section-match: Check parent archive name as well
[binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2023 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43 #include "elf-bfd.h"
44 #include "bfdver.h"
45
46 #if BFD_SUPPORTS_PLUGINS
47 #include "plugin.h"
48 #endif
49
50 #ifndef offsetof
51 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
52 #endif
53
54 /* Convert between addresses in bytes and sizes in octets.
55 For currently supported targets, octets_per_byte is always a power
56 of two, so we can use shifts. */
57 #define TO_ADDR(X) ((X) >> opb_shift)
58 #define TO_SIZE(X) ((X) << opb_shift)
59
60 /* Local variables. */
61 static struct obstack stat_obstack;
62 static struct obstack map_obstack;
63 static struct obstack pt_obstack;
64
65 #define obstack_chunk_alloc xmalloc
66 #define obstack_chunk_free free
67 static const char *entry_symbol_default = "start";
68 static bool map_head_is_link_order = false;
69 static lang_output_section_statement_type *default_common_section;
70 static bool map_option_f;
71 static bfd_vma print_dot;
72 static lang_input_statement_type *first_file;
73 static const char *current_target;
74 static lang_statement_list_type *stat_save[10];
75 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
76 static struct unique_sections *unique_section_list;
77 static struct asneeded_minfo *asneeded_list_head;
78 static unsigned int opb_shift = 0;
79
80 /* Forward declarations. */
81 static void exp_init_os (etree_type *);
82 static lang_input_statement_type *lookup_name (const char *);
83 static bool wont_add_section_p (asection *,
84 lang_output_section_statement_type *);
85 static void insert_undefined (const char *);
86 static bool sort_def_symbol (struct bfd_link_hash_entry *, void *);
87 static lang_statement_union_type *new_statement (enum statement_enum type,
88 size_t size,
89 lang_statement_list_type *list);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bool);
96 static bool lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (bool);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 /* Header for list of statements corresponding to any files involved in the
107 link, either specified from the command-line or added implicitely (eg.
108 archive member used to resolved undefined symbol, wildcard statement from
109 linker script, etc.). Next pointer is in next field of a
110 lang_statement_header_type (reached via header field in a
111 lang_statement_union). */
112 lang_statement_list_type statement_list;
113 lang_statement_list_type lang_os_list;
114 lang_statement_list_type *stat_ptr = &statement_list;
115 /* Header for list of statements corresponding to files used in the final
116 executable. This can be either object file specified on the command-line
117 or library member resolving an undefined reference. Next pointer is in next
118 field of a lang_input_statement_type (reached via input_statement field in a
119 lang_statement_union). */
120 lang_statement_list_type file_chain = { NULL, NULL };
121 /* Header for list of statements corresponding to files specified on the
122 command-line for linking. It thus contains real object files and archive
123 but not archive members. Next pointer is in next_real_file field of a
124 lang_input_statement_type statement (reached via input_statement field in a
125 lang_statement_union). */
126 lang_statement_list_type input_file_chain;
127 static const char *current_input_file;
128 struct bfd_elf_dynamic_list **current_dynamic_list_p;
129 struct bfd_sym_chain entry_symbol = { NULL, NULL };
130 const char *entry_section = ".text";
131 struct lang_input_statement_flags input_flags;
132 bool entry_from_cmdline;
133 bool lang_has_input_file = false;
134 bool had_output_filename = false;
135 bool lang_float_flag = false;
136 bool delete_output_file_on_failure = false;
137 bool enable_linker_version = false;
138 struct lang_phdr *lang_phdr_list;
139 struct lang_nocrossrefs *nocrossref_list;
140 struct asneeded_minfo **asneeded_list_tail;
141 #ifdef ENABLE_LIBCTF
142 static ctf_dict_t *ctf_output;
143 #endif
144
145 /* Functions that traverse the linker script and might evaluate
146 DEFINED() need to increment this at the start of the traversal. */
147 int lang_statement_iteration = 0;
148
149 /* Count times through one_lang_size_sections_pass after mark phase. */
150 static int lang_sizing_iteration = 0;
151
152 /* Return TRUE if the PATTERN argument is a wildcard pattern.
153 Although backslashes are treated specially if a pattern contains
154 wildcards, we do not consider the mere presence of a backslash to
155 be enough to cause the pattern to be treated as a wildcard.
156 That lets us handle DOS filenames more naturally. */
157 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
158
159 #define new_stat(x, y) \
160 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
161
162 #define outside_section_address(q) \
163 ((q)->output_offset + (q)->output_section->vma)
164
165 #define outside_symbol_address(q) \
166 ((q)->value + outside_section_address (q->section))
167
168 /* CTF sections smaller than this are not compressed: compression of
169 dictionaries this small doesn't gain much, and this lets consumers mmap the
170 sections directly out of the ELF file and use them with no decompression
171 overhead if they want to. */
172 #define CTF_COMPRESSION_THRESHOLD 4096
173
174 void *
175 stat_alloc (size_t size)
176 {
177 return obstack_alloc (&stat_obstack, size);
178 }
179
180 /* Code for handling simple wildcards without going through fnmatch,
181 which can be expensive because of charset translations etc. */
182
183 /* A simple wild is a literal string followed by a single '*',
184 where the literal part is at least 4 characters long. */
185
186 static bool
187 is_simple_wild (const char *name)
188 {
189 size_t len = strcspn (name, "*?[");
190 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
191 }
192
193 static bool
194 match_simple_wild (const char *pattern, const char *name)
195 {
196 /* The first four characters of the pattern are guaranteed valid
197 non-wildcard characters. So we can go faster. */
198 if (pattern[0] != name[0] || pattern[1] != name[1]
199 || pattern[2] != name[2] || pattern[3] != name[3])
200 return false;
201
202 pattern += 4;
203 name += 4;
204 while (*pattern != '*')
205 if (*name++ != *pattern++)
206 return false;
207
208 return true;
209 }
210
211 static int
212 name_match (const char *pattern, const char *name)
213 {
214 if (is_simple_wild (pattern))
215 return !match_simple_wild (pattern, name);
216 if (wildcardp (pattern))
217 return fnmatch (pattern, name, 0);
218 return strcmp (pattern, name);
219 }
220
221 /* Given an analyzed wildcard_spec SPEC, match it against NAME,
222 returns zero on a match, non-zero if there's no match. */
223
224 static int
225 spec_match (const struct wildcard_spec *spec, const char *name)
226 {
227 size_t nl = spec->namelen;
228 size_t pl = spec->prefixlen;
229 size_t sl = spec->suffixlen;
230 size_t inputlen = strlen (name);
231 int r;
232
233 if (pl)
234 {
235 if (inputlen < pl)
236 return 1;
237
238 r = memcmp (spec->name, name, pl);
239 if (r)
240 return r;
241 }
242
243 if (sl)
244 {
245 if (inputlen < sl)
246 return 1;
247
248 r = memcmp (spec->name + nl - sl, name + inputlen - sl, sl);
249 if (r)
250 return r;
251 }
252
253 if (nl == pl + sl + 1 && spec->name[pl] == '*')
254 return 0;
255
256 if (nl > pl)
257 return fnmatch (spec->name + pl, name + pl, 0);
258
259 if (inputlen >= nl)
260 return name[nl];
261
262 return 0;
263 }
264
265 static char *
266 ldirname (const char *name)
267 {
268 const char *base = lbasename (name);
269 char *dirname;
270
271 while (base > name && IS_DIR_SEPARATOR (base[-1]))
272 --base;
273 if (base == name)
274 return strdup (".");
275 dirname = strdup (name);
276 dirname[base - name] = '\0';
277 return dirname;
278 }
279
280 /* If PATTERN is of the form archive:file, return a pointer to the
281 separator. If not, return NULL. */
282
283 static char *
284 archive_path (const char *pattern)
285 {
286 char *p = NULL;
287
288 if (link_info.path_separator == 0)
289 return p;
290
291 p = strchr (pattern, link_info.path_separator);
292 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
293 if (p == NULL || link_info.path_separator != ':')
294 return p;
295
296 /* Assume a match on the second char is part of drive specifier,
297 as in "c:\silly.dos". */
298 if (p == pattern + 1 && ISALPHA (*pattern))
299 p = strchr (p + 1, link_info.path_separator);
300 #endif
301 return p;
302 }
303
304 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
305 return whether F matches FILE_SPEC. */
306
307 static bool
308 input_statement_is_archive_path (const char *file_spec, char *sep,
309 lang_input_statement_type *f)
310 {
311 bool match = false;
312
313 if ((*(sep + 1) == 0
314 || name_match (sep + 1, f->filename) == 0)
315 && ((sep != file_spec)
316 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
317 {
318 match = true;
319
320 if (sep != file_spec)
321 {
322 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
323 *sep = 0;
324 match = name_match (file_spec, aname) == 0;
325 *sep = link_info.path_separator;
326 }
327 }
328 return match;
329 }
330
331 static bool
332 unique_section_p (const asection *sec,
333 const lang_output_section_statement_type *os)
334 {
335 struct unique_sections *unam;
336 const char *secnam;
337
338 if (!link_info.resolve_section_groups
339 && sec->owner != NULL
340 && bfd_is_group_section (sec->owner, sec))
341 return !(os != NULL
342 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
343
344 secnam = sec->name;
345 for (unam = unique_section_list; unam; unam = unam->next)
346 if (name_match (unam->name, secnam) == 0)
347 return true;
348
349 return false;
350 }
351
352 /* Generic traversal routines for finding matching sections. */
353
354 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
355 false. */
356
357 static bool
358 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
359 lang_input_statement_type *file)
360 {
361 struct name_list *list_tmp;
362
363 for (list_tmp = exclude_list;
364 list_tmp;
365 list_tmp = list_tmp->next)
366 {
367 char *p = archive_path (list_tmp->name);
368
369 if (p != NULL)
370 {
371 if (input_statement_is_archive_path (list_tmp->name, p, file))
372 return true;
373 }
374
375 else if (name_match (list_tmp->name, file->filename) == 0)
376 return true;
377
378 /* FIXME: Perhaps remove the following at some stage? Matching
379 unadorned archives like this was never documented and has
380 been superceded by the archive:path syntax. */
381 else if (file->the_bfd != NULL
382 && file->the_bfd->my_archive != NULL
383 && name_match (list_tmp->name,
384 bfd_get_filename (file->the_bfd->my_archive)) == 0)
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Add SECTION (from input FILE) to the list of matching sections
392 within PTR (the matching wildcard is SEC). */
393
394 static void
395 add_matching_section (lang_wild_statement_type *ptr,
396 struct wildcard_list *sec,
397 asection *section,
398 lang_input_statement_type *file)
399 {
400 lang_input_matcher_type *new_section;
401 /* Add a section reference to the list. */
402 new_section = new_stat (lang_input_matcher, &ptr->matching_sections);
403 new_section->section = section;
404 new_section->pattern = sec;
405 new_section->input_stmt = file;
406 }
407
408 /* Process section S (from input file FILE) in relation to wildcard
409 statement PTR. We already know that a prefix of the name of S matches
410 some wildcard in PTR's wildcard list. Here we check if the filename
411 matches as well (if it's specified) and if any of the wildcards in fact
412 does match. */
413
414 static void
415 walk_wild_section_match (lang_wild_statement_type *ptr,
416 lang_input_statement_type *file,
417 asection *s)
418 {
419 struct wildcard_list *sec;
420 const char *file_spec = ptr->filename;
421 char *p;
422
423 /* Check if filenames match. */
424 if (file_spec == NULL)
425 ;
426 else if ((p = archive_path (file_spec)) != NULL)
427 {
428 if (!input_statement_is_archive_path (file_spec, p, file))
429 return;
430 }
431 else if (wildcardp (file_spec))
432 {
433 if (fnmatch (file_spec, file->filename, 0) != 0)
434 return;
435 }
436 else
437 {
438 /* XXX Matching against non-wildcard filename in wild statements
439 was done by going through lookup_name, which uses
440 ->local_sym_name to compare against, not ->filename. We retain
441 this behaviour even though the above code paths use filename.
442 It would be more logical to use it here as well, in which
443 case the above wildcard() arm could be folded into this by using
444 name_match. This would also solve the worry of what to do
445 about unset local_sym_name (in which case lookup_name simply adds
446 the input file again). */
447 const char *filename = file->local_sym_name;
448 lang_input_statement_type *arch_is;
449 if (filename && filename_cmp (filename, file_spec) == 0)
450 ;
451 /* FIXME: see also walk_wild_file_in_exclude_list for why we
452 also check parents BFD (local_sym_)name to match input statements
453 with unadorned archive names. */
454 else if (file->the_bfd
455 && file->the_bfd->my_archive
456 && (arch_is = bfd_usrdata (file->the_bfd->my_archive))
457 && arch_is->local_sym_name
458 && filename_cmp (arch_is->local_sym_name, file_spec) == 0)
459 ;
460 else
461 return;
462 }
463
464 /* If filename is excluded we're done. */
465 if (walk_wild_file_in_exclude_list (ptr->exclude_name_list, file))
466 return;
467
468 /* Check section name against each wildcard spec. If there's no
469 wildcard all sections match. */
470 sec = ptr->section_list;
471 if (sec == NULL)
472 add_matching_section (ptr, sec, s, file);
473 else
474 {
475 const char *sname = bfd_section_name (s);
476 for (; sec != NULL; sec = sec->next)
477 {
478 if (sec->spec.name != NULL
479 && spec_match (&sec->spec, sname) != 0)
480 continue;
481
482 /* Don't process sections from files which were excluded. */
483 if (!walk_wild_file_in_exclude_list (sec->spec.exclude_name_list,
484 file))
485 add_matching_section (ptr, sec, s, file);
486 }
487 }
488 }
489
490 /* Return the numerical value of the init_priority attribute from
491 section name NAME. */
492
493 static int
494 get_init_priority (const asection *sec)
495 {
496 const char *name = bfd_section_name (sec);
497 const char *dot;
498
499 /* GCC uses the following section names for the init_priority
500 attribute with numerical values 101 to 65535 inclusive. A
501 lower value means a higher priority.
