_simple_wild (wildsec2->spec.name, sname);
605 if (!skip)
606 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
607 data);
608 }
609 }
610 }
611 }
612
613 static void
614 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
615 lang_input_statement_type *file,
616 callback_t callback,
617 void *data)
618 {
619 asection *s;
620 struct wildcard_list *sec0 = ptr->handler_data[0];
621 struct wildcard_list *sec1 = ptr->handler_data[1];
622 struct wildcard_list *wildsec2 = ptr->handler_data[2];
623 struct wildcard_list *wildsec3 = ptr->handler_data[3];
624 bfd_boolean multiple_sections_found;
625 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
626
627 if (multiple_sections_found)
628 {
629 walk_wild_section_general (ptr, file, callback, data);
630 return;
631 }
632
633 s1 = find_section (file, sec1, &multiple_sections_found);
634 if (multiple_sections_found)
635 {
636 walk_wild_section_general (ptr, file, callback, data);
637 return;
638 }
639
640 for (s = file->the_bfd->sections; s != NULL; s = s->next)
641 {
642 if (s == s0)
643 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
644 else
645 if (s == s1)
646 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
647 else
648 {
649 const char *sname = bfd_get_section_name (file->the_bfd, s);
650 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
651 sname);
652
653 if (!skip)
654 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
655 data);
656 else
657 {
658 skip = !match_simple_wild (wildsec3->spec.name, sname);
659 if (!skip)
660 walk_wild_consider_section (ptr, file, s, wildsec3,
661 callback, data);
662 }
663 }
664 }
665 }
666
667 static void
668 walk_wild_section (lang_wild_statement_type *ptr,
669 lang_input_statement_type *file,
670 callback_t callback,
671 void *data)
672 {
673 if (file->just_syms_flag)
674 return;
675
676 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
677 }
678
679 /* Returns TRUE when name1 is a wildcard spec that might match
680 something name2 can match. We're conservative: we return FALSE
681 only if the prefixes of name1 and name2 are different up to the
682 first wildcard character. */
683
684 static bfd_boolean
685 wild_spec_can_overlap (const char *name1, const char *name2)
686 {
687 size_t prefix1_len = strcspn (name1, "?*[");
688 size_t prefix2_len = strcspn (name2, "?*[");
689 size_t min_prefix_len;
690
691 /* Note that if there is no wildcard character, then we treat the
692 terminating 0 as part of the prefix. Thus ".text" won't match
693 ".text." or ".text.*", for example. */
694 if (name1[prefix1_len] == '\0')
695 prefix1_len++;
696 if (name2[prefix2_len] == '\0')
697 prefix2_len++;
698
699 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
700
701 return memcmp (name1, name2, min_prefix_len) == 0;
702 }
703
704 /* Select specialized code to handle various kinds of wildcard
705 statements. */
706
707 static void
708 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
709 {
710 int sec_count = 0;
711 int wild_name_count = 0;
712 struct wildcard_list *sec;
713 int signature;
714 int data_counter;
715
716 ptr->walk_wild_section_handler = walk_wild_section_general;
717 ptr->handler_data[0] = NULL;
718 ptr->handler_data[1] = NULL;
719 ptr->handler_data[2] = NULL;
720 ptr->handler_data[3] = NULL;
721 ptr->tree = NULL;
722
723 /* Count how many wildcard_specs there are, and how many of those
724 actually use wildcards in the name. Also, bail out if any of the
725 wildcard names are NULL. (Can this actually happen?
726 walk_wild_section used to test for it.) And bail out if any
727 of the wildcards are more complex than a simple string
728 ending in a single '*'. */
729 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
730 {
731 ++sec_count;
732 if (sec->spec.name == NULL)
733 return;
734 if (wildcardp (sec->spec.name))
735 {
736 ++wild_name_count;
737 if (!is_simple_wild (sec->spec.name))
738 return;
739 }
740 }
741
742 /* The zero-spec case would be easy to optimize but it doesn't
743 happen in practice. Likewise, more than 4 specs doesn't
744 happen in practice. */
745 if (sec_count == 0 || sec_count > 4)
746 return;
747
748 /* Check that no two specs can match the same section. */
749 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
750 {
751 struct wildcard_list *sec2;
752 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
753 {
754 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
755 return;
756 }
757 }
758
759 signature = (sec_count << 8) + wild_name_count;
760 switch (signature)
761 {
762 case 0x0100:
763 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
764 break;
765 case 0x0101:
766 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
767 break;
768 case 0x0201:
769 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
770 break;
771 case 0x0302:
772 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
773 break;
774 case 0x0402:
775 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
776 break;
777 default:
778 return;
779 }
780
781 /* Now fill the data array with pointers to the specs, first the
782 specs with non-wildcard names, then the specs with wildcard
783 names. It's OK to process the specs in different order from the
784 given order, because we've already determined that no section
785 will match more than one spec. */
786 data_counter = 0;
787 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
788 if (!wildcardp (sec->spec.name))
789 ptr->handler_data[data_counter++] = sec;
790 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
791 if (wildcardp (sec->spec.name))
792 ptr->handler_data[data_counter++] = sec;
793 }
794
795 /* Handle a wild statement for a single file F. */
796
797 static void
798 walk_wild_file (lang_wild_statement_type *s,
799 lang_input_statement_type *f,
800 callback_t callback,
801 void *data)
802 {
803 if (f->the_bfd == NULL
804 || ! bfd_check_format (f->the_bfd, bfd_archive))
805 walk_wild_section (s, f, callback, data);
806 else
807 {
808 bfd *member;
809
810 /* This is an archive file. We must map each member of the
811 archive separately. */
812 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
813 while (member != NULL)
814 {
815 /* When lookup_name is called, it will call the add_symbols
816 entry point for the archive. For each element of the
817 archive which is included, BFD will call ldlang_add_file,
818 which will set the usrdata field of the member to the
819 lang_input_statement. */
820 if (member->usrdata != NULL)
821 {
822 walk_wild_section (s,
823 (lang_input_statement_type *) member->usrdata,
824 callback, data);
825 }
826
827 member = bfd_openr_next_archived_file (f->the_bfd, member);
828 }
829 }
830 }
831
832 static void
833 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
834 {
835 const char *file_spec = s->filename;
836 char *p;
837
838 if (file_spec == NULL)
839 {
840 /* Perform the iteration over all files in the list. */
841 LANG_FOR_EACH_INPUT_STATEMENT (f)
842 {
843 walk_wild_file (s, f, callback, data);
844 }
845 }
846 else if ((p = archive_path (file_spec)) != NULL)
847 {
848 LANG_FOR_EACH_INPUT_STATEMENT (f)
849 {
850 if (input_statement_is_archive_path (file_spec, p, f))
851 walk_wild_file (s, f, callback, data);
852 }
853 }
854 else if (wildcardp (file_spec))
855 {
856 LANG_FOR_EACH_INPUT_STATEMENT (f)
857 {
858 if (fnmatch (file_spec, f->filename, 0) == 0)
859 walk_wild_file (s, f, callback, data);
860 }
861 }
862 else
863 {
864 lang_input_statement_type *f;
865
866 /* Perform the iteration over a single file. */
867 f = lookup_name (file_spec);
868 if (f)
869 walk_wild_file (s, f, callback, data);
870 }
871 }
872
873 /* lang_for_each_statement walks the parse tree and calls the provided
874 function for each node. */
875
876 static void
877 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
878 lang_statement_union_type *s)
879 {
880 for (; s != NULL; s = s->header.next)
881 {
882 func (s);
883
884 switch (s->header.type)
885 {
886 case lang_constructors_statement_enum:
887 lang_for_each_statement_worker (func, constructor_list.head);
888 break;
889 case lang_output_section_statement_enum:
890 lang_for_each_statement_worker
891 (func, s->output_section_statement.children.head);
892 break;
893 case lang_wild_statement_enum:
894 lang_for_each_statement_worker (func,
895 s->wild_statement.children.head);
896 break;
897 case lang_group_statement_enum:
898 lang_for_each_statement_worker (func,
899 s->group_statement.children.head);
900 break;
901 case lang_data_statement_enum:
902 case lang_reloc_statement_enum:
903 case lang_object_symbols_statement_enum:
904 case lang_output_statement_enum:
905 case lang_target_statement_enum:
906 case lang_input_section_enum:
907 case lang_input_statement_enum:
908 case lang_assignment_statement_enum:
909 case lang_padding_statement_enum:
910 case lang_address_statement_enum:
911 case lang_fill_statement_enum:
912 case lang_insert_statement_enum:
913 break;
914 default:
915 FAIL ();
916 break;
917 }
918 }
919 }
920
921 void
922 lang_for_each_statement (void (*func) (lang_statement_union_type *))
923 {
924 lang_for_each_statement_worker (func, statement_list.head);
925 }
926
927 /*----------------------------------------------------------------------*/
928
929 void
930 lang_list_init (lang_statement_list_type *list)
931 {
932 list->head = NULL;
933 list->tail = &list->head;
934 }
935
936 void
937 push_stat_ptr (lang_statement_list_type *new_ptr)
938 {
939 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
940 abort ();
941 *stat_save_ptr++ = stat_ptr;
942 stat_ptr = new_ptr;
943 }
944
945 void
946 pop_stat_ptr (void)
947 {
948 if (stat_save_ptr <= stat_save)
949 abort ();
950 stat_ptr = *--stat_save_ptr;
951 }
952
953 /* Build a new statement node for the parse tree. */
954
955 static lang_statement_union_type *
956 new_statement (enum statement_enum type,
957 size_t size,
958 lang_statement_list_type *list)
959 {
960 lang_statement_union_type *new_stmt;
961
962 new_stmt = (lang_statement_union_type *) stat_alloc (size);
963 new_stmt->header.type = type;
964 new_stmt->header.next = NULL;
965 lang_statement_append (list, new_stmt, &new_stmt->header.next);
966 return new_stmt;
967 }
968
969 /* Build a new input file node for the language. There are several
970 ways in which we treat an input file, eg, we only look at symbols,
971 or prefix it with a -l etc.
972
973 We can be supplied with requests for input files more than once;
974 they may, for example be split over several lines like foo.o(.text)
975 foo.o(.data) etc, so when asked for a file we check that we haven't
976 got it already so we don't duplicate the bfd. */
977
978 static lang_input_statement_type *
979 new_afile (const char *name,
980 lang_input_file_enum_type file_type,
981 const char *target,
982 bfd_boolean add_to_list)
983 {
984 lang_input_statement_type *p;
985
986 if (add_to_list)
987 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
988 else
989 {
990 p = (lang_input_statement_type *)
991 stat_alloc (sizeof (lang_input_statement_type));
992 p->header.type = lang_input_statement_enum;
993 p->header.next = NULL;
994 }
995
996 lang_has_input_file = TRUE;
997 p->target = target;
998 p->sysrooted = FALSE;
999
1000 if (file_type == lang_input_file_is_l_enum
1001 && name[0] == ':' && name[1] != '\0')
1002 {
1003 file_type = lang_input_file_is_search_file_enum;
1004 name = name + 1;
1005 }
1006
1007 switch (file_type)
1008 {
1009 case lang_input_file_is_symbols_only_enum:
1010 p->filename = name;
1011 p->is_archive = FALSE;
1012 p->real = TRUE;
1013 p->local_sym_name = name;
1014 p->just_syms_flag = TRUE;
1015 p->search_dirs_flag = FALSE;
1016 break;
1017 case lang_input_file_is_fake_enum:
1018 p->filename = name;
1019 p->is_archive = FALSE;
1020 p->real = FALSE;
1021 p->local_sym_name = name;
1022 p->just_syms_flag = FALSE;
1023 p->search_dirs_flag = FALSE;
1024 break;
1025 case lang_input_file_is_l_enum:
1026 p->is_archive = TRUE;
1027 p->filename = name;
1028 p->real = TRUE;
1029 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1030 p->just_syms_flag = FALSE;
1031 p->search_dirs_flag = TRUE;
1032 break;
1033 case lang_input_file_is_marker_enum:
1034 p->filename = name;
1035 p->is_archive = FALSE;
1036 p->real = FALSE;
1037 p->local_sym_name = name;
1038 p->just_syms_flag = FALSE;
1039 p->search_dirs_flag = TRUE;
1040 break;
1041 case lang_input_file_is_search_file_enum:
1042 p->sysrooted = ldlang_sysrooted_script;
1043 p->filename = name;
1044 p->is_archive = FALSE;
1045 p->real = TRUE;
1046 p->local_sym_name = name;
1047 p->just_syms_flag = FALSE;
1048 p->search_dirs_flag = TRUE;
1049 break;
1050 case lang_input_file_is_file_enum:
1051 p->filename = name;
1052 p->is_archive = FALSE;
1053 p->real = TRUE;
1054 p->local_sym_name = name;
1055 p->just_syms_flag = FALSE;
1056 p->search_dirs_flag = FALSE;
1057 break;
1058 default:
1059 FAIL ();
1060 }
1061 p->the_bfd = NULL;
1062 p->next_real_file = NULL;
1063 p->next = NULL;
1064 p->dynamic = config.dynamic_link;
1065 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1066 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1067 p->whole_archive = whole_archive;
1068 p->loaded = FALSE;
1069 p->missing_file = FALSE;
1070
1071 lang_statement_append (&input_file_chain,
1072 (lang_statement_union_type *) p,
1073 &p->next_real_file);
1074 return p;
1075 }
1076
1077 lang_input_statement_type *
1078 lang_add_input_file (const char *name,
1079 lang_input_file_enum_type file_type,
1080 const char *target)
1081 {
1082 return new_afile (name, file_type, target, TRUE);
1083 }
1084
1085 struct out_section_hash_entry
1086 {
1087 struct bfd_hash_entry root;
1088 lang_statement_union_type s;
1089 };
1090
1091 /* The hash table. */
1092
1093 static struct bfd_hash_table output_section_statement_table;
1094
1095 /* Support routines for the hash table used by lang_output_section_find,
1096 initialize the table, fill in an entry and remove the table. */
1097
1098 static struct bfd_hash_entry *
1099 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1100 struct bfd_hash_table *table,
1101 const char *string)
1102 {
1103 lang_output_section_statement_type **nextp;
1104 struct out_section_hash_entry *ret;
1105
1106 if (entry == NULL)
1107 {
1108 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1109 sizeof (*ret));
1110 if (entry == NULL)
1111 return entry;
1112 }
1113
1114 entry = bfd_hash_newfunc (entry, table, string);
1115 if (entry == NULL)
1116 return entry;
1117
1118 ret = (struct out_section_hash_entry *) entry;
1119 memset (&ret->s, 0, sizeof (ret->s));
1120 ret->s.header.type = lang_output_section_statement_enum;
1121 ret->s.output_section_statement.subsection_alignment = -1;
1122 ret->s.output_section_statement.section_alignment = -1;
1123 ret->s.output_section_statement.block_value = 1;
1124 lang_list_init (&ret->s.output_section_statement.children);
1125 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1126
1127 /* For every output section statement added to the list, except the
1128 first one, lang_output_section_statement.tail points to the "next"
1129 field of the last element of the list. */
1130 if (lang_output_section_statement.head != NULL)
1131 ret->s.output_section_statement.prev
1132 = ((lang_output_section_statement_type *)
1133 ((char *) lang_output_section_statement.tail
1134 - offsetof (lang_output_section_statement_type, next)));
1135
1136 /* GCC's strict aliasing rules prevent us from just casting the
1137 address, so we store the pointer in a variable and cast that
1138 instead. */
1139 nextp = &ret->s.output_section_statement.next;
1140 lang_statement_append (&lang_output_section_statement,
1141 &ret->s,
1142 (lang_statement_union_type **) nextp);
1143 return &ret->root;
1144 }
1145
1146 static void
1147 output_section_statement_table_init (void)
1148 {
1149 if (!bfd_hash_table_init_n (&output_section_statement_table,
1150 output_section_statement_newfunc,
1151 sizeof (struct out_section_hash_entry),
1152 61))
1153 einfo (_("%P%F: can not create hash table: %E\n"));
1154 }
1155
1156 static void
1157 output_section_statement_table_free (void)
1158 {
1159 bfd_hash_table_free (&output_section_statement_table);
1160 }
1161
1162 /* Build enough state so that the parser can build its tree. */
1163
1164 void
1165 lang_init (void)
1166 {
1167 obstack_begin (&stat_obstack, 1000);
1168
1169 stat_ptr = &statement_list;
1170
1171 output_section_statement_table_init ();
1172
1173 lang_list_init (stat_ptr);
1174
1175 lang_list_init (&input_file_chain);
1176 lang_list_init (&lang_output_section_statement);
1177 lang_list_init (&file_chain);
1178 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1179 NULL);
1180 abs_output_section =
1181 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1182
1183 abs_output_section->bfd_section = bfd_abs_section_ptr;
1184
1185 /* The value "3" is ad-hoc, somewhat related to the expected number of
1186 DEFINED expressions in a linker script. For most default linker
1187 scripts, there are none. Why a hash table then? Well, it's somewhat
1188 simpler to re-use working machinery than using a linked list in terms
1189 of code-complexity here in ld, besides the initialization which just
1190 looks like other code here. */
1191 if (!bfd_hash_table_init_n (&lang_definedness_table,
1192 lang_definedness_newfunc,
1193 sizeof (struct lang_definedness_hash_entry),
1194 3))
1195 einfo (_("%P%F: can not create hash table: %E\n"));
1196 }
1197
1198 void
1199 lang_finish (void)
1200 {
1201 output_section_statement_table_free ();
1202 }
1203
1204 /*----------------------------------------------------------------------
1205 A region is an area of memory declared with the
1206 MEMORY { name:org=exp, len=exp ... }
1207 syntax.
1208
1209 We maintain a list of all the regions here.
1210
1211 If no regions are specified in the script, then the default is used
1212 which is created when looked up to be the entire data space.
1213
1214 If create is true we are creating a region inside a MEMORY block.
1215 In this case it is probably an error to create a region that has
1216 already been created. If we are not inside a MEMORY block it is
1217 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1218 and so we issue a warning.
1219
1220 Each region has at least one name. The first name is either
1221 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1222 alias names to an existing region within a script with
1223 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1224 region. */
1225
1226 static lang_memory_region_type *lang_memory_region_list;
1227 static lang_memory_region_type **lang_memory_region_list_tail
1228 = &lang_memory_region_list;
1229
1230 lang_memory_region_type *
1231 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1232 {
1233 lang_memory_region_name *n;
1234 lang_memory_region_type *r;
1235 lang_memory_region_type *new_region;
1236
1237 /* NAME is NULL for LMA memspecs if no region was specified. */
1238 if (name == NULL)
1239 return NULL;
1240
1241 for (r = lang_memory_region_list; r != NULL; r = r->next)
1242 for (n = &r->name_list; n != NULL; n = n->next)
1243 if (strcmp (n->name, name) == 0)
1244 {
1245 if (create)
1246 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1247 name);
1248 return r;
1249 }
1250
1251 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1252 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1253
1254 new_region = (lang_memory_region_type *)
1255 stat_alloc (sizeof (lang_memory_region_type));
1256
1257 new_region->name_list.name = xstrdup (name);
1258 new_region->name_list.next = NULL;
1259 new_region->next = NULL;
1260 new_region->origin = 0;
1261 new_region->length = ~(bfd_size_type) 0;
1262 new_region->current = 0;
1263 new_region->last_os = NULL;
1264 new_region->flags = 0;
1265 new_region->not_flags = 0;
1266 new_region->had_full_message = FALSE;
1267
1268 *lang_memory_region_list_tail = new_region;
1269 lang_memory_region_list_tail = &new_region->next;
1270
1271 return new_region;
1272 }
1273
1274 void
1275 lang_memory_region_alias (const char * alias, const char * region_name)
1276 {
1277 lang_memory_region_name * n;
1278 lang_memory_region_type * r;
1279 lang_memory_region_type * region;
1280
1281 /* The default region must be unique. This ensures that it is not necessary
1282 to iterate through the name list if someone wants the check if a region is
1283 the default memory region. */
1284 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1285 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1286 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1287
1288 /* Look for the target region and check if the alias is not already
1289 in use. */
1290 region = NULL;
1291 for (r = lang_memory_region_list; r != NULL; r = r->next)
1292 for (n = &r->name_list; n != NULL; n = n->next)
1293 {
1294 if (region == NULL && strcmp (n->name, region_name) == 0)
1295 region = r;
1296 if (strcmp (n->name, alias) == 0)
1297 einfo (_("%F%P:%S: error: redefinition of memory region "
1298 "alias `%s'\n"),
1299 alias);
1300 }
1301
1302 /* Check if the target region exists. */
1303 if (region == NULL)
1304 einfo (_("%F%P:%S: error: memory region `%s' "
1305 "for alias `%s' does not exist\n"),
1306 region_name,
1307 alias);
1308
1309 /* Add alias to region name list. */
1310 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1311 n->name = xstrdup (alias);
1312 n->next = region->name_list.next;
1313 region->name_list.next = n;
1314 }
1315
1316 static lang_memory_region_type *
1317 lang_memory_default (asection * section)
1318 {
1319 lang_memory_region_type *p;
1320
1321 flagword sec_flags = section->flags;
1322
1323 /* Override SEC_DATA to mean a writable section. */
1324 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1325 sec_flags |= SEC_DATA;
1326
1327 for (p = lang_memory_region_list; p != NULL; p = p->next)
1328 {
1329 if ((p->flags & sec_flags) != 0
1330 && (p->not_flags & sec_flags) == 0)
1331 {
1332 return p;
1333 }
1334 }
1335 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1336 }
1337
1338 /* Find or create an output_section_statement with the given NAME.
1339 If CONSTRAINT is non-zero match one with that constraint, otherwise
1340 match any non-negative constraint. If CREATE, always make a
1341 new output_section_statement for SPECIAL CONSTRAINT. */
1342
1343 lang_output_section_statement_type *
1344 lang_output_section_statement_lookup (const char *name,
1345 int constraint,
1346 bfd_boolean create)
1347 {
1348 struct out_section_hash_entry *entry;
1349
1350 entry = ((struct out_section_hash_entry *)
1351 bfd_hash_lookup (&output_section_statement_table, name,
1352 create, FALSE));
1353 if (entry == NULL)
1354 {
1355 if (create)
1356 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1357 return NULL;
1358 }
1359
1360 if (entry->s.output_section_statement.name != NULL)
1361 {
1362 /* We have a section of this name, but it might not have the correct
1363 constraint. */
1364 struct out_section_hash_entry *last_ent;
1365
1366 name = entry->s.output_section_statement.name;
1367 if (create && constraint == SPECIAL)
1368 /* Not traversing to the end reverses the order of the second
1369 and subsequent SPECIAL sections in the hash table chain,
1370 but that shouldn't matter. */
1371 last_ent = entry;
1372 else
1373 do
1374 {
1375 if (constraint == entry->s.output_section_statement.constraint
1376 || (constraint == 0
1377 && entry->s.output_section_statement.constraint >= 0))
1378 return &entry->s.output_section_statement;
1379 last_ent = entry;
1380 entry = (struct out_section_hash_entry *) entry->root.next;
1381 }
1382 while (entry != NULL
1383 && name == entry->s.output_section_statement.name);
1384
1385 if (!create)
1386 return NULL;
1387
1388 entry
1389 = ((struct out_section_hash_entry *)
1390 output_section_statement_newfunc (NULL,
1391 &output_section_statement_table,
1392 name));
1393 if (entry == NULL)
1394 {
1395 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1396 return NULL;
1397 }
1398 entry->root = last_ent->root;
1399 last_ent->root.next = &entry->root;
1400 }
1401
1402 entry->s.output_section_statement.name = name;
1403 entry->s.output_section_statement.constraint = constraint;
1404 return &entry->s.output_section_statement;
1405 }
1406
1407 /* Find the next output_section_statement with the same name as OS.
1408 If CONSTRAINT is non-zero, find one with that constraint otherwise
1409 match any non-negative constraint. */
1410
1411 lang_output_section_statement_type *
1412 next_matching_output_section_statement (lang_output_section_statement_type *os,
1413 int constraint)
1414 {
1415 /* All output_section_statements are actually part of a
1416 struct out_section_hash_entry. */
1417 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1418 ((char *) os
1419 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1420 const char *name = os->name;
1421
1422 ASSERT (name == entry->root.string);
1423 do
1424 {
1425 entry = (struct out_section_hash_entry *) entry->root.next;
1426 if (entry == NULL
1427 || name != entry->s.output_section_statement.name)
1428 return NULL;
1429 }
1430 while (constraint != entry->s.output_section_statement.constraint
1431 && (constraint != 0
1432 || entry->s.output_section_statement.constraint < 0));
1433
1434 return &entry->s.output_section_statement;
1435 }
1436
1437 /* A variant of lang_output_section_find used by place_orphan.