502
503 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
504 decimal numerical value of the init_priority attribute.
505 The order of execution in .init_array is forward and
506 .fini_array is backward.
507 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
508 decimal numerical value of the init_priority attribute.
509 The order of execution in .ctors is backward and .dtors
510 is forward.
511
512 .init_array.NNNNN sections would normally be placed in an output
513 .init_array section, .fini_array.NNNNN in .fini_array,
514 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
515 we should sort by increasing number (and could just use
516 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
517 being placed in .init_array (which may also contain
518 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
519 placed in .fini_array then we need to extract the init_priority
520 attribute and sort on that. */
521 dot = strrchr (name, '.');
522 if (dot != NULL && ISDIGIT (dot[1]))
523 {
524 char *end;
525 unsigned long init_priority = strtoul (dot + 1, &end, 10);
526 if (*end == 0)
527 {
528 if (dot == name + 6
529 && (strncmp (name, ".ctors", 6) == 0
530 || strncmp (name, ".dtors", 6) == 0))
531 init_priority = 65535 - init_priority;
532 if (init_priority <= INT_MAX)
533 return init_priority;
534 }
535 }
536 return -1;
537 }
538
539 /* Compare sections ASEC and BSEC according to SORT. */
540
541 static int
542 compare_section (sort_type sort, asection *asec, asection *bsec)
543 {
544 int ret;
545 int a_priority, b_priority;
546
547 switch (sort)
548 {
549 default:
550 abort ();
551
552 case by_init_priority:
553 a_priority = get_init_priority (asec);
554 b_priority = get_init_priority (bsec);
555 if (a_priority < 0 || b_priority < 0)
556 goto sort_by_name;
557 ret = a_priority - b_priority;
558 if (ret)
559 break;
560 else
561 goto sort_by_name;
562
563 case by_alignment_name:
564 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
565 if (ret)
566 break;
567 /* Fall through. */
568
569 case by_name:
570 sort_by_name:
571 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
572 break;
573
574 case by_name_alignment:
575 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
576 if (ret)
577 break;
578 /* Fall through. */
579
580 case by_alignment:
581 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
582 break;
583 }
584
585 return ret;
586 }
587
588 /* PE puts the sort key in the input statement. */
589
590 static const char *
591 sort_filename (bfd *abfd)
592 {
593 lang_input_statement_type *is = bfd_usrdata (abfd);
594 if (is->sort_key)
595 return is->sort_key;
596 return bfd_get_filename (abfd);
597 }
598
599 /* Handle wildcard sorting. This returns the place in a binary search tree
600 where this FILE:SECTION should be inserted for wild statement WILD where
601 the spec SEC was the matching one. The tree is later linearized. */
602
603 static lang_section_bst_type **
604 wild_sort (lang_wild_statement_type *wild,
605 struct wildcard_list *sec,
606 lang_input_statement_type *file,
607 asection *section)
608 {
609 lang_section_bst_type **tree;
610
611 if (!wild->filenames_sorted
612 && (sec == NULL || sec->spec.sorted == none
613 || sec->spec.sorted == by_none))
614 {
615 /* We might be called even if _this_ spec doesn't need sorting,
616 in which case we simply append at the right end of tree. */
617 return wild->rightmost;
618 }
619
620 tree = &wild->tree;
621 while (*tree)
622 {
623 /* Sorting by filename takes precedence over sorting by section
624 name. */
625
626 if (wild->filenames_sorted)
627 {
628 const char *fn, *ln;
629 bool fa, la;
630 int i;
631 asection *lsec = (*tree)->section;
632
633 /* The PE support for the .idata section as generated by
634 dlltool assumes that files will be sorted by the name of
635 the archive and then the name of the file within the
636 archive. */
637
638 fa = file->the_bfd->my_archive != NULL;
639 if (fa)
640 fn = sort_filename (file->the_bfd->my_archive);
641 else
642 fn = sort_filename (file->the_bfd);
643
644 la = lsec->owner->my_archive != NULL;
645 if (la)
646 ln = sort_filename (lsec->owner->my_archive);
647 else
648 ln = sort_filename (lsec->owner);
649
650 i = filename_cmp (fn, ln);
651 if (i > 0)
652 { tree = &((*tree)->right); continue; }
653 else if (i < 0)
654 { tree = &((*tree)->left); continue; }
655
656 if (fa || la)
657 {
658 if (fa)
659 fn = sort_filename (file->the_bfd);
660 if (la)
661 ln = sort_filename (lsec->owner);
662
663 i = filename_cmp (fn, ln);
664 if (i > 0)
665 { tree = &((*tree)->right); continue; }
666 else if (i < 0)
667 { tree = &((*tree)->left); continue; }
668 }
669 }
670
671 /* Here either the files are not sorted by name, or we are
672 looking at the sections for this file. */
673
674 /* Find the correct node to append this section. */
675 if (sec && sec->spec.sorted != none && sec->spec.sorted != by_none
676 && compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
677 tree = &((*tree)->left);
678 else
679 tree = &((*tree)->right);
680 }
681
682 return tree;
683 }
684
685 /* Use wild_sort to build a BST to sort sections. */
686
687 static void
688 output_section_callback_sort (lang_wild_statement_type *ptr,
689 struct wildcard_list *sec,
690 asection *section,
691 lang_input_statement_type *file,
692 void *output)
693 {
694 lang_section_bst_type *node;
695 lang_section_bst_type **tree;
696 lang_output_section_statement_type *os;
697
698 os = (lang_output_section_statement_type *) output;
699
700 if (unique_section_p (section, os))
701 return;
702
703 /* Don't add sections to the tree when we already know that
704 lang_add_section won't do anything with it. */
705 if (wont_add_section_p (section, os))
706 return;
707
708 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
709 node->left = 0;
710 node->right = 0;
711 node->section = section;
712 node->pattern = ptr->section_list;
713
714 tree = wild_sort (ptr, sec, file, section);
715 if (tree != NULL)
716 {
717 *tree = node;
718 if (tree == ptr->rightmost)
719 ptr->rightmost = &node->right;
720 }
721 }
722
723 /* Convert a sorted sections' BST back to list form. */
724
725 static void
726 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
727 lang_section_bst_type *tree,
728 void *output)
729 {
730 if (tree->left)
731 output_section_callback_tree_to_list (ptr, tree->left, output);
732
733 lang_add_section (&ptr->children, tree->section, tree->pattern,
734 ptr->section_flag_list,
735 (lang_output_section_statement_type *) output);
736
737 if (tree->right)
738 output_section_callback_tree_to_list (ptr, tree->right, output);
739
740 free (tree);
741 }
742
743 \f
744 /* Sections are matched against wildcard statements via a prefix tree.
745 The prefix tree holds prefixes of all matching patterns (up to the first
746 wildcard character), and the wild statement from which those patterns
747 came. When matching a section name against the tree we're walking through
748 the tree character by character. Each statement we hit is one that
749 potentially matches. This is checked by actually going through the
750 (glob) matching routines.
751
752 When the section name turns out to actually match we record that section
753 in the wild statements list of matching sections. */
754
755 /* A prefix can be matched by multiple statement, so we need a list of them. */
756 struct wild_stmt_list
757 {
758 lang_wild_statement_type *stmt;
759 struct wild_stmt_list *next;
760 };
761
762 /* The prefix tree itself. */
763 struct prefixtree
764 {
765 /* The list of all children (linked via .next). */
766 struct prefixtree *child;
767 struct prefixtree *next;
768 /* This tree node is responsible for the prefix of parent plus 'c'. */
769 char c;
770 /* The statements that potentially can match this prefix. */
771 struct wild_stmt_list *stmt;
772 };
773
774 /* We always have a root node in the prefix tree. It corresponds to the
775 empty prefix. E.g. a glob like "*" would sit in this root. */
776 static struct prefixtree the_root, *ptroot = &the_root;
777
778 /* Given a prefix tree in *TREE, corresponding to prefix P, find or
779 INSERT the tree node corresponding to prefix P+C. */
780
781 static struct prefixtree *
782 get_prefix_tree (struct prefixtree **tree, char c, bool insert)
783 {
784 struct prefixtree *t;
785 for (t = *tree; t; t = t->next)
786 if (t->c == c)
787 return t;
788 if (!insert)
789 return NULL;
790 t = (struct prefixtree *) obstack_alloc (&pt_obstack, sizeof *t);
791 t->child = NULL;
792 t->next = *tree;
793 t->c = c;
794 t->stmt = NULL;
795 *tree = t;
796 return t;
797 }
798
799 /* Add STMT to the set of statements that can be matched by the prefix
800 corresponding to prefix tree T. */
801
802 static void
803 pt_add_stmt (struct prefixtree *t, lang_wild_statement_type *stmt)
804 {
805 struct wild_stmt_list *sl, **psl;
806 sl = (struct wild_stmt_list *) obstack_alloc (&pt_obstack, sizeof *sl);
807 sl->stmt = stmt;
808 sl->next = NULL;
809 psl = &t->stmt;
810 while (*psl)
811 psl = &(*psl)->next;
812 *psl = sl;
813 }
814
815 /* Insert STMT into the global prefix tree. */
816
817 static void
818 insert_prefix_tree (lang_wild_statement_type *stmt)
819 {
820 struct wildcard_list *sec;
821 struct prefixtree *t;
822
823 if (!stmt->section_list)
824 {
825 /* If we have no section_list (no wildcards in the wild STMT),
826 then every section name will match, so add this to the root. */
827 pt_add_stmt (ptroot, stmt);
828 return;
829 }
830
831 for (sec = stmt->section_list; sec; sec = sec->next)
832 {
833 const char *name = sec->spec.name ? sec->spec.name : "*";
834 char c;
835 t = ptroot;
836 for (; (c = *name); name++)
837 {
838 if (c == '*' || c == '[' || c == '?')
839 break;
840 t = get_prefix_tree (&t->child, c, true);
841 }
842 /* If we hit a glob character, the matching prefix is what we saw
843 until now. If we hit the end of pattern (hence it's no glob) then
844 we can do better: we only need to record a match when a section name
845 completely matches, not merely a prefix, so record the trailing 0
846 as well. */
847 if (!c)
848 t = get_prefix_tree (&t->child, 0, true);
849 pt_add_stmt (t, stmt);
850 }
851 }
852
853 /* Dump T indented by INDENT spaces. */
854
855 static void
856 debug_prefix_tree_rec (struct prefixtree *t, int indent)
857 {
858 for (; t; t = t->next)
859 {
860 struct wild_stmt_list *sl;
861 printf ("%*s %c", indent, "", t->c);
862 for (sl = t->stmt; sl; sl = sl->next)
863 {
864 struct wildcard_list *curr;
865 printf (" %p ", sl->stmt);
866 for (curr = sl->stmt->section_list; curr; curr = curr->next)
867 printf ("%s ", curr->spec.name ? curr->spec.name : "*");
868 }
869 printf ("\n");
870 debug_prefix_tree_rec (t->child, indent + 2);
871 }
872 }
873
874 /* Dump the global prefix tree. */
875
876 static void
877 debug_prefix_tree (void)
878 {
879 debug_prefix_tree_rec (ptroot, 2);
880 }
881
882 /* Like strcspn() but start to look from the end to beginning of
883 S. Returns the length of the suffix of S consisting entirely
884 of characters not in REJECT. */
885
886 static size_t
887 rstrcspn (const char *s, const char *reject)
888 {
889 size_t len = strlen (s), sufflen = 0;
890 while (len--)
891 {
892 char c = s[len];
893 if (strchr (reject, c) != 0)
894 break;
895 sufflen++;
896 }
897 return sufflen;
898 }
899
900 /* Analyze the wildcards in wild statement PTR to setup various
901 things for quick matching. */
902
903 static void
904 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
905 {
906 struct wildcard_list *sec;
907
908 ptr->tree = NULL;
909 ptr->rightmost = &ptr->tree;
910
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 {
913 if (sec->spec.name)
914 {
915 sec->spec.namelen = strlen (sec->spec.name);
916 sec->spec.prefixlen = strcspn (sec->spec.name, "?*[");
917 sec->spec.suffixlen = rstrcspn (sec->spec.name + sec->spec.prefixlen,
918 "?*]");
919 }
920 else
921 sec->spec.namelen = sec->spec.prefixlen = sec->spec.suffixlen = 0;
922 }
923
924 insert_prefix_tree (ptr);
925 }
926
927 /* Match all sections from FILE against the global prefix tree,
928 and record them into each wild statement that has a match. */
929
930 static void
931 resolve_wild_sections (lang_input_statement_type *file)
932 {
933 asection *s;
934
935 if (file->flags.just_syms)
936 return;
937
938 for (s = file->the_bfd->sections; s != NULL; s = s->next)
939 {
940 const char *sname = bfd_section_name (s);
941 char c = 1;
942 struct prefixtree *t = ptroot;
943 //printf (" YYY consider %s of %s\n", sname, file->the_bfd->filename);
944 do
945 {
946 if (t->stmt)
947 {
948 struct wild_stmt_list *sl;
949 for (sl = t->stmt; sl; sl = sl->next)
950 {
951 walk_wild_section_match (sl->stmt, file, s);
952 //printf (" ZZZ maybe place into %p\n", sl->stmt);
953 }
954 }
955 if (!c)
956 break;
957 c = *sname++;
958 t = get_prefix_tree (&t->child, c, false);
959 }
960 while (t);
961 }
962 }
963
964 /* Match all sections from all input files against the global prefix tree. */
965
966 static void
967 resolve_wilds (void)
968 {
969 LANG_FOR_EACH_INPUT_STATEMENT (f)
970 {
971 //printf("XXX %s\n", f->filename);
972 if (f->the_bfd == NULL
973 || !bfd_check_format (f->the_bfd, bfd_archive))
974 resolve_wild_sections (f);
975 else
976 {
977 bfd *member;
978
979 /* This is an archive file. We must map each member of the
980 archive separately. */
981 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
982 while (member != NULL)
983 {
984 /* When lookup_name is called, it will call the add_symbols
985 entry point for the archive. For each element of the
986 archive which is included, BFD will call ldlang_add_file,
987 which will set the usrdata field of the member to the
988 lang_input_statement. */
989 if (bfd_usrdata (member) != NULL)
990 resolve_wild_sections (bfd_usrdata (member));
991
992 member = bfd_openr_next_archived_file (f->the_bfd, member);
993 }
994 }
995 }
996 }
997
998 /* For each input section that matches wild statement S calls
999 CALLBACK with DATA. */
1000
1001 static void
1002 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
1003 {
1004 lang_statement_union_type *l;
1005
1006 for (l = s->matching_sections.head; l; l = l->header.next)
1007 {
1008 (*callback) (s, l->input_matcher.pattern, l->input_matcher.section,
1009 l->input_matcher.input_stmt, data);
1010 }
1011 }
1012
1013 /* lang_for_each_statement walks the parse tree and calls the provided
1014 function for each node, except those inside output section statements
1015 with constraint set to -1. */
1016
1017 void
1018 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
1019 lang_statement_union_type *s)
1020 {
1021 for (; s != NULL; s = s->header.next)
1022 {
1023 func (s);
1024
1025 switch (s->header.type)
1026 {
1027 case lang_constructors_statement_enum:
1028 lang_for_each_statement_worker (func, constructor_list.head);
1029 break;
1030 case lang_output_section_statement_enum:
1031 if (s->output_section_statement.constraint != -1)
1032 lang_for_each_statement_worker
1033 (func, s->output_section_statement.children.head);
1034 break;
1035 case lang_wild_statement_enum:
1036 lang_for_each_statement_worker (func,
1037 s->wild_statement.children.head);
1038 break;
1039 case lang_group_statement_enum:
1040 lang_for_each_statement_worker (func,
1041 s->group_statement.children.head);
1042 break;
1043 case lang_data_statement_enum:
1044 case lang_reloc_statement_enum:
1045 case lang_object_symbols_statement_enum:
1046 case lang_output_statement_enum:
1047 case lang_target_statement_enum:
1048 case lang_input_section_enum:
1049 case lang_input_statement_enum:
1050 case lang_assignment_statement_enum:
1051 case lang_padding_statement_enum:
1052 case lang_address_statement_enum:
1053 case lang_fill_statement_enum:
1054 case lang_insert_statement_enum:
1055 break;
1056 default:
1057 FAIL ();
1058 break;
1059 }
1060 }
1061 }
1062
1063 void
1064 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1065 {
1066 lang_for_each_statement_worker (func, statement_list.head);
1067 }
1068
1069 /*----------------------------------------------------------------------*/
1070
1071 void
1072 lang_list_init (lang_statement_list_type *list)
1073 {
1074 list->head = NULL;
1075 list->tail = &list->head;
1076 }
1077
1078 static void
1079 lang_statement_append (lang_statement_list_type *list,
1080 void *element,
1081 void *field)
1082 {
1083 *(list->tail) = element;
1084 list->tail = field;
1085 }
1086
1087 void
1088 push_stat_ptr (lang_statement_list_type *new_ptr)
1089 {
1090 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1091 abort ();
1092 *stat_save_ptr++ = stat_ptr;
1093 stat_ptr = new_ptr;
1094 }
1095
1096 void
1097 pop_stat_ptr (void)
1098 {
1099 if (stat_save_ptr <= stat_save)
1100 abort ();
1101 stat_ptr = *--stat_save_ptr;
1102 }
1103
1104 /* Build a new statement node for the parse tree. */
1105
1106 static lang_statement_union_type *
1107 new_statement (enum statement_enum type,
1108 size_t size,
1109 lang_statement_list_type *list)
1110 {
1111 lang_statement_union_type *new_stmt;
1112
1113 new_stmt = stat_alloc (size);
1114 new_stmt->header.type = type;
1115 new_stmt->header.next = NULL;
1116 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1117 return new_stmt;
1118 }
1119
1120 /* Build a new input file node for the language. There are several
1121 ways in which we treat an input file, eg, we only look at symbols,
1122 or prefix it with a -l etc.
1123
1124 We can be supplied with requests for input files more than once;
1125 they may, for example be split over several lines like foo.o(.text)
1126 foo.o(.data) etc, so when asked for a file we check that we haven't
1127 got it already so we don't duplicate the bfd. */
1128
1129 static lang_input_statement_type *
1130 new_afile (const char *name,
1131 lang_input_file_enum_type file_type,
1132 const char *target,
1133 const char *from_filename)
1134 {
1135 lang_input_statement_type *p;
1136
1137 lang_has_input_file = true;
1138
1139 name = ldfile_possibly_remap_input (name);
1140 if (name == NULL)
1141 return NULL;
1142
1143 p = new_stat (lang_input_statement, stat_ptr);
1144 memset (&p->the_bfd, 0,
1145 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1146 p->extra_search_path = NULL;
1147 p->target = target;
1148 p->flags.dynamic = input_flags.dynamic;
1149 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1150 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1151 p->flags.whole_archive = input_flags.whole_archive;
1152 p->flags.sysrooted = input_flags.sysrooted;
1153 p->sort_key = NULL;
1154
1155 switch (file_type)
1156 {
1157 case lang_input_file_is_symbols_only_enum:
1158 p->filename = name;
1159 p->local_sym_name = name;
1160 p->flags.real = true;
1161 p->flags.just_syms = true;
1162 break;
1163 case lang_input_file_is_fake_enum:
1164 p->filename = name;
1165 p->local_sym_name = name;
1166 break;
1167 case lang_input_file_is_l_enum:
1168 if (name[0] == ':' && name[1] != '\0')
1169 {
1170 p->filename = name + 1;
1171 p->flags.full_name_provided = true;
1172 }
1173 else
1174 p->filename = name;
1175 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1176 p->flags.maybe_archive = true;
1177 p->flags.real = true;
1178 p->flags.search_dirs = true;
1179 break;
1180 case lang_input_file_is_marker_enum:
1181 p->filename = name;
1182 p->local_sym_name = name;
1183 p->flags.search_dirs = true;
1184 break;
1185 case lang_input_file_is_search_file_enum:
1186 p->filename = name;
1187 p->local_sym_name = name;
1188 /* If name is a relative path, search the directory of the current linker
1189 script first. */
1190 if (from_filename && !IS_ABSOLUTE_PATH (name))
1191 p->extra_search_path = ldirname (from_filename);
1192 p->flags.real = true;
1193 p->flags.search_dirs = true;
1194 break;
1195 case lang_input_file_is_file_enum:
1196 p->filename = name;
1197 p->local_sym_name = name;
1198 p->flags.real = true;
1199 break;
1200 default:
1201 FAIL ();
1202 }
1203
1204 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1205 return p;
1206 }
1207
1208 lang_input_statement_type *
1209 lang_add_input_file (const char *name,
1210 lang_input_file_enum_type file_type,
1211 const char *target)
1212 {
1213 if (name != NULL
1214 && (*name == '=' || startswith (name, "$SYSROOT")))
1215 {
1216 lang_input_statement_type *ret;
1217 char *sysrooted_name
1218 = concat (ld_sysroot,
1219 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1220 (const char *) NULL);
1221
1222 /* We've now forcibly prepended the sysroot, making the input
1223 file independent of the context. Therefore, temporarily
1224 force a non-sysrooted context for this statement, so it won't
1225 get the sysroot prepended again when opened. (N.B. if it's a
1226 script, any child nodes with input files starting with "/"
1227 will be handled as "sysrooted" as they'll be found to be
1228 within the sysroot subdirectory.) */
1229 unsigned int outer_sysrooted = input_flags.sysrooted;
1230 input_flags.sysrooted = 0;
1231 ret = new_afile (sysrooted_name, file_type, target, NULL);
1232 input_flags.sysrooted = outer_sysrooted;
1233 return ret;
1234 }
1235
1236 return new_afile (name, file_type, target, current_input_file);
1237 }
1238
1239 struct out_section_hash_entry
1240 {
1241 struct bfd_hash_entry root;
1242 lang_statement_union_type s;
1243 };
1244
1245 /* The hash table. */
1246
1247 static struct bfd_hash_table output_section_statement_table;
1248
1249 /* Support routines for the hash table used by lang_output_section_find,
1250 initialize the table, fill in an entry and remove the table. */
1251
1252 static struct bfd_hash_entry *
1253 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1254 struct bfd_hash_table *table,
1255 const char *string)
1256 {
1257 lang_output_section_statement_type **nextp;
1258 struct out_section_hash_entry *ret;
1259
1260 if (entry == NULL)
1261 {
1262 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1263 sizeof (*ret));
1264 if (entry == NULL)
1265 return entry;
1266 }
1267
1268 entry = bfd_hash_newfunc (entry, table, string);
1269 if (entry == NULL)
1270 return entry;
1271
1272 ret = (struct out_section_hash_entry *) entry;
1273 memset (&ret->s, 0, sizeof (ret->s));
1274 ret->s.header.type = lang_output_section_statement_enum;
1275 ret->s.output_section_statement.subsection_alignment = NULL;
1276 ret->s.output_section_statement.section_alignment = NULL;
1277 ret->s.output_section_statement.block_value = 1;
1278 lang_list_init (&ret->s.output_section_statement.children);
1279 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1280
1281 /* For every output section statement added to the list, except the
1282 first one, lang_os_list.tail points to the "next"
1283 field of the last element of the list. */
1284 if (lang_os_list.head != NULL)
1285 ret->s.output_section_statement.prev
1286 = ((lang_output_section_statement_type *)
1287 ((char *) lang_os_list.tail
1288 - offsetof (lang_output_section_statement_type, next)));
1289
1290 /* GCC's strict aliasing rules prevent us from just casting the
1291 address, so we store the pointer in a variable and cast that
1292 instead. */
1293 nextp = &ret->s.output_section_statement.next;
1294 lang_statement_append (&lang_os_list, &ret->s, nextp);
1295 return &ret->root;
1296 }
1297
1298 static void
1299 output_section_statement_table_init (void)
1300 {
1301 if (!bfd_hash_table_init_n (&output_section_statement_table,
1302 output_section_statement_newfunc,
1303 sizeof (struct out_section_hash_entry),
1304 61))
1305 einfo (_("%F%P: can not create hash table: %E\n"));
1306 }
1307
1308 static void
1309 output_section_statement_table_free (void)
1310 {
1311 bfd_hash_table_free (&output_section_statement_table);
1312 }
1313
1314 /* Build enough state so that the parser can build its tree. */
1315
1316 void
1317 lang_init (void)
1318 {
1319 obstack_begin (&stat_obstack, 1000);
1320 obstack_init (&pt_obstack);
1321
1322 stat_ptr = &statement_list;
1323
1324 output_section_statement_table_init ();
1325
1326 lang_list_init (stat_ptr);
1327
1328 lang_list_init (&input_file_chain);
1329 lang_list_init (&lang_os_list);
1330 lang_list_init (&file_chain);
1331 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1332 NULL);
1333 abs_output_section =
1334 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1335
1336 abs_output_section->bfd_section = bfd_abs_section_ptr;
1337
1338 asneeded_list_head = NULL;
1339 asneeded_list_tail = &asneeded_list_head;
1340 }
1341
1342 void
1343 lang_finish (void)
1344 {
1345 output_section_statement_table_free ();
1346 ldfile_remap_input_free ();
1347 }
1348
1349 /*----------------------------------------------------------------------
1350 A region is an area of memory declared with the
1351 MEMORY { name:org=exp, len=exp ... }
1352 syntax.
1353
1354 We maintain a list of all the regions here.
1355
1356 If no regions are specified in the script, then the default is used
1357 which is created when looked up to be the entire data space.
1358
1359 If create is true we are creating a region inside a MEMORY block.
1360 In this case it is probably an error to create a region that has
1361 already been created. If we are not inside a MEMORY block it is
1362 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1363 and so we issue a warning.