1438 Returns the output statement that should precede a new output
1439 statement for SEC. If an exact match is found on certain flags,
1440 sets *EXACT too. */
1441
1442 lang_output_section_statement_type *
1443 lang_output_section_find_by_flags (const asection *sec,
1444 lang_output_section_statement_type **exact,
1445 lang_match_sec_type_func match_type)
1446 {
1447 lang_output_section_statement_type *first, *look, *found;
1448 flagword flags;
1449
1450 /* We know the first statement on this list is *ABS*. May as well
1451 skip it. */
1452 first = &lang_output_section_statement.head->output_section_statement;
1453 first = first->next;
1454
1455 /* First try for an exact match. */
1456 found = NULL;
1457 for (look = first; look; look = look->next)
1458 {
1459 flags = look->flags;
1460 if (look->bfd_section != NULL)
1461 {
1462 flags = look->bfd_section->flags;
1463 if (match_type && !match_type (link_info.output_bfd,
1464 look->bfd_section,
1465 sec->owner, sec))
1466 continue;
1467 }
1468 flags ^= sec->flags;
1469 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1470 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1471 found = look;
1472 }
1473 if (found != NULL)
1474 {
1475 if (exact != NULL)
1476 *exact = found;
1477 return found;
1478 }
1479
1480 if ((sec->flags & SEC_CODE) != 0
1481 && (sec->flags & SEC_ALLOC) != 0)
1482 {
1483 /* Try for a rw code section. */
1484 for (look = first; look; look = look->next)
1485 {
1486 flags = look->flags;
1487 if (look->bfd_section != NULL)
1488 {
1489 flags = look->bfd_section->flags;
1490 if (match_type && !match_type (link_info.output_bfd,
1491 look->bfd_section,
1492 sec->owner, sec))
1493 continue;
1494 }
1495 flags ^= sec->flags;
1496 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1497 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1498 found = look;
1499 }
1500 }
1501 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1502 && (sec->flags & SEC_ALLOC) != 0)
1503 {
1504 /* .rodata can go after .text, .sdata2 after .rodata. */
1505 for (look = first; look; look = look->next)
1506 {
1507 flags = look->flags;
1508 if (look->bfd_section != NULL)
1509 {
1510 flags = look->bfd_section->flags;
1511 if (match_type && !match_type (link_info.output_bfd,
1512 look->bfd_section,
1513 sec->owner, sec))
1514 continue;
1515 }
1516 flags ^= sec->flags;
1517 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1518 | SEC_READONLY))
1519 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1520 found = look;
1521 }
1522 }
1523 else if ((sec->flags & SEC_SMALL_DATA) != 0
1524 && (sec->flags & SEC_ALLOC) != 0)
1525 {
1526 /* .sdata goes after .data, .sbss after .sdata. */
1527 for (look = first; look; look = look->next)
1528 {
1529 flags = look->flags;
1530 if (look->bfd_section != NULL)
1531 {
1532 flags = look->bfd_section->flags;
1533 if (match_type && !match_type (link_info.output_bfd,
1534 look->bfd_section,
1535 sec->owner, sec))
1536 continue;
1537 }
1538 flags ^= sec->flags;
1539 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1540 | SEC_THREAD_LOCAL))
1541 || ((look->flags & SEC_SMALL_DATA)
1542 && !(sec->flags & SEC_HAS_CONTENTS)))
1543 found = look;
1544 }
1545 }
1546 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1547 && (sec->flags & SEC_ALLOC) != 0)
1548 {
1549 /* .data goes after .rodata. */
1550 for (look = first; look; look = look->next)
1551 {
1552 flags = look->flags;
1553 if (look->bfd_section != NULL)
1554 {
1555 flags = look->bfd_section->flags;
1556 if (match_type && !match_type (link_info.output_bfd,
1557 look->bfd_section,
1558 sec->owner, sec))
1559 continue;
1560 }
1561 flags ^= sec->flags;
1562 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1563 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1564 found = look;
1565 }
1566 }
1567 else if ((sec->flags & SEC_ALLOC) != 0)
1568 {
1569 /* .bss goes after any other alloc section. */
1570 for (look = first; look; look = look->next)
1571 {
1572 flags = look->flags;
1573 if (look->bfd_section != NULL)
1574 {
1575 flags = look->bfd_section->flags;
1576 if (match_type && !match_type (link_info.output_bfd,
1577 look->bfd_section,
1578 sec->owner, sec))
1579 continue;
1580 }
1581 flags ^= sec->flags;
1582 if (!(flags & SEC_ALLOC))
1583 found = look;
1584 }
1585 }
1586 else
1587 {
1588 /* non-alloc go last. */
1589 for (look = first; look; look = look->next)
1590 {
1591 flags = look->flags;
1592 if (look->bfd_section != NULL)
1593 flags = look->bfd_section->flags;
1594 flags ^= sec->flags;
1595 if (!(flags & SEC_DEBUGGING))
1596 found = look;
1597 }
1598 return found;
1599 }
1600
1601 if (found || !match_type)
1602 return found;
1603
1604 return lang_output_section_find_by_flags (sec, NULL, NULL);
1605 }
1606
1607 /* Find the last output section before given output statement.
1608 Used by place_orphan. */
1609
1610 static asection *
1611 output_prev_sec_find (lang_output_section_statement_type *os)
1612 {
1613 lang_output_section_statement_type *lookup;
1614
1615 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1616 {
1617 if (lookup->constraint < 0)
1618 continue;
1619
1620 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1621 return lookup->bfd_section;
1622 }
1623
1624 return NULL;
1625 }
1626
1627 /* Look for a suitable place for a new output section statement. The
1628 idea is to skip over anything that might be inside a SECTIONS {}
1629 statement in a script, before we find another output section
1630 statement. Assignments to "dot" before an output section statement
1631 are assumed to belong to it, except in two cases; The first
1632 assignment to dot, and assignments before non-alloc sections.
1633 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1634 similar assignments that set the initial address, or we might
1635 insert non-alloc note sections among assignments setting end of
1636 image symbols. */
1637
1638 static lang_statement_union_type **
1639 insert_os_after (lang_output_section_statement_type *after)
1640 {
1641 lang_statement_union_type **where;
1642 lang_statement_union_type **assign = NULL;
1643 bfd_boolean ignore_first;
1644
1645 ignore_first
1646 = after == &lang_output_section_statement.head->output_section_statement;
1647
1648 for (where = &after->header.next;
1649 *where != NULL;
1650 where = &(*where)->header.next)
1651 {
1652 switch ((*where)->header.type)
1653 {
1654 case lang_assignment_statement_enum:
1655 if (assign == NULL)
1656 {
1657 lang_assignment_statement_type *ass;
1658
1659 ass = &(*where)->assignment_statement;
1660 if (ass->exp->type.node_class != etree_assert
1661 && ass->exp->assign.dst[0] == '.'
1662 && ass->exp->assign.dst[1] == 0
1663 && !ignore_first)
1664 assign = where;
1665 }
1666 ignore_first = FALSE;
1667 continue;
1668 case lang_wild_statement_enum:
1669 case lang_input_section_enum:
1670 case lang_object_symbols_statement_enum:
1671 case lang_fill_statement_enum:
1672 case lang_data_statement_enum:
1673 case lang_reloc_statement_enum:
1674 case lang_padding_statement_enum:
1675 case lang_constructors_statement_enum:
1676 assign = NULL;
1677 continue;
1678 case lang_output_section_statement_enum:
1679 if (assign != NULL)
1680 {
1681 asection *s = (*where)->output_section_statement.bfd_section;
1682
1683 if (s == NULL
1684 || s->map_head.s == NULL
1685 || (s->flags & SEC_ALLOC) != 0)
1686 where = assign;
1687 }
1688 break;
1689 case lang_input_statement_enum:
1690 case lang_address_statement_enum:
1691 case lang_target_statement_enum:
1692 case lang_output_statement_enum:
1693 case lang_group_statement_enum:
1694 case lang_insert_statement_enum:
1695 continue;
1696 }
1697 break;
1698 }
1699
1700 return where;
1701 }
1702
1703 lang_output_section_statement_type *
1704 lang_insert_orphan (asection *s,
1705 const char *secname,
1706 int constraint,
1707 lang_output_section_statement_type *after,
1708 struct orphan_save *place,
1709 etree_type *address,
1710 lang_statement_list_type *add_child)
1711 {
1712 lang_statement_list_type add;
1713 const char *ps;
1714 lang_output_section_statement_type *os;
1715 lang_output_section_statement_type **os_tail;
1716
1717 /* If we have found an appropriate place for the output section
1718 statements for this orphan, add them to our own private list,
1719 inserting them later into the global statement list. */
1720 if (after != NULL)
1721 {
1722 lang_list_init (&add);
1723 push_stat_ptr (&add);
1724 }
1725
1726 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1727 address = exp_intop (0);
1728
1729 os_tail = ((lang_output_section_statement_type **)
1730 lang_output_section_statement.tail);
1731 os = lang_enter_output_section_statement (secname, address, normal_section,
1732 NULL, NULL, NULL, constraint);
1733
1734 ps = NULL;
1735 if (config.build_constructors && *os_tail == os)
1736 {
1737 /* If the name of the section is representable in C, then create
1738 symbols to mark the start and the end of the section. */
1739 for (ps = secname; *ps != '\0'; ps++)
1740 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1741 break;
1742 if (*ps == '\0')
1743 {
1744 char *symname;
1745 etree_type *e_align;
1746
1747 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1748 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1749 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1750 e_align = exp_unop (ALIGN_K,
1751 exp_intop ((bfd_vma) 1 << s->alignment_power));
1752 lang_add_assignment (exp_assop ('=', ".", e_align));
1753 lang_add_assignment (exp_provide (symname,
1754 exp_unop (ABSOLUTE,
1755 exp_nameop (NAME, ".")),
1756 FALSE));
1757 }
1758 }
1759
1760 if (add_child == NULL)
1761 add_child = &os->children;
1762 lang_add_section (add_child, s, os);
1763
1764 lang_leave_output_section_statement (0, "*default*", NULL, NULL);
1765
1766 if (ps != NULL && *ps == '\0')
1767 {
1768 char *symname;
1769
1770 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1771 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1772 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1773 lang_add_assignment (exp_provide (symname,
1774 exp_nameop (NAME, "."),
1775 FALSE));
1776 }
1777
1778 /* Restore the global list pointer. */
1779 if (after != NULL)
1780 pop_stat_ptr ();
1781
1782 if (after != NULL && os->bfd_section != NULL)
1783 {
1784 asection *snew, *as;
1785
1786 snew = os->bfd_section;
1787
1788 /* Shuffle the bfd section list to make the output file look
1789 neater. This is really only cosmetic. */
1790 if (place->section == NULL
1791 && after != (&lang_output_section_statement.head
1792 ->output_section_statement))
1793 {
1794 asection *bfd_section = after->bfd_section;
1795
1796 /* If the output statement hasn't been used to place any input
1797 sections (and thus doesn't have an output bfd_section),
1798 look for the closest prior output statement having an
1799 output section. */
1800 if (bfd_section == NULL)
1801 bfd_section = output_prev_sec_find (after);
1802
1803 if (bfd_section != NULL && bfd_section != snew)
1804 place->section = &bfd_section->next;
1805 }
1806
1807 if (place->section == NULL)
1808 place->section = &link_info.output_bfd->sections;
1809
1810 as = *place->section;
1811
1812 if (!as)
1813 {
1814 /* Put the section at the end of the list. */
1815
1816 /* Unlink the section. */
1817 bfd_section_list_remove (link_info.output_bfd, snew);
1818
1819 /* Now tack it back on in the right place. */
1820 bfd_section_list_append (link_info.output_bfd, snew);
1821 }
1822 else if (as != snew && as->prev != snew)
1823 {
1824 /* Unlink the section. */
1825 bfd_section_list_remove (link_info.output_bfd, snew);
1826
1827 /* Now tack it back on in the right place. */
1828 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1829 }
1830
1831 /* Save the end of this list. Further ophans of this type will
1832 follow the one we've just added. */
1833 place->section = &snew->next;
1834
1835 /* The following is non-cosmetic. We try to put the output
1836 statements in some sort of reasonable order here, because they
1837 determine the final load addresses of the orphan sections.
1838 In addition, placing output statements in the wrong order may
1839 require extra segments. For instance, given a typical
1840 situation of all read-only sections placed in one segment and
1841 following that a segment containing all the read-write
1842 sections, we wouldn't want to place an orphan read/write
1843 section before or amongst the read-only ones. */
1844 if (add.head != NULL)
1845 {
1846 lang_output_section_statement_type *newly_added_os;
1847
1848 if (place->stmt == NULL)
1849 {
1850 lang_statement_union_type **where = insert_os_after (after);
1851
1852 *add.tail = *where;
1853 *where = add.head;
1854
1855 place->os_tail = &after->next;
1856 }
1857 else
1858 {
1859 /* Put it after the last orphan statement we added. */
1860 *add.tail = *place->stmt;
1861 *place->stmt = add.head;
1862 }
1863
1864 /* Fix the global list pointer if we happened to tack our
1865 new list at the tail. */
1866 if (*stat_ptr->tail == add.head)
1867 stat_ptr->tail = add.tail;
1868
1869 /* Save the end of this list. */
1870 place->stmt = add.tail;
1871
1872 /* Do the same for the list of output section statements. */
1873 newly_added_os = *os_tail;
1874 *os_tail = NULL;
1875 newly_added_os->prev = (lang_output_section_statement_type *)
1876 ((char *) place->os_tail
1877 - offsetof (lang_output_section_statement_type, next));
1878 newly_added_os->next = *place->os_tail;
1879 if (newly_added_os->next != NULL)
1880 newly_added_os->next->prev = newly_added_os;
1881 *place->os_tail = newly_added_os;
1882 place->os_tail = &newly_added_os->next;
1883
1884 /* Fixing the global list pointer here is a little different.
1885 We added to the list in lang_enter_output_section_statement,
1886 trimmed off the new output_section_statment above when
1887 assigning *os_tail = NULL, but possibly added it back in
1888 the same place when assigning *place->os_tail. */
1889 if (*os_tail == NULL)
1890 lang_output_section_statement.tail
1891 = (lang_statement_union_type **) os_tail;
1892 }
1893 }
1894 return os;
1895 }
1896
1897 static void
1898 lang_map_flags (flagword flag)
1899 {
1900 if (flag & SEC_ALLOC)
1901 minfo ("a");
1902
1903 if (flag & SEC_CODE)
1904 minfo ("x");
1905
1906 if (flag & SEC_READONLY)
1907 minfo ("r");
1908
1909 if (flag & SEC_DATA)
1910 minfo ("w");
1911
1912 if (flag & SEC_LOAD)
1913 minfo ("l");
1914 }
1915
1916 void
1917 lang_map (void)
1918 {
1919 lang_memory_region_type *m;
1920 bfd_boolean dis_header_printed = FALSE;
1921 bfd *p;
1922
1923 LANG_FOR_EACH_INPUT_STATEMENT (file)
1924 {
1925 asection *s;
1926
1927 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
1928 || file->just_syms_flag)
1929 continue;
1930
1931 for (s = file->the_bfd->sections; s != NULL; s = s->next)
1932 if ((s->output_section == NULL
1933 || s->output_section->owner != link_info.output_bfd)
1934 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
1935 {
1936 if (! dis_header_printed)
1937 {
1938 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
1939 dis_header_printed = TRUE;
1940 }
1941
1942 print_input_section (s, TRUE);
1943 }
1944 }
1945
1946 minfo (_("\nMemory Configuration\n\n"));
1947 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
1948 _("Name"), _("Origin"), _("Length"), _("Attributes"));
1949
1950 for (m = lang_memory_region_list; m != NULL; m = m->next)
1951 {
1952 char buf[100];
1953 int len;
1954
1955 fprintf (config.map_file, "%-16s ", m->name_list.name);
1956
1957 sprintf_vma (buf, m->origin);
1958 minfo ("0x%s ", buf);
1959 len = strlen (buf);
1960 while (len < 16)
1961 {
1962 print_space ();
1963 ++len;
1964 }
1965
1966 minfo ("0x%V", m->length);
1967 if (m->flags || m->not_flags)
1968 {
1969 #ifndef BFD64
1970 minfo (" ");
1971 #endif
1972 if (m->flags)
1973 {
1974 print_space ();
1975 lang_map_flags (m->flags);
1976 }
1977
1978 if (m->not_flags)
1979 {
1980 minfo (" !");
1981 lang_map_flags (m->not_flags);
1982 }
1983 }
1984
1985 print_nl ();
1986 }
1987
1988 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
1989
1990 if (! link_info.reduce_memory_overheads)
1991 {
1992 obstack_begin (&map_obstack, 1000);
1993 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
1994 bfd_map_over_sections (p, init_map_userdata, 0);
1995 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
1996 }
1997 lang_statement_iteration ++;
1998 print_statements ();
1999 }
2000
2001 static void
2002 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2003 asection *sec,
2004 void *data ATTRIBUTE_UNUSED)
2005 {
2006 fat_section_userdata_type *new_data
2007 = ((fat_section_userdata_type *) (stat_alloc
2008 (sizeof (fat_section_userdata_type))));
2009
2010 ASSERT (get_userdata (sec) == NULL);
2011 get_userdata (sec) = new_data;
2012 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2013 new_data->map_symbol_def_count = 0;
2014 }
2015
2016 static bfd_boolean
2017 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2018 void *info ATTRIBUTE_UNUSED)
2019 {
2020 if (hash_entry->type == bfd_link_hash_defined
2021 || hash_entry->type == bfd_link_hash_defweak)
2022 {
2023 struct fat_user_section_struct *ud;
2024 struct map_symbol_def *def;
2025
2026 ud = (struct fat_user_section_struct *)
2027 get_userdata (hash_entry->u.def.section);
2028 if (! ud)
2029 {
2030 /* ??? What do we have to do to initialize this beforehand? */
2031 /* The first time we get here is bfd_abs_section... */
2032 init_map_userdata (0, hash_entry->u.def.section, 0);
2033 ud = (struct fat_user_section_struct *)
2034 get_userdata (hash_entry->u.def.section);
2035 }
2036 else if (!ud->map_symbol_def_tail)
2037 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2038
2039 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2040 def->entry = hash_entry;
2041 *(ud->map_symbol_def_tail) = def;
2042 ud->map_symbol_def_tail = &def->next;
2043 ud->map_symbol_def_count++;
2044 }
2045 return TRUE;
2046 }
2047
2048 /* Initialize an output section. */
2049
2050 static void
2051 init_os (lang_output_section_statement_type *s, asection *isec,
2052 flagword flags)
2053 {
2054 if (s->bfd_section != NULL)
2055 return;
2056
2057 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2058 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2059
2060 if (s->constraint != SPECIAL)
2061 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2062 if (s->bfd_section == NULL)
2063 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2064 s->name, flags);
2065 if (s->bfd_section == NULL)
2066 {
2067 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2068 link_info.output_bfd->xvec->name, s->name);
2069 }
2070 s->bfd_section->output_section = s->bfd_section;
2071 s->bfd_section->output_offset = 0;
2072
2073 if (!link_info.reduce_memory_overheads)
2074 {
2075 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2076 stat_alloc (sizeof (fat_section_userdata_type));
2077 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2078 get_userdata (s->bfd_section) = new_userdata;
2079 }
2080
2081 /* If there is a base address, make sure that any sections it might
2082 mention are initialized. */
2083 if (s->addr_tree != NULL)
2084 exp_init_os (s->addr_tree);
2085
2086 if (s->load_base != NULL)
2087 exp_init_os (s->load_base);
2088
2089 /* If supplied an alignment, set it. */
2090 if (s->section_alignment != -1)
2091 s->bfd_section->alignment_power = s->section_alignment;
2092
2093 if (isec)
2094 bfd_init_private_section_data (isec->owner, isec,
2095 link_info.output_bfd, s->bfd_section,
2096 &link_info);
2097 }
2098
2099 /* Make sure that all output sections mentioned in an expression are
2100 initialized. */
2101
2102 static void
2103 exp_init_os (etree_type *exp)
2104 {
2105 switch (exp->type.node_class)
2106 {
2107 case etree_assign:
2108 case etree_provide:
2109 exp_init_os (exp->assign.src);
2110 break;
2111
2112 case etree_binary:
2113 exp_init_os (exp->binary.lhs);
2114 exp_init_os (exp->binary.rhs);
2115 break;
2116
2117 case etree_trinary:
2118 exp_init_os (exp->trinary.cond);
2119 exp_init_os (exp->trinary.lhs);
2120 exp_init_os (exp->trinary.rhs);
2121 break;
2122
2123 case etree_assert:
2124 exp_init_os (exp->assert_s.child);
2125 break;
2126
2127 case etree_unary:
2128 exp_init_os (exp->unary.child);
2129 break;
2130
2131 case etree_name:
2132 switch (exp->type.node_code)
2133 {
2134 case ADDR:
2135 case LOADADDR:
2136 case SIZEOF:
2137 {
2138 lang_output_section_statement_type *os;
2139
2140 os = lang_output_section_find (exp->name.name);
2141 if (os != NULL && os->bfd_section == NULL)
2142 init_os (os, NULL, 0);
2143 }
2144 }
2145 break;
2146
2147 default:
2148 break;
2149 }
2150 }
2151 \f
2152 static void
2153 section_already_linked (bfd *abfd, asection *sec, void *data)
2154 {
2155 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2156
2157 /* If we are only reading symbols from this object, then we want to
2158 discard all sections. */
2159 if (entry->just_syms_flag)
2160 {
2161 bfd_link_just_syms (abfd, sec, &link_info);
2162 return;
2163 }
2164
2165 if (!(abfd->flags & DYNAMIC))
2166 bfd_section_already_linked (abfd, sec, &link_info);
2167 }
2168 \f
2169 /* The wild routines.
2170
2171 These expand statements like *(.text) and foo.o to a list of
2172 explicit actions, like foo.o(.text), bar.o(.text) and
2173 foo.o(.text, .data). */
2174
2175 /* Add SECTION to the output section OUTPUT. Do this by creating a
2176 lang_input_section statement which is placed at PTR. FILE is the
2177 input file which holds SECTION. */
2178
2179 void
2180 lang_add_section (lang_statement_list_type *ptr,
2181 asection *section,
2182 lang_output_section_statement_type *output)
2183 {
2184 flagword flags = section->flags;
2185 bfd_boolean discard;
2186
2187 /* Discard sections marked with SEC_EXCLUDE. */
2188 discard = (flags & SEC_EXCLUDE) != 0;
2189
2190 /* Discard input sections which are assigned to a section named
2191 DISCARD_SECTION_NAME. */
2192 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2193 discard = TRUE;
2194
2195 /* Discard debugging sections if we are stripping debugging
2196 information. */
2197 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2198 && (flags & SEC_DEBUGGING) != 0)
2199 discard = TRUE;
2200
2201 if (discard)
2202 {
2203 if (section->output_section == NULL)
2204 {
2205 /* This prevents future calls from assigning this section. */
2206 section->output_section = bfd_abs_section_ptr;
2207 }
2208 return;
2209 }
2210
2211 if (section->output_section == NULL)
2212 {
2213 bfd_boolean first;
2214 lang_input_section_type *new_section;
2215
2216 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2217 to an output section, because we want to be able to include a
2218 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2219 section (I don't know why we want to do this, but we do).
2220 build_link_order in ldwrite.c handles this case by turning
2221 the embedded SEC_NEVER_LOAD section into a fill. */
2222 flags &= ~ SEC_NEVER_LOAD;
2223
2224 switch (output->sectype)
2225 {
2226 case normal_section:
2227 case overlay_section:
2228 break;
2229 case noalloc_section:
2230 flags &= ~SEC_ALLOC;
2231 break;
2232 case noload_section:
2233 flags &= ~SEC_LOAD;
2234 flags |= SEC_NEVER_LOAD;
2235 break;
2236 }
2237
2238 if (output->bfd_section == NULL)
2239 init_os (output, section, flags);
2240
2241 first = ! output->bfd_section->linker_has_input;
2242 output->bfd_section->linker_has_input = 1;
2243
2244 if (!link_info.relocatable
2245 && !stripped_excluded_sections)
2246 {
2247 asection *s = output->bfd_section->map_tail.s;
2248 output->bfd_section->map_tail.s = section;
2249 section->map_head.s = NULL;
2250 section->map_tail.s = s;
2251 if (s != NULL)
2252 s->map_head.s = section;
2253 else
2254 output->bfd_section->map_head.s = section;
2255 }
2256
2257 /* Add a section reference to the list. */
2258 new_section = new_stat (lang_input_section, ptr);
2259
2260 new_section->section = section;
2261 section->output_section = output->bfd_section;
2262
2263 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2264 already been processed. One reason to do this is that on pe
2265 format targets, .text$foo sections go into .text and it's odd
2266 to see .text with SEC_LINK_ONCE set. */
2267
2268 if (! link_info.relocatable)
2269 flags &= ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES);
2270
2271 /* If this is not the first input section, and the SEC_READONLY
2272 flag is not currently set, then don't set it just because the
2273 input section has it set. */
2274
2275 if (! first && (output->bfd_section->flags & SEC_READONLY) == 0)
2276 flags &= ~ SEC_READONLY;
2277
2278 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2279 if (! first
2280 && ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2281 != (flags & (SEC_MERGE | SEC_STRINGS))
2282 || ((flags & SEC_MERGE)
2283 && output->bfd_section->entsize != section->entsize)))
2284 {
2285 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2286 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2287 }
2288
2289 output->bfd_section->flags |= flags;
2290
2291 if (flags & SEC_MERGE)
2292 output->bfd_section->entsize = section->entsize;
2293
2294 /* If SEC_READONLY is not set in the input section, then clear
2295 it from the output section. */
2296 if ((section->flags & SEC_READONLY) == 0)
2297 output->bfd_section->flags &= ~SEC_READONLY;
2298
2299 /* Copy over SEC_SMALL_DATA. */
2300 if (section->flags & SEC_SMALL_DATA)
2301 output->bfd_section->flags |= SEC_SMALL_DATA;
2302
2303 if (section->alignment_power > output->bfd_section->alignment_power)
2304 output->bfd_section->alignment_power = section->alignment_power;
2305
2306 if (bfd_get_arch (section->owner) == bfd_arch_tic54x
2307 && (section->flags & SEC_TIC54X_BLOCK) != 0)
2308 {
2309 output->bfd_section->flags |= SEC_TIC54X_BLOCK;
2310 /* FIXME: This value should really be obtained from the bfd... */
2311 output->block_value = 128;
2312 }
2313 }
2314 }
2315
2316 /* Handle wildcard sorting. This returns the lang_input_section which
2317 should follow the one we are going to create for SECTION and FILE,
2318 based on the sorting requirements of WILD. It returns NULL if the
2319 new section should just go at the end of the current list. */
2320
2321 static lang_statement_union_type *
2322 wild_sort (lang_wild_statement_type *wild,
2323 struct wildcard_list *sec,
2324 lang_input_statement_type *file,
2325 asection *section)
2326 {
2327 const char *section_name;
2328 lang_statement_union_type *l;
2329
2330 if (!wild->filenames_sorted
2331 && (sec == NULL || sec->spec.sorted == none))
2332 return NULL;
2333
2334 section_name = bfd_get_section_name (file->the_bfd, section);
2335 for (l = wild->children.head; l != NULL; l = l->header.next)
2336 {
2337 lang_input_section_type *ls;
2338
2339 if (l->header.type != lang_input_section_enum)
2340 continue;
2341 ls = &l->input_section;
2342
2343 /* Sorting by filename takes precedence over sorting by section
2344 name. */
2345
2346 if (wild->filenames_sorted)
2347 {
2348 const char *fn, *ln;
2349 bfd_boolean fa, la;
2350 int i;
2351
2352 /* The PE support for the .idata section as generated by
2353 dlltool assumes that files will be sorted by the name of
2354 the archive and then the name of the file within the
2355 archive. */
2356
2357 if (file->the_bfd != NULL
2358 && bfd_my_archive (file->the_bfd) != NULL)
2359 {
2360 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2361 fa = TRUE;
2362 }
2363 else
2364 {
2365 fn = file->filename;
2366 fa = FALSE;
2367 }
2368
2369 if (bfd_my_archive (ls->section->owner) != NULL)
2370 {
2371 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2372 la = TRUE;
2373 }
2374 else
2375 {
2376 ln = ls->section->owner->filename;
2377 la = FALSE;
2378 }
2379
2380 i = strcmp (fn, ln);
2381 if (i > 0)
2382 continue;
2383 else if (i < 0)
2384 break;
2385
2386 if (fa || la)
2387 {
2388 if (fa)
2389 fn = file->filename;
2390 if (la)
2391 ln = ls->section->owner->filename;
2392
2393 i = strcmp (fn, ln);
2394 if (i > 0)
2395 continue;
2396 else if (i < 0)
2397 break;
2398 }
2399 }
2400
2401 /* Here either the files are not sorted by name, or we are
2402 looking at the sections for this file. */
2403
2404 if (sec != NULL && sec->spec.sorted != none)
2405 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2406 break;
2407 }
2408
2409 return l;
2410 }
2411
2412 /* Expand a wild statement for a particular FILE. SECTION may be
2413 NULL, in which case it is a wild card. */
2414
2415 static void
2416 output_section_callback (lang_wild_statement_type *ptr,
2417 struct wildcard_list *sec,
2418 asection *section,
2419 lang_input_statement_type *file,
2420 void *output)
2421 {
2422 lang_statement_union_type *before;
2423 lang_output_section_statement_type *os;
2424
2425 os = (lang_output_section_statement_type *) output;
2426
2427 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2428 if (unique_section_p (section, os))
2429 return;
2430
2431 before = wild_sort (ptr, sec, file, section);
2432
2433 /* Here BEFORE points to the lang_input_section which
2434 should follow the one we are about to add. If BEFORE
2435 is NULL, then the section should just go at the end
2436 of the current list. */
2437
2438 if (before == NULL)
2439 lang_add_section (&ptr->children, section, os);
2440 else
2441 {
2442 lang_statement_list_type list;
2443 lang_statement_union_type **pp;
2444
2445 lang_list_init (&list);
2446 lang_add_section (&list, section, os);
2447
2448 /* If we are discarding the section, LIST.HEAD will
2449 be NULL. */
2450 if (list.head != NULL)
2451 {
2452 ASSERT (list.head->header.next == NULL);
2453
2454 for (pp = &ptr->children.head;
2455 *pp != before;
2456 pp = &(*pp)->header.next)
2457 ASSERT (*pp != NULL);
2458
2459 list.head->header.next = *pp;
2460 *pp = list.head;
2461 }
2462 }
2463 }
2464
2465 /* Check if all sections in a wild statement for a particular FILE
2466 are readonly. */
2467
2468 static void
2469 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2470 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2471 asection *section,
2472 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2473 void *output)
2474 {
2475 lang_output_section_statement_type *os;
2476
2477 os = (lang_output_section_statement_type *) output;
2478
2479 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2480 if (unique_section_p (section, os))
2481 return;
2482
2483 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2484 os->all_input_readonly = FALSE;
2485 }
2486
2487 /* This is passed a file name which must have been seen already and
2488 added to the statement tree. We will see if it has been opened
2489 already and had its symbols read. If not then we'll read it. */
2490
2491 static lang_input_statement_type *
2492 lookup_name (const char *name)
2493 {
2494 lang_input_statement_type *search;
2495
2496 for (search = (lang_input_statement_type *) input_file_chain.head;
2497 search != NULL;
2498 search = (lang_input_statement_type *) search->next_real_file)
2499 {
2500 /* Use the local_sym_name as the name of the file that has
2501 already been loaded as filename might have been transformed
2502 via the search directory lookup mechanism. */
2503 const char *filename = search->local_sym_name;
2504
2505 if (filename != NULL
2506 && strcmp (filename, name) == 0)
2507 break;
2508 }
2509
2510 if (search == NULL)
2511 search = new_afile (name, lang_input_file_is_search_file_enum,
2512 default_target, FALSE);
2513
2514 /* If we have already added this file, or this file is not real
2515 don't add this file. */
2516 if (search->loaded || !search->real)
2517 return search;
2518
2519 if (! load_symbols (search, NULL))
2520 return NULL;
2521
2522 return search;
2523 }
2524
2525 /* Save LIST as a list of libraries whose symbols should not be exported. */
2526
2527 struct excluded_lib
2528 {
2529 char *name;
2530 struct excluded_lib *next;
2531 };
2532 static struct excluded_lib *excluded_libs;
2533
2534 void
2535 add_excluded_libs (const char *list)
2536 {
2537 const char *p = list, *end;
2538
2539 while (*p != '\0')
2540 {
2541 struct excluded_lib *entry;
2542 end = strpbrk (p, ",:");
2543 if (end == NULL)
2544 end = p + strlen (p);
2545 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2546 entry->next = excluded_libs;
2547 entry->name = (char *) xmalloc (end - p + 1);
2548 memcpy (entry->name, p, end - p);
2549 entry->name[end - p] = '\0';
2550 excluded_libs = entry;
2551 if (*end == '\0')
2552 break;
2553 p = end + 1;
2554 }
2555 }
2556
2557 static void
2558 check_excluded_libs (bfd *abfd)
2559 {
2560 struct excluded_lib *lib = excluded_libs;
2561
2562 while (lib)
2563 {
2564 int len = strlen (lib->name);
2565 const char *filename = lbasename (abfd->filename);
2566
2567 if (strcmp (lib->name, "ALL") == 0)
2568 {
2569 abfd->no_export = TRUE;
2570 return;
2571 }
2572
2573 if (strncmp (lib->name, filename, len) == 0
2574 && (filename[len] == '\0'
2575 || (filename[len] == '.' && filename[len + 1] == 'a'
2576 && filename[len + 2] == '\0')))
2577 {
2578 abfd->no_export = TRUE;
2579 return;
2580 }
2581
2582 lib = lib->next;
2583 }
2584 }
2585
2586 /* Get the symbols for an input file. */
2587
2588 bfd_boolean
2589 load_symbols (lang_input_statement_type *entry,
2590 lang_statement_list_type *place)
2591 {
2592 char **matching;
2593
2594 if (entry->loaded)
2595 return TRUE;
2596
2597 ldfile_open_file (entry);
2598
2599 /* Do not process further if the file was missing. */
2600 if (entry->missing_file)
2601 return TRUE;
2602
2603 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2604 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2605 {
2606 bfd_error_type err;
2607 bfd_boolean save_ldlang_sysrooted_script;
2608 bfd_boolean save_add_DT_NEEDED_for_regular;
2609 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2610 bfd_boolean save_whole_archive;
2611
2612 err = bfd_get_error ();
2613
2614 /* See if the emulation has some special knowledge. */
2615 if (ldemul_unrecognized_file (entry))
2616 return TRUE;
2617
2618 if (err == bfd_error_file_ambiguously_recognized)
2619 {
2620 char **p;
2621
2622 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2623 einfo (_("%B: matching formats:"), entry->the_bfd);
2624 for (p = matching; *p != NULL; p++)
2625 einfo (" %s", *p);
2626 einfo ("%F\n");
2627 }
2628 else if (err != bfd_error_file_not_recognized
2629 || place == NULL)
2630 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2631
2632 bfd_close (entry->the_bfd);
2633 entry->the_bfd = NULL;
2634
2635 /* Try to interpret the file as a linker script. */
2636 ldfile_open_command_file (entry->filename);
2637
2638 push_stat_ptr (place);
2639 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2640 ldlang_sysrooted_script = entry->sysrooted;
2641 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2642 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2643 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2644 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2645 save_whole_archive = whole_archive;
2646 whole_archive = entry->whole_archive;
2647
2648 ldfile_assumed_script = TRUE;
2649 parser_input = input_script;
2650 /* We want to use the same -Bdynamic/-Bstatic as the one for
2651 ENTRY. */
2652 config.dynamic_link = entry->dynamic;
2653 yyparse ();
2654 ldfile_assumed_script = FALSE;
2655
2656 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2657 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2658 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2659 whole_archive = save_whole_archive;
2660 pop_stat_ptr ();
2661
2662 return TRUE;
2663 }
2664
2665 if (ldemul_recognized_file (entry))
2666 return TRUE;
2667
2668 /* We don't call ldlang_add_file for an archive. Instead, the
2669 add_symbols entry point will call ldlang_add_file, via the
2670 add_archive_element callback, for each element of the archive
2671 which is used. */
2672 switch (bfd_get_format (entry->the_bfd))
2673 {
2674 default:
2675 break;
2676
2677 case bfd_object:
2678 ldlang_add_file (entry);
2679 if (trace_files || trace_file_tries)
2680 info_msg ("%I\n", entry);
2681 break;
2682
2683 case bfd_archive:
2684 check_excluded_libs (entry->the_bfd);
2685
2686 if (entry->whole_archive)
2687 {
2688 bfd *member = NULL;
2689 bfd_boolean loaded = TRUE;
2690
2691 for (;;)
2692 {
2693 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2694
2695 if (member == NULL)
2696 break;
2697
2698 if (! bfd_check_format (member, bfd_object))
2699 {
2700 einfo (_("%F%B: member %B in archive is not an object\n"),
2701 entry->the_bfd, member);
2702 loaded = FALSE;
2703 }
2704
2705 if (! ((*link_info.callbacks->add_archive_element)
2706 (&link_info, member, "--whole-archive")))
2707 abort ();
2708
2709 if (! bfd_link_add_symbols (member, &link_info))
2710 {
2711 einfo (_("%F%B: could not read symbols: %E\n"), member);
2712 loaded = FALSE;
2713 }
2714 }
2715
2716 entry->loaded = loaded;
2717 return loaded;
2718 }
2719 break;
2720 }
2721
2722 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2723 entry->loaded = TRUE;
2724 else
2725 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2726
2727 return entry->loaded;
2728 }
2729
2730 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2731 may be NULL, indicating that it is a wildcard. Separate
2732 lang_input_section statements are created for each part of the
2733 expansion; they are added after the wild statement S. OUTPUT is
2734 the output section. */
2735
2736 static void
2737 wild (lang_wild_statement_type *s,
2738 const char *target ATTRIBUTE_UNUSED,
2739 lang_output_section_statement_type *output)
2740 {
2741 struct wildcard_list *sec;
2742
2743 if (s->handler_data[0]
2744 && s->handler_data[0]->spec.sorted == by_name
2745 && !s->filenames_sorted)
2746 {
2747 lang_section_bst_type *tree;
2748
2749 walk_wild (s, output_section_callback_fast, output);
2750
2751 tree = s->tree;
2752 if (tree)
2753 {
2754 output_section_callback_tree_to_list (s, tree, output);
2755 s->tree = NULL;
2756 }
2757 }
2758 else
2759 walk_wild (s, output_section_callback, output);
2760
2761 if (default_common_section == NULL)
2762 for (sec = s->section_list; sec != NULL; sec = sec->next)
2763 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2764 {
2765 /* Remember the section that common is going to in case we
2766 later get something which doesn't know where to put it. */
2767 default_common_section = output;
2768 break;
2769 }
2770 }
2771
2772 /* Return TRUE iff target is the sought target. */
2773
2774 static int
2775 get_target (const bfd_target *target, void *data)
2776 {
2777 const char *sought = (const char *) data;
2778
2779 return strcmp (target->name, sought) == 0;
2780 }
2781
2782 /* Like strcpy() but convert to lower case as well. */
2783
2784 static void
2785 stricpy (char *dest, char *src)
2786 {
2787 char c;
2788
2789 while ((c = *src++) != 0)
2790 *dest++ = TOLOWER (c);
2791
2792 *dest = 0;
2793 }
2794
2795 /* Remove the first occurrence of needle (if any) in haystack
2796 from haystack. */
2797
2798 static void
2799 strcut (char *haystack, char *needle)
2800 {
2801 haystack = strstr (haystack, needle);
2802
2803 if (haystack)
2804 {
2805 char *src;
2806
2807 for (src = haystack + strlen (needle); *src;)
2808 *haystack++ = *src++;
2809
2810 *haystack = 0;
2811 }
2812 }
2813
2814 /* Compare two target format name strings.
2815 Return a value indicating how "similar" they are. */
2816
2817 static int
2818 name_compare (char *first, char *second)
2819 {
2820 char *copy1;
2821 char *copy2;
2822 int result;
2823
2824 copy1 = (char *) xmalloc (strlen (first) + 1);
2825 copy2 = (char *) xmalloc (strlen (second) + 1);
2826
2827 /* Convert the names to lower case. */
2828 stricpy (copy1, first);
2829 stricpy (copy2, second);
2830
2831 /* Remove size and endian strings from the name. */
2832 strcut (copy1, "big");
2833 strcut (copy1, "little");
2834 strcut (copy2, "big");
2835 strcut (copy2, "little");
2836
2837 /* Return a value based on how many characters match,
2838 starting from the beginning. If both strings are
2839 the same then return 10 * their length. */
2840 for (result = 0; copy1[result] == copy2[result]; result++)
2841 if (copy1[result] == 0)
2842 {
2843 result *= 10;
2844 break;
2845 }
2846
2847 free (copy1);
2848 free (copy2);
2849
2850 return result;
2851 }
2852
2853 /* Set by closest_target_match() below. */
2854 static const bfd_target *winner;
2855
2856 /* Scan all the valid bfd targets looking for one that has the endianness
2857 requirement that was specified on the command line, and is the nearest
2858 match to the original output target. */
2859
2860 static int
2861 closest_target_match (const bfd_target *target, void *data)
2862 {
2863 const bfd_target *original = (const bfd_target *) data;
2864
2865 if (command_line.endian == ENDIAN_BIG
2866 && target->byteorder != BFD_ENDIAN_BIG)
2867 return 0;
2868
2869 if (command_line.endian == ENDIAN_LITTLE
2870 && target->byteorder != BFD_ENDIAN_LITTLE)
2871 return 0;
2872
2873 /* Must be the same flavour. */
2874 if (target->flavour != original->flavour)
2875 return 0;
2876
2877 /* Ignore generic big and little endian elf vectors. */
2878 if (strcmp (target->name, "elf32-big") == 0
2879 || strcmp (target->name, "elf64-big") == 0
2880 || strcmp (target->name, "elf32-little") == 0
2881 || strcmp (target->name, "elf64-little") == 0)
2882 return 0;
2883
2884 /* If we have not found a potential winner yet, then record this one. */
2885 if (winner == NULL)
2886 {
2887 winner = target;
2888 return 0;
2889 }
2890
2891 /* Oh dear, we now have two potential candidates for a successful match.
2892 Compare their names and choose the better one. */
2893 if (name_compare (target->name, original->name)
2894 > name_compare (winner->name, original->name))
2895 winner = target;
2896
2897 /* Keep on searching until wqe have checked them all. */
2898 return 0;
2899 }
2900
2901 /* Return the BFD target format of the first input file. */
2902
2903 static char *
2904 get_first_input_target (void)
2905 {
2906 char *target = NULL;
2907
2908 LANG_FOR_EACH_INPUT_STATEMENT (s)
2909 {
2910 if (s->header.type == lang_input_statement_enum
2911 && s->real)
2912 {
2913 ldfile_open_file (s);
2914
2915 if (s->the_bfd != NULL
2916 && bfd_check_format (s->the_bfd, bfd_object))
2917 {
2918 target = bfd_get_target (s->the_bfd);
2919
2920 if (target != NULL)
2921 break;
2922 }
2923 }
2924 }
2925
2926 return target;
2927 }
2928
2929 const char *
2930 lang_get_output_target (void)
2931 {
2932 const char *target;
2933
2934 /* Has the user told us which output format to use? */
2935 if (output_target != NULL)
2936 return output_target;
2937
2938 /* No - has the current target been set to something other than
2939 the default? */
2940 if (current_target != default_target)
2941 return current_target;
2942
2943 /* No - can we determine the format of the first input file? */
2944 target = get_first_input_target ();
2945 if (target != NULL)
2946 return target;
2947
2948 /* Failed - use the default output target. */
2949 return default_target;
2950 }
2951
2952 /* Open the output file. */
2953
2954 static void
2955 open_output (const char *name)
2956 {
2957 output_target = lang_get_output_target ();
2958
2959 /* Has the user requested a particular endianness on the command
2960 line? */
2961 if (command_line.endian != ENDIAN_UNSET)
2962 {
2963 const bfd_target *target;
2964 enum bfd_endian desired_endian;
2965
2966 /* Get the chosen target. */
2967 target = bfd_search_for_target (get_target, (void *) output_target);
2968
2969 /* If the target is not supported, we cannot do anything. */
2970 if (target != NULL)
2971 {
2972 if (command_line.endian == ENDIAN_BIG)
2973 desired_endian = BFD_ENDIAN_BIG;
2974 else
2975 desired_endian = BFD_ENDIAN_LITTLE;
2976
2977 /* See if the target has the wrong endianness. This should
2978 not happen if the linker script has provided big and
2979 little endian alternatives, but some scrips don't do
2980 this. */
2981 if (target->byteorder != desired_endian)
2982 {
2983 /* If it does, then see if the target provides
2984 an alternative with the correct endianness. */
2985 if (target->alternative_target != NULL
2986 && (target->alternative_target->byteorder == desired_endian))
2987 output_target = target->alternative_target->name;
2988 else
2989 {
2990 /* Try to find a target as similar as possible to
2991 the default target, but which has the desired
2992 endian characteristic. */
2993 bfd_search_for_target (closest_target_match,
2994 (void *) target);
2995
2996 /* Oh dear - we could not find any targets that
2997 satisfy our requirements. */
2998 if (winner == NULL)
2999 einfo (_("%P: warning: could not find any targets"
3000 " that match endianness requirement\n"));
3001 else
3002 output_target = winner->name;
3003 }
3004 }
3005 }
3006 }
3007
3008 link_info.output_bfd = bfd_openw (name, output_target);
3009
3010 if (link_info.output_bfd == NULL)
3011 {
3012 if (bfd_get_error () == bfd_error_invalid_target)
3013 einfo (_("%P%F: target %s not found\n"), output_target);
3014
3015 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3016 }
3017
3018 delete_output_file_on_failure = TRUE;
3019
3020 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3021 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3022 if (! bfd_set_arch_mach (link_info.output_bfd,
3023 ldfile_output_architecture,
3024 ldfile_output_machine))
3025 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3026
3027 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3028 if (link_info.hash == NULL)
3029 einfo (_("%P%F: can not create hash table: %E\n"));
3030
3031 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3032 }
3033
3034 static void
3035 ldlang_open_output (lang_statement_union_type *statement)
3036 {
3037 switch (statement->header.type)
3038 {
3039 case lang_output_statement_enum:
3040 ASSERT (link_info.output_bfd == NULL);
3041 open_output (statement->output_statement.name);
3042 ldemul_set_output_arch ();
3043 if (config.magic_demand_paged && !link_info.relocatable)
3044 link_info.output_bfd->flags |= D_PAGED;
3045 else
3046 link_info.output_bfd->flags &= ~D_PAGED;
3047 if (config.text_read_only)
3048 link_info.output_bfd->flags |= WP_TEXT;
3049 else
3050 link_info.output_bfd->flags &= ~WP_TEXT;
3051 if (link_info.traditional_format)
3052 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3053 else
3054 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3055 break;
3056
3057 case lang_target_statement_enum:
3058 current_target = statement->target_statement.target;
3059 break;
3060 default:
3061 break;
3062 }
3063 }
3064
3065 /* Convert between addresses in bytes and sizes in octets.
3066 For currently supported targets, octets_per_byte is always a power
3067 of two, so we can use shifts. */
3068 #define TO_ADDR(X) ((X) >> opb_shift)
3069 #define TO_SIZE(X) ((X) << opb_shift)
3070
3071 /* Support the above. */
3072 static unsigned int opb_shift = 0;
3073
3074 static void
3075 init_opb (void)
3076 {
3077 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3078 ldfile_output_machine);
3079 opb_shift = 0;
3080 if (x > 1)
3081 while ((x & 1) == 0)
3082 {
3083 x >>= 1;
3084 ++opb_shift;
3085 }
3086 ASSERT (x == 1);
3087 }
3088
3089 /* Open all the input files. */
3090
3091 static void
3092 open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
3093 {
3094 for (; s != NULL; s = s->header.next)
3095 {
3096 switch (s->header.type)
3097 {
3098 case lang_constructors_statement_enum:
3099 open_input_bfds (constructor_list.head, force);
3100 break;
3101 case lang_output_section_statement_enum:
3102 open_input_bfds (s->output_section_statement.children.head, force);
3103 break;
3104 case lang_wild_statement_enum:
3105 /* Maybe we should load the file's symbols. */
3106 if (s->wild_statement.filename
3107 && !wildcardp (s->wild_statement.filename)
3108 && !archive_path (s->wild_statement.filename))
3109 lookup_name (s->wild_statement.filename);
3110 open_input_bfds (s->wild_statement.children.head, force);
3111 break;
3112 case lang_group_statement_enum:
3113 {
3114 struct bfd_link_hash_entry *undefs;
3115
3116 /* We must continually search the entries in the group
3117 until no new symbols are added to the list of undefined
3118 symbols. */
3119
3120 do
3121 {
3122 undefs = link_info.hash->undefs_tail;
3123 open_input_bfds (s->group_statement.children.head, TRUE);
3124 }
3125 while (undefs != link_info.hash->undefs_tail);
3126 }
3127 break;
3128 case lang_target_statement_enum:
3129 current_target = s->target_statement.target;
3130 break;
3131 case lang_input_statement_enum:
3132 if (s->input_statement.real)
3133 {
3134 lang_statement_union_type **os_tail;
3135 lang_statement_list_type add;
3136
3137 s->input_statement.target = current_target;
3138
3139 /* If we are being called from within a group, and this
3140 is an archive which has already been searched, then
3141 force it to be researched unless the whole archive
3142 has been loaded already. */
3143 if (force
3144 && !s->input_statement.whole_archive
3145 && s->input_statement.loaded
3146 && bfd_check_format (s->input_statement.the_bfd,
3147 bfd_archive))
3148 s->input_statement.loaded = FALSE;
3149
3150 os_tail = lang_output_section_statement.tail;
3151 lang_list_init (&add);
3152
3153 if (! load_symbols (&s->input_statement, &add))
3154 config.make_executable = FALSE;
3155
3156 if (add.head != NULL)
3157 {
3158 /* If this was a script with output sections then
3159 tack any added statements on to the end of the
3160 list. This avoids having to reorder the output
3161 section statement list. Very likely the user
3162 forgot -T, and whatever we do here will not meet
3163 naive user expectations. */
3164 if (os_tail != lang_output_section_statement.tail)
3165 {
3166 einfo (_("%P: warning: %s contains output sections;"
3167 " did you forget -T?\n"),
3168 s->input_statement.filename);
3169 *stat_ptr->tail = add.head;
3170 stat_ptr->tail = add.tail;
3171 }
3172 else
3173 {
3174 *add.tail = s->header.next;
3175 s->header.next = add.head;
3176 }
3177 }
3178 }
3179 break;
3180 default:
3181 break;
3182 }
3183 }
3184
3185 /* Exit if any of the files were missing. */
3186 if (missing_file)
3187 einfo ("%F");
3188 }
3189
3190 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3191
3192 void
3193 lang_track_definedness (const char *name)
3194 {
3195 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3196 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3197 }
3198
3199 /* New-function for the definedness hash table. */
3200
3201 static struct bfd_hash_entry *
3202 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3203 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3204 const char *name ATTRIBUTE_UNUSED)
3205 {
3206 struct lang_definedness_hash_entry *ret
3207 = (struct lang_definedness_hash_entry *) entry;
3208
3209 if (ret == NULL)
3210 ret = (struct lang_definedness_hash_entry *)
3211 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3212
3213 if (ret == NULL)
3214 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3215
3216 ret->iteration = -1;
3217 return &ret->root;
3218 }
3219
3220 /* Return the iteration when the definition of NAME was last updated. A
3221 value of -1 means that the symbol is not defined in the linker script
3222 or the command line, but may be defined in the linker symbol table. */
3223
3224 int
3225 lang_symbol_definition_iteration (const char *name)
3226 {
3227 struct lang_definedness_hash_entry *defentry
3228 = (struct lang_definedness_hash_entry *)
3229 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3230
3231 /* We've already created this one on the presence of DEFINED in the
3232 script, so it can't be NULL unless something is borked elsewhere in
3233 the code. */
3234 if (defentry == NULL)
3235 FAIL ();
3236
3237 return defentry->iteration;
3238 }
3239
3240 /* Update the definedness state of NAME. */
3241
3242 void
3243 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3244 {
3245 struct lang_definedness_hash_entry *defentry
3246 = (struct lang_definedness_hash_entry *)
3247 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3248
3249 /* We don't keep track of symbols not tested with DEFINED. */
3250 if (defentry == NULL)
3251 return;
3252
3253 /* If the symbol was already defined, and not from an earlier statement
3254 iteration, don't update the definedness iteration, because that'd
3255 make the symbol seem defined in the linker script at this point, and
3256 it wasn't; it was defined in some object. If we do anyway, DEFINED
3257 would start to yield false before this point and the construct "sym =
3258 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3259 in an object. */
3260 if (h->type != bfd_link_hash_undefined
3261 && h->type != bfd_link_hash_common
3262 && h->type != bfd_link_hash_new
3263 && defentry->iteration == -1)
3264 return;
3265
3266 defentry->iteration = lang_statement_iteration;
3267 }
3268
3269 /* Add the supplied name to the symbol table as an undefined reference.