1364
1365 Each region has at least one name. The first name is either
1366 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1367 alias names to an existing region within a script with
1368 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1369 region. */
1370
1371 static lang_memory_region_type *lang_memory_region_list;
1372 static lang_memory_region_type **lang_memory_region_list_tail
1373 = &lang_memory_region_list;
1374
1375 lang_memory_region_type *
1376 lang_memory_region_lookup (const char *const name, bool create)
1377 {
1378 lang_memory_region_name *n;
1379 lang_memory_region_type *r;
1380 lang_memory_region_type *new_region;
1381
1382 /* NAME is NULL for LMA memspecs if no region was specified. */
1383 if (name == NULL)
1384 return NULL;
1385
1386 for (r = lang_memory_region_list; r != NULL; r = r->next)
1387 for (n = &r->name_list; n != NULL; n = n->next)
1388 if (strcmp (n->name, name) == 0)
1389 {
1390 if (create)
1391 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1392 NULL, name);
1393 return r;
1394 }
1395
1396 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1397 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1398 NULL, name);
1399
1400 new_region = stat_alloc (sizeof (lang_memory_region_type));
1401
1402 new_region->name_list.name = xstrdup (name);
1403 new_region->name_list.next = NULL;
1404 new_region->next = NULL;
1405 new_region->origin_exp = NULL;
1406 new_region->origin = 0;
1407 new_region->length_exp = NULL;
1408 new_region->length = ~(bfd_size_type) 0;
1409 new_region->current = 0;
1410 new_region->last_os = NULL;
1411 new_region->flags = 0;
1412 new_region->not_flags = 0;
1413 new_region->had_full_message = false;
1414
1415 *lang_memory_region_list_tail = new_region;
1416 lang_memory_region_list_tail = &new_region->next;
1417
1418 return new_region;
1419 }
1420
1421 void
1422 lang_memory_region_alias (const char *alias, const char *region_name)
1423 {
1424 lang_memory_region_name *n;
1425 lang_memory_region_type *r;
1426 lang_memory_region_type *region;
1427
1428 /* The default region must be unique. This ensures that it is not necessary
1429 to iterate through the name list if someone wants the check if a region is
1430 the default memory region. */
1431 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1432 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1433 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1434
1435 /* Look for the target region and check if the alias is not already
1436 in use. */
1437 region = NULL;
1438 for (r = lang_memory_region_list; r != NULL; r = r->next)
1439 for (n = &r->name_list; n != NULL; n = n->next)
1440 {
1441 if (region == NULL && strcmp (n->name, region_name) == 0)
1442 region = r;
1443 if (strcmp (n->name, alias) == 0)
1444 einfo (_("%F%P:%pS: error: redefinition of memory region "
1445 "alias `%s'\n"),
1446 NULL, alias);
1447 }
1448
1449 /* Check if the target region exists. */
1450 if (region == NULL)
1451 einfo (_("%F%P:%pS: error: memory region `%s' "
1452 "for alias `%s' does not exist\n"),
1453 NULL, region_name, alias);
1454
1455 /* Add alias to region name list. */
1456 n = stat_alloc (sizeof (lang_memory_region_name));
1457 n->name = xstrdup (alias);
1458 n->next = region->name_list.next;
1459 region->name_list.next = n;
1460 }
1461
1462 static lang_memory_region_type *
1463 lang_memory_default (asection *section)
1464 {
1465 lang_memory_region_type *p;
1466
1467 flagword sec_flags = section->flags;
1468
1469 /* Override SEC_DATA to mean a writable section. */
1470 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1471 sec_flags |= SEC_DATA;
1472
1473 for (p = lang_memory_region_list; p != NULL; p = p->next)
1474 {
1475 if ((p->flags & sec_flags) != 0
1476 && (p->not_flags & sec_flags) == 0)
1477 {
1478 return p;
1479 }
1480 }
1481 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
1482 }
1483
1484 /* Get the output section statement directly from the userdata. */
1485
1486 lang_output_section_statement_type *
1487 lang_output_section_get (const asection *output_section)
1488 {
1489 return bfd_section_userdata (output_section);
1490 }
1491
1492 /* Find or create an output_section_statement with the given NAME.
1493 If CONSTRAINT is non-zero match one with that constraint, otherwise
1494 match any non-negative constraint. If CREATE is 0 return NULL when
1495 no match exists. If CREATE is 1, create an output_section_statement
1496 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1497 always make a new output_section_statement. */
1498
1499 lang_output_section_statement_type *
1500 lang_output_section_statement_lookup (const char *name,
1501 int constraint,
1502 int create)
1503 {
1504 struct out_section_hash_entry *entry;
1505
1506 entry = ((struct out_section_hash_entry *)
1507 bfd_hash_lookup (&output_section_statement_table, name,
1508 create != 0, false));
1509 if (entry == NULL)
1510 {
1511 if (create)
1512 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1513 return NULL;
1514 }
1515
1516 if (entry->s.output_section_statement.name != NULL)
1517 {
1518 /* We have a section of this name, but it might not have the correct
1519 constraint. */
1520 struct out_section_hash_entry *last_ent;
1521
1522 name = entry->s.output_section_statement.name;
1523 do
1524 {
1525 if (create != 2
1526 && !(create && constraint == SPECIAL)
1527 && (constraint == entry->s.output_section_statement.constraint
1528 || (constraint == 0
1529 && entry->s.output_section_statement.constraint >= 0)))
1530 return &entry->s.output_section_statement;
1531 last_ent = entry;
1532 entry = (struct out_section_hash_entry *) entry->root.next;
1533 }
1534 while (entry != NULL
1535 && name == entry->s.output_section_statement.name);
1536
1537 if (!create)
1538 return NULL;
1539
1540 entry
1541 = ((struct out_section_hash_entry *)
1542 output_section_statement_newfunc (NULL,
1543 &output_section_statement_table,
1544 name));
1545 if (entry == NULL)
1546 {
1547 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1548 return NULL;
1549 }
1550 entry->root = last_ent->root;
1551 last_ent->root.next = &entry->root;
1552 }
1553
1554 entry->s.output_section_statement.name = name;
1555 entry->s.output_section_statement.constraint = constraint;
1556 entry->s.output_section_statement.dup_output = (create == 2
1557 || constraint == SPECIAL);
1558 return &entry->s.output_section_statement;
1559 }
1560
1561 /* Find the next output_section_statement with the same name as OS.
1562 If CONSTRAINT is non-zero, find one with that constraint otherwise
1563 match any non-negative constraint. */
1564
1565 lang_output_section_statement_type *
1566 next_matching_output_section_statement (lang_output_section_statement_type *os,
1567 int constraint)
1568 {
1569 /* All output_section_statements are actually part of a
1570 struct out_section_hash_entry. */
1571 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1572 ((char *) os
1573 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1574 const char *name = os->name;
1575
1576 ASSERT (name == entry->root.string);
1577 do
1578 {
1579 entry = (struct out_section_hash_entry *) entry->root.next;
1580 if (entry == NULL
1581 || name != entry->s.output_section_statement.name)
1582 return NULL;
1583 }
1584 while (constraint != entry->s.output_section_statement.constraint
1585 && (constraint != 0
1586 || entry->s.output_section_statement.constraint < 0));
1587
1588 return &entry->s.output_section_statement;
1589 }
1590
1591 /* A variant of lang_output_section_find used by place_orphan.
1592 Returns the output statement that should precede a new output
1593 statement for SEC. If an exact match is found on certain flags,
1594 sets *EXACT too. */
1595
1596 lang_output_section_statement_type *
1597 lang_output_section_find_by_flags (const asection *sec,
1598 flagword sec_flags,
1599 lang_output_section_statement_type **exact,
1600 lang_match_sec_type_func match_type)
1601 {
1602 lang_output_section_statement_type *first, *look, *found;
1603 flagword look_flags, differ;
1604
1605 /* We know the first statement on this list is *ABS*. May as well
1606 skip it. */
1607 first = (void *) lang_os_list.head;
1608 first = first->next;
1609
1610 /* First try for an exact match. */
1611 found = NULL;
1612 for (look = first; look; look = look->next)
1613 {
1614 look_flags = look->flags;
1615 if (look->bfd_section != NULL)
1616 {
1617 look_flags = look->bfd_section->flags;
1618 if (match_type && !match_type (link_info.output_bfd,
1619 look->bfd_section,
1620 sec->owner, sec))
1621 continue;
1622 }
1623 differ = look_flags ^ sec_flags;
1624 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1625 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1626 found = look;
1627 }
1628 if (found != NULL)
1629 {
1630 if (exact != NULL)
1631 *exact = found;
1632 return found;
1633 }
1634
1635 if ((sec_flags & SEC_CODE) != 0
1636 && (sec_flags & SEC_ALLOC) != 0)
1637 {
1638 /* Try for a rw code section. */
1639 for (look = first; look; look = look->next)
1640 {
1641 look_flags = look->flags;
1642 if (look->bfd_section != NULL)
1643 {
1644 look_flags = look->bfd_section->flags;
1645 if (match_type && !match_type (link_info.output_bfd,
1646 look->bfd_section,
1647 sec->owner, sec))
1648 continue;
1649 }
1650 differ = look_flags ^ sec_flags;
1651 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1652 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1653 found = look;
1654 }
1655 }
1656 else if ((sec_flags & SEC_READONLY) != 0
1657 && (sec_flags & SEC_ALLOC) != 0)
1658 {
1659 /* .rodata can go after .text, .sdata2 after .rodata. */
1660 for (look = first; look; look = look->next)
1661 {
1662 look_flags = look->flags;
1663 if (look->bfd_section != NULL)
1664 {
1665 look_flags = look->bfd_section->flags;
1666 if (match_type && !match_type (link_info.output_bfd,
1667 look->bfd_section,
1668 sec->owner, sec))
1669 continue;
1670 }
1671 differ = look_flags ^ sec_flags;
1672 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1673 | SEC_READONLY | SEC_SMALL_DATA))
1674 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1675 | SEC_READONLY))
1676 && !(look_flags & SEC_SMALL_DATA)))
1677 found = look;
1678 }
1679 }
1680 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1681 && (sec_flags & SEC_ALLOC) != 0)
1682 {
1683 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1684 as if it were a loaded section, and don't use match_type. */
1685 bool seen_thread_local = false;
1686
1687 match_type = NULL;
1688 for (look = first; look; look = look->next)
1689 {
1690 look_flags = look->flags;
1691 if (look->bfd_section != NULL)
1692 look_flags = look->bfd_section->flags;
1693
1694 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1695 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1696 {
1697 /* .tdata and .tbss must be adjacent and in that order. */
1698 if (!(look_flags & SEC_LOAD)
1699 && (sec_flags & SEC_LOAD))
1700 /* ..so if we're at a .tbss section and we're placing
1701 a .tdata section stop looking and return the
1702 previous section. */
1703 break;
1704 found = look;
1705 seen_thread_local = true;
1706 }
1707 else if (seen_thread_local)
1708 break;
1709 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1710 found = look;
1711 }
1712 }
1713 else if ((sec_flags & SEC_SMALL_DATA) != 0
1714 && (sec_flags & SEC_ALLOC) != 0)
1715 {
1716 /* .sdata goes after .data, .sbss after .sdata. */
1717 for (look = first; look; look = look->next)
1718 {
1719 look_flags = look->flags;
1720 if (look->bfd_section != NULL)
1721 {
1722 look_flags = look->bfd_section->flags;
1723 if (match_type && !match_type (link_info.output_bfd,
1724 look->bfd_section,
1725 sec->owner, sec))
1726 continue;
1727 }
1728 differ = look_flags ^ sec_flags;
1729 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1730 | SEC_THREAD_LOCAL))
1731 || ((look_flags & SEC_SMALL_DATA)
1732 && !(sec_flags & SEC_HAS_CONTENTS)))
1733 found = look;
1734 }
1735 }
1736 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1737 && (sec_flags & SEC_ALLOC) != 0)
1738 {
1739 /* .data goes after .rodata. */
1740 for (look = first; look; look = look->next)
1741 {
1742 look_flags = look->flags;
1743 if (look->bfd_section != NULL)
1744 {
1745 look_flags = look->bfd_section->flags;
1746 if (match_type && !match_type (link_info.output_bfd,
1747 look->bfd_section,
1748 sec->owner, sec))
1749 continue;
1750 }
1751 differ = look_flags ^ sec_flags;
1752 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1753 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1754 found = look;
1755 }
1756 }
1757 else if ((sec_flags & SEC_ALLOC) != 0)
1758 {
1759 /* .bss goes after any other alloc section. */
1760 for (look = first; look; look = look->next)
1761 {
1762 look_flags = look->flags;
1763 if (look->bfd_section != NULL)
1764 {
1765 look_flags = look->bfd_section->flags;
1766 if (match_type && !match_type (link_info.output_bfd,
1767 look->bfd_section,
1768 sec->owner, sec))
1769 continue;
1770 }
1771 differ = look_flags ^ sec_flags;
1772 if (!(differ & SEC_ALLOC))
1773 found = look;
1774 }
1775 }
1776 else
1777 {
1778 /* non-alloc go last. */
1779 for (look = first; look; look = look->next)
1780 {
1781 look_flags = look->flags;
1782 if (look->bfd_section != NULL)
1783 look_flags = look->bfd_section->flags;
1784 differ = look_flags ^ sec_flags;
1785 if (!(differ & SEC_DEBUGGING))
1786 found = look;
1787 }
1788 return found;
1789 }
1790
1791 if (found || !match_type)
1792 return found;
1793
1794 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1795 }
1796
1797 /* Find the last output section before given output statement.
1798 Used by place_orphan. */
1799
1800 static asection *
1801 output_prev_sec_find (lang_output_section_statement_type *os)
1802 {
1803 lang_output_section_statement_type *lookup;
1804
1805 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1806 {
1807 if (lookup->constraint < 0)
1808 continue;
1809
1810 if (lookup->bfd_section != NULL)
1811 return lookup->bfd_section;
1812 }
1813
1814 return NULL;
1815 }
1816
1817 /* Look for a suitable place for a new output section statement. The
1818 idea is to skip over anything that might be inside a SECTIONS {}
1819 statement in a script, before we find another output section
1820 statement. Assignments to "dot" before an output section statement
1821 are assumed to belong to it, except in two cases; The first
1822 assignment to dot, and assignments before non-alloc sections.
1823 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1824 similar assignments that set the initial address, or we might
1825 insert non-alloc note sections among assignments setting end of
1826 image symbols. */
1827
1828 static lang_statement_union_type **
1829 insert_os_after (lang_statement_union_type *after)
1830 {
1831 lang_statement_union_type **where;
1832 lang_statement_union_type **assign = NULL;
1833 bool ignore_first;
1834
1835 ignore_first = after == lang_os_list.head;
1836
1837 for (where = &after->header.next;
1838 *where != NULL;
1839 where = &(*where)->header.next)
1840 {
1841 switch ((*where)->header.type)
1842 {
1843 case lang_assignment_statement_enum:
1844 if (assign == NULL)
1845 {
1846 lang_assignment_statement_type *ass;
1847
1848 ass = &(*where)->assignment_statement;
1849 if (ass->exp->type.node_class != etree_assert
1850 && ass->exp->assign.dst[0] == '.'
1851 && ass->exp->assign.dst[1] == 0)
1852 {
1853 if (!ignore_first)
1854 assign = where;
1855 ignore_first = false;
1856 }
1857 }
1858 continue;
1859 case lang_wild_statement_enum:
1860 case lang_input_section_enum:
1861 case lang_object_symbols_statement_enum:
1862 case lang_fill_statement_enum:
1863 case lang_data_statement_enum:
1864 case lang_reloc_statement_enum:
1865 case lang_padding_statement_enum:
1866 case lang_constructors_statement_enum:
1867 assign = NULL;
1868 ignore_first = false;
1869 continue;
1870 case lang_output_section_statement_enum:
1871 if (assign != NULL)
1872 {
1873 asection *s = (*where)->output_section_statement.bfd_section;
1874
1875 if (s == NULL
1876 || s->map_head.s == NULL
1877 || (s->flags & SEC_ALLOC) != 0)
1878 where = assign;
1879 }
1880 break;
1881 case lang_input_statement_enum:
1882 case lang_address_statement_enum:
1883 case lang_target_statement_enum:
1884 case lang_output_statement_enum:
1885 case lang_group_statement_enum:
1886 case lang_insert_statement_enum:
1887 continue;
1888 case lang_input_matcher_enum:
1889 FAIL ();
1890 }
1891 break;
1892 }
1893
1894 return where;
1895 }
1896
1897 lang_output_section_statement_type *
1898 lang_insert_orphan (asection *s,
1899 const char *secname,
1900 int constraint,
1901 lang_output_section_statement_type *after,
1902 struct orphan_save *place,
1903 etree_type *address,
1904 lang_statement_list_type *add_child)
1905 {
1906 lang_statement_list_type add;
1907 lang_output_section_statement_type *os;
1908 lang_output_section_statement_type **os_tail;
1909
1910 /* If we have found an appropriate place for the output section
1911 statements for this orphan, add them to our own private list,
1912 inserting them later into the global statement list. */
1913 if (after != NULL)
1914 {
1915 lang_list_init (&add);
1916 push_stat_ptr (&add);
1917 }
1918
1919 if (bfd_link_relocatable (&link_info)
1920 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1921 address = exp_intop (0);
1922
1923 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1924 os = lang_enter_output_section_statement (
1925 secname, address, normal_section, 0, NULL, NULL, NULL, constraint, 0);
1926
1927 if (add_child == NULL)
1928 add_child = &os->children;
1929 lang_add_section (add_child, s, NULL, NULL, os);
1930
1931 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1932 {
1933 const char *region = (after->region
1934 ? after->region->name_list.name
1935 : DEFAULT_MEMORY_REGION);
1936 const char *lma_region = (after->lma_region
1937 ? after->lma_region->name_list.name
1938 : NULL);
1939 lang_leave_output_section_statement (NULL, region, after->phdrs,
1940 lma_region);
1941 }
1942 else
1943 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1944 NULL);
1945
1946 /* Restore the global list pointer. */
1947 if (after != NULL)
1948 pop_stat_ptr ();
1949
1950 if (after != NULL && os->bfd_section != NULL)
1951 {
1952 asection *snew, *as;
1953 bool place_after = place->stmt == NULL;
1954 bool insert_after = true;
1955
1956 snew = os->bfd_section;
1957
1958 /* Shuffle the bfd section list to make the output file look
1959 neater. This is really only cosmetic. */
1960 if (place->section == NULL
1961 && after != (void *) lang_os_list.head)
1962 {
1963 asection *bfd_section = after->bfd_section;
1964
1965 /* If the output statement hasn't been used to place any input
1966 sections (and thus doesn't have an output bfd_section),
1967 look for the closest prior output statement having an
1968 output section. */
1969 if (bfd_section == NULL)
1970 bfd_section = output_prev_sec_find (after);
1971
1972 if (bfd_section != NULL
1973 && bfd_section->owner != NULL
1974 && bfd_section != snew)
1975 place->section = &bfd_section->next;
1976 }
1977
1978 if (place->section == NULL)
1979 place->section = &link_info.output_bfd->sections;
1980
1981 as = *place->section;
1982
1983 if (!as)
1984 {
1985 /* Put the section at the end of the list. */
1986
1987 /* Unlink the section. */
1988 bfd_section_list_remove (link_info.output_bfd, snew);
1989
1990 /* Now tack it back on in the right place. */
1991 bfd_section_list_append (link_info.output_bfd, snew);
1992 }
1993 else if ((bfd_get_flavour (link_info.output_bfd)
1994 == bfd_target_elf_flavour)
1995 && (bfd_get_flavour (s->owner)
1996 == bfd_target_elf_flavour)
1997 && ((elf_section_type (s) == SHT_NOTE
1998 && (s->flags & SEC_LOAD) != 0)
1999 || (elf_section_type (as) == SHT_NOTE
2000 && (as->flags & SEC_LOAD) != 0)))
2001 {
2002 /* Make sure that output note sections are grouped and sorted
2003 by alignments when inserting a note section or insert a
2004 section after a note section, */
2005 asection *sec;
2006 /* A specific section after which the output note section
2007 should be placed. */
2008 asection *after_sec;
2009 /* True if we need to insert the orphan section after a
2010 specific section to maintain output note section order. */
2011 bool after_sec_note = false;
2012
2013 static asection *first_orphan_note = NULL;
2014
2015 /* Group and sort output note section by alignments in
2016 ascending order. */
2017 after_sec = NULL;
2018 if (elf_section_type (s) == SHT_NOTE
2019 && (s->flags & SEC_LOAD) != 0)
2020 {
2021 /* Search from the beginning for the last output note
2022 section with equal or larger alignments. NB: Don't
2023 place orphan note section after non-note sections. */
2024
2025 first_orphan_note = NULL;
2026 for (sec = link_info.output_bfd->sections;
2027 (sec != NULL
2028 && !bfd_is_abs_section (sec));
2029 sec = sec->next)
2030 if (sec != snew
2031 && elf_section_type (sec) == SHT_NOTE
2032 && (sec->flags & SEC_LOAD) != 0)
2033 {
2034 if (!first_orphan_note)
2035 first_orphan_note = sec;
2036 if (sec->alignment_power >= s->alignment_power)
2037 after_sec = sec;
2038 }
2039 else if (first_orphan_note)
2040 {
2041 /* Stop if there is non-note section after the first
2042 orphan note section. */
2043 break;
2044 }
2045
2046 /* If this will be the first orphan note section, it can
2047 be placed at the default location. */
2048 after_sec_note = first_orphan_note != NULL;
2049 if (after_sec == NULL && after_sec_note)
2050 {
2051 /* If all output note sections have smaller
2052 alignments, place the section before all
2053 output orphan note sections. */
2054 after_sec = first_orphan_note;
2055 insert_after = false;
2056 }
2057 }
2058 else if (first_orphan_note)
2059 {
2060 /* Don't place non-note sections in the middle of orphan
2061 note sections. */
2062 after_sec_note = true;
2063 after_sec = as;
2064 for (sec = as->next;
2065 (sec != NULL
2066 && !bfd_is_abs_section (sec));
2067 sec = sec->next)
2068 if (elf_section_type (sec) == SHT_NOTE
2069 && (sec->flags & SEC_LOAD) != 0)
2070 after_sec = sec;
2071 }
2072
2073 if (after_sec_note)
2074 {
2075 if (after_sec)
2076 {
2077 /* Search forward to insert OS after AFTER_SEC output
2078 statement. */
2079 lang_output_section_statement_type *stmt, *next;
2080 bool found = false;
2081 for (stmt = after; stmt != NULL; stmt = next)
2082 {
2083 next = stmt->next;
2084 if (insert_after)
2085 {
2086 if (stmt->bfd_section == after_sec)
2087 {
2088 place_after = true;
2089 found = true;
2090 after = stmt;
2091 break;
2092 }
2093 }
2094 else
2095 {
2096 /* If INSERT_AFTER is FALSE, place OS before
2097 AFTER_SEC output statement. */
2098 if (next && next->bfd_section == after_sec)
2099 {
2100 place_after = true;
2101 found = true;
2102 after = stmt;
2103 break;
2104 }
2105 }
2106 }
2107
2108 /* Search backward to insert OS after AFTER_SEC output
2109 statement. */
2110 if (!found)
2111 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2112 {
2113 if (insert_after)
2114 {
2115 if (stmt->bfd_section == after_sec)
2116 {
2117 place_after = true;
2118 after = stmt;
2119 break;
2120 }
2121 }
2122 else
2123 {
2124 /* If INSERT_AFTER is FALSE, place OS before
2125 AFTER_SEC output statement. */
2126 if (stmt->next->bfd_section == after_sec)
2127 {
2128 place_after = true;
2129 after = stmt;
2130 break;
2131 }
2132 }
2133 }
2134 }
2135
2136 if (after_sec == NULL
2137 || (insert_after && after_sec->next != snew)
2138 || (!insert_after && after_sec->prev != snew))
2139 {
2140 /* Unlink the section. */
2141 bfd_section_list_remove (link_info.output_bfd, snew);
2142
2143 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2144 prepend SNEW. */
2145 if (after_sec)
2146 {
2147 if (insert_after)
2148 bfd_section_list_insert_after (link_info.output_bfd,
2149 after_sec, snew);
2150 else
2151 bfd_section_list_insert_before (link_info.output_bfd,
2152 after_sec, snew);
2153 }
2154 else
2155 bfd_section_list_prepend (link_info.output_bfd, snew);
2156 }
2157 }
2158 else if (as != snew && as->prev != snew)
2159 {
2160 /* Unlink the section. */
2161 bfd_section_list_remove (link_info.output_bfd, snew);
2162
2163 /* Now tack it back on in the right place. */
2164 bfd_section_list_insert_before (link_info.output_bfd,
2165 as, snew);
2166 }
2167 }
2168 else if (as != snew && as->prev != snew)
2169 {
2170 /* Unlink the section. */
2171 bfd_section_list_remove (link_info.output_bfd, snew);
2172
2173 /* Now tack it back on in the right place. */
2174 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2175 }
2176
2177 /* Save the end of this list. Further ophans of this type will
2178 follow the one we've just added. */
2179 place->section = &snew->next;
2180
2181 /* The following is non-cosmetic. We try to put the output
2182 statements in some sort of reasonable order here, because they
2183 determine the final load addresses of the orphan sections.
2184 In addition, placing output statements in the wrong order may
2185 require extra segments. For instance, given a typical
2186 situation of all read-only sections placed in one segment and
2187 following that a segment containing all the read-write
2188 sections, we wouldn't want to place an orphan read/write
2189 section before or amongst the read-only ones. */
2190 if (add.head != NULL)
2191 {
2192 lang_output_section_statement_type *newly_added_os;
2193
2194 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2195 if (place_after)
2196 {
2197 lang_statement_union_type **where;
2198
2199 where = insert_os_after ((lang_statement_union_type *) after);
2200 *add.tail = *where;
2201 *where = add.head;
2202
2203 place->os_tail = &after->next;
2204 }
2205 else
2206 {
2207 /* Put it after the last orphan statement we added. */
2208 *add.tail = *place->stmt;
2209 *place->stmt = add.head;
2210 }
2211
2212 /* Fix the global list pointer if we happened to tack our
2213 new list at the tail. */
2214 if (*stat_ptr->tail == add.head)
2215 stat_ptr->tail = add.tail;
2216
2217 /* Save the end of this list. */
2218 place->stmt = add.tail;
2219
2220 /* Do the same for the list of output section statements. */
2221 newly_added_os = *os_tail;
2222 *os_tail = NULL;
2223 newly_added_os->prev = (lang_output_section_statement_type *)
2224 ((char *) place->os_tail
2225 - offsetof (lang_output_section_statement_type, next));
2226 newly_added_os->next = *place->os_tail;
2227 if (newly_added_os->next != NULL)
2228 newly_added_os->next->prev = newly_added_os;
2229 *place->os_tail = newly_added_os;
2230 place->os_tail = &newly_added_os->next;
2231
2232 /* Fixing the global list pointer here is a little different.