3270 This is a two step process as the symbol table doesn't even exist at
3271 the time the ld command line is processed. First we put the name
3272 on a list, then, once the output file has been opened, transfer the
3273 name to the symbol table. */
3274
3275 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3276
3277 #define ldlang_undef_chain_list_head entry_symbol.next
3278
3279 void
3280 ldlang_add_undef (const char *const name)
3281 {
3282 ldlang_undef_chain_list_type *new_undef = (ldlang_undef_chain_list_type *)
3283 stat_alloc (sizeof (ldlang_undef_chain_list_type));
3284
3285 new_undef->next = ldlang_undef_chain_list_head;
3286 ldlang_undef_chain_list_head = new_undef;
3287
3288 new_undef->name = xstrdup (name);
3289
3290 if (link_info.output_bfd != NULL)
3291 insert_undefined (new_undef->name);
3292 }
3293
3294 /* Insert NAME as undefined in the symbol table. */
3295
3296 static void
3297 insert_undefined (const char *name)
3298 {
3299 struct bfd_link_hash_entry *h;
3300
3301 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3302 if (h == NULL)
3303 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3304 if (h->type == bfd_link_hash_new)
3305 {
3306 h->type = bfd_link_hash_undefined;
3307 h->u.undef.abfd = NULL;
3308 bfd_link_add_undef (link_info.hash, h);
3309 }
3310 }
3311
3312 /* Run through the list of undefineds created above and place them
3313 into the linker hash table as undefined symbols belonging to the
3314 script file. */
3315
3316 static void
3317 lang_place_undefineds (void)
3318 {
3319 ldlang_undef_chain_list_type *ptr;
3320
3321 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3322 insert_undefined (ptr->name);
3323 }
3324
3325 /* Check for all readonly or some readwrite sections. */
3326
3327 static void
3328 check_input_sections
3329 (lang_statement_union_type *s,
3330 lang_output_section_statement_type *output_section_statement)
3331 {
3332 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3333 {
3334 switch (s->header.type)
3335 {
3336 case lang_wild_statement_enum:
3337 walk_wild (&s->wild_statement, check_section_callback,
3338 output_section_statement);
3339 if (! output_section_statement->all_input_readonly)
3340 return;
3341 break;
3342 case lang_constructors_statement_enum:
3343 check_input_sections (constructor_list.head,
3344 output_section_statement);
3345 if (! output_section_statement->all_input_readonly)
3346 return;
3347 break;
3348 case lang_group_statement_enum:
3349 check_input_sections (s->group_statement.children.head,
3350 output_section_statement);
3351 if (! output_section_statement->all_input_readonly)
3352 return;
3353 break;
3354 default:
3355 break;
3356 }
3357 }
3358 }
3359
3360 /* Update wildcard statements if needed. */
3361
3362 static void
3363 update_wild_statements (lang_statement_union_type *s)
3364 {
3365 struct wildcard_list *sec;
3366
3367 switch (sort_section)
3368 {
3369 default:
3370 FAIL ();
3371
3372 case none:
3373 break;
3374
3375 case by_name:
3376 case by_alignment:
3377 for (; s != NULL; s = s->header.next)
3378 {
3379 switch (s->header.type)
3380 {
3381 default:
3382 break;
3383
3384 case lang_wild_statement_enum:
3385 sec = s->wild_statement.section_list;
3386 for (sec = s->wild_statement.section_list; sec != NULL;
3387 sec = sec->next)
3388 {
3389 switch (sec->spec.sorted)
3390 {
3391 case none:
3392 sec->spec.sorted = sort_section;
3393 break;
3394 case by_name:
3395 if (sort_section == by_alignment)
3396 sec->spec.sorted = by_name_alignment;
3397 break;
3398 case by_alignment:
3399 if (sort_section == by_name)
3400 sec->spec.sorted = by_alignment_name;
3401 break;
3402 default:
3403 break;
3404 }
3405 }
3406 break;
3407
3408 case lang_constructors_statement_enum:
3409 update_wild_statements (constructor_list.head);
3410 break;
3411
3412 case lang_output_section_statement_enum:
3413 update_wild_statements
3414 (s->output_section_statement.children.head);
3415 break;
3416
3417 case lang_group_statement_enum:
3418 update_wild_statements (s->group_statement.children.head);
3419 break;
3420 }
3421 }
3422 break;
3423 }
3424 }
3425
3426 /* Open input files and attach to output sections. */
3427
3428 static void
3429 map_input_to_output_sections
3430 (lang_statement_union_type *s, const char *target,
3431 lang_output_section_statement_type *os)
3432 {
3433 flagword flags;
3434
3435 for (; s != NULL; s = s->header.next)
3436 {
3437 switch (s->header.type)
3438 {
3439 case lang_wild_statement_enum:
3440 wild (&s->wild_statement, target, os);
3441 break;
3442 case lang_constructors_statement_enum:
3443 map_input_to_output_sections (constructor_list.head,
3444 target,
3445 os);
3446 break;
3447 case lang_output_section_statement_enum:
3448 if (s->output_section_statement.constraint)
3449 {
3450 if (s->output_section_statement.constraint != ONLY_IF_RW
3451 && s->output_section_statement.constraint != ONLY_IF_RO)
3452 break;
3453 s->output_section_statement.all_input_readonly = TRUE;
3454 check_input_sections (s->output_section_statement.children.head,
3455 &s->output_section_statement);
3456 if ((s->output_section_statement.all_input_readonly
3457 && s->output_section_statement.constraint == ONLY_IF_RW)
3458 || (!s->output_section_statement.all_input_readonly
3459 && s->output_section_statement.constraint == ONLY_IF_RO))
3460 {
3461 s->output_section_statement.constraint = -1;
3462 break;
3463 }
3464 }
3465
3466 map_input_to_output_sections (s->output_section_statement.children.head,
3467 target,
3468 &s->output_section_statement);
3469 break;
3470 case lang_output_statement_enum:
3471 break;
3472 case lang_target_statement_enum:
3473 target = s->target_statement.target;
3474 break;
3475 case lang_group_statement_enum:
3476 map_input_to_output_sections (s->group_statement.children.head,
3477 target,
3478 os);
3479 break;
3480 case lang_data_statement_enum:
3481 /* Make sure that any sections mentioned in the expression
3482 are initialized. */
3483 exp_init_os (s->data_statement.exp);
3484 flags = SEC_HAS_CONTENTS;
3485 /* The output section gets contents, and then we inspect for
3486 any flags set in the input script which override any ALLOC. */
3487 if (!(os->flags & SEC_NEVER_LOAD))
3488 flags |= SEC_ALLOC | SEC_LOAD;
3489 if (os->bfd_section == NULL)
3490 init_os (os, NULL, flags);
3491 else
3492 os->bfd_section->flags |= flags;
3493 break;
3494 case lang_input_section_enum:
3495 break;
3496 case lang_fill_statement_enum:
3497 case lang_object_symbols_statement_enum:
3498 case lang_reloc_statement_enum:
3499 case lang_padding_statement_enum:
3500 case lang_input_statement_enum:
3501 if (os != NULL && os->bfd_section == NULL)
3502 init_os (os, NULL, 0);
3503 break;
3504 case lang_assignment_statement_enum:
3505 if (os != NULL && os->bfd_section == NULL)
3506 init_os (os, NULL, 0);
3507
3508 /* Make sure that any sections mentioned in the assignment
3509 are initialized. */
3510 exp_init_os (s->assignment_statement.exp);
3511 break;
3512 case lang_address_statement_enum:
3513 /* Mark the specified section with the supplied address.
3514 If this section was actually a segment marker, then the
3515 directive is ignored if the linker script explicitly
3516 processed the segment marker. Originally, the linker
3517 treated segment directives (like -Ttext on the
3518 command-line) as section directives. We honor the
3519 section directive semantics for backwards compatibilty;
3520 linker scripts that do not specifically check for
3521 SEGMENT_START automatically get the old semantics. */
3522 if (!s->address_statement.segment
3523 || !s->address_statement.segment->used)
3524 {
3525 lang_output_section_statement_type *aos
3526 = (lang_output_section_statement_lookup
3527 (s->address_statement.section_name, 0, TRUE));
3528
3529 if (aos->bfd_section == NULL)
3530 init_os (aos, NULL, 0);
3531 aos->addr_tree = s->address_statement.address;
3532 }
3533 break;
3534 case lang_insert_statement_enum:
3535 break;
3536 }
3537 }
3538 }
3539
3540 /* An insert statement snips out all the linker statements from the
3541 start of the list and places them after the output section
3542 statement specified by the insert. This operation is complicated
3543 by the fact that we keep a doubly linked list of output section
3544 statements as well as the singly linked list of all statements. */
3545
3546 static void
3547 process_insert_statements (void)
3548 {
3549 lang_statement_union_type **s;
3550 lang_output_section_statement_type *first_os = NULL;
3551 lang_output_section_statement_type *last_os = NULL;
3552 lang_output_section_statement_type *os;
3553
3554 /* "start of list" is actually the statement immediately after
3555 the special abs_section output statement, so that it isn't
3556 reordered. */
3557 s = &lang_output_section_statement.head;
3558 while (*(s = &(*s)->header.next) != NULL)
3559 {
3560 if ((*s)->header.type == lang_output_section_statement_enum)
3561 {
3562 /* Keep pointers to the first and last output section
3563 statement in the sequence we may be about to move. */
3564 os = &(*s)->output_section_statement;
3565
3566 ASSERT (last_os == NULL || last_os->next == os);
3567 last_os = os;
3568
3569 /* Set constraint negative so that lang_output_section_find
3570 won't match this output section statement. At this
3571 stage in linking constraint has values in the range
3572 [-1, ONLY_IN_RW]. */
3573 last_os->constraint = -2 - last_os->constraint;
3574 if (first_os == NULL)
3575 first_os = last_os;
3576 }
3577 else if ((*s)->header.type == lang_insert_statement_enum)
3578 {
3579 lang_insert_statement_type *i = &(*s)->insert_statement;
3580 lang_output_section_statement_type *where;
3581 lang_statement_union_type **ptr;
3582 lang_statement_union_type *first;
3583
3584 where = lang_output_section_find (i->where);
3585 if (where != NULL && i->is_before)
3586 {
3587 do
3588 where = where->prev;
3589 while (where != NULL && where->constraint < 0);
3590 }
3591 if (where == NULL)
3592 {
3593 einfo (_("%F%P: %s not found for insert\n"), i->where);
3594 return;
3595 }
3596
3597 /* Deal with reordering the output section statement list. */
3598 if (last_os != NULL)
3599 {
3600 asection *first_sec, *last_sec;
3601 struct lang_output_section_statement_struct **next;
3602
3603 /* Snip out the output sections we are moving. */
3604 first_os->prev->next = last_os->next;
3605 if (last_os->next == NULL)
3606 {
3607 next = &first_os->prev->next;
3608 lang_output_section_statement.tail
3609 = (lang_statement_union_type **) next;
3610 }
3611 else
3612 last_os->next->prev = first_os->prev;
3613 /* Add them in at the new position. */
3614 last_os->next = where->next;
3615 if (where->next == NULL)
3616 {
3617 next = &last_os->next;
3618 lang_output_section_statement.tail
3619 = (lang_statement_union_type **) next;
3620 }
3621 else
3622 where->next->prev = last_os;
3623 first_os->prev = where;
3624 where->next = first_os;
3625
3626 /* Move the bfd sections in the same way. */
3627 first_sec = NULL;
3628 last_sec = NULL;
3629 for (os = first_os; os != NULL; os = os->next)
3630 {
3631 os->constraint = -2 - os->constraint;
3632 if (os->bfd_section != NULL
3633 && os->bfd_section->owner != NULL)
3634 {
3635 last_sec = os->bfd_section;
3636 if (first_sec == NULL)
3637 first_sec = last_sec;
3638 }
3639 if (os == last_os)
3640 break;
3641 }
3642 if (last_sec != NULL)
3643 {
3644 asection *sec = where->bfd_section;
3645 if (sec == NULL)
3646 sec = output_prev_sec_find (where);
3647
3648 /* The place we want to insert must come after the
3649 sections we are moving. So if we find no
3650 section or if the section is the same as our
3651 last section, then no move is needed. */
3652 if (sec != NULL && sec != last_sec)
3653 {
3654 /* Trim them off. */
3655 if (first_sec->prev != NULL)
3656 first_sec->prev->next = last_sec->next;
3657 else
3658 link_info.output_bfd->sections = last_sec->next;
3659 if (last_sec->next != NULL)
3660 last_sec->next->prev = first_sec->prev;
3661 else
3662 link_info.output_bfd->section_last = first_sec->prev;
3663 /* Add back. */
3664 last_sec->next = sec->next;
3665 if (sec->next != NULL)
3666 sec->next->prev = last_sec;
3667 else
3668 link_info.output_bfd->section_last = last_sec;
3669 first_sec->prev = sec;
3670 sec->next = first_sec;
3671 }
3672 }
3673
3674 first_os = NULL;
3675 last_os = NULL;
3676 }
3677
3678 ptr = insert_os_after (where);
3679 /* Snip everything after the abs_section output statement we
3680 know is at the start of the list, up to and including
3681 the insert statement we are currently processing. */
3682 first = lang_output_section_statement.head->header.next;
3683 lang_output_section_statement.head->header.next = (*s)->header.next;
3684 /* Add them back where they belong. */
3685 *s = *ptr;
3686 if (*s == NULL)
3687 statement_list.tail = s;
3688 *ptr = first;
3689 s = &lang_output_section_statement.head;
3690 }
3691 }
3692
3693 /* Undo constraint twiddling. */
3694 for (os = first_os; os != NULL; os = os->next)
3695 {
3696 os->constraint = -2 - os->constraint;
3697 if (os == last_os)
3698 break;
3699 }
3700 }
3701
3702 /* An output section might have been removed after its statement was
3703 added. For example, ldemul_before_allocation can remove dynamic
3704 sections if they turn out to be not needed. Clean them up here. */
3705
3706 void
3707 strip_excluded_output_sections (void)
3708 {
3709 lang_output_section_statement_type *os;
3710
3711 /* Run lang_size_sections (if not already done). */
3712 if (expld.phase != lang_mark_phase_enum)
3713 {
3714 expld.phase = lang_mark_phase_enum;
3715 expld.dataseg.phase = exp_dataseg_none;
3716 one_lang_size_sections_pass (NULL, FALSE);
3717 lang_reset_memory_regions ();
3718 }
3719
3720 for (os = &lang_output_section_statement.head->output_section_statement;
3721 os != NULL;
3722 os = os->next)
3723 {
3724 asection *output_section;
3725 bfd_boolean exclude;
3726
3727 if (os->constraint < 0)
3728 continue;
3729
3730 output_section = os->bfd_section;
3731 if (output_section == NULL)
3732 continue;
3733
3734 exclude = (output_section->rawsize == 0
3735 && (output_section->flags & SEC_KEEP) == 0
3736 && !bfd_section_removed_from_list (link_info.output_bfd,
3737 output_section));
3738
3739 /* Some sections have not yet been sized, notably .gnu.version,
3740 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3741 input sections, so don't drop output sections that have such
3742 input sections unless they are also marked SEC_EXCLUDE. */
3743 if (exclude && output_section->map_head.s != NULL)
3744 {
3745 asection *s;
3746
3747 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3748 if ((s->flags & SEC_LINKER_CREATED) != 0
3749 && (s->flags & SEC_EXCLUDE) == 0)
3750 {
3751 exclude = FALSE;
3752 break;
3753 }
3754 }
3755
3756 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3757 output_section->map_head.link_order = NULL;
3758 output_section->map_tail.link_order = NULL;
3759
3760 if (exclude)
3761 {
3762 /* We don't set bfd_section to NULL since bfd_section of the
3763 removed output section statement may still be used. */
3764 if (!os->section_relative_symbol
3765 && !os->update_dot_tree)
3766 os->ignored = TRUE;
3767 output_section->flags |= SEC_EXCLUDE;
3768 bfd_section_list_remove (link_info.output_bfd, output_section);
3769 link_info.output_bfd->section_count--;
3770 }
3771 }
3772
3773 /* Stop future calls to lang_add_section from messing with map_head
3774 and map_tail link_order fields. */
3775 stripped_excluded_sections = TRUE;
3776 }
3777
3778 static void
3779 print_output_section_statement
3780 (lang_output_section_statement_type *output_section_statement)
3781 {
3782 asection *section = output_section_statement->bfd_section;
3783 int len;
3784
3785 if (output_section_statement != abs_output_section)
3786 {
3787 minfo ("\n%s", output_section_statement->name);
3788
3789 if (section != NULL)
3790 {
3791 print_dot = section->vma;
3792
3793 len = strlen (output_section_statement->name);
3794 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3795 {
3796 print_nl ();
3797 len = 0;
3798 }
3799 while (len < SECTION_NAME_MAP_LENGTH)
3800 {
3801 print_space ();
3802 ++len;
3803 }
3804
3805 minfo ("0x%V %W", section->vma, section->size);
3806
3807 if (section->vma != section->lma)
3808 minfo (_(" load address 0x%V"), section->lma);
3809
3810 if (output_section_statement->update_dot_tree != NULL)
3811 exp_fold_tree (output_section_statement->update_dot_tree,
3812 bfd_abs_section_ptr, &print_dot);
3813 }
3814
3815 print_nl ();
3816 }
3817
3818 print_statement_list (output_section_statement->children.head,
3819 output_section_statement);
3820 }
3821
3822 /* Scan for the use of the destination in the right hand side
3823 of an expression. In such cases we will not compute the
3824 correct expression, since the value of DST that is used on
3825 the right hand side will be its final value, not its value
3826 just before this expression is evaluated. */
3827
3828 static bfd_boolean
3829 scan_for_self_assignment (const char * dst, etree_type * rhs)
3830 {
3831 if (rhs == NULL || dst == NULL)
3832 return FALSE;
3833
3834 switch (rhs->type.node_class)
3835 {
3836 case etree_binary:
3837 return scan_for_self_assignment (dst, rhs->binary.lhs)
3838 || scan_for_self_assignment (dst, rhs->binary.rhs);
3839
3840 case etree_trinary:
3841 return scan_for_self_assignment (dst, rhs->trinary.lhs)
3842 || scan_for_self_assignment (dst, rhs->trinary.rhs);
3843
3844 case etree_assign:
3845 case etree_provided:
3846 case etree_provide:
3847 if (strcmp (dst, rhs->assign.dst) == 0)
3848 return TRUE;
3849 return scan_for_self_assignment (dst, rhs->assign.src);
3850
3851 case etree_unary:
3852 return scan_for_self_assignment (dst, rhs->unary.child);
3853
3854 case etree_value:
3855 if (rhs->value.str)
3856 return strcmp (dst, rhs->value.str) == 0;
3857 return FALSE;
3858
3859 case etree_name:
3860 if (rhs->name.name)
3861 return strcmp (dst, rhs->name.name) == 0;
3862 return FALSE;
3863
3864 default:
3865 break;
3866 }
3867
3868 return FALSE;
3869 }
3870
3871
3872 static void
3873 print_assignment (lang_assignment_statement_type *assignment,
3874 lang_output_section_statement_type *output_section)
3875 {
3876 unsigned int i;
3877 bfd_boolean is_dot;
3878 bfd_boolean computation_is_valid = TRUE;
3879 etree_type *tree;
3880
3881 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3882 print_space ();
3883
3884 if (assignment->exp->type.node_class == etree_assert)
3885 {
3886 is_dot = FALSE;
3887 tree = assignment->exp->assert_s.child;
3888 computation_is_valid = TRUE;
3889 }
3890 else
3891 {
3892 const char *dst = assignment->exp->assign.dst;
3893
3894 is_dot = (dst[0] == '.' && dst[1] == 0);
3895 tree = assignment->exp->assign.src;
3896 computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE);
3897 }
3898
3899 exp_fold_tree (tree, output_section->bfd_section, &print_dot);
3900 if (expld.result.valid_p)
3901 {
3902 bfd_vma value;
3903
3904 if (computation_is_valid)
3905 {
3906 value = expld.result.value;
3907
3908 if (expld.result.section)
3909 value += expld.result.section->vma;
3910
3911 minfo ("0x%V", value);
3912 if (is_dot)
3913 print_dot = value;
3914 }
3915 else
3916 {
3917 struct bfd_link_hash_entry *h;
3918
3919 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
3920 FALSE, FALSE, TRUE);
3921 if (h)
3922 {
3923 value = h->u.def.value;
3924
3925 if (expld.result.section)
3926 value += expld.result.section->vma;
3927
3928 minfo ("[0x%V]", value);
3929 }
3930 else
3931 minfo ("[unresolved]");
3932 }
3933 }
3934 else
3935 {
3936 minfo ("*undef* ");
3937 #ifdef BFD64
3938 minfo (" ");
3939 #endif
3940 }
3941
3942 minfo (" ");
3943 exp_print_tree (assignment->exp);
3944 print_nl ();
3945 }
3946
3947 static void
3948 print_input_statement (lang_input_statement_type *statm)
3949 {
3950 if (statm->filename != NULL
3951 && (statm->the_bfd == NULL
3952 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
3953 fprintf (config.map_file, "LOAD %s\n", statm->filename);
3954 }
3955
3956 /* Print all symbols defined in a particular section. This is called
3957 via bfd_link_hash_traverse, or by print_all_symbols. */
3958
3959 static bfd_boolean
3960 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
3961 {
3962 asection *sec = (asection *) ptr;
3963
3964 if ((hash_entry->type == bfd_link_hash_defined
3965 || hash_entry->type == bfd_link_hash_defweak)
3966 && sec == hash_entry->u.def.section)
3967 {
3968 int i;
3969
3970 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3971 print_space ();
3972 minfo ("0x%V ",
3973 (hash_entry->u.def.value
3974 + hash_entry->u.def.section->output_offset
3975 + hash_entry->u.def.section->output_section->vma));
3976
3977 minfo (" %T\n", hash_entry->root.string);
3978 }
3979
3980 return TRUE;
3981 }
3982
3983 static int
3984 hash_entry_addr_cmp (const void *a, const void *b)
3985 {
3986 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
3987 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
3988
3989 if (l->u.def.value < r->u.def.value)
3990 return -1;
3991 else if (l->u.def.value > r->u.def.value)
3992 return 1;
3993 else
3994 return 0;
3995 }
3996
3997 static void
3998 print_all_symbols (asection *sec)
3999 {
4000 struct fat_user_section_struct *ud =
4001 (struct fat_user_section_struct *) get_userdata (sec);
4002 struct map_symbol_def *def;
4003 struct bfd_link_hash_entry **entries;
4004 unsigned int i;
4005
4006 if (!ud)
4007 return;
4008
4009 *ud->map_symbol_def_tail = 0;
4010
4011 /* Sort the symbols by address. */
4012 entries = (struct bfd_link_hash_entry **)
4013 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4014
4015 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4016 entries[i] = def->entry;
4017
4018 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4019 hash_entry_addr_cmp);
4020
4021 /* Print the symbols. */
4022 for (i = 0; i < ud->map_symbol_def_count; i++)
4023 print_one_symbol (entries[i], sec);
4024
4025 obstack_free (&map_obstack, entries);
4026 }
4027
4028 /* Print information about an input section to the map file. */
4029
4030 static void
4031 print_input_section (asection *i, bfd_boolean is_discarded)
4032 {
4033 bfd_size_type size = i->size;
4034 int len;
4035 bfd_vma addr;
4036
4037 init_opb ();
4038
4039 print_space ();
4040 minfo ("%s", i->name);
4041
4042 len = 1 + strlen (i->name);
4043 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4044 {
4045 print_nl ();
4046 len = 0;
4047 }
4048 while (len < SECTION_NAME_MAP_LENGTH)
4049 {
4050 print_space ();
4051 ++len;
4052 }
4053
4054 if (i->output_section != NULL
4055 && i->output_section->owner == link_info.output_bfd)
4056 addr = i->output_section->vma + i->output_offset;
4057 else
4058 {
4059 addr = print_dot;
4060 if (!is_discarded)
4061 size = 0;
4062 }
4063
4064 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4065
4066 if (size != i->rawsize && i->rawsize != 0)
4067 {
4068 len = SECTION_NAME_MAP_LENGTH + 3;
4069 #ifdef BFD64
4070 len += 16;
4071 #else
4072 len += 8;
4073 #endif
4074 while (len > 0)
4075 {
4076 print_space ();
4077 --len;
4078 }
4079
4080 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4081 }
4082
4083 if (i->output_section != NULL
4084 && i->output_section->owner == link_info.output_bfd)
4085 {
4086 if (link_info.reduce_memory_overheads)
4087 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4088 else
4089 print_all_symbols (i);
4090
4091 /* Update print_dot, but make sure that we do not move it
4092 backwards - this could happen if we have overlays and a
4093 later overlay is shorter than an earier one. */
4094 if (addr + TO_ADDR (size) > print_dot)
4095 print_dot = addr + TO_ADDR (size);
4096 }
4097 }
4098
4099 static void
4100 print_fill_statement (lang_fill_statement_type *fill)
4101 {
4102 size_t size;
4103 unsigned char *p;
4104 fputs (" FILL mask 0x", config.map_file);
4105 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4106 fprintf (config.map_file, "%02x", *p);
4107 fputs ("\n", config.map_file);
4108 }
4109
4110 static void
4111 print_data_statement (lang_data_statement_type *data)
4112 {
4113 int i;
4114 bfd_vma addr;
4115 bfd_size_type size;
4116 const char *name;
4117
4118 init_opb ();
4119 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4120 print_space ();
4121
4122 addr = data->output_offset;
4123 if (data->output_section != NULL)
4124 addr += data->output_section->vma;
4125
4126 switch (data->type)
4127 {
4128 default:
4129 abort ();
4130 case BYTE:
4131 size = BYTE_SIZE;
4132 name = "BYTE";
4133 break;
4134 case SHORT:
4135 size = SHORT_SIZE;
4136 name = "SHORT";
4137 break;
4138 case LONG:
4139 size = LONG_SIZE;
4140 name = "LONG";
4141 break;
4142 case QUAD:
4143 size = QUAD_SIZE;
4144 name = "QUAD";
4145 break;
4146 case SQUAD:
4147 size = QUAD_SIZE;
4148 name = "SQUAD";
4149 break;
4150 }
4151
4152 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4153
4154 if (data->exp->type.node_class != etree_value)
4155 {
4156 print_space ();
4157 exp_print_tree (data->exp);
4158 }
4159
4160 print_nl ();
4161
4162 print_dot = addr + TO_ADDR (size);
4163 }
4164
4165 /* Print an address statement. These are generated by options like
4166 -Ttext. */
4167
4168 static void
4169 print_address_statement (lang_address_statement_type *address)
4170 {
4171 minfo (_("Address of section %s set to "), address->section_name);
4172 exp_print_tree (address->address);
4173 print_nl ();
4174 }
4175
4176 /* Print a reloc statement. */
4177
4178 static void
4179 print_reloc_statement (lang_reloc_statement_type *reloc)
4180 {
4181 int i;
4182 bfd_vma addr;
4183 bfd_size_type size;
4184
4185 init_opb ();
4186 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4187 print_space ();
4188
4189 addr = reloc->output_offset;
4190 if (reloc->output_section != NULL)
4191 addr += reloc->output_section->vma;
4192
4193 size = bfd_get_reloc_size (reloc->howto);
4194
4195 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4196
4197 if (reloc->name != NULL)
4198 minfo ("%s+", reloc->name);
4199 else
4200 minfo ("%s+", reloc->section->name);
4201
4202 exp_print_tree (reloc->addend_exp);
4203
4204 print_nl ();
4205
4206 print_dot = addr + TO_ADDR (size);
4207 }
4208
4209 static void
4210 print_padding_statement (lang_padding_statement_type *s)
4211 {
4212 int len;
4213 bfd_vma addr;
4214
4215 init_opb ();
4216 minfo (" *fill*");
4217
4218 len = sizeof " *fill*" - 1;
4219 while (len < SECTION_NAME_MAP_LENGTH)
4220 {
4221 print_space ();
4222 ++len;
4223 }
4224
4225 addr = s->output_offset;
4226 if (s->output_section != NULL)
4227 addr += s->output_section->vma;
4228 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4229
4230 if (s->fill->size != 0)
4231 {
4232 size_t size;
4233 unsigned char *p;
4234 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4235 fprintf (config.map_file, "%02x", *p);
4236 }
4237
4238 print_nl ();
4239
4240 print_dot = addr + TO_ADDR (s->size);
4241 }
4242
4243 static void
4244 print_wild_statement (lang_wild_statement_type *w,
4245 lang_output_section_statement_type *os)
4246 {
4247 struct wildcard_list *sec;
4248
4249 print_space ();
4250
4251 if (w->filenames_sorted)
4252 minfo ("SORT(");
4253 if (w->filename != NULL)
4254 minfo ("%s", w->filename);
4255 else
4256 minfo ("*");
4257 if (w->filenames_sorted)
4258 minfo (")");
4259
4260 minfo ("(");
4261 for (sec = w->section_list; sec; sec = sec->next)
4262 {
4263 if (sec->spec.sorted)
4264 minfo ("SORT(");
4265 if (sec->spec.exclude_name_list != NULL)
4266 {
4267 name_list *tmp;
4268 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4269 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4270 minfo (" %s", tmp->name);
4271 minfo (") ");
4272 }
4273 if (sec->spec.name != NULL)
4274 minfo ("%s", sec->spec.name);
4275 else
4276 minfo ("*");
4277 if (sec->spec.sorted)
4278 minfo (")");
4279 if (sec->next)
4280 minfo (" ");
4281 }
4282 minfo (")");
4283
4284 print_nl ();
4285
4286 print_statement_list (w->children.head, os);
4287 }
4288
4289 /* Print a group statement. */
4290
4291 static void
4292 print_group (lang_group_statement_type *s,
4293 lang_output_section_statement_type *os)
4294 {
4295 fprintf (config.map_file, "START GROUP\n");
4296 print_statement_list (s->children.head, os);
4297 fprintf (config.map_file, "END GROUP\n");
4298 }
4299
4300 /* Print the list of statements in S.
4301 This can be called for any statement type. */
4302
4303 static void
4304 print_statement_list (lang_statement_union_type *s,
4305 lang_output_section_statement_type *os)
4306 {
4307 while (s != NULL)
4308 {
4309 print_statement (s, os);
4310 s = s->header.next;
4311 }
4312 }
4313
4314 /* Print the first statement in statement list S.
4315 This can be called for any statement type. */
4316
4317 static void
4318 print_statement (lang_statement_union_type *s,
4319 lang_output_section_statement_type *os)
4320 {
4321 switch (s->header.type)
4322 {
4323 default:
4324 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4325 FAIL ();
4326 break;
4327 case lang_constructors_statement_enum:
4328 if (constructor_list.head != NULL)
4329 {
4330 if (constructors_sorted)
4331 minfo (" SORT (CONSTRUCTORS)\n");
4332 else
4333 minfo (" CONSTRUCTORS\n");
4334 print_statement_list (constructor_list.head, os);
4335 }
4336 break;
4337 case lang_wild_statement_enum:
4338 print_wild_statement (&s->wild_statement, os);
4339 break;
4340 case lang_address_statement_enum:
4341 print_address_statement (&s->address_statement);
4342 break;
4343 case lang_object_symbols_statement_enum:
4344 minfo (" CREATE_OBJECT_SYMBOLS\n");
4345 break;
4346 case lang_fill_statement_enum:
4347 print_fill_statement (&s->fill_statement);
4348 break;
4349 case lang_data_statement_enum:
4350 print_data_statement (&s->data_statement);
4351 break;
4352 case lang_reloc_statement_enum:
4353 print_reloc_statement (&s->reloc_statement);
4354 break;
4355 case lang_input_section_enum:
4356 print_input_section (s->input_section.section, FALSE);
4357 break;
4358 case lang_padding_statement_enum:
4359 print_padding_statement (&s->padding_statement);
4360 break;
4361 case lang_output_section_statement_enum:
4362 print_output_section_statement (&s->output_section_statement);
4363 break;
4364 case lang_assignment_statement_enum:
4365 print_assignment (&s->assignment_statement, os);
4366 break;
4367 case lang_target_statement_enum:
4368 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4369 break;
4370 case lang_output_statement_enum:
4371 minfo ("OUTPUT(%s", s->output_statement.name);
4372 if (output_target != NULL)
4373 minfo (" %s", output_target);
4374 minfo (")\n");
4375 break;
4376 case lang_input_statement_enum:
4377 print_input_statement (&s->input_statement);
4378 break;
4379 case lang_group_statement_enum:
4380 print_group (&s->group_statement, os);
4381 break;
4382 case lang_insert_statement_enum:
4383 minfo ("INSERT %s %s\n",
4384 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4385 s->insert_statement.where);
4386 break;
4387 }
4388 }
4389
4390 static void
4391 print_statements (void)
4392 {
4393 print_statement_list (statement_list.head, abs_output_section);
4394 }
4395
4396 /* Print the first N statements in statement list S to STDERR.
4397 If N == 0, nothing is printed.
4398 If N < 0, the entire list is printed.
4399 Intended to be called from GDB. */
4400
4401 void
4402 dprint_statement (lang_statement_union_type *s, int n)
4403 {
4404 FILE *map_save = config.map_file;
4405
4406 config.map_file = stderr;
4407
4408 if (n < 0)
4409 print_statement_list (s, abs_output_section);
4410 else
4411 {
4412 while (s && --n >= 0)
4413 {
4414 print_statement (s, abs_output_section);
4415 s = s->header.next;
4416 }
4417 }
4418
4419 config.map_file = map_save;
4420 }
4421
4422 static void
4423 insert_pad (lang_statement_union_type **ptr,
4424 fill_type *fill,
4425 unsigned int alignment_needed,
4426 asection *output_section,
4427 bfd_vma dot)
4428 {
4429 static fill_type zero_fill = { 1, { 0 } };
4430 lang_statement_union_type *pad = NULL;
4431
4432 if (ptr != &statement_list.head)
4433 pad = ((lang_statement_union_type *)
4434 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4435 if (pad != NULL
4436 && pad->header.type == lang_padding_statement_enum
4437 && pad->padding_statement.output_section == output_section)
4438 {
4439 /* Use the existing pad statement. */
4440 }
4441 else if ((pad = *ptr) != NULL
4442 && pad->header.type == lang_padding_statement_enum
4443 && pad->padding_statement.output_section == output_section)
4444 {
4445 /* Use the existing pad statement. */
4446 }
4447 else
4448 {
4449 /* Make a new padding statement, linked into existing chain. */
4450 pad = (lang_statement_union_type *)
4451 stat_alloc (sizeof (lang_padding_statement_type));
4452 pad->header.next = *ptr;
4453 *ptr = pad;
4454 pad->header.type = lang_padding_statement_enum;
4455 pad->padding_statement.output_section = output_section;
4456 if (fill == NULL)
4457 fill = &zero_fill;
4458 pad->padding_statement.fill = fill;
4459 }
4460 pad->padding_statement.output_offset = dot - output_section->vma;
4461 pad->padding_statement.size = alignment_needed;
4462 output_section->size += alignment_needed;
4463 }
4464
4465 /* Work out how much this section will move the dot point. */
4466
4467 static bfd_vma
4468 size_input_section
4469 (lang_statement_union_type **this_ptr,
4470 lang_output_section_statement_type *output_section_statement,
4471 fill_type *fill,
4472 bfd_vma dot)
4473 {
4474 lang_input_section_type *is = &((*this_ptr)->input_section);
4475 asection *i = is->section;
4476
4477 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4478 && (i->flags & SEC_EXCLUDE) == 0)
4479 {
4480 unsigned int alignment_needed;
4481 asection *o;
4482
4483 /* Align this section first to the input sections requirement,
4484 then to the output section's requirement. If this alignment
4485 is greater than any seen before, then record it too. Perform
4486 the alignment by inserting a magic 'padding' statement. */
4487
4488 if (output_section_statement->subsection_alignment != -1)
4489 i->alignment_power = output_section_statement->subsection_alignment;
4490
4491 o = output_section_statement->bfd_section;
4492 if (o->alignment_power < i->alignment_power)
4493 o->alignment_power = i->alignment_power;
4494
4495 alignment_needed = align_power (dot, i->alignment_power) - dot;
4496
4497 if (alignment_needed != 0)
4498 {
4499 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4500 dot += alignment_needed;
4501 }
4502
4503 /* Remember where in the output section this input section goes. */
4504
4505 i->output_offset = dot - o->vma;
4506
4507 /* Mark how big the output section must be to contain this now. */
4508 dot += TO_ADDR (i->size);
4509 o->size = TO_SIZE (dot - o->vma);
4510 }
4511 else
4512 {
4513 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4514 }
4515
4516 return dot;
4517 }
4518
4519 static int
4520 sort_sections_by_lma (const void *arg1, const void *arg2)
4521 {
4522 const asection *sec1 = *(const asection **) arg1;
4523 const asection *sec2 = *(const asection **) arg2;
4524
4525 if (bfd_section_lma (sec1->owner, sec1)
4526 < bfd_section_lma (sec2->owner, sec2))
4527 return -1;
4528 else if (bfd_section_lma (sec1->owner, sec1)
4529 > bfd_section_lma (sec2->owner, sec2))
4530 return 1;
4531 else if (sec1->id < sec2->id)
4532 return -1;
4533 else if (sec1->id > sec2->id)
4534 return 1;
4535
4536 return 0;
4537 }
4538
4539 #define IGNORE_SECTION(s) \
4540 ((s->flags & SEC_NEVER_LOAD) != 0 \
4541 || (s->flags & SEC_ALLOC) == 0 \
4542 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4543 && (s->flags & SEC_LOAD) == 0))
4544
4545 /* Check to see if any allocated sections overlap with other allocated
4546 sections. This can happen if a linker script specifies the output
4547 section addresses of the two sections. Also check whether any memory
4548 region has overflowed. */
4549
4550 static void
4551 lang_check_section_addresses (void)
4552 {
4553 asection *s, *os;
4554 asection **sections, **spp;
4555 unsigned int count;
4556 bfd_vma s_start;
4557 bfd_vma s_end;
4558 bfd_vma os_start;
4559 bfd_vma os_end;
4560 bfd_size_type amt;
4561 lang_memory_region_type *m;
4562
4563 if (bfd_count_sections (link_info.output_bfd) <= 1)
4564 return;
4565
4566 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4567 sections = (asection **) xmalloc (amt);
4568
4569 /* Scan all sections in the output list. */
4570 count = 0;
4571 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4572 {
4573 /* Only consider loadable sections with real contents. */
4574 if ((s->flags & SEC_NEVER_LOAD)
4575 || !(s->flags & SEC_LOAD)
4576 || !(s->flags & SEC_ALLOC)
4577 || s->size == 0)
4578 continue;
4579
4580 sections[count] = s;
4581 count++;
4582 }
4583
4584 if (count <= 1)
4585 return;
4586
4587 qsort (sections, (size_t) count, sizeof (asection *),
4588 sort_sections_by_lma);
4589
4590 spp = sections;
4591 s = *spp++;
4592 s_start = bfd_section_lma (link_info.output_bfd, s);
4593 s_end = s_start + TO_ADDR (s->size) - 1;
4594 for (count--; count; count--)
4595 {
4596 /* We must check the sections' LMA addresses not their VMA
4597 addresses because overlay sections can have overlapping VMAs
4598 but they must have distinct LMAs. */
4599 os = s;
4600 os_start = s_start;
4601 os_end = s_end;
4602 s = *spp++;
4603 s_start = bfd_section_lma (link_info.output_bfd, s);
4604 s_end = s_start + TO_ADDR (s->size) - 1;
4605
4606 /* Look for an overlap. */
4607 if (s_end >= os_start && s_start <= os_end)
4608 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4609 s->name, s_start, s_end, os->name, os_start, os_end);
4610 }
4611
4612 free (sections);
4613
4614 /* If any memory region has overflowed, report by how much.
4615 We do not issue this diagnostic for regions that had sections
4616 explicitly placed outside their bounds; os_region_check's
4617 diagnostics are adequate for that case.
4618
4619 FIXME: It is conceivable that m->current - (m->origin + m->length)
4620 might overflow a 32-bit integer. There is, alas, no way to print
4621 a bfd_vma quantity in decimal. */
4622 for (m = lang_memory_region_list; m; m = m->next)
4623 if (m->had_full_message)
4624 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4625 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4626
4627 }
4628
4629 /* Make sure the new address is within the region. We explicitly permit the
4630 current address to be at the exact end of the region when the address is
4631 non-zero, in case the region is at the end of addressable memory and the
4632 calculation wraps around. */
4633
4634 static void
4635 os_region_check (lang_output_section_statement_type *os,
4636 lang_memory_region_type *region,
4637 etree_type *tree,
4638 bfd_vma rbase)
4639 {
4640 if ((region->current < region->origin
4641 || (region->current - region->origin > region->length))
4642 && ((region->current != region->origin + region->length)
4643 || rbase == 0))
4644 {
4645 if (tree != NULL)
4646 {
4647 einfo (_("%X%P: address 0x%v of %B section `%s'"
4648 " is not within region `%s'\n"),
4649 region->current,
4650 os->bfd_section->owner,
4651 os->bfd_section->name,
4652 region->name_list.name);
4653 }
4654 else if (!region->had_full_message)
4655 {
4656 region->had_full_message = TRUE;
4657
4658 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4659 os->bfd_section->owner,
4660 os->bfd_section->name,
4661 region->name_list.name);
4662 }
4663 }
4664 }
4665
4666 /* Set the sizes for all the output sections. */
4667
4668 static bfd_vma
4669 lang_size_sections_1
4670 (lang_statement_union_type *s,
4671 lang_output_section_statement_type *output_section_statement,
4672 lang_statement_union_type **prev,
4673 fill_type *fill,
4674 bfd_vma dot,
4675 bfd_boolean *relax,
4676 bfd_boolean check_regions)
4677 {
4678 /* Size up the sections from their constituent parts. */
4679 for (; s != NULL; s = s->header.next)
4680 {
4681 switch (s->header.type)
4682 {
4683 case lang_output_section_statement_enum:
4684 {
4685 bfd_vma newdot, after;
4686 lang_output_section_statement_type *os;
4687 lang_memory_region_type *r;
4688
4689 os = &s->output_section_statement;
4690 /* FIXME: We shouldn't need to zero section vmas for ld -r
4691 here, in lang_insert_orphan, or in the default linker scripts.
4692 This is covering for coff backend linker bugs. See PR6945. */
4693 if (os->addr_tree == NULL
4694 && link_info.relocatable
4695 && (bfd_get_flavour (link_info.output_bfd)
4696 == bfd_target_coff_flavour))
4697 os->addr_tree = exp_intop (0);
4698 if (os->addr_tree != NULL)
4699 {
4700 os->processed_vma = FALSE;
4701 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4702
4703 if (expld.result.valid_p)
4704 dot = expld.result.value + expld.result.section->vma;
4705 else if (expld.phase != lang_mark_phase_enum)
4706 einfo (_("%F%S: non constant or forward reference"
4707 " address expression for section %s\n"),
4708 os->name);
4709 }
4710
4711 if (os->bfd_section == NULL)
4712 /* This section was removed or never actually created. */
4713 break;
4714
4715 /* If this is a COFF shared library section, use the size and
4716 address from the input section. FIXME: This is COFF
4717 specific; it would be cleaner if there were some other way
4718 to do this, but nothing simple comes to mind. */
4719 if (((bfd_get_flavour (link_info.output_bfd)
4720 == bfd_target_ecoff_flavour)
4721 || (bfd_get_flavour (link_info.output_bfd)
4722 == bfd_target_coff_flavour))
4723 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4724 {
4725 asection *input;
4726
4727 if (os->children.head == NULL
4728 || os->children.head->header.next != NULL
4729 || (os->children.head->header.type
4730 != lang_input_section_enum))
4731 einfo (_("%P%X: Internal error on COFF shared library"
4732 " section %s\n"), os->name);
4733
4734 input = os->children.head->input_section.section;
4735 bfd_set_section_vma (os->bfd_section->owner,
4736 os->bfd_section,
4737 bfd_section_vma (input->owner, input));
4738 os->bfd_section->size = input->size;
4739 break;
4740 }
4741
4742 newdot = dot;
4743 if (bfd_is_abs_section (os->bfd_section))
4744 {
4745 /* No matter what happens, an abs section starts at zero. */
4746 ASSERT (os->bfd_section->vma == 0);
4747 }
4748 else
4749 {
4750 int align;
4751
4752 if (os->addr_tree == NULL)
4753 {
4754 /* No address specified for this section, get one
4755 from the region specification. */
4756 if (os->region == NULL
4757 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4758 && os->region->name_list.name[0] == '*'
4759 && strcmp (os->region->name_list.name,
4760 DEFAULT_MEMORY_REGION) == 0))
4761 {
4762 os->region = lang_memory_default (os->bfd_section);
4763 }
4764
4765 /* If a loadable section is using the default memory
4766 region, and some non default memory regions were
4767 defined, issue an error message. */
4768 if (!os->ignored
4769 && !IGNORE_SECTION (os->bfd_section)
4770 && ! link_info.relocatable
4771 && check_regions
4772 && strcmp (os->region->name_list.name,
4773 DEFAULT_MEMORY_REGION) == 0
4774 && lang_memory_region_list != NULL
4775 && (strcmp (lang_memory_region_list->name_list.name,
4776 DEFAULT_MEMORY_REGION) != 0
4777 || lang_memory_region_list->next != NULL)
4778 && expld.phase != lang_mark_phase_enum)
4779 {
4780 /* By default this is an error rather than just a
4781 warning because if we allocate the section to the
4782 default memory region we can end up creating an
4783 excessively large binary, or even seg faulting when
4784 attempting to perform a negative seek. See
4785 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4786 for an example of this. This behaviour can be
4787 overridden by the using the --no-check-sections
4788 switch. */
4789 if (command_line.check_section_addresses)
4790 einfo (_("%P%F: error: no memory region specified"
4791 " for loadable section `%s'\n"),
4792 bfd_get_section_name (link_info.output_bfd,
4793 os->bfd_section));
4794 else
4795 einfo (_("%P: warning: no memory region specified"
4796 " for loadable section `%s'\n"),
4797 bfd_get_section_name (link_info.output_bfd,
4798 os->bfd_section));
4799 }
4800
4801 newdot = os->region->current;
4802 align = os->bfd_section->alignment_power;
4803 }
4804 else
4805 align = os->section_alignment;
4806
4807 /* Align to what the section needs. */
4808 if (align > 0)
4809 {
4810 bfd_vma savedot = newdot;
4811 newdot = align_power (newdot, align);
4812
4813 if (newdot != savedot
4814 && (config.warn_section_align
4815 || os->addr_tree != NULL)
4816 && expld.phase != lang_mark_phase_enum)
4817 einfo (_("%P: warning: changing start of section"
4818 " %s by %lu bytes\n"),
4819 os->name, (unsigned long) (newdot - savedot));
4820 }
4821
4822 bfd_set_section_vma (0, os->bfd_section, newdot);
4823
4824 os->bfd_section->output_offset = 0;
4825 }
4826
4827 lang_size_sections_1 (os->children.head, os, &os->children.head,
4828 os->fill, newdot, relax, check_regions);
4829
4830 os->processed_vma = TRUE;
4831
4832 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4833 /* Except for some special linker created sections,
4834 no output section should change from zero size
4835 after strip_excluded_output_sections. A non-zero
4836 size on an ignored section indicates that some
4837 input section was not sized early enough. */
4838 ASSERT (os->bfd_section->size == 0);
4839 else
4840 {
4841 dot = os->bfd_section->vma;
4842
4843 /* Put the section within the requested block size, or
4844 align at the block boundary. */
4845 after = ((dot
4846 + TO_ADDR (os->bfd_section->size)
4847 + os->block_value - 1)
4848 & - (bfd_vma) os->block_value);
4849
4850 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4851 }
4852
4853 /* Set section lma. */
4854 r = os->region;
4855 if (r == NULL)
4856 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4857
4858 if (os->load_base)
4859 {
4860 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4861 os->bfd_section->lma = lma;
4862 }
4863 else if (os->lma_region != NULL)
4864 {
4865 bfd_vma lma = os->lma_region->current;
4866
4867 if (os->section_alignment != -1)
4868 lma = align_power (lma, os->section_alignment);
4869 os->bfd_section->lma = lma;
4870 }
4871 else if (r->last_os != NULL
4872 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4873 {
4874 bfd_vma lma;
4875 asection *last;
4876
4877 last = r->last_os->output_section_statement.bfd_section;
4878
4879 /* A backwards move of dot should be accompanied by
4880 an explicit assignment to the section LMA (ie.
4881 os->load_base set) because backwards moves can
4882 create overlapping LMAs. */
4883 if (dot < last->vma
4884 && os->bfd_section->size != 0
4885 && dot + os->bfd_section->size <= last->vma)
4886 {
4887 /* If dot moved backwards then leave lma equal to
4888 vma. This is the old default lma, which might
4889 just happen to work when the backwards move is
4890 sufficiently large. Nag if this changes anything,
4891 so people can fix their linker scripts. */
4892
4893 if (last->vma != last->lma)
4894 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
4895 os->name);
4896 }
4897 else
4898 {
4899 /* If this is an overlay, set the current lma to that
4900 at the end of the previous section. */
4901 if (os->sectype == overlay_section)
4902 lma = last->lma + last->size;
4903
4904 /* Otherwise, keep the same lma to vma relationship
4905 as the previous section. */
4906 else
4907 lma = dot + last->lma - last->vma;
4908
4909 if (os->section_alignment != -1)
4910 lma = align_power (lma, os->section_alignment);
4911 os->bfd_section->lma = lma;
4912 }
4913 }
4914 os->processed_lma = TRUE;
4915
4916 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4917 break;
4918
4919 /* Keep track of normal sections using the default
4920 lma region. We use this to set the lma for
4921 following sections. Overlays or other linker
4922 script assignment to lma might mean that the
4923 default lma == vma is incorrect.
4924 To avoid warnings about dot moving backwards when using
4925 -Ttext, don't start tracking sections until we find one
4926 of non-zero size or with lma set differently to vma. */
4927 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
4928 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
4929 && (os->bfd_section->flags & SEC_ALLOC) != 0
4930 && (os->bfd_section->size != 0
4931 || (r->last_os == NULL
4932 && os->bfd_section->vma != os->bfd_section->lma)
4933 || (r->last_os != NULL
4934 && dot >= (r->last_os->output_section_statement
4935 .bfd_section->vma)))
4936 && os->lma_region == NULL
4937 && !link_info.relocatable)
4938 r->last_os = s;
4939
4940 /* .tbss sections effectively have zero size. */
4941 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
4942 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
4943 || link_info.relocatable)
4944 dot += TO_ADDR (os->bfd_section->size);
4945
4946 if (os->update_dot_tree != 0)
4947 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
4948
4949 /* Update dot in the region ?
4950 We only do this if the section is going to be allocated,
4951 since unallocated sections do not contribute to the region's
4952 overall size in memory.