2233 We added to the list in lang_enter_output_section_statement,
2234 trimmed off the new output_section_statment above when
2235 assigning *os_tail = NULL, but possibly added it back in
2236 the same place when assigning *place->os_tail. */
2237 if (*os_tail == NULL)
2238 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2239 }
2240 }
2241 return os;
2242 }
2243
2244 static void
2245 lang_print_asneeded (void)
2246 {
2247 struct asneeded_minfo *m;
2248
2249 if (asneeded_list_head == NULL)
2250 return;
2251
2252 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2253
2254 for (m = asneeded_list_head; m != NULL; m = m->next)
2255 {
2256 int len;
2257
2258 minfo ("%s", m->soname);
2259 len = strlen (m->soname);
2260
2261 if (len >= 29)
2262 {
2263 print_nl ();
2264 len = 0;
2265 }
2266 print_spaces (30 - len);
2267
2268 if (m->ref != NULL)
2269 minfo ("%pB ", m->ref);
2270 minfo ("(%pT)\n", m->name);
2271 }
2272 }
2273
2274 static void
2275 lang_map_flags (flagword flag)
2276 {
2277 if (flag & SEC_ALLOC)
2278 minfo ("a");
2279
2280 if (flag & SEC_CODE)
2281 minfo ("x");
2282
2283 if (flag & SEC_READONLY)
2284 minfo ("r");
2285
2286 if (flag & SEC_DATA)
2287 minfo ("w");
2288
2289 if (flag & SEC_LOAD)
2290 minfo ("l");
2291 }
2292
2293 void
2294 lang_map (void)
2295 {
2296 lang_memory_region_type *m;
2297 bool dis_header_printed = false;
2298
2299 ldfile_print_input_remaps ();
2300
2301 LANG_FOR_EACH_INPUT_STATEMENT (file)
2302 {
2303 asection *s;
2304
2305 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2306 || file->flags.just_syms)
2307 continue;
2308
2309 if (config.print_map_discarded)
2310 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2311 if ((s->output_section == NULL
2312 || s->output_section->owner != link_info.output_bfd)
2313 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2314 {
2315 if (! dis_header_printed)
2316 {
2317 minfo (_("\nDiscarded input sections\n\n"));
2318 dis_header_printed = true;
2319 }
2320
2321 print_input_section (s, true);
2322 }
2323 }
2324 if (config.print_map_discarded && ! dis_header_printed)
2325 minfo (_("\nThere are no discarded input sections\n"));
2326
2327 minfo (_("\nMemory Configuration\n\n"));
2328 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2329 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2330
2331 for (m = lang_memory_region_list; m != NULL; m = m->next)
2332 {
2333 fprintf (config.map_file, "%-16s", m->name_list.name);
2334
2335 char buf[32];
2336 bfd_sprintf_vma (link_info.output_bfd, buf, m->origin);
2337 fprintf (config.map_file, " 0x%-16s", buf);
2338 bfd_sprintf_vma (link_info.output_bfd, buf, m->length);
2339 fprintf (config.map_file,
2340 " 0x%*s", m->flags || m->not_flags ? -17 : 0, buf);
2341 if (m->flags)
2342 lang_map_flags (m->flags);
2343
2344 if (m->not_flags)
2345 {
2346 minfo ("!");
2347 lang_map_flags (m->not_flags);
2348 }
2349
2350 print_nl ();
2351 }
2352
2353 minfo (_("\nLinker script and memory map\n\n"));
2354
2355 if (!link_info.reduce_memory_overheads)
2356 {
2357 obstack_begin (&map_obstack, 1000);
2358 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2359 }
2360 expld.phase = lang_fixed_phase_enum;
2361 lang_statement_iteration++;
2362 print_statements ();
2363
2364 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2365 config.map_file);
2366 }
2367
2368 static bool
2369 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2370 void *info ATTRIBUTE_UNUSED)
2371 {
2372 if ((hash_entry->type == bfd_link_hash_defined
2373 || hash_entry->type == bfd_link_hash_defweak)
2374 && hash_entry->u.def.section->owner != link_info.output_bfd
2375 && hash_entry->u.def.section->owner != NULL)
2376 {
2377 input_section_userdata_type *ud;
2378 struct map_symbol_def *def;
2379
2380 ud = bfd_section_userdata (hash_entry->u.def.section);
2381 if (!ud)
2382 {
2383 ud = stat_alloc (sizeof (*ud));
2384 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2385 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2386 ud->map_symbol_def_count = 0;
2387 }
2388 else if (!ud->map_symbol_def_tail)
2389 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2390
2391 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2392 def->entry = hash_entry;
2393 *(ud->map_symbol_def_tail) = def;
2394 ud->map_symbol_def_tail = &def->next;
2395 ud->map_symbol_def_count++;
2396 }
2397 return true;
2398 }
2399
2400 /* Initialize an output section. */
2401
2402 static void
2403 init_os (lang_output_section_statement_type *s, flagword flags)
2404 {
2405 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2406 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2407
2408 if (!s->dup_output)
2409 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2410 if (s->bfd_section == NULL)
2411 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2412 s->name, flags);
2413 if (s->bfd_section == NULL)
2414 {
2415 einfo (_("%F%P: output format %s cannot represent section"
2416 " called %s: %E\n"),
2417 link_info.output_bfd->xvec->name, s->name);
2418 }
2419 s->bfd_section->output_section = s->bfd_section;
2420 s->bfd_section->output_offset = 0;
2421
2422 /* Set the userdata of the output section to the output section
2423 statement to avoid lookup. */
2424 bfd_set_section_userdata (s->bfd_section, s);
2425
2426 /* If there is a base address, make sure that any sections it might
2427 mention are initialized. */
2428 if (s->addr_tree != NULL)
2429 exp_init_os (s->addr_tree);
2430
2431 if (s->load_base != NULL)
2432 exp_init_os (s->load_base);
2433
2434 /* If supplied an alignment, set it. */
2435 if (s->section_alignment != NULL)
2436 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2437 "section alignment");
2438 }
2439
2440 /* Make sure that all output sections mentioned in an expression are
2441 initialized. */
2442
2443 static void
2444 exp_init_os (etree_type *exp)
2445 {
2446 switch (exp->type.node_class)
2447 {
2448 case etree_assign:
2449 case etree_provide:
2450 case etree_provided:
2451 exp_init_os (exp->assign.src);
2452 break;
2453
2454 case etree_binary:
2455 exp_init_os (exp->binary.lhs);
2456 exp_init_os (exp->binary.rhs);
2457 break;
2458
2459 case etree_trinary:
2460 exp_init_os (exp->trinary.cond);
2461 exp_init_os (exp->trinary.lhs);
2462 exp_init_os (exp->trinary.rhs);
2463 break;
2464
2465 case etree_assert:
2466 exp_init_os (exp->assert_s.child);
2467 break;
2468
2469 case etree_unary:
2470 exp_init_os (exp->unary.child);
2471 break;
2472
2473 case etree_name:
2474 switch (exp->type.node_code)
2475 {
2476 case ADDR:
2477 case LOADADDR:
2478 {
2479 lang_output_section_statement_type *os;
2480
2481 os = lang_output_section_find (exp->name.name);
2482 if (os != NULL && os->bfd_section == NULL)
2483 init_os (os, 0);
2484 }
2485 }
2486 break;
2487
2488 default:
2489 break;
2490 }
2491 }
2492 \f
2493 static void
2494 section_already_linked (bfd *abfd, asection *sec, void *data)
2495 {
2496 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2497
2498 /* If we are only reading symbols from this object, then we want to
2499 discard all sections. */
2500 if (entry->flags.just_syms)
2501 {
2502 bfd_link_just_syms (abfd, sec, &link_info);
2503 return;
2504 }
2505
2506 /* Deal with SHF_EXCLUDE ELF sections. */
2507 if (!bfd_link_relocatable (&link_info)
2508 && (abfd->flags & BFD_PLUGIN) == 0
2509 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2510 sec->output_section = bfd_abs_section_ptr;
2511
2512 if (!(abfd->flags & DYNAMIC))
2513 bfd_section_already_linked (abfd, sec, &link_info);
2514 }
2515 \f
2516
2517 /* Returns true if SECTION is one we know will be discarded based on its
2518 section flags, otherwise returns false. */
2519
2520 static bool
2521 lang_discard_section_p (asection *section)
2522 {
2523 bool discard;
2524 flagword flags = section->flags;
2525
2526 /* Discard sections marked with SEC_EXCLUDE. */
2527 discard = (flags & SEC_EXCLUDE) != 0;
2528
2529 /* Discard the group descriptor sections when we're finally placing the
2530 sections from within the group. */
2531 if ((flags & SEC_GROUP) != 0
2532 && link_info.resolve_section_groups)
2533 discard = true;
2534
2535 /* Discard debugging sections if we are stripping debugging
2536 information. */
2537 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2538 && (flags & SEC_DEBUGGING) != 0)
2539 discard = true;
2540
2541 return discard;
2542 }
2543
2544 /* Return TRUE if SECTION is never going to be added to output statement
2545 OUTPUT. lang_add_section() definitely won't do anything with SECTION
2546 if this returns TRUE. It may do something (or not) if this returns FALSE.
2547
2548 Can be used as early-out to filter matches. This may set
2549 output_section of SECTION, if it was unset, to the abs section in case
2550 we discover SECTION to be always discarded. This may also give
2551 warning messages. */
2552
2553 static bool
2554 wont_add_section_p (asection *section,
2555 lang_output_section_statement_type *output)
2556 {
2557 bool discard;
2558
2559 /* Is this section one we know should be discarded? */
2560 discard = lang_discard_section_p (section);
2561
2562 /* Discard input sections which are assigned to a section named
2563 DISCARD_SECTION_NAME. */
2564 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2565 discard = true;
2566
2567 if (discard)
2568 {
2569 if (section->output_section == NULL)
2570 {
2571 /* This prevents future calls from assigning this section or
2572 warning about it again. */
2573 section->output_section = bfd_abs_section_ptr;
2574 }
2575 else if (bfd_is_abs_section (section->output_section))
2576 ;
2577 else if (link_info.non_contiguous_regions_warnings)
2578 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2579 "section `%pA' from `%pB' match /DISCARD/ clause.\n"),
2580 NULL, section, section->owner);
2581
2582 return true;
2583 }
2584
2585 if (section->output_section != NULL)
2586 {
2587 if (!link_info.non_contiguous_regions)
2588 return true;
2589
2590 /* SECTION has already been handled in a special way
2591 (eg. LINK_ONCE): skip it. */
2592 if (bfd_is_abs_section (section->output_section))
2593 return true;
2594
2595 /* Already assigned to the same output section, do not process
2596 it again, to avoid creating loops between duplicate sections
2597 later. */
2598 if (section->output_section == output->bfd_section)
2599 return true;
2600
2601 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2602 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2603 "change behaviour for section `%pA' from `%pB' (assigned to "
2604 "%pA, but additional match: %pA)\n"),
2605 NULL, section, section->owner, section->output_section,
2606 output->bfd_section);
2607
2608 /* SECTION has already been assigned to an output section, but
2609 the user allows it to be mapped to another one in case it
2610 overflows. We'll later update the actual output section in
2611 size_input_section as appropriate. */
2612 }
2613
2614 return false;
2615 }
2616
2617 /* The wild routines.
2618
2619 These expand statements like *(.text) and foo.o to a list of
2620 explicit actions, like foo.o(.text), bar.o(.text) and
2621 foo.o(.text, .data). */
2622
2623 /* Add SECTION to the output section OUTPUT. Do this by creating a
2624 lang_input_section statement which is placed at PTR. */
2625
2626 void
2627 lang_add_section (lang_statement_list_type *ptr,
2628 asection *section,
2629 struct wildcard_list *pattern,
2630 struct flag_info *sflag_info,
2631 lang_output_section_statement_type *output)
2632 {
2633 flagword flags = section->flags;
2634
2635 lang_input_section_type *new_section;
2636 bfd *abfd = link_info.output_bfd;
2637
2638 if (wont_add_section_p (section, output))
2639 return;
2640
2641 if (sflag_info)
2642 {
2643 bool keep;
2644
2645 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2646 if (!keep)
2647 return;
2648 }
2649
2650 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2651 to an output section, because we want to be able to include a
2652 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2653 section (I don't know why we want to do this, but we do).
2654 build_link_order in ldwrite.c handles this case by turning
2655 the embedded SEC_NEVER_LOAD section into a fill. */
2656 flags &= ~ SEC_NEVER_LOAD;
2657
2658 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2659 already been processed. One reason to do this is that on pe
2660 format targets, .text$foo sections go into .text and it's odd
2661 to see .text with SEC_LINK_ONCE set. */
2662 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2663 {
2664 if (link_info.resolve_section_groups)
2665 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2666 else
2667 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2668 }
2669 else if (!bfd_link_relocatable (&link_info))
2670 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2671
2672 switch (output->sectype)
2673 {
2674 case normal_section:
2675 case overlay_section:
2676 case first_overlay_section:
2677 case type_section:
2678 break;
2679 case noalloc_section:
2680 flags &= ~SEC_ALLOC;
2681 break;
2682 case typed_readonly_section:
2683 case readonly_section:
2684 flags |= SEC_READONLY;
2685 break;
2686 case noload_section:
2687 flags &= ~SEC_LOAD;
2688 flags |= SEC_NEVER_LOAD;
2689 /* Unfortunately GNU ld has managed to evolve two different
2690 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2691 alloc, no contents section. All others get a noload, noalloc
2692 section. */
2693 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2694 flags &= ~SEC_HAS_CONTENTS;
2695 else
2696 flags &= ~SEC_ALLOC;
2697 break;
2698 }
2699
2700 if (output->bfd_section == NULL)
2701 init_os (output, flags);
2702
2703 /* If SEC_READONLY is not set in the input section, then clear
2704 it from the output section. */
2705 output->bfd_section->flags &= flags | ~SEC_READONLY;
2706
2707 if (output->bfd_section->linker_has_input)
2708 {
2709 /* Only set SEC_READONLY flag on the first input section. */
2710 flags &= ~ SEC_READONLY;
2711
2712 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2713 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2714 != (flags & (SEC_MERGE | SEC_STRINGS))
2715 || ((flags & SEC_MERGE) != 0
2716 && output->bfd_section->entsize != section->entsize))
2717 {
2718 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2719 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2720 }
2721 }
2722 output->bfd_section->flags |= flags;
2723
2724 if (!output->bfd_section->linker_has_input)
2725 {
2726 output->bfd_section->linker_has_input = 1;
2727 /* This must happen after flags have been updated. The output
2728 section may have been created before we saw its first input
2729 section, eg. for a data statement. */
2730 bfd_init_private_section_data (section->owner, section,
2731 link_info.output_bfd,
2732 output->bfd_section,
2733 &link_info);
2734 if ((flags & SEC_MERGE) != 0)
2735 output->bfd_section->entsize = section->entsize;
2736 }
2737
2738 if ((flags & SEC_TIC54X_BLOCK) != 0
2739 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2740 {
2741 /* FIXME: This value should really be obtained from the bfd... */
2742 output->block_value = 128;
2743 }
2744
2745 /* When a .ctors section is placed in .init_array it must be copied
2746 in reverse order. Similarly for .dtors. Set that up. */
2747 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
2748 && ((startswith (section->name, ".ctors")
2749 && strcmp (output->bfd_section->name, ".init_array") == 0)
2750 || (startswith (section->name, ".dtors")
2751 && strcmp (output->bfd_section->name, ".fini_array") == 0))
2752 && (section->name[6] == 0 || section->name[6] == '.'))
2753 section->flags |= SEC_ELF_REVERSE_COPY;
2754
2755 if (section->alignment_power > output->bfd_section->alignment_power)
2756 output->bfd_section->alignment_power = section->alignment_power;
2757
2758 section->output_section = output->bfd_section;
2759
2760 if (!map_head_is_link_order)
2761 {
2762 asection *s = output->bfd_section->map_tail.s;
2763 output->bfd_section->map_tail.s = section;
2764 section->map_head.s = NULL;
2765 section->map_tail.s = s;
2766 if (s != NULL)
2767 s->map_head.s = section;
2768 else
2769 output->bfd_section->map_head.s = section;
2770 }
2771
2772 /* Add a section reference to the list. */
2773 new_section = new_stat (lang_input_section, ptr);
2774 new_section->section = section;
2775 new_section->pattern = pattern;
2776 }
2777
2778 /* Expand a wild statement for a particular FILE. SECTION may be
2779 NULL, in which case it is a wild card. This assumes that the
2780 wild statement doesn't need any sorting (of filenames or sections). */
2781
2782 static void
2783 output_section_callback_nosort (lang_wild_statement_type *ptr,
2784 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2785 asection *section,
2786 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2787 void *output)
2788 {
2789 lang_output_section_statement_type *os;
2790
2791 os = (lang_output_section_statement_type *) output;
2792
2793 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2794 if (unique_section_p (section, os))
2795 return;
2796
2797 lang_add_section (&ptr->children, section, ptr->section_list,
2798 ptr->section_flag_list, os);
2799 }
2800
2801 /* Check if all sections in a wild statement for a particular FILE
2802 are readonly. */
2803
2804 static void
2805 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2806 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2807 asection *section,
2808 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2809 void *output)
2810 {
2811 lang_output_section_statement_type *os;
2812
2813 os = (lang_output_section_statement_type *) output;
2814
2815 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2816 if (unique_section_p (section, os))
2817 return;
2818
2819 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2820 os->all_input_readonly = false;
2821 }
2822
2823 /* This is passed a file name which must have been seen already and
2824 added to the statement tree. We will see if it has been opened
2825 already and had its symbols read. If not then we'll read it. */
2826
2827 static lang_input_statement_type *
2828 lookup_name (const char *name)
2829 {
2830 lang_input_statement_type *search;
2831
2832 for (search = (void *) input_file_chain.head;
2833 search != NULL;
2834 search = search->next_real_file)
2835 {
2836 /* Use the local_sym_name as the name of the file that has
2837 already been loaded as filename might have been transformed
2838 via the search directory lookup mechanism. */
2839 const char *filename = search->local_sym_name;
2840
2841 if (filename != NULL
2842 && filename_cmp (filename, name) == 0)
2843 break;
2844 }
2845
2846 if (search == NULL)
2847 {
2848 /* Arrange to splice the input statement added by new_afile into
2849 statement_list after the current input_file_chain tail.
2850 We know input_file_chain is not an empty list, and that
2851 lookup_name was called via open_input_bfds. Later calls to
2852 lookup_name should always match an existing input_statement. */
2853 lang_statement_union_type **tail = stat_ptr->tail;
2854 lang_statement_union_type **after
2855 = (void *) ((char *) input_file_chain.tail
2856 - offsetof (lang_input_statement_type, next_real_file)
2857 + offsetof (lang_input_statement_type, header.next));
2858 lang_statement_union_type *rest = *after;
2859 stat_ptr->tail = after;
2860 search = new_afile (name, lang_input_file_is_search_file_enum,
2861 default_target, NULL);
2862 *stat_ptr->tail = rest;
2863 if (*tail == NULL)
2864 stat_ptr->tail = tail;
2865 }
2866
2867 /* If we have already added this file, or this file is not real
2868 don't add this file. */
2869 if (search->flags.loaded || !search->flags.real)
2870 return search;
2871
2872 if (!load_symbols (search, NULL))
2873 return NULL;
2874
2875 return search;
2876 }
2877
2878 /* Save LIST as a list of libraries whose symbols should not be exported. */
2879
2880 struct excluded_lib
2881 {
2882 char *name;
2883 struct excluded_lib *next;
2884 };
2885 static struct excluded_lib *excluded_libs;
2886
2887 void
2888 add_excluded_libs (const char *list)
2889 {
2890 const char *p = list, *end;
2891
2892 while (*p != '\0')
2893 {
2894 struct excluded_lib *entry;
2895 end = strpbrk (p, ",:");
2896 if (end == NULL)
2897 end = p + strlen (p);
2898 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2899 entry->next = excluded_libs;
2900 entry->name = (char *) xmalloc (end - p + 1);
2901 memcpy (entry->name, p, end - p);
2902 entry->name[end - p] = '\0';
2903 excluded_libs = entry;
2904 if (*end == '\0')
2905 break;
2906 p = end + 1;
2907 }
2908 }
2909
2910 static void
2911 check_excluded_libs (bfd *abfd)
2912 {
2913 struct excluded_lib *lib = excluded_libs;
2914
2915 while (lib)
2916 {
2917 int len = strlen (lib->name);
2918 const char *filename = lbasename (bfd_get_filename (abfd));
2919
2920 if (strcmp (lib->name, "ALL") == 0)
2921 {
2922 abfd->no_export = true;
2923 return;
2924 }
2925
2926 if (filename_ncmp (lib->name, filename, len) == 0
2927 && (filename[len] == '\0'
2928 || (filename[len] == '.' && filename[len + 1] == 'a'
2929 && filename[len + 2] == '\0')))
2930 {
2931 abfd->no_export = true;
2932 return;
2933 }
2934
2935 lib = lib->next;
2936 }
2937 }
2938
2939 /* Get the symbols for an input file. */
2940
2941 bool
2942 load_symbols (lang_input_statement_type *entry,
2943 lang_statement_list_type *place)
2944 {
2945 char **matching;
2946
2947 if (entry->flags.loaded)
2948 return true;
2949
2950 ldfile_open_file (entry);
2951
2952 /* Do not process further if the file was missing. */
2953 if (entry->flags.missing_file)
2954 return true;
2955
2956 if (trace_files || verbose)
2957 info_msg ("%pI\n", entry);
2958
2959 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2960 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2961 {
2962 bfd_error_type err;
2963 struct lang_input_statement_flags save_flags;
2964 extern FILE *yyin;
2965
2966 err = bfd_get_error ();
2967
2968 /* See if the emulation has some special knowledge. */
2969 if (ldemul_unrecognized_file (entry))
2970 {
2971 if (err == bfd_error_file_ambiguously_recognized)
2972 free (matching);
2973 return true;
2974 }
2975
2976 if (err == bfd_error_file_ambiguously_recognized)
2977 {
2978 char **p;
2979
2980 einfo (_("%P: %pB: file not recognized: %E;"
2981 " matching formats:"), entry->the_bfd);
2982 for (p = matching; *p != NULL; p++)
2983 einfo (" %s", *p);
2984 free (matching);
2985 einfo ("%F\n");
2986 }
2987 else if (err != bfd_error_file_not_recognized
2988 || place == NULL)
2989 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
2990
2991 bfd_close (entry->the_bfd);
2992 entry->the_bfd = NULL;
2993
2994 /* Try to interpret the file as a linker script. */
2995 save_flags = input_flags;
2996 ldfile_open_command_file (entry->filename);
2997
2998 push_stat_ptr (place);
2999 input_flags.add_DT_NEEDED_for_regular
3000 = entry->flags.add_DT_NEEDED_for_regular;
3001 input_flags.add_DT_NEEDED_for_dynamic
3002 = entry->flags.add_DT_NEEDED_for_dynamic;
3003 input_flags.whole_archive = entry->flags.whole_archive;
3004 input_flags.dynamic = entry->flags.dynamic;
3005
3006 ldfile_assumed_script = true;
3007 parser_input = input_script;
3008 current_input_file = entry->filename;
3009 yyparse ();
3010 current_input_file = NULL;
3011 ldfile_assumed_script = false;
3012
3013 /* missing_file is sticky. sysrooted will already have been
3014 restored when seeing EOF in yyparse, but no harm to restore
3015 again. */
3016 save_flags.missing_file |= input_flags.missing_file;
3017 input_flags = save_flags;
3018 pop_stat_ptr ();
3019 fclose (yyin);
3020 yyin = NULL;
3021 entry->flags.loaded = true;
3022
3023 return true;
3024 }
3025
3026 if (ldemul_recognized_file (entry))
3027 return true;
3028
3029 /* We don't call ldlang_add_file for an archive. Instead, the
3030 add_symbols entry point will call ldlang_add_file, via the
3031 add_archive_element callback, for each element of the archive
3032 which is used. */
3033 switch (bfd_get_format (entry->the_bfd))
3034 {
3035 default:
3036 break;
3037
3038 case bfd_object:
3039 if (!entry->flags.reload)
3040 ldlang_add_file (entry);
3041 break;
3042
3043 case bfd_archive:
3044 check_excluded_libs (entry->the_bfd);
3045
3046 bfd_set_usrdata (entry->the_bfd, entry);
3047 if (entry->flags.whole_archive)
3048 {
3049 bfd *member = NULL;
3050 bool loaded = true;
3051
3052 for (;;)
3053 {
3054 bfd *subsbfd;
3055 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3056
3057 if (member == NULL)
3058 break;
3059
3060 if (!bfd_check_format (member, bfd_object))
3061 {
3062 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3063 entry->the_bfd, member);
3064 loaded = false;
3065 }
3066
3067 subsbfd = member;
3068 if (!(*link_info.callbacks
3069 ->add_archive_element) (&link_info, member,
3070 "--whole-archive", &subsbfd))
3071 abort ();
3072
3073 /* Potentially, the add_archive_element hook may have set a
3074 substitute BFD for us. */
3075 if (!bfd_link_add_symbols (subsbfd, &link_info))
3076 {
3077 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3078 loaded = false;
3079 }
3080 }
3081
3082 entry->flags.loaded = loaded;
3083 return loaded;
3084 }
3085 break;
3086 }
3087
3088 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3089 entry->flags.loaded = true;
3090 else
3091 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3092
3093 return entry->flags.loaded;
3094 }
3095
3096 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3097 may be NULL, indicating that it is a wildcard. Separate
3098 lang_input_section statements are created for each part of the
3099 expansion; they are added after the wild statement S. OUTPUT is
3100 the output section. */
3101
3102 static void
3103 wild (lang_wild_statement_type *s,
3104 const char *target ATTRIBUTE_UNUSED,
3105 lang_output_section_statement_type *output)
3106 {
3107 struct wildcard_list *sec;
3108
3109 if (s->filenames_sorted || s->any_specs_sorted)
3110 {
3111 lang_section_bst_type *tree;
3112
3113 walk_wild (s, output_section_callback_sort, output);
3114
3115 tree = s->tree;
3116 if (tree)
3117 {
3118 output_section_callback_tree_to_list (s, tree, output);
3119 s->tree = NULL;
3120 s->rightmost = &s->tree;
3121 }
3122 }
3123 else
3124 walk_wild (s, output_section_callback_nosort, output);
3125
3126 if (default_common_section == NULL)
3127 for (sec = s->section_list; sec != NULL; sec = sec->next)
3128 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3129 {
3130 /* Remember the section that common is going to in case we
3131 later get something which doesn't know where to put it. */
3132 default_common_section = output;
3133 break;
3134 }
3135 }
3136
3137 /* Return TRUE iff target is the sought target. */
3138
3139 static int
3140 get_target (const bfd_target *target, void *data)
3141 {
3142 const char *sought = (const char *) data;
3143
3144 return strcmp (target->name, sought) == 0;
3145 }
3146
3147 /* Like strcpy() but convert to lower case as well. */
3148
3149 static void
3150 stricpy (char *dest, const char *src)
3151 {
3152 char c;
3153
3154 while ((c = *src++) != 0)
3155 *dest++ = TOLOWER (c);
3156
3157 *dest = 0;
3158 }
3159
3160 /* Remove the first occurrence of needle (if any) in haystack
3161 from haystack. */
3162
3163 static void
3164 strcut (char *haystack, const char *needle)
3165 {
3166 haystack = strstr (haystack, needle);
3167
3168 if (haystack)
3169 {
3170 char *src;
3171
3172 for (src = haystack + strlen (needle); *src;)
3173 *haystack++ = *src++;
3174
3175 *haystack = 0;
3176 }
3177 }
3178
3179 /* Compare two target format name strings.
3180 Return a value indicating how "similar" they are. */
3181
3182 static int
3183 name_compare (const char *first, const char *second)
3184 {
3185 char *copy1;
3186 char *copy2;
3187 int result;
3188
3189 copy1 = (char *) xmalloc (strlen (first) + 1);
3190 copy2 = (char *) xmalloc (strlen (second) + 1);
3191
3192 /* Convert the names to lower case. */
3193 stricpy (copy1, first);
3194 stricpy (copy2, second);
3195
3196 /* Remove size and endian strings from the name. */
3197 strcut (copy1, "big");
3198 strcut (copy1, "little");
3199 strcut (copy2, "big");
3200 strcut (copy2, "little");
3201
3202 /* Return a value based on how many characters match,
3203 starting from the beginning. If both strings are
3204 the same then return 10 * their length. */
3205 for (result = 0; copy1[result] == copy2[result]; result++)
3206 if (copy1[result] == 0)
3207 {
3208 result *= 10;
3209 break;
3210 }
3211
3212 free (copy1);
3213 free (copy2);
3214
3215 return result;
3216 }
3217
3218 /* Set by closest_target_match() below. */
3219 static const bfd_target *winner;
3220
3221 /* Scan all the valid bfd targets looking for one that has the endianness
3222 requirement that was specified on the command line, and is the nearest
3223 match to the original output target. */
3224
3225 static int
3226 closest_target_match (const bfd_target *target, void *data)
3227 {
3228 const bfd_target *original = (const bfd_target *) data;
3229
3230 if (command_line.endian == ENDIAN_BIG
3231 && target->byteorder != BFD_ENDIAN_BIG)
3232 return 0;
3233
3234 if (command_line.endian == ENDIAN_LITTLE
3235 && target->byteorder != BFD_ENDIAN_LITTLE)
3236 return 0;
3237
3238 /* Must be the same flavour. */
3239 if (target->flavour != original->flavour)
3240 return 0;
3241
3242 /* Ignore generic big and little endian elf vectors. */
3243 if (strcmp (target->name, "elf32-big") == 0
3244 || strcmp (target->name, "elf64-big") == 0
3245 || strcmp (target->name, "elf32-little") == 0
3246 || strcmp (target->name, "elf64-little") == 0)
3247 return 0;
3248
3249 /* If we have not found a potential winner yet, then record this one. */
3250 if (winner == NULL)
3251 {
3252 winner = target;
3253 return 0;
3254 }
3255
3256 /* Oh dear, we now have two potential candidates for a successful match.