4953
4954 If the SEC_NEVER_LOAD bit is not set, it will affect the
4955 addresses of sections after it. We have to update
4956 dot. */
4957 if (os->region != NULL
4958 && ((os->bfd_section->flags & SEC_NEVER_LOAD) == 0
4959 || (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))))
4960 {
4961 os->region->current = dot;
4962
4963 if (check_regions)
4964 /* Make sure the new address is within the region. */
4965 os_region_check (os, os->region, os->addr_tree,
4966 os->bfd_section->vma);
4967
4968 if (os->lma_region != NULL && os->lma_region != os->region
4969 && (os->bfd_section->flags & SEC_LOAD))
4970 {
4971 os->lma_region->current
4972 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
4973
4974 if (check_regions)
4975 os_region_check (os, os->lma_region, NULL,
4976 os->bfd_section->lma);
4977 }
4978 }
4979 }
4980 break;
4981
4982 case lang_constructors_statement_enum:
4983 dot = lang_size_sections_1 (constructor_list.head,
4984 output_section_statement,
4985 &s->wild_statement.children.head,
4986 fill, dot, relax, check_regions);
4987 break;
4988
4989 case lang_data_statement_enum:
4990 {
4991 unsigned int size = 0;
4992
4993 s->data_statement.output_offset =
4994 dot - output_section_statement->bfd_section->vma;
4995 s->data_statement.output_section =
4996 output_section_statement->bfd_section;
4997
4998 /* We might refer to provided symbols in the expression, and
4999 need to mark them as needed. */
5000 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5001
5002 switch (s->data_statement.type)
5003 {
5004 default:
5005 abort ();
5006 case QUAD:
5007 case SQUAD:
5008 size = QUAD_SIZE;
5009 break;
5010 case LONG:
5011 size = LONG_SIZE;
5012 break;
5013 case SHORT:
5014 size = SHORT_SIZE;
5015 break;
5016 case BYTE:
5017 size = BYTE_SIZE;
5018 break;
5019 }
5020 if (size < TO_SIZE ((unsigned) 1))
5021 size = TO_SIZE ((unsigned) 1);
5022 dot += TO_ADDR (size);
5023 output_section_statement->bfd_section->size += size;
5024 }
5025 break;
5026
5027 case lang_reloc_statement_enum:
5028 {
5029 int size;
5030
5031 s->reloc_statement.output_offset =
5032 dot - output_section_statement->bfd_section->vma;
5033 s->reloc_statement.output_section =
5034 output_section_statement->bfd_section;
5035 size = bfd_get_reloc_size (s->reloc_statement.howto);
5036 dot += TO_ADDR (size);
5037 output_section_statement->bfd_section->size += size;
5038 }
5039 break;
5040
5041 case lang_wild_statement_enum:
5042 dot = lang_size_sections_1 (s->wild_statement.children.head,
5043 output_section_statement,
5044 &s->wild_statement.children.head,
5045 fill, dot, relax, check_regions);
5046 break;
5047
5048 case lang_object_symbols_statement_enum:
5049 link_info.create_object_symbols_section =
5050 output_section_statement->bfd_section;
5051 break;
5052
5053 case lang_output_statement_enum:
5054 case lang_target_statement_enum:
5055 break;
5056
5057 case lang_input_section_enum:
5058 {
5059 asection *i;
5060
5061 i = (*prev)->input_section.section;
5062 if (relax)
5063 {
5064 bfd_boolean again;
5065
5066 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5067 einfo (_("%P%F: can't relax section: %E\n"));
5068 if (again)
5069 *relax = TRUE;
5070 }
5071 dot = size_input_section (prev, output_section_statement,
5072 output_section_statement->fill, dot);
5073 }
5074 break;
5075
5076 case lang_input_statement_enum:
5077 break;
5078
5079 case lang_fill_statement_enum:
5080 s->fill_statement.output_section =
5081 output_section_statement->bfd_section;
5082
5083 fill = s->fill_statement.fill;
5084 break;
5085
5086 case lang_assignment_statement_enum:
5087 {
5088 bfd_vma newdot = dot;
5089 etree_type *tree = s->assignment_statement.exp;
5090
5091 expld.dataseg.relro = exp_dataseg_relro_none;
5092
5093 exp_fold_tree (tree,
5094 output_section_statement->bfd_section,
5095 &newdot);
5096
5097 if (expld.dataseg.relro == exp_dataseg_relro_start)
5098 {
5099 if (!expld.dataseg.relro_start_stat)
5100 expld.dataseg.relro_start_stat = s;
5101 else
5102 {
5103 ASSERT (expld.dataseg.relro_start_stat == s);
5104 }
5105 }
5106 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5107 {
5108 if (!expld.dataseg.relro_end_stat)
5109 expld.dataseg.relro_end_stat = s;
5110 else
5111 {
5112 ASSERT (expld.dataseg.relro_end_stat == s);
5113 }
5114 }
5115 expld.dataseg.relro = exp_dataseg_relro_none;
5116
5117 /* This symbol is relative to this section. */
5118 if ((tree->type.node_class == etree_provided
5119 || tree->type.node_class == etree_assign)
5120 && (tree->assign.dst [0] != '.'
5121 || tree->assign.dst [1] != '\0'))
5122 output_section_statement->section_relative_symbol = 1;
5123
5124 if (!output_section_statement->ignored)
5125 {
5126 if (output_section_statement == abs_output_section)
5127 {
5128 /* If we don't have an output section, then just adjust
5129 the default memory address. */
5130 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5131 FALSE)->current = newdot;
5132 }
5133 else if (newdot != dot)
5134 {
5135 /* Insert a pad after this statement. We can't
5136 put the pad before when relaxing, in case the
5137 assignment references dot. */
5138 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5139 output_section_statement->bfd_section, dot);
5140
5141 /* Don't neuter the pad below when relaxing. */
5142 s = s->header.next;
5143
5144 /* If dot is advanced, this implies that the section
5145 should have space allocated to it, unless the
5146 user has explicitly stated that the section
5147 should never be loaded. */
5148 if (!(output_section_statement->flags & SEC_NEVER_LOAD))
5149 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5150 }
5151 dot = newdot;
5152 }
5153 }
5154 break;
5155
5156 case lang_padding_statement_enum:
5157 /* If this is the first time lang_size_sections is called,
5158 we won't have any padding statements. If this is the
5159 second or later passes when relaxing, we should allow
5160 padding to shrink. If padding is needed on this pass, it
5161 will be added back in. */
5162 s->padding_statement.size = 0;
5163
5164 /* Make sure output_offset is valid. If relaxation shrinks
5165 the section and this pad isn't needed, it's possible to
5166 have output_offset larger than the final size of the
5167 section. bfd_set_section_contents will complain even for
5168 a pad size of zero. */
5169 s->padding_statement.output_offset
5170 = dot - output_section_statement->bfd_section->vma;
5171 break;
5172
5173 case lang_group_statement_enum:
5174 dot = lang_size_sections_1 (s->group_statement.children.head,
5175 output_section_statement,
5176 &s->group_statement.children.head,
5177 fill, dot, relax, check_regions);
5178 break;
5179
5180 case lang_insert_statement_enum:
5181 break;
5182
5183 /* We can only get here when relaxing is turned on. */
5184 case lang_address_statement_enum:
5185 break;
5186
5187 default:
5188 FAIL ();
5189 break;
5190 }
5191 prev = &s->header.next;
5192 }
5193 return dot;
5194 }
5195
5196 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5197 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5198 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5199 segments. We are allowed an opportunity to override this decision. */
5200
5201 bfd_boolean
5202 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5203 bfd * abfd ATTRIBUTE_UNUSED,
5204 asection * current_section,
5205 asection * previous_section,
5206 bfd_boolean new_segment)
5207 {
5208 lang_output_section_statement_type * cur;
5209 lang_output_section_statement_type * prev;
5210
5211 /* The checks below are only necessary when the BFD library has decided
5212 that the two sections ought to be placed into the same segment. */
5213 if (new_segment)
5214 return TRUE;
5215
5216 /* Paranoia checks. */
5217 if (current_section == NULL || previous_section == NULL)
5218 return new_segment;
5219
5220 /* Find the memory regions associated with the two sections.
5221 We call lang_output_section_find() here rather than scanning the list
5222 of output sections looking for a matching section pointer because if
5223 we have a large number of sections then a hash lookup is faster. */
5224 cur = lang_output_section_find (current_section->name);
5225 prev = lang_output_section_find (previous_section->name);
5226
5227 /* More paranoia. */
5228 if (cur == NULL || prev == NULL)
5229 return new_segment;
5230
5231 /* If the regions are different then force the sections to live in
5232 different segments. See the email thread starting at the following
5233 URL for the reasons why this is necessary:
5234 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5235 return cur->region != prev->region;
5236 }
5237
5238 void
5239 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5240 {
5241 lang_statement_iteration++;
5242 lang_size_sections_1 (statement_list.head, abs_output_section,
5243 &statement_list.head, 0, 0, relax, check_regions);
5244 }
5245
5246 void
5247 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5248 {
5249 expld.phase = lang_allocating_phase_enum;
5250 expld.dataseg.phase = exp_dataseg_none;
5251
5252 one_lang_size_sections_pass (relax, check_regions);
5253 if (expld.dataseg.phase == exp_dataseg_end_seen
5254 && link_info.relro && expld.dataseg.relro_end)
5255 {
5256 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5257 to put expld.dataseg.relro on a (common) page boundary. */
5258 bfd_vma min_base, old_base, relro_end, maxpage;
5259
5260 expld.dataseg.phase = exp_dataseg_relro_adjust;
5261 maxpage = expld.dataseg.maxpagesize;
5262 /* MIN_BASE is the absolute minimum address we are allowed to start the
5263 read-write segment (byte before will be mapped read-only). */
5264 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5265 /* OLD_BASE is the address for a feasible minimum address which will
5266 still not cause a data overlap inside MAXPAGE causing file offset skip
5267 by MAXPAGE. */
5268 old_base = expld.dataseg.base;
5269 expld.dataseg.base += (-expld.dataseg.relro_end
5270 & (expld.dataseg.pagesize - 1));
5271 /* Compute the expected PT_GNU_RELRO segment end. */
5272 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5273 & ~(expld.dataseg.pagesize - 1));
5274 if (min_base + maxpage < expld.dataseg.base)
5275 {
5276 expld.dataseg.base -= maxpage;
5277 relro_end -= maxpage;
5278 }
5279 lang_reset_memory_regions ();
5280 one_lang_size_sections_pass (relax, check_regions);
5281 if (expld.dataseg.relro_end > relro_end)
5282 {
5283 /* The alignment of sections between DATA_SEGMENT_ALIGN
5284 and DATA_SEGMENT_RELRO_END caused huge padding to be
5285 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5286 that the section alignments will fit in. */
5287 asection *sec;
5288 unsigned int max_alignment_power = 0;
5289
5290 /* Find maximum alignment power of sections between
5291 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5292 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5293 if (sec->vma >= expld.dataseg.base
5294 && sec->vma < expld.dataseg.relro_end
5295 && sec->alignment_power > max_alignment_power)
5296 max_alignment_power = sec->alignment_power;
5297
5298 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5299 {
5300 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5301 expld.dataseg.base += expld.dataseg.pagesize;
5302 expld.dataseg.base -= (1 << max_alignment_power);
5303 lang_reset_memory_regions ();
5304 one_lang_size_sections_pass (relax, check_regions);
5305 }
5306 }
5307 link_info.relro_start = expld.dataseg.base;
5308 link_info.relro_end = expld.dataseg.relro_end;
5309 }
5310 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5311 {
5312 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5313 a page could be saved in the data segment. */
5314 bfd_vma first, last;
5315
5316 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5317 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5318 if (first && last
5319 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5320 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5321 && first + last <= expld.dataseg.pagesize)
5322 {
5323 expld.dataseg.phase = exp_dataseg_adjust;
5324 lang_reset_memory_regions ();
5325 one_lang_size_sections_pass (relax, check_regions);
5326 }
5327 }
5328
5329 expld.phase = lang_final_phase_enum;
5330 }
5331
5332 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5333
5334 static bfd_vma
5335 lang_do_assignments_1 (lang_statement_union_type *s,
5336 lang_output_section_statement_type *current_os,
5337 fill_type *fill,
5338 bfd_vma dot)
5339 {
5340 for (; s != NULL; s = s->header.next)
5341 {
5342 switch (s->header.type)
5343 {
5344 case lang_constructors_statement_enum:
5345 dot = lang_do_assignments_1 (constructor_list.head,
5346 current_os, fill, dot);
5347 break;
5348
5349 case lang_output_section_statement_enum:
5350 {
5351 lang_output_section_statement_type *os;
5352
5353 os = &(s->output_section_statement);
5354 if (os->bfd_section != NULL && !os->ignored)
5355 {
5356 dot = os->bfd_section->vma;
5357
5358 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5359
5360 /* .tbss sections effectively have zero size. */
5361 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5362 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5363 || link_info.relocatable)
5364 dot += TO_ADDR (os->bfd_section->size);
5365
5366 if (os->update_dot_tree != NULL)
5367 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5368 }
5369 }
5370 break;
5371
5372 case lang_wild_statement_enum:
5373
5374 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5375 current_os, fill, dot);
5376 break;
5377
5378 case lang_object_symbols_statement_enum:
5379 case lang_output_statement_enum:
5380 case lang_target_statement_enum:
5381 break;
5382
5383 case lang_data_statement_enum:
5384 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5385 if (expld.result.valid_p)
5386 s->data_statement.value = (expld.result.value
5387 + expld.result.section->vma);
5388 else
5389 einfo (_("%F%P: invalid data statement\n"));
5390 {
5391 unsigned int size;
5392 switch (s->data_statement.type)
5393 {
5394 default:
5395 abort ();
5396 case QUAD:
5397 case SQUAD:
5398 size = QUAD_SIZE;
5399 break;
5400 case LONG:
5401 size = LONG_SIZE;
5402 break;
5403 case SHORT:
5404 size = SHORT_SIZE;
5405 break;
5406 case BYTE:
5407 size = BYTE_SIZE;
5408 break;
5409 }
5410 if (size < TO_SIZE ((unsigned) 1))
5411 size = TO_SIZE ((unsigned) 1);
5412 dot += TO_ADDR (size);
5413 }
5414 break;
5415
5416 case lang_reloc_statement_enum:
5417 exp_fold_tree (s->reloc_statement.addend_exp,
5418 bfd_abs_section_ptr, &dot);
5419 if (expld.result.valid_p)
5420 s->reloc_statement.addend_value = expld.result.value;
5421 else
5422 einfo (_("%F%P: invalid reloc statement\n"));
5423 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5424 break;
5425
5426 case lang_input_section_enum:
5427 {
5428 asection *in = s->input_section.section;
5429
5430 if ((in->flags & SEC_EXCLUDE) == 0)
5431 dot += TO_ADDR (in->size);
5432 }
5433 break;
5434
5435 case lang_input_statement_enum:
5436 break;
5437
5438 case lang_fill_statement_enum:
5439 fill = s->fill_statement.fill;
5440 break;
5441
5442 case lang_assignment_statement_enum:
5443 exp_fold_tree (s->assignment_statement.exp,
5444 current_os->bfd_section,
5445 &dot);
5446 break;
5447
5448 case lang_padding_statement_enum:
5449 dot += TO_ADDR (s->padding_statement.size);
5450 break;
5451
5452 case lang_group_statement_enum:
5453 dot = lang_do_assignments_1 (s->group_statement.children.head,
5454 current_os, fill, dot);
5455 break;
5456
5457 case lang_insert_statement_enum:
5458 break;
5459
5460 case lang_address_statement_enum:
5461 break;
5462
5463 default:
5464 FAIL ();
5465 break;
5466 }
5467 }
5468 return dot;
5469 }
5470
5471 void
5472 lang_do_assignments (void)
5473 {
5474 lang_statement_iteration++;
5475 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5476 }
5477
5478 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5479 operator .startof. (section_name), it produces an undefined symbol
5480 .startof.section_name. Similarly, when it sees
5481 .sizeof. (section_name), it produces an undefined symbol
5482 .sizeof.section_name. For all the output sections, we look for
5483 such symbols, and set them to the correct value. */
5484
5485 static void
5486 lang_set_startof (void)
5487 {
5488 asection *s;
5489
5490 if (link_info.relocatable)
5491 return;
5492
5493 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5494 {
5495 const char *secname;
5496 char *buf;
5497 struct bfd_link_hash_entry *h;
5498
5499 secname = bfd_get_section_name (link_info.output_bfd, s);
5500 buf = (char *) xmalloc (10 + strlen (secname));
5501
5502 sprintf (buf, ".startof.%s", secname);
5503 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5504 if (h != NULL && h->type == bfd_link_hash_undefined)
5505 {
5506 h->type = bfd_link_hash_defined;
5507 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5508 h->u.def.section = bfd_abs_section_ptr;
5509 }
5510
5511 sprintf (buf, ".sizeof.%s", secname);
5512 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5513 if (h != NULL && h->type == bfd_link_hash_undefined)
5514 {
5515 h->type = bfd_link_hash_defined;
5516 h->u.def.value = TO_ADDR (s->size);
5517 h->u.def.section = bfd_abs_section_ptr;
5518 }
5519
5520 free (buf);
5521 }
5522 }
5523
5524 static void
5525 lang_end (void)
5526 {
5527 struct bfd_link_hash_entry *h;
5528 bfd_boolean warn;
5529
5530 if ((link_info.relocatable && !link_info.gc_sections)
5531 || (link_info.shared && !link_info.executable))
5532 warn = entry_from_cmdline;
5533 else
5534 warn = TRUE;
5535
5536 /* Force the user to specify a root when generating a relocatable with
5537 --gc-sections. */
5538 if (link_info.gc_sections && link_info.relocatable
5539 && (entry_symbol.name == NULL
5540 && ldlang_undef_chain_list_head == NULL))
5541 einfo (_("%P%F: gc-sections requires either an entry or "
5542 "an undefined symbol\n"));
5543
5544 if (entry_symbol.name == NULL)
5545 {
5546 /* No entry has been specified. Look for the default entry, but
5547 don't warn if we don't find it. */
5548 entry_symbol.name = entry_symbol_default;
5549 warn = FALSE;
5550 }
5551
5552 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5553 FALSE, FALSE, TRUE);
5554 if (h != NULL
5555 && (h->type == bfd_link_hash_defined
5556 || h->type == bfd_link_hash_defweak)
5557 && h->u.def.section->output_section != NULL)
5558 {
5559 bfd_vma val;
5560
5561 val = (h->u.def.value
5562 + bfd_get_section_vma (link_info.output_bfd,
5563 h->u.def.section->output_section)
5564 + h->u.def.section->output_offset);
5565 if (! bfd_set_start_address (link_info.output_bfd, val))
5566 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5567 }
5568 else
5569 {
5570 bfd_vma val;
5571 const char *send;
5572
5573 /* We couldn't find the entry symbol. Try parsing it as a
5574 number. */
5575 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5576 if (*send == '\0')
5577 {
5578 if (! bfd_set_start_address (link_info.output_bfd, val))
5579 einfo (_("%P%F: can't set start address\n"));
5580 }
5581 else
5582 {
5583 asection *ts;
5584
5585 /* Can't find the entry symbol, and it's not a number. Use
5586 the first address in the text section. */
5587 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5588 if (ts != NULL)
5589 {
5590 if (warn)
5591 einfo (_("%P: warning: cannot find entry symbol %s;"
5592 " defaulting to %V\n"),
5593 entry_symbol.name,
5594 bfd_get_section_vma (link_info.output_bfd, ts));
5595 if (!(bfd_set_start_address
5596 (link_info.output_bfd,
5597 bfd_get_section_vma (link_info.output_bfd, ts))))
5598 einfo (_("%P%F: can't set start address\n"));
5599 }
5600 else
5601 {
5602 if (warn)
5603 einfo (_("%P: warning: cannot find entry symbol %s;"
5604 " not setting start address\n"),
5605 entry_symbol.name);
5606 }
5607 }
5608 }
5609
5610 /* Don't bfd_hash_table_free (&lang_definedness_table);
5611 map file output may result in a call of lang_track_definedness. */
5612 }
5613
5614 /* This is a small function used when we want to ignore errors from
5615 BFD. */
5616
5617 static void
5618 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5619 {
5620 /* Don't do anything. */
5621 }
5622
5623 /* Check that the architecture of all the input files is compatible
5624 with the output file. Also call the backend to let it do any
5625 other checking that is needed. */
5626
5627 static void
5628 lang_check (void)
5629 {
5630 lang_statement_union_type *file;
5631 bfd *input_bfd;
5632 const bfd_arch_info_type *compatible;
5633
5634 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5635 {
5636 input_bfd = file->input_statement.the_bfd;
5637 compatible
5638 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5639 command_line.accept_unknown_input_arch);
5640
5641 /* In general it is not possible to perform a relocatable
5642 link between differing object formats when the input
5643 file has relocations, because the relocations in the
5644 input format may not have equivalent representations in
5645 the output format (and besides BFD does not translate
5646 relocs for other link purposes than a final link). */
5647 if ((link_info.relocatable || link_info.emitrelocations)
5648 && (compatible == NULL
5649 || (bfd_get_flavour (input_bfd)
5650 != bfd_get_flavour (link_info.output_bfd)))
5651 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5652 {
5653 einfo (_("%P%F: Relocatable linking with relocations from"
5654 " format %s (%B) to format %s (%B) is not supported\n"),
5655 bfd_get_target (input_bfd), input_bfd,
5656 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5657 /* einfo with %F exits. */
5658 }
5659
5660 if (compatible == NULL)
5661 {
5662 if (command_line.warn_mismatch)
5663 einfo (_("%P%X: %s architecture of input file `%B'"
5664 " is incompatible with %s output\n"),
5665 bfd_printable_name (input_bfd), input_bfd,
5666 bfd_printable_name (link_info.output_bfd));
5667 }
5668 else if (bfd_count_sections (input_bfd))
5669 {
5670 /* If the input bfd has no contents, it shouldn't set the
5671 private data of the output bfd. */
5672
5673 bfd_error_handler_type pfn = NULL;
5674
5675 /* If we aren't supposed to warn about mismatched input
5676 files, temporarily set the BFD error handler to a
5677 function which will do nothing. We still want to call
5678 bfd_merge_private_bfd_data, since it may set up
5679 information which is needed in the output file. */
5680 if (! command_line.warn_mismatch)
5681 pfn = bfd_set_error_handler (ignore_bfd_errors);
5682 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5683 {
5684 if (command_line.warn_mismatch)
5685 einfo (_("%P%X: failed to merge target specific data"
5686 " of file %B\n"), input_bfd);
5687 }
5688 if (! command_line.warn_mismatch)
5689 bfd_set_error_handler (pfn);
5690 }
5691 }
5692 }
5693
5694 /* Look through all the global common symbols and attach them to the
5695 correct section. The -sort-common command line switch may be used
5696 to roughly sort the entries by alignment. */
5697
5698 static void
5699 lang_common (void)
5700 {
5701 if (command_line.inhibit_common_definition)
5702 return;
5703 if (link_info.relocatable
5704 && ! command_line.force_common_definition)
5705 return;
5706
5707 if (! config.sort_common)
5708 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5709 else
5710 {
5711 unsigned int power;
5712
5713 if (config.sort_common == sort_descending)
5714 {
5715 for (power = 4; power > 0; power--)
5716 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5717
5718 power = 0;
5719 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5720 }
5721 else
5722 {
5723 for (power = 0; power <= 4; power++)
5724 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5725
5726 power = UINT_MAX;
5727 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5728 }
5729 }
5730 }
5731
5732 /* Place one common symbol in the correct section. */
5733
5734 static bfd_boolean
5735 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5736 {
5737 unsigned int power_of_two;
5738 bfd_vma size;
5739 asection *section;
5740
5741 if (h->type != bfd_link_hash_common)
5742 return TRUE;
5743
5744 size = h->u.c.size;
5745 power_of_two = h->u.c.p->alignment_power;
5746
5747 if (config.sort_common == sort_descending
5748 && power_of_two < *(unsigned int *) info)
5749 return TRUE;
5750 else if (config.sort_common == sort_ascending
5751 && power_of_two > *(unsigned int *) info)
5752 return TRUE;
5753
5754 section = h->u.c.p->section;
5755 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5756 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5757 h->root.string);
5758
5759 if (config.map_file != NULL)
5760 {
5761 static bfd_boolean header_printed;
5762 int len;
5763 char *name;
5764 char buf[50];
5765
5766 if (! header_printed)
5767 {
5768 minfo (_("\nAllocating common symbols\n"));
5769 minfo (_("Common symbol size file\n\n"));
5770 header_printed = TRUE;
5771 }
5772
5773 name = bfd_demangle (link_info.output_bfd, h->root.string,
5774 DMGL_ANSI | DMGL_PARAMS);
5775 if (name == NULL)
5776 {
5777 minfo ("%s", h->root.string);
5778 len = strlen (h->root.string);
5779 }
5780 else
5781 {
5782 minfo ("%s", name);
5783 len = strlen (name);
5784 free (name);
5785 }
5786
5787 if (len >= 19)
5788 {
5789 print_nl ();
5790 len = 0;
5791 }
5792 while (len < 20)
5793 {
5794 print_space ();
5795 ++len;
5796 }
5797
5798 minfo ("0x");
5799 if (size <= 0xffffffff)
5800 sprintf (buf, "%lx", (unsigned long) size);
5801 else
5802 sprintf_vma (buf, size);
5803 minfo ("%s", buf);
5804 len = strlen (buf);
5805
5806 while (len < 16)
5807 {
5808 print_space ();
5809 ++len;
5810 }
5811
5812 minfo ("%B\n", section->owner);
5813 }
5814
5815 return TRUE;
5816 }
5817
5818 /* Run through the input files and ensure that every input section has
5819 somewhere to go. If one is found without a destination then create
5820 an input request and place it into the statement tree. */
5821
5822 static void
5823 lang_place_orphans (void)
5824 {
5825 LANG_FOR_EACH_INPUT_STATEMENT (file)
5826 {
5827 asection *s;
5828
5829 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5830 {
5831 if (s->output_section == NULL)
5832 {
5833 /* This section of the file is not attached, root
5834 around for a sensible place for it to go. */
5835
5836 if (file->just_syms_flag)
5837 bfd_link_just_syms (file->the_bfd, s, &link_info);
5838 else if ((s->flags & SEC_EXCLUDE) != 0)
5839 s->output_section = bfd_abs_section_ptr;
5840 else if (strcmp (s->name, "COMMON") == 0)
5841 {
5842 /* This is a lonely common section which must have
5843 come from an archive. We attach to the section
5844 with the wildcard. */
5845 if (! link_info.relocatable
5846 || command_line.force_common_definition)
5847 {
5848 if (default_common_section == NULL)
5849 default_common_section
5850 = lang_output_section_statement_lookup (".bss", 0,
5851 TRUE);
5852 lang_add_section (&default_common_section->children, s,
5853 default_common_section);
5854 }
5855 }
5856 else
5857 {
5858 const char *name = s->name;
5859 int constraint = 0;
5860
5861 if (config.unique_orphan_sections
5862 || unique_section_p (s, NULL))
5863 constraint = SPECIAL;
5864
5865 if (!ldemul_place_orphan (s, name, constraint))
5866 {
5867 lang_output_section_statement_type *os;
5868 os = lang_output_section_statement_lookup (name,
5869 constraint,
5870 TRUE);
5871 lang_add_section (&os->children, s, os);
5872 }
5873 }
5874 }
5875 }
5876 }
5877 }
5878
5879 void
5880 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
5881 {
5882 flagword *ptr_flags;
5883
5884 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
5885 while (*flags)
5886 {
5887 switch (*flags)
5888 {
5889 case 'A': case 'a':
5890 *ptr_flags |= SEC_ALLOC;
5891 break;
5892
5893 case 'R': case 'r':
5894 *ptr_flags |= SEC_READONLY;
5895 break;
5896
5897 case 'W': case 'w':
5898 *ptr_flags |= SEC_DATA;
5899 break;
5900
5901 case 'X': case 'x':
5902 *ptr_flags |= SEC_CODE;
5903 break;
5904
5905 case 'L': case 'l':
5906 case 'I': case 'i':
5907 *ptr_flags |= SEC_LOAD;
5908 break;
5909
5910 default:
5911 einfo (_("%P%F: invalid syntax in flags\n"));
5912 break;
5913 }
5914 flags++;
5915 }
5916 }
5917
5918 /* Call a function on each input file. This function will be called
5919 on an archive, but not on the elements. */
5920
5921 void
5922 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
5923 {
5924 lang_input_statement_type *f;
5925
5926 for (f = (lang_input_statement_type *) input_file_chain.head;
5927 f != NULL;
5928 f = (lang_input_statement_type *) f->next_real_file)
5929 func (f);
5930 }
5931
5932 /* Call a function on each file. The function will be called on all
5933 the elements of an archive which are included in the link, but will
5934 not be called on the archive file itself. */
5935
5936 void
5937 lang_for_each_file (void (*func) (lang_input_statement_type *))
5938 {
5939 LANG_FOR_EACH_INPUT_STATEMENT (f)
5940 {
5941 func (f);
5942 }
5943 }
5944
5945 void
5946 ldlang_add_file (lang_input_statement_type *entry)
5947 {
5948 lang_statement_append (&file_chain,
5949 (lang_statement_union_type *) entry,
5950 &entry->next);
5951
5952 /* The BFD linker needs to have a list of all input BFDs involved in
5953 a link. */
5954 ASSERT (entry->the_bfd->link_next == NULL);
5955 ASSERT (entry->the_bfd != link_info.output_bfd);
5956
5957 *link_info.input_bfds_tail = entry->the_bfd;
5958 link_info.input_bfds_tail = &entry->the_bfd->link_next;
5959 entry->the_bfd->usrdata = entry;
5960 bfd_set_gp_size (entry->the_bfd, g_switch_value);
5961
5962 /* Look through the sections and check for any which should not be
5963 included in the link. We need to do this now, so that we can
5964 notice when the backend linker tries to report multiple
5965 definition errors for symbols which are in sections we aren't
5966 going to link. FIXME: It might be better to entirely ignore
5967 symbols which are defined in sections which are going to be
5968 discarded. This would require modifying the backend linker for
5969 each backend which might set the SEC_LINK_ONCE flag. If we do
5970 this, we should probably handle SEC_EXCLUDE in the same way. */
5971
5972 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
5973 }
5974
5975 void
5976 lang_add_output (const char *name, int from_script)
5977 {
5978 /* Make -o on command line override OUTPUT in script. */
5979 if (!had_output_filename || !from_script)
5980 {
5981 output_filename = name;
5982 had_output_filename = TRUE;
5983 }
5984 }
5985
5986 static lang_output_section_statement_type *current_section;
5987
5988 static int
5989 topower (int x)
5990 {
5991 unsigned int i = 1;
5992 int l;
5993
5994 if (x < 0)
5995 return -1;
5996
5997 for (l = 0; l < 32; l++)
5998 {
5999 if (i >= (unsigned int) x)
6000 return l;
6001 i <<= 1;
6002 }
6003
6004 return 0;
6005 }
6006
6007 lang_output_section_statement_type *
6008 lang_enter_output_section_statement (const char *output_section_statement_name,
6009 etree_type *address_exp,
6010 enum section_type sectype,
6011 etree_type *align,
6012 etree_type *subalign,
6013 etree_type *ebase,
6014 int constraint)
6015 {
6016 lang_output_section_statement_type *os;
6017
6018 os = lang_output_section_statement_lookup (output_section_statement_name,
6019 constraint, TRUE);
6020 current_section = os;
6021
6022 if (os->addr_tree == NULL)
6023 {
6024 os->addr_tree = address_exp;
6025 }
6026 os->sectype = sectype;
6027 if (sectype != noload_section)
6028 os->flags = SEC_NO_FLAGS;
6029 else
6030 os->flags = SEC_NEVER_LOAD;
6031 os->block_value = 1;
6032
6033 /* Make next things chain into subchain of this. */
6034 push_stat_ptr (&os->children);
6035
6036 os->subsection_alignment =
6037 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6038 os->section_alignment =
6039 topower (exp_get_value_int (align, -1, "section alignment"));
6040
6041 os->load_base = ebase;
6042 return os;
6043 }
6044
6045 void
6046 lang_final (void)
6047 {
6048 lang_output_statement_type *new_stmt;
6049
6050 new_stmt = new_stat (lang_output_statement, stat_ptr);
6051 new_stmt->name = output_filename;
6052
6053 }
6054
6055 /* Reset the current counters in the regions. */
6056
6057 void
6058 lang_reset_memory_regions (void)
6059 {
6060 lang_memory_region_type *p = lang_memory_region_list;
6061 asection *o;
6062 lang_output_section_statement_type *os;
6063
6064 for (p = lang_memory_region_list; p != NULL; p = p->next)
6065 {
6066 p->current = p->origin;
6067 p->last_os = NULL;
6068 }
6069
6070 for (os = &lang_output_section_statement.head->output_section_statement;
6071 os != NULL;
6072 os = os->next)
6073 {
6074 os->processed_vma = FALSE;
6075 os->processed_lma = FALSE;
6076 }
6077
6078 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6079 {
6080 /* Save the last size for possible use by bfd_relax_section. */
6081 o->rawsize = o->size;
6082 o->size = 0;
6083 }
6084 }
6085
6086 /* Worker for lang_gc_sections_1. */
6087
6088 static void
6089 gc_section_callback (lang_wild_statement_type *ptr,
6090 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6091 asection *section,
6092 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6093 void *data ATTRIBUTE_UNUSED)
6094 {
6095 /* If the wild pattern was marked KEEP, the member sections
6096 should be as well. */
6097 if (ptr->keep_sections)
6098 section->flags |= SEC_KEEP;
6099 }
6100
6101 /* Iterate over sections marking them against GC. */
6102
6103 static void
6104 lang_gc_sections_1 (lang_statement_union_type *s)
6105 {
6106 for (; s != NULL; s = s->header.next)
6107 {
6108 switch (s->header.type)
6109 {
6110 case lang_wild_statement_enum:
6111 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6112 break;
6113 case lang_constructors_statement_enum:
6114 lang_gc_sections_1 (constructor_list.head);
6115 break;
6116 case lang_output_section_statement_enum:
6117 lang_gc_sections_1 (s->output_section_statement.children.head);
6118 break;
6119 case lang_group_statement_enum:
6120 lang_gc_sections_1 (s->group_statement.children.head);
6121 break;
6122 default:
6123 break;
6124 }
6125 }
6126 }
6127
6128 static void
6129 lang_gc_sections (void)
6130 {
6131 /* Keep all sections so marked in the link script. */
6132
6133 lang_gc_sections_1 (statement_list.head);
6134
6135 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6136 the special case of debug info. (See bfd/stabs.c)
6137 Twiddle the flag here, to simplify later linker code. */
6138 if (link_info.relocatable)
6139 {
6140 LANG_FOR_EACH_INPUT_STATEMENT (f)
6141 {
6142 asection *sec;
6143 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6144 if ((sec->flags & SEC_DEBUGGING) == 0)
6145 sec->flags &= ~SEC_EXCLUDE;
6146 }
6147 }
6148
6149 if (link_info.gc_sections)
6150 bfd_gc_sections (link_info.output_bfd, &link_info);
6151 }
6152
6153 /* Worker for lang_find_relro_sections_1. */
6154
6155 static void
6156 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6157 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6158 asection *section,
6159 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6160 void *data)
6161 {
6162 /* Discarded, excluded and ignored sections effectively have zero
6163 size. */
6164 if (section->output_section != NULL
6165 && section->output_section->owner == link_info.output_bfd
6166 && (section->output_section->flags & SEC_EXCLUDE) == 0
6167 && !IGNORE_SECTION (section)
6168 && section->size != 0)
6169 {
6170 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6171 *has_relro_section = TRUE;
6172 }
6173 }
6174
6175 /* Iterate over sections for relro sections. */
6176
6177 static void
6178 lang_find_relro_sections_1 (lang_statement_union_type *s,
6179 bfd_boolean *has_relro_section)
6180 {
6181 if (*has_relro_section)
6182 return;
6183
6184 for (; s != NULL; s = s->header.next)
6185 {
6186 if (s == expld.dataseg.relro_end_stat)
6187 break;
6188
6189 switch (s->header.type)
6190 {
6191 case lang_wild_statement_enum:
6192 walk_wild (&s->wild_statement,
6193 find_relro_section_callback,
6194 has_relro_section);
6195 break;
6196 case lang_constructors_statement_enum:
6197 lang_find_relro_sections_1 (constructor_list.head,
6198 has_relro_section);
6199 break;
6200 case lang_output_section_statement_enum:
6201 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6202 has_relro_section);
6203 break;
6204 case lang_group_statement_enum:
6205 lang_find_relro_sections_1 (s->group_statement.children.head,
6206 has_relro_section);
6207 break;
6208 default:
6209 break;
6210 }
6211 }
6212 }
6213
6214 static void
6215 lang_find_relro_sections (void)
6216 {
6217 bfd_boolean has_relro_section = FALSE;
6218
6219 /* Check all sections in the link script. */
6220
6221 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6222 &has_relro_section);
6223
6224 if (!has_relro_section)
6225 link_info.relro = FALSE;
6226 }
6227
6228 /* Relax all sections until bfd_relax_section gives up. */
6229
6230 void
6231 lang_relax_sections (bfd_boolean need_layout)
6232 {
6233 if (RELAXATION_ENABLED)
6234 {
6235 /* We may need more than one relaxation pass. */
6236 int i = link_info.relax_pass;
6237
6238 /* The backend can use it to determine the current pass. */
6239 link_info.relax_pass = 0;
6240
6241 while (i--)
6242 {
6243 /* Keep relaxing until bfd_relax_section gives up. */
6244 bfd_boolean relax_again;
6245
6246 link_info.relax_trip = -1;
6247 do
6248 {
6249 link_info.relax_trip++;
6250
6251 /* Note: pe-dll.c does something like this also. If you find
6252 you need to change this code, you probably need to change
6253 pe-dll.c also. DJ */
6254
6255 /* Do all the assignments with our current guesses as to
6256 section sizes. */
6257 lang_do_assignments ();
6258
6259 /* We must do this after lang_do_assignments, because it uses
6260 size. */
6261 lang_reset_memory_regions ();
6262
6263 /* Perform another relax pass - this time we know where the
6264 globals are, so can make a better guess. */
6265 relax_again = FALSE;
6266 lang_size_sections (&relax_again, FALSE);
6267 }
6268 while (relax_again);
6269
6270 link_info.relax_pass++;
6271 }
6272 need_layout = TRUE;
6273 }
6274
6275 if (need_layout)
6276 {
6277 /* Final extra sizing to report errors. */
6278 lang_do_assignments ();
6279 lang_reset_memory_regions ();
6280 lang_size_sections (NULL, TRUE);
6281 }
6282 }
6283
6284 void
6285 lang_process (void)
6286 {
6287 /* Finalize dynamic list. */
6288 if (link_info.dynamic_list)
6289 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6290
6291 current_target = default_target;
6292
6293 /* Open the output file. */
6294 lang_for_each_statement (ldlang_open_output);
6295 init_opb ();
6296
6297 ldemul_create_output_section_statements ();
6298
6299 /* Add to the hash table all undefineds on the command line. */
6300 lang_place_undefineds ();
6301
6302 if (!bfd_section_already_linked_table_init ())
6303 einfo (_("%P%F: Failed to create hash table\n"));
6304
6305 /* Create a bfd for each input file. */
6306 current_target = default_target;
6307 open_input_bfds (statement_list.head, FALSE);
6308
6309 link_info.gc_sym_list = &entry_symbol;
6310 if (entry_symbol.name == NULL)
6311 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6312
6313 ldemul_after_open ();
6314
6315 bfd_section_already_linked_table_free ();
6316
6317 /* Make sure that we're not mixing architectures. We call this
6318 after all the input files have been opened, but before we do any
6319 other processing, so that any operations merge_private_bfd_data
6320 does on the output file will be known during the rest of the
6321 link. */
6322 lang_check ();
6323
6324 /* Handle .exports instead of a version script if we're told to do so. */
6325 if (command_line.version_exports_section)
6326 lang_do_version_exports_section ();
6327
6328 /* Build all sets based on the information gathered from the input
6329 files. */
6330 ldctor_build_sets ();
6331
6332 /* Remove unreferenced sections if asked to. */
6333 lang_gc_sections ();
6334
6335 /* Size up the common data. */
6336 lang_common ();
6337
6338 /* Update wild statements. */
6339 update_wild_statements (statement_list.head);
6340
6341 /* Run through the contours of the script and attach input sections
6342 to the correct output sections. */
6343 map_input_to_output_sections (statement_list.head, NULL, NULL);
6344
6345 process_insert_statements ();
6346
6347 /* Find any sections not attached explicitly and handle them. */
6348 lang_place_orphans ();
6349
6350 if (! link_info.relocatable)
6351 {
6352 asection *found;
6353
6354 /* Merge SEC_MERGE sections. This has to be done after GC of
6355 sections, so that GCed sections are not merged, but before
6356 assigning dynamic symbols, since removing whole input sections
6357 is hard then. */
6358 bfd_merge_sections (link_info.output_bfd, &link_info);
6359
6360 /* Look for a text section and set the readonly attribute in it. */
6361 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6362
6363 if (found != NULL)
6364 {
6365 if (config.text_read_only)
6366 found->flags |= SEC_READONLY;
6367 else
6368 found->flags &= ~SEC_READONLY;
6369 }
6370 }
6371
6372 /* Do anything special before sizing sections. This is where ELF
6373 and other back-ends size dynamic sections. */
6374 ldemul_before_allocation ();
6375
6376 /* We must record the program headers before we try to fix the
6377 section positions, since they will affect SIZEOF_HEADERS. */
6378 lang_record_phdrs ();
6379
6380 /* Check relro sections. */
6381 if (link_info.relro && ! link_info.relocatable)
6382 lang_find_relro_sections ();
6383
6384 /* Size up the sections. */
6385 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6386
6387 /* See if anything special should be done now we know how big
6388 everything is. This is where relaxation is done. */
6389 ldemul_after_allocation ();
6390
6391 /* Fix any .startof. or .sizeof. symbols. */
6392 lang_set_startof ();
6393
6394 /* Do all the assignments, now that we know the final resting places
6395 of all the symbols. */
6396
6397 lang_do_assignments ();
6398
6399 ldemul_finish ();
6400
6401 /* Make sure that the section addresses make sense. */
6402 if (command_line.check_section_addresses)
6403 lang_check_section_addresses ();
6404
6405 lang_end ();
6406 }
6407
6408 /* EXPORTED TO YACC */
6409
6410 void
6411 lang_add_wild (struct wildcard_spec *filespec,
6412 struct wildcard_list *section_list,
6413 bfd_boolean keep_sections)
6414 {
6415 struct wildcard_list *curr, *next;
6416 lang_wild_statement_type *new_stmt;
6417
6418 /* Reverse the list as the parser puts it back to front. */
6419 for (curr = section_list, section_list = NULL;
6420 curr != NULL;
6421 section_list = curr, curr = next)
6422 {
6423 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6424 placed_commons = TRUE;
6425
6426 next = curr->next;
6427 curr->next = section_list;
6428 }
6429
6430 if (filespec != NULL && filespec->name != NULL)
6431 {
6432 if (strcmp (filespec->name, "*") == 0)
6433 filespec->name = NULL;
6434 else if (! wildcardp (filespec->name))
6435 lang_has_input_file = TRUE;
6436 }
6437
6438 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6439 new_stmt->filename = NULL;
6440 new_stmt->filenames_sorted = FALSE;
6441 if (filespec != NULL)
6442 {
6443 new_stmt->filename = filespec->name;
6444 new_stmt->filenames_sorted = filespec->sorted == by_name;
6445 }
6446 new_stmt->section_list = section_list;
6447 new_stmt->keep_sections = keep_sections;
6448 lang_list_init (&new_stmt->children);
6449 analyze_walk_wild_section_handler (new_stmt);
6450 }
6451
6452 void
6453 lang_section_start (const char *name, etree_type *address,
6454 const segment_type *segment)
6455 {
6456 lang_address_statement_type *ad;
6457
6458 ad = new_stat (lang_address_statement, stat_ptr);
6459 ad->section_name = name;
6460 ad->address = address;
6461 ad->segment = segment;
6462 }
6463
6464 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6465 because of a -e argument on the command line, or zero if this is
6466 called by ENTRY in a linker script. Command line arguments take
6467 precedence. */
6468
6469 void
6470 lang_add_entry (const char *name, bfd_boolean cmdline)
6471 {
6472 if (entry_symbol.name == NULL
6473 || cmdline
6474 || ! entry_from_cmdline)
6475 {
6476 entry_symbol.name = name;
6477 entry_from_cmdline = cmdline;
6478 }
6479 }
6480
6481 /* Set the default start symbol to NAME. .em files should use this,
6482 not lang_add_entry, to override the use of "start" if neither the
6483 linker script nor the command line specifies an entry point. NAME
6484 must be permanently allocated. */
6485 void
6486 lang_default_entry (const char *name)
6487 {
6488 entry_symbol_default = name;
6489 }
6490
6491 void
6492 lang_add_target (const char *name)
6493 {
6494 lang_target_statement_type *new_stmt;
6495
6496 new_stmt = new_stat (lang_target_statement, stat_ptr);
6497 new_stmt->target = name;
6498 }
6499
6500 void
6501 lang_add_map (const char *name)
6502 {
6503 while (*name)
6504 {
6505 switch (*name)
6506 {
6507 case 'F':
6508 map_option_f = TRUE;
6509 break;
6510 }
6511 name++;
6512 }
6513 }
6514
6515 void
6516 lang_add_fill (fill_type *fill)
6517 {
6518 lang_fill_statement_type *new_stmt;
6519
6520 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6521 new_stmt->fill = fill;
6522 }
6523
6524 void
6525 lang_add_data (int type, union etree_union *exp)
6526 {
6527 lang_data_statement_type *new_stmt;
6528
6529 new_stmt = new_stat (lang_data_statement, stat_ptr);
6530 new_stmt->exp = exp;
6531 new_stmt->type = type;
6532 }
6533
6534 /* Create a new reloc statement. RELOC is the BFD relocation type to
6535 generate. HOWTO is the corresponding howto structure (we could
6536 look this up, but the caller has already done so). SECTION is the
6537 section to generate a reloc against, or NAME is the name of the
6538 symbol to generate a reloc against. Exactly one of SECTION and
6539 NAME must be NULL. ADDEND is an expression for the addend. */
6540
6541 void
6542 lang_add_reloc (bfd_reloc_code_real_type reloc,
6543 reloc_howto_type *howto,
6544 asection *section,
6545 const char *name,
6546 union etree_union *addend)
6547 {
6548 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6549
6550 p->reloc = reloc;
6551 p->howto = howto;
6552 p->section = section;
6553 p->name = name;
6554 p->addend_exp = addend;
6555
6556 p->addend_value = 0;
6557 p->output_section = NULL;
6558 p->output_offset = 0;
6559 }
6560
6561 lang_assignment_statement_type *
6562 lang_add_assignment (etree_type *exp)
6563 {
6564 lang_assignment_statement_type *new_stmt;
6565
6566 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6567 new_stmt->exp = exp;
6568 return new_stmt;
6569 }
6570
6571 void
6572 lang_add_attribute (enum statement_enum attribute)
6573 {
6574 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6575 }
6576
6577 void
6578 lang_startup (const char *name)
6579 {
6580 if (startup_file != NULL)
6581 {
6582 einfo (_("%P%F: multiple STARTUP files\n"));
6583 }
6584 first_file->filename = name;
6585 first_file->local_sym_name = name;
6586 first_file->real = TRUE;
6587
6588 startup_file = name;
6589 }
6590
6591 void
6592 lang_float (bfd_boolean maybe)
6593 {
6594 lang_float_flag = maybe;
6595 }
6596
6597
6598 /* Work out the load- and run-time regions from a script statement, and
6599 store them in *LMA_REGION and *REGION respectively.
6600
6601 MEMSPEC is the name of the run-time region, or the value of
6602 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6603 LMA_MEMSPEC is the name of the load-time region, or null if the
6604 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6605 had an explicit load address.
6606
6607 It is an error to specify both a load region and a load address. */
6608
6609 static void
6610 lang_get_regions (lang_memory_region_type **region,
6611 lang_memory_region_type **lma_region,
6612 const char *memspec,
6613 const char *lma_memspec,
6614 bfd_boolean have_lma,
6615 bfd_boolean have_vma)
6616 {
6617 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6618
6619 /* If no runtime region or VMA has been specified, but the load region
6620 has been specified, then use the load region for the runtime region
6621 as well. */
6622 if (lma_memspec != NULL
6623 && ! have_vma
6624 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6625 *region = *lma_region;
6626 else
6627 *region = lang_memory_region_lookup (memspec, FALSE);
6628
6629 if (have_lma && lma_memspec != 0)
6630 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6631 }
6632
6633 void
6634 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6635 lang_output_section_phdr_list *phdrs,
6636 const char *lma_memspec)
6637 {
6638 lang_get_regions (&current_section->region,
6639 &current_section->lma_region,
6640 memspec, lma_memspec,
6641 current_section->load_base != NULL,
6642 current_section->addr_tree != NULL);
6643
6644 /* If this section has no load region or base, but has the same
6645 region as the previous section, then propagate the previous
6646 section's load region. */
6647
6648 if (!current_section->lma_region && !current_section->load_base
6649 && current_section->region == current_section->prev->region)
6650 current_section->lma_region = current_section->prev->lma_region;
6651
6652 current_section->fill = fill;
6653 current_section->phdrs = phdrs;
6654 pop_stat_ptr ();
6655 }
6656
6657 /* Create an absolute symbol with the given name with the value of the
6658 address of first byte of the section named.
6659
6660 If the symbol already exists, then do nothing. */
6661
6662 void
6663 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6664 {
6665 struct bfd_link_hash_entry *h;
6666
6667 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6668 if (h == NULL)
6669 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6670
6671 if (h->type == bfd_link_hash_new
6672 || h->type == bfd_link_hash_undefined)
6673 {
6674 asection *sec;
6675
6676 h->type = bfd_link_hash_defined;
6677
6678 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6679 if (sec == NULL)
6680 h->u.def.value = 0;
6681 else
6682 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6683
6684 h->u.def.section = bfd_abs_section_ptr;
6685 }
6686 }
6687
6688 /* Create an absolute symbol with the given name with the value of the
6689 address of the first byte after the end of the section named.