3257 Compare their names and choose the better one. */
3258 if (name_compare (target->name, original->name)
3259 > name_compare (winner->name, original->name))
3260 winner = target;
3261
3262 /* Keep on searching until wqe have checked them all. */
3263 return 0;
3264 }
3265
3266 /* Return the BFD target format of the first input file. */
3267
3268 static const char *
3269 get_first_input_target (void)
3270 {
3271 const char *target = NULL;
3272
3273 LANG_FOR_EACH_INPUT_STATEMENT (s)
3274 {
3275 if (s->header.type == lang_input_statement_enum
3276 && s->flags.real)
3277 {
3278 ldfile_open_file (s);
3279
3280 if (s->the_bfd != NULL
3281 && bfd_check_format (s->the_bfd, bfd_object))
3282 {
3283 target = bfd_get_target (s->the_bfd);
3284
3285 if (target != NULL)
3286 break;
3287 }
3288 }
3289 }
3290
3291 return target;
3292 }
3293
3294 const char *
3295 lang_get_output_target (void)
3296 {
3297 const char *target;
3298
3299 /* Has the user told us which output format to use? */
3300 if (output_target != NULL)
3301 return output_target;
3302
3303 /* No - has the current target been set to something other than
3304 the default? */
3305 if (current_target != default_target && current_target != NULL)
3306 return current_target;
3307
3308 /* No - can we determine the format of the first input file? */
3309 target = get_first_input_target ();
3310 if (target != NULL)
3311 return target;
3312
3313 /* Failed - use the default output target. */
3314 return default_target;
3315 }
3316
3317 /* Open the output file. */
3318
3319 static void
3320 open_output (const char *name)
3321 {
3322 lang_input_statement_type *f;
3323 char *out = lrealpath (name);
3324
3325 for (f = (void *) input_file_chain.head;
3326 f != NULL;
3327 f = f->next_real_file)
3328 if (f->flags.real)
3329 {
3330 char *in = lrealpath (f->local_sym_name);
3331 if (filename_cmp (in, out) == 0)
3332 einfo (_("%F%P: input file '%s' is the same as output file\n"),
3333 f->filename);
3334 free (in);
3335 }
3336 free (out);
3337
3338 output_target = lang_get_output_target ();
3339
3340 /* Has the user requested a particular endianness on the command
3341 line? */
3342 if (command_line.endian != ENDIAN_UNSET)
3343 {
3344 /* Get the chosen target. */
3345 const bfd_target *target
3346 = bfd_iterate_over_targets (get_target, (void *) output_target);
3347
3348 /* If the target is not supported, we cannot do anything. */
3349 if (target != NULL)
3350 {
3351 enum bfd_endian desired_endian;
3352
3353 if (command_line.endian == ENDIAN_BIG)
3354 desired_endian = BFD_ENDIAN_BIG;
3355 else
3356 desired_endian = BFD_ENDIAN_LITTLE;
3357
3358 /* See if the target has the wrong endianness. This should
3359 not happen if the linker script has provided big and
3360 little endian alternatives, but some scrips don't do
3361 this. */
3362 if (target->byteorder != desired_endian)
3363 {
3364 /* If it does, then see if the target provides
3365 an alternative with the correct endianness. */
3366 if (target->alternative_target != NULL
3367 && (target->alternative_target->byteorder == desired_endian))
3368 output_target = target->alternative_target->name;
3369 else
3370 {
3371 /* Try to find a target as similar as possible to
3372 the default target, but which has the desired
3373 endian characteristic. */
3374 bfd_iterate_over_targets (closest_target_match,
3375 (void *) target);
3376
3377 /* Oh dear - we could not find any targets that
3378 satisfy our requirements. */
3379 if (winner == NULL)
3380 einfo (_("%P: warning: could not find any targets"
3381 " that match endianness requirement\n"));
3382 else
3383 output_target = winner->name;
3384 }
3385 }
3386 }
3387 }
3388
3389 link_info.output_bfd = bfd_openw (name, output_target);
3390
3391 if (link_info.output_bfd == NULL)
3392 {
3393 if (bfd_get_error () == bfd_error_invalid_target)
3394 einfo (_("%F%P: target %s not found\n"), output_target);
3395
3396 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3397 }
3398
3399 delete_output_file_on_failure = true;
3400
3401 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3402 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3403 if (!bfd_set_arch_mach (link_info.output_bfd,
3404 ldfile_output_architecture,
3405 ldfile_output_machine))
3406 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3407
3408 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3409 if (link_info.hash == NULL)
3410 einfo (_("%F%P: can not create hash table: %E\n"));
3411
3412 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3413 }
3414
3415 static void
3416 ldlang_open_output (lang_statement_union_type *statement)
3417 {
3418 switch (statement->header.type)
3419 {
3420 case lang_output_statement_enum:
3421 ASSERT (link_info.output_bfd == NULL);
3422 open_output (statement->output_statement.name);
3423 ldemul_set_output_arch ();
3424 if (config.magic_demand_paged
3425 && !bfd_link_relocatable (&link_info))
3426 link_info.output_bfd->flags |= D_PAGED;
3427 else
3428 link_info.output_bfd->flags &= ~D_PAGED;
3429 if (config.text_read_only)
3430 link_info.output_bfd->flags |= WP_TEXT;
3431 else
3432 link_info.output_bfd->flags &= ~WP_TEXT;
3433 if (link_info.traditional_format)
3434 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3435 else
3436 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3437 break;
3438
3439 case lang_target_statement_enum:
3440 current_target = statement->target_statement.target;
3441 break;
3442 default:
3443 break;
3444 }
3445 }
3446
3447 static void
3448 init_opb (asection *s)
3449 {
3450 unsigned int x;
3451
3452 opb_shift = 0;
3453 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3454 && s != NULL
3455 && (s->flags & SEC_ELF_OCTETS) != 0)
3456 return;
3457
3458 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3459 ldfile_output_machine);
3460 if (x > 1)
3461 while ((x & 1) == 0)
3462 {
3463 x >>= 1;
3464 ++opb_shift;
3465 }
3466 ASSERT (x == 1);
3467 }
3468
3469 /* Open all the input files. */
3470
3471 enum open_bfd_mode
3472 {
3473 OPEN_BFD_NORMAL = 0,
3474 OPEN_BFD_FORCE = 1,
3475 OPEN_BFD_RESCAN = 2
3476 };
3477 #if BFD_SUPPORTS_PLUGINS
3478 static lang_input_statement_type *plugin_insert = NULL;
3479 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3480 #endif
3481
3482 static void
3483 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3484 {
3485 for (; s != NULL; s = s->header.next)
3486 {
3487 switch (s->header.type)
3488 {
3489 case lang_constructors_statement_enum:
3490 open_input_bfds (constructor_list.head, mode);
3491 break;
3492 case lang_output_section_statement_enum:
3493 open_input_bfds (s->output_section_statement.children.head, mode);
3494 break;
3495 case lang_wild_statement_enum:
3496 /* Maybe we should load the file's symbols. */
3497 if ((mode & OPEN_BFD_RESCAN) == 0
3498 && s->wild_statement.filename
3499 && !wildcardp (s->wild_statement.filename)
3500 && !archive_path (s->wild_statement.filename))
3501 lookup_name (s->wild_statement.filename);
3502 open_input_bfds (s->wild_statement.children.head, mode);
3503 break;
3504 case lang_group_statement_enum:
3505 {
3506 struct bfd_link_hash_entry *undefs;
3507 #if BFD_SUPPORTS_PLUGINS
3508 lang_input_statement_type *plugin_insert_save;
3509 #endif
3510
3511 /* We must continually search the entries in the group
3512 until no new symbols are added to the list of undefined
3513 symbols. */
3514
3515 do
3516 {
3517 #if BFD_SUPPORTS_PLUGINS
3518 plugin_insert_save = plugin_insert;
3519 #endif
3520 undefs = link_info.hash->undefs_tail;
3521 open_input_bfds (s->group_statement.children.head,
3522 mode | OPEN_BFD_FORCE);
3523 }
3524 while (undefs != link_info.hash->undefs_tail
3525 #if BFD_SUPPORTS_PLUGINS
3526 /* Objects inserted by a plugin, which are loaded
3527 before we hit this loop, may have added new
3528 undefs. */
3529 || (plugin_insert != plugin_insert_save && plugin_undefs)
3530 #endif
3531 );
3532 }
3533 break;
3534 case lang_target_statement_enum:
3535 current_target = s->target_statement.target;
3536 break;
3537 case lang_input_statement_enum:
3538 if (s->input_statement.flags.real)
3539 {
3540 lang_statement_union_type **os_tail;
3541 lang_statement_list_type add;
3542 bfd *abfd;
3543
3544 s->input_statement.target = current_target;
3545
3546 /* If we are being called from within a group, and this
3547 is an archive which has already been searched, then
3548 force it to be researched unless the whole archive
3549 has been loaded already. Do the same for a rescan.
3550 Likewise reload --as-needed shared libs. */
3551 if (mode != OPEN_BFD_NORMAL
3552 #if BFD_SUPPORTS_PLUGINS
3553 && ((mode & OPEN_BFD_RESCAN) == 0
3554 || plugin_insert == NULL)
3555 #endif
3556 && s->input_statement.flags.loaded
3557 && (abfd = s->input_statement.the_bfd) != NULL
3558 && ((bfd_get_format (abfd) == bfd_archive
3559 && !s->input_statement.flags.whole_archive)
3560 || (bfd_get_format (abfd) == bfd_object
3561 && ((abfd->flags) & DYNAMIC) != 0
3562 && s->input_statement.flags.add_DT_NEEDED_for_regular
3563 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3564 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3565 {
3566 s->input_statement.flags.loaded = false;
3567 s->input_statement.flags.reload = true;
3568 }
3569
3570 os_tail = lang_os_list.tail;
3571 lang_list_init (&add);
3572
3573 if (!load_symbols (&s->input_statement, &add))
3574 config.make_executable = false;
3575
3576 if (add.head != NULL)
3577 {
3578 /* If this was a script with output sections then
3579 tack any added statements on to the end of the
3580 list. This avoids having to reorder the output
3581 section statement list. Very likely the user
3582 forgot -T, and whatever we do here will not meet
3583 naive user expectations. */
3584 if (os_tail != lang_os_list.tail)
3585 {
3586 einfo (_("%P: warning: %s contains output sections;"
3587 " did you forget -T?\n"),
3588 s->input_statement.filename);
3589 *stat_ptr->tail = add.head;
3590 stat_ptr->tail = add.tail;
3591 }
3592 else
3593 {
3594 *add.tail = s->header.next;
3595 s->header.next = add.head;
3596 }
3597 }
3598 }
3599 #if BFD_SUPPORTS_PLUGINS
3600 /* If we have found the point at which a plugin added new
3601 files, clear plugin_insert to enable archive rescan. */
3602 if (&s->input_statement == plugin_insert)
3603 plugin_insert = NULL;
3604 #endif
3605 break;
3606 case lang_assignment_statement_enum:
3607 if (s->assignment_statement.exp->type.node_class != etree_assert)
3608 exp_fold_tree_no_dot (s->assignment_statement.exp);
3609 break;
3610 default:
3611 break;
3612 }
3613 }
3614
3615 /* Exit if any of the files were missing. */
3616 if (input_flags.missing_file)
3617 einfo ("%F");
3618 }
3619
3620 #ifdef ENABLE_LIBCTF
3621 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3622 that happened specifically at CTF open time. */
3623 static void
3624 lang_ctf_errs_warnings (ctf_dict_t *fp)
3625 {
3626 ctf_next_t *i = NULL;
3627 char *text;
3628 int is_warning;
3629 int err;
3630
3631 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3632 {
3633 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3634 text);
3635 free (text);
3636 }
3637 if (err != ECTF_NEXT_END)
3638 {
3639 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3640 ctf_errmsg (err));
3641 }
3642
3643 /* `err' returns errors from the error/warning iterator in particular.
3644 These never assert. But if we have an fp, that could have recorded
3645 an assertion failure: assert if it has done so. */
3646 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3647 }
3648
3649 /* Open the CTF sections in the input files with libctf: if any were opened,
3650 create a fake input file that we'll write the merged CTF data to later
3651 on. */
3652
3653 static void
3654 ldlang_open_ctf (void)
3655 {
3656 int any_ctf = 0;
3657 int err;
3658
3659 LANG_FOR_EACH_INPUT_STATEMENT (file)
3660 {
3661 asection *sect;
3662
3663 /* Incoming files from the compiler have a single ctf_dict_t in them
3664 (which is presented to us by the libctf API in a ctf_archive_t
3665 wrapper): files derived from a previous relocatable link have a CTF
3666 archive containing possibly many CTF files. */
3667
3668 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3669 {
3670 if (err != ECTF_NOCTFDATA)
3671 {
3672 lang_ctf_errs_warnings (NULL);
3673 einfo (_("%P: warning: CTF section in %pB not loaded; "
3674 "its types will be discarded: %s\n"), file->the_bfd,
3675 ctf_errmsg (err));
3676 }
3677 continue;
3678 }
3679
3680 /* Prevent the contents of this section from being written, while
3681 requiring the section itself to be duplicated in the output, but