6690
6691 If the symbol already exists, then do nothing. */
6692
6693 void
6694 lang_abs_symbol_at_end_of (const char *secname, const char *name)
6695 {
6696 struct bfd_link_hash_entry *h;
6697
6698 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6699 if (h == NULL)
6700 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6701
6702 if (h->type == bfd_link_hash_new
6703 || h->type == bfd_link_hash_undefined)
6704 {
6705 asection *sec;
6706
6707 h->type = bfd_link_hash_defined;
6708
6709 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6710 if (sec == NULL)
6711 h->u.def.value = 0;
6712 else
6713 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6714 + TO_ADDR (sec->size));
6715
6716 h->u.def.section = bfd_abs_section_ptr;
6717 }
6718 }
6719
6720 void
6721 lang_statement_append (lang_statement_list_type *list,
6722 lang_statement_union_type *element,
6723 lang_statement_union_type **field)
6724 {
6725 *(list->tail) = element;
6726 list->tail = field;
6727 }
6728
6729 /* Set the output format type. -oformat overrides scripts. */
6730
6731 void
6732 lang_add_output_format (const char *format,
6733 const char *big,
6734 const char *little,
6735 int from_script)
6736 {
6737 if (output_target == NULL || !from_script)
6738 {
6739 if (command_line.endian == ENDIAN_BIG
6740 && big != NULL)
6741 format = big;
6742 else if (command_line.endian == ENDIAN_LITTLE
6743 && little != NULL)
6744 format = little;
6745
6746 output_target = format;
6747 }
6748 }
6749
6750 void
6751 lang_add_insert (const char *where, int is_before)
6752 {
6753 lang_insert_statement_type *new_stmt;
6754
6755 new_stmt = new_stat (lang_insert_statement, stat_ptr);
6756 new_stmt->where = where;
6757 new_stmt->is_before = is_before;
6758 saved_script_handle = previous_script_handle;
6759 }
6760
6761 /* Enter a group. This creates a new lang_group_statement, and sets
6762 stat_ptr to build new statements within the group. */
6763
6764 void
6765 lang_enter_group (void)
6766 {
6767 lang_group_statement_type *g;
6768
6769 g = new_stat (lang_group_statement, stat_ptr);
6770 lang_list_init (&g->children);
6771 push_stat_ptr (&g->children);
6772 }
6773
6774 /* Leave a group. This just resets stat_ptr to start writing to the
6775 regular list of statements again. Note that this will not work if
6776 groups can occur inside anything else which can adjust stat_ptr,
6777 but currently they can't. */
6778
6779 void
6780 lang_leave_group (void)
6781 {
6782 pop_stat_ptr ();
6783 }
6784
6785 /* Add a new program header. This is called for each entry in a PHDRS
6786 command in a linker script. */
6787
6788 void
6789 lang_new_phdr (const char *name,
6790 etree_type *type,
6791 bfd_boolean filehdr,
6792 bfd_boolean phdrs,
6793 etree_type *at,
6794 etree_type *flags)
6795 {
6796 struct lang_phdr *n, **pp;
6797 bfd_boolean hdrs;
6798
6799 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
6800 n->next = NULL;
6801 n->name = name;
6802 n->type = exp_get_value_int (type, 0, "program header type");
6803 n->filehdr = filehdr;
6804 n->phdrs = phdrs;
6805 n->at = at;
6806 n->flags = flags;
6807
6808 hdrs = n->type == 1 && (phdrs || filehdr);
6809
6810 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
6811 if (hdrs
6812 && (*pp)->type == 1
6813 && !((*pp)->filehdr || (*pp)->phdrs))
6814 {
6815 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
6816 hdrs = FALSE;
6817 }
6818
6819 *pp = n;
6820 }
6821
6822 /* Record the program header information in the output BFD. FIXME: We
6823 should not be calling an ELF specific function here. */
6824
6825 static void
6826 lang_record_phdrs (void)
6827 {
6828 unsigned int alc;
6829 asection **secs;
6830 lang_output_section_phdr_list *last;
6831 struct lang_phdr *l;
6832 lang_output_section_statement_type *os;
6833
6834 alc = 10;
6835 secs = (asection **) xmalloc (alc * sizeof (asection *));
6836 last = NULL;
6837
6838 for (l = lang_phdr_list; l != NULL; l = l->next)
6839 {
6840 unsigned int c;
6841 flagword flags;
6842 bfd_vma at;
6843
6844 c = 0;
6845 for (os = &lang_output_section_statement.head->output_section_statement;
6846 os != NULL;
6847 os = os->next)
6848 {
6849 lang_output_section_phdr_list *pl;
6850
6851 if (os->constraint < 0)
6852 continue;
6853
6854 pl = os->phdrs;
6855 if (pl != NULL)
6856 last = pl;
6857 else
6858 {
6859 if (os->sectype == noload_section
6860 || os->bfd_section == NULL
6861 || (os->bfd_section->flags & SEC_ALLOC) == 0)
6862 continue;
6863
6864 /* Don't add orphans to PT_INTERP header. */
6865 if (l->type == 3)
6866 continue;
6867
6868 if (last == NULL)
6869 {
6870 lang_output_section_statement_type * tmp_os;
6871
6872 /* If we have not run across a section with a program
6873 header assigned to it yet, then scan forwards to find
6874 one. This prevents inconsistencies in the linker's
6875 behaviour when a script has specified just a single
6876 header and there are sections in that script which are
6877 not assigned to it, and which occur before the first
6878 use of that header. See here for more details:
6879 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
6880 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
6881 if (tmp_os->phdrs)
6882 {
6883 last = tmp_os->phdrs;
6884 break;
6885 }
6886 if (last == NULL)
6887 einfo (_("%F%P: no sections assigned to phdrs\n"));
6888 }
6889 pl = last;
6890 }
6891
6892 if (os->bfd_section == NULL)
6893 continue;
6894
6895 for (; pl != NULL; pl = pl->next)
6896 {
6897 if (strcmp (pl->name, l->name) == 0)
6898 {
6899 if (c >= alc)
6900 {
6901 alc *= 2;
6902 secs = (asection **) xrealloc (secs,
6903 alc * sizeof (asection *));
6904 }
6905 secs[c] = os->bfd_section;
6906 ++c;
6907 pl->used = TRUE;
6908 }
6909 }
6910 }
6911
6912 if (l->flags == NULL)
6913 flags = 0;
6914 else
6915 flags = exp_get_vma (l->flags, 0, "phdr flags");
6916
6917 if (l->at == NULL)
6918 at = 0;
6919 else
6920 at = exp_get_vma (l->at, 0, "phdr load address");
6921
6922 if (! bfd_record_phdr (link_info.output_bfd, l->type,
6923 l->flags != NULL, flags, l->at != NULL,
6924 at, l->filehdr, l->phdrs, c, secs))
6925 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
6926 }
6927
6928 free (secs);
6929
6930 /* Make sure all the phdr assignments succeeded. */
6931 for (os = &lang_output_section_statement.head->output_section_statement;
6932 os != NULL;
6933 os = os->next)
6934 {
6935 lang_output_section_phdr_list *pl;
6936
6937 if (os->constraint < 0
6938 || os->bfd_section == NULL)
6939 continue;
6940
6941 for (pl = os->phdrs;
6942 pl != NULL;
6943 pl = pl->next)
6944 if (! pl->used && strcmp (pl->name, "NONE") != 0)
6945 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
6946 os->name, pl->name);
6947 }
6948 }
6949
6950 /* Record a list of sections which may not be cross referenced. */
6951
6952 void
6953 lang_add_nocrossref (lang_nocrossref_type *l)
6954 {
6955 struct lang_nocrossrefs *n;
6956
6957 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
6958 n->next = nocrossref_list;
6959 n->list = l;
6960 nocrossref_list = n;
6961
6962 /* Set notice_all so that we get informed about all symbols. */
6963 link_info.notice_all = TRUE;
6964 }
6965 \f
6966 /* Overlay handling. We handle overlays with some static variables. */
6967
6968 /* The overlay virtual address. */
6969 static etree_type *overlay_vma;
6970 /* And subsection alignment. */
6971 static etree_type *overlay_subalign;
6972
6973 /* An expression for the maximum section size seen so far. */
6974 static etree_type *overlay_max;
6975
6976 /* A list of all the sections in this overlay. */
6977
6978 struct overlay_list {
6979 struct overlay_list *next;
6980 lang_output_section_statement_type *os;
6981 };
6982
6983 static struct overlay_list *overlay_list;
6984
6985 /* Start handling an overlay. */
6986
6987 void
6988 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
6989 {
6990 /* The grammar should prevent nested overlays from occurring. */
6991 ASSERT (overlay_vma == NULL
6992 && overlay_subalign == NULL
6993 && overlay_max == NULL);
6994
6995 overlay_vma = vma_expr;
6996 overlay_subalign = subalign;
6997 }
6998
6999 /* Start a section in an overlay. We handle this by calling
7000 lang_enter_output_section_statement with the correct VMA.
7001 lang_leave_overlay sets up the LMA and memory regions. */
7002
7003 void
7004 lang_enter_overlay_section (const char *name)
7005 {
7006 struct overlay_list *n;
7007 etree_type *size;
7008
7009 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7010 0, overlay_subalign, 0, 0);
7011
7012 /* If this is the first section, then base the VMA of future
7013 sections on this one. This will work correctly even if `.' is
7014 used in the addresses. */
7015 if (overlay_list == NULL)
7016 overlay_vma = exp_nameop (ADDR, name);
7017
7018 /* Remember the section. */
7019 n = (struct overlay_list *) xmalloc (sizeof *n);
7020 n->os = current_section;
7021 n->next = overlay_list;
7022 overlay_list = n;
7023
7024 size = exp_nameop (SIZEOF, name);
7025
7026 /* Arrange to work out the maximum section end address. */
7027 if (overlay_max == NULL)
7028 overlay_max = size;
7029 else
7030 overlay_max = exp_binop (MAX_K, overlay_max, size);
7031 }
7032
7033 /* Finish a section in an overlay. There isn't any special to do
7034 here. */
7035
7036 void
7037 lang_leave_overlay_section (fill_type *fill,
7038 lang_output_section_phdr_list *phdrs)
7039 {
7040 const char *name;
7041 char *clean, *s2;
7042 const char *s1;
7043 char *buf;
7044
7045 name = current_section->name;
7046
7047 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7048 region and that no load-time region has been specified. It doesn't
7049 really matter what we say here, since lang_leave_overlay will
7050 override it. */
7051 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7052
7053 /* Define the magic symbols. */
7054
7055 clean = (char *) xmalloc (strlen (name) + 1);
7056 s2 = clean;
7057 for (s1 = name; *s1 != '\0'; s1++)
7058 if (ISALNUM (*s1) || *s1 == '_')
7059 *s2++ = *s1;
7060 *s2 = '\0';
7061
7062 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7063 sprintf (buf, "__load_start_%s", clean);
7064 lang_add_assignment (exp_provide (buf,
7065 exp_nameop (LOADADDR, name),
7066 FALSE));
7067
7068 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7069 sprintf (buf, "__load_stop_%s", clean);
7070 lang_add_assignment (exp_provide (buf,
7071 exp_binop ('+',
7072 exp_nameop (LOADADDR, name),
7073 exp_nameop (SIZEOF, name)),
7074 FALSE));
7075
7076 free (clean);
7077 }
7078
7079 /* Finish an overlay. If there are any overlay wide settings, this
7080 looks through all the sections in the overlay and sets them. */
7081
7082 void
7083 lang_leave_overlay (etree_type *lma_expr,
7084 int nocrossrefs,
7085 fill_type *fill,
7086 const char *memspec,
7087 lang_output_section_phdr_list *phdrs,
7088 const char *lma_memspec)
7089 {
7090 lang_memory_region_type *region;
7091 lang_memory_region_type *lma_region;
7092 struct overlay_list *l;
7093 lang_nocrossref_type *nocrossref;
7094
7095 lang_get_regions (&region, &lma_region,
7096 memspec, lma_memspec,
7097 lma_expr != NULL, FALSE);
7098
7099 nocrossref = NULL;
7100
7101 /* After setting the size of the last section, set '.' to end of the
7102 overlay region. */
7103 if (overlay_list != NULL)
7104 overlay_list->os->update_dot_tree
7105 = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
7106
7107 l = overlay_list;
7108 while (l != NULL)
7109 {
7110 struct overlay_list *next;
7111
7112 if (fill != NULL && l->os->fill == NULL)
7113 l->os->fill = fill;
7114
7115 l->os->region = region;
7116 l->os->lma_region = lma_region;
7117
7118 /* The first section has the load address specified in the
7119 OVERLAY statement. The rest are worked out from that.
7120 The base address is not needed (and should be null) if
7121 an LMA region was specified. */
7122 if (l->next == 0)
7123 {
7124 l->os->load_base = lma_expr;
7125 l->os->sectype = normal_section;
7126 }
7127 if (phdrs != NULL && l->os->phdrs == NULL)
7128 l->os->phdrs = phdrs;
7129
7130 if (nocrossrefs)
7131 {
7132 lang_nocrossref_type *nc;
7133
7134 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7135 nc->name = l->os->name;
7136 nc->next = nocrossref;
7137 nocrossref = nc;
7138 }
7139
7140 next = l->next;
7141 free (l);
7142 l = next;
7143 }
7144
7145 if (nocrossref != NULL)
7146 lang_add_nocrossref (nocrossref);
7147
7148 overlay_vma = NULL;
7149 overlay_list = NULL;
7150 overlay_max = NULL;
7151 }
7152 \f
7153 /* Version handling. This is only useful for ELF. */
7154
7155 /* This global variable holds the version tree that we build. */
7156
7157 struct bfd_elf_version_tree *lang_elf_version_info;
7158
7159 /* If PREV is NULL, return first version pattern matching particular symbol.
7160 If PREV is non-NULL, return first version pattern matching particular
7161 symbol after PREV (previously returned by lang_vers_match). */
7162
7163 static struct bfd_elf_version_expr *
7164 lang_vers_match (struct bfd_elf_version_expr_head *head,
7165 struct bfd_elf_version_expr *prev,
7166 const char *sym)
7167 {
7168 const char *cxx_sym = sym;
7169 const char *java_sym = sym;
7170 struct bfd_elf_version_expr *expr = NULL;
7171
7172 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7173 {
7174 cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
7175 if (!cxx_sym)
7176 cxx_sym = sym;
7177 }
7178 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7179 {
7180 java_sym = cplus_demangle (sym, DMGL_JAVA);
7181 if (!java_sym)
7182 java_sym = sym;
7183 }
7184
7185 if (head->htab && (prev == NULL || prev->literal))
7186 {
7187 struct bfd_elf_version_expr e;
7188
7189 switch (prev ? prev->mask : 0)
7190 {
7191 case 0:
7192 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7193 {
7194 e.pattern = sym;
7195 expr = (struct bfd_elf_version_expr *)
7196 htab_find ((htab_t) head->htab, &e);
7197 while (expr && strcmp (expr->pattern, sym) == 0)
7198 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7199 goto out_ret;
7200 else
7201 expr = expr->next;
7202 }
7203 /* Fallthrough */
7204 case BFD_ELF_VERSION_C_TYPE:
7205 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7206 {
7207 e.pattern = cxx_sym;
7208 expr = (struct bfd_elf_version_expr *)
7209 htab_find ((htab_t) head->htab, &e);
7210 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7211 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7212 goto out_ret;
7213 else
7214 expr = expr->next;
7215 }
7216 /* Fallthrough */
7217 case BFD_ELF_VERSION_CXX_TYPE:
7218 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7219 {
7220 e.pattern = java_sym;
7221 expr = (struct bfd_elf_version_expr *)
7222 htab_find ((htab_t) head->htab, &e);
7223 while (expr && strcmp (expr->pattern, java_sym) == 0)
7224 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7225 goto out_ret;
7226 else
7227 expr = expr->next;
7228 }
7229 /* Fallthrough */
7230 default:
7231 break;
7232 }
7233 }
7234
7235 /* Finally, try the wildcards. */
7236 if (prev == NULL || prev->literal)
7237 expr = head->remaining;
7238 else
7239 expr = prev->next;
7240 for (; expr; expr = expr->next)
7241 {
7242 const char *s;
7243
7244 if (!expr->pattern)
7245 continue;
7246
7247 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7248 break;
7249
7250 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7251 s = java_sym;
7252 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7253 s = cxx_sym;
7254 else
7255 s = sym;
7256 if (fnmatch (expr->pattern, s, 0) == 0)
7257 break;
7258 }
7259
7260 out_ret:
7261 if (cxx_sym != sym)
7262 free ((char *) cxx_sym);
7263 if (java_sym != sym)
7264 free ((char *) java_sym);
7265 return expr;
7266 }
7267
7268 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7269 return a pointer to the symbol name with any backslash quotes removed. */
7270
7271 static const char *
7272 realsymbol (const char *pattern)
7273 {
7274 const char *p;
7275 bfd_boolean changed = FALSE, backslash = FALSE;
7276 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7277
7278 for (p = pattern, s = symbol; *p != '\0'; ++p)
7279 {
7280 /* It is a glob pattern only if there is no preceding
7281 backslash. */
7282 if (backslash)
7283 {
7284 /* Remove the preceding backslash. */
7285 *(s - 1) = *p;
7286 backslash = FALSE;
7287 changed = TRUE;
7288 }
7289 else
7290 {
7291 if (*p == '?' || *p == '*' || *p == '[')
7292 {
7293 free (symbol);
7294 return NULL;
7295 }
7296
7297 *s++ = *p;
7298 backslash = *p == '\\';
7299 }
7300 }
7301
7302 if (changed)
7303 {
7304 *s = '\0';
7305 return symbol;
7306 }
7307 else
7308 {
7309 free (symbol);
7310 return pattern;
7311 }
7312 }
7313
7314 /* This is called for each variable name or match expression. NEW_NAME is
7315 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7316 pattern to be matched against symbol names. */
7317
7318 struct bfd_elf_version_expr *
7319 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7320 const char *new_name,
7321 const char *lang,
7322 bfd_boolean literal_p)
7323 {
7324 struct bfd_elf_version_expr *ret;
7325
7326 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7327 ret->next = orig;
7328 ret->symver = 0;
7329 ret->script = 0;
7330 ret->literal = TRUE;
7331 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7332 if (ret->pattern == NULL)
7333 {
7334 ret->pattern = new_name;
7335 ret->literal = FALSE;
7336 }
7337
7338 if (lang == NULL || strcasecmp (lang, "C") == 0)
7339 ret->mask = BFD_ELF_VERSION_C_TYPE;
7340 else if (strcasecmp (lang, "C++") == 0)
7341 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7342 else if (strcasecmp (lang, "Java") == 0)
7343 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7344 else
7345 {
7346 einfo (_("%X%P: unknown language `%s' in version information\n"),
7347 lang);
7348 ret->mask = BFD_ELF_VERSION_C_TYPE;
7349 }
7350
7351 return ldemul_new_vers_pattern (ret);
7352 }
7353
7354 /* This is called for each set of variable names and match
7355 expressions. */
7356
7357 struct bfd_elf_version_tree *
7358 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7359 struct bfd_elf_version_expr *locals)
7360 {
7361 struct bfd_elf_version_tree *ret;
7362
7363 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7364 ret->globals.list = globals;
7365 ret->locals.list = locals;
7366 ret->match = lang_vers_match;
7367 ret->name_indx = (unsigned int) -1;
7368 return ret;
7369 }
7370
7371 /* This static variable keeps track of version indices. */
7372
7373 static int version_index;
7374
7375 static hashval_t
7376 version_expr_head_hash (const void *p)
7377 {
7378 const struct bfd_elf_version_expr *e =
7379 (const struct bfd_elf_version_expr *) p;
7380
7381 return htab_hash_string (e->pattern);
7382 }
7383
7384 static int
7385 version_expr_head_eq (const void *p1, const void *p2)
7386 {
7387 const struct bfd_elf_version_expr *e1 =
7388 (const struct bfd_elf_version_expr *) p1;
7389 const struct bfd_elf_version_expr *e2 =
7390 (const struct bfd_elf_version_expr *) p2;
7391
7392 return strcmp (e1->pattern, e2->pattern) == 0;
7393 }
7394
7395 static void
7396 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7397 {
7398 size_t count = 0;
7399 struct bfd_elf_version_expr *e, *next;
7400 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7401
7402 for (e = head->list; e; e = e->next)
7403 {
7404 if (e->literal)
7405 count++;
7406 head->mask |= e->mask;
7407 }
7408
7409 if (count)
7410 {
7411 head->htab = htab_create (count * 2, version_expr_head_hash,
7412 version_expr_head_eq, NULL);
7413 list_loc = &head->list;
7414 remaining_loc = &head->remaining;
7415 for (e = head->list; e; e = next)
7416 {
7417 next = e->next;
7418 if (!e->literal)
7419 {
7420 *remaining_loc = e;
7421 remaining_loc = &e->next;
7422 }
7423 else
7424 {
7425 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7426
7427 if (*loc)
7428 {
7429 struct bfd_elf_version_expr *e1, *last;
7430
7431 e1 = (struct bfd_elf_version_expr *) *loc;
7432 last = NULL;
7433 do
7434 {
7435 if (e1->mask == e->mask)
7436 {
7437 last = NULL;
7438 break;
7439 }
7440 last = e1;
7441 e1 = e1->next;
7442 }
7443 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7444
7445 if (last == NULL)
7446 {
7447 /* This is a duplicate. */
7448 /* FIXME: Memory leak. Sometimes pattern is not
7449 xmalloced alone, but in larger chunk of memory. */
7450 /* free (e->pattern); */
7451 free (e);
7452 }
7453 else
7454 {
7455 e->next = last->next;
7456 last->next = e;
7457 }
7458 }
7459 else
7460 {
7461 *loc = e;
7462 *list_loc = e;
7463 list_loc = &e->next;
7464 }
7465 }
7466 }
7467 *remaining_loc = NULL;
7468 *list_loc = head->remaining;
7469 }
7470 else
7471 head->remaining = head->list;
7472 }
7473
7474 /* This is called when we know the name and dependencies of the
7475 version. */
7476
7477 void
7478 lang_register_vers_node (const char *name,
7479 struct bfd_elf_version_tree *version,
7480 struct bfd_elf_version_deps *deps)
7481 {
7482 struct bfd_elf_version_tree *t, **pp;
7483 struct bfd_elf_version_expr *e1;
7484
7485 if (name == NULL)
7486 name = "";
7487
7488 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7489 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7490 {
7491 einfo (_("%X%P: anonymous version tag cannot be combined"
7492 " with other version tags\n"));
7493 free (version);
7494 return;
7495 }
7496
7497 /* Make sure this node has a unique name. */
7498 for (t = lang_elf_version_info; t != NULL; t = t->next)
7499 if (strcmp (t->name, name) == 0)
7500 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7501
7502 lang_finalize_version_expr_head (&version->globals);
7503 lang_finalize_version_expr_head (&version->locals);
7504
7505 /* Check the global and local match names, and make sure there
7506 aren't any duplicates. */
7507
7508 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7509 {
7510 for (t = lang_elf_version_info; t != NULL; t = t->next)
7511 {
7512 struct bfd_elf_version_expr *e2;
7513
7514 if (t->locals.htab && e1->literal)
7515 {
7516 e2 = (struct bfd_elf_version_expr *)
7517 htab_find ((htab_t) t->locals.htab, e1);
7518 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7519 {
7520 if (e1->mask == e2->mask)
7521 einfo (_("%X%P: duplicate expression `%s'"
7522 " in version information\n"), e1->pattern);
7523 e2 = e2->next;
7524 }
7525 }
7526 else if (!e1->literal)
7527 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7528 if (strcmp (e1->pattern, e2->pattern) == 0
7529 && e1->mask == e2->mask)
7530 einfo (_("%X%P: duplicate expression `%s'"
7531 " in version information\n"), e1->pattern);
7532 }
7533 }
7534
7535 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7536 {
7537 for (t = lang_elf_version_info; t != NULL; t = t->next)
7538 {
7539 struct bfd_elf_version_expr *e2;
7540
7541 if (t->globals.htab && e1->literal)
7542 {
7543 e2 = (struct bfd_elf_version_expr *)
7544 htab_find ((htab_t) t->globals.htab, e1);
7545 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7546 {
7547 if (e1->mask == e2->mask)
7548 einfo (_("%X%P: duplicate expression `%s'"
7549 " in version information\n"),
7550 e1->pattern);
7551 e2 = e2->next;
7552 }
7553 }
7554 else if (!e1->literal)
7555 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7556 if (strcmp (e1->pattern, e2->pattern) == 0
7557 && e1->mask == e2->mask)
7558 einfo (_("%X%P: duplicate expression `%s'"
7559 " in version information\n"), e1->pattern);
7560 }
7561 }
7562
7563 version->deps = deps;
7564 version->name = name;
7565 if (name[0] != '\0')
7566 {
7567 ++version_index;
7568 version->vernum = version_index;
7569 }
7570 else
7571 version->vernum = 0;
7572
7573 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7574 ;
7575 *pp = version;
7576 }
7577
7578 /* This is called when we see a version dependency. */
7579
7580 struct bfd_elf_version_deps *
7581 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7582 {
7583 struct bfd_elf_version_deps *ret;
7584 struct bfd_elf_version_tree *t;
7585
7586 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7587 ret->next = list;
7588
7589 for (t = lang_elf_version_info; t != NULL; t = t->next)
7590 {
7591 if (strcmp (t->name, name) == 0)
7592 {
7593 ret->version_needed = t;
7594 return ret;
7595 }
7596 }
7597
7598 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7599
7600 return ret;
7601 }
7602
7603 static void
7604 lang_do_version_exports_section (void)
7605 {
7606 struct bfd_elf_version_expr *greg = NULL, *lreg;
7607
7608 LANG_FOR_EACH_INPUT_STATEMENT (is)
7609 {
7610 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7611 char *contents, *p;
7612 bfd_size_type len;
7613
7614 if (sec == NULL)
7615 continue;
7616
7617 len = sec->size;
7618 contents = (char *) xmalloc (len);
7619 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7620 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7621
7622 p = contents;
7623 while (p < contents + len)
7624 {
7625 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7626 p = strchr (p, '\0') + 1;
7627 }
7628
7629 /* Do not free the contents, as we used them creating the regex. */
7630
7631 /* Do not include this section in the link. */
7632 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7633 }
7634
7635 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7636 lang_register_vers_node (command_line.version_exports_section,
7637 lang_new_vers_node (greg, lreg), NULL);
7638 }
7639
7640 void
7641 lang_add_unique (const char *name)
7642 {
7643 struct unique_sections *ent;
7644
7645 for (ent = unique_section_list; ent; ent = ent->next)
7646 if (strcmp (ent->name, name) == 0)
7647 return;
7648
7649 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7650 ent->name = xstrdup (name);
7651 ent->next = unique_section_list;
7652 unique_section_list = ent;
7653 }
7654
7655 /* Append the list of dynamic symbols to the existing one. */
7656
7657 void
7658 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7659 {
7660 if (link_info.dynamic_list)
7661 {
7662 struct bfd_elf_version_expr *tail;
7663 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7664 ;
7665 tail->next = link_info.dynamic_list->head.list;
7666 link_info.dynamic_list->head.list = dynamic;
7667 }
7668 else
7669 {
7670 struct bfd_elf_dynamic_list *d;
7671
7672 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7673 d->head.list = dynamic;
7674 d->match = lang_vers_match;
7675 link_info.dynamic_list = d;
7676 }
7677 }
7678
7679 /* Append the list of C++ typeinfo dynamic symbols to the existing
7680 one. */
7681
7682 void
7683 lang_append_dynamic_list_cpp_typeinfo (void)
7684 {
7685 const char * symbols [] =
7686 {
7687 "typeinfo name for*",
7688 "typeinfo for*"
7689 };
7690 struct bfd_elf_version_expr *dynamic = NULL;
7691 unsigned int i;
7692
7693 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7694 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7695 FALSE);
7696
7697 lang_append_dynamic_list (dynamic);
7698 }
7699
7700 /* Append the list of C++ operator new and delete dynamic symbols to the
7701 existing one. */
7702
7703 void
7704 lang_append_dynamic_list_cpp_new (void)
7705 {
7706 const char * symbols [] =
7707 {
7708 "operator new*",
7709 "operator delete*"
7710 };
7711 struct bfd_elf_version_expr *dynamic = NULL;
7712 unsigned int i;
7713
7714 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7715 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7716 FALSE);
7717
7718 lang_append_dynamic_list (dynamic);
7719 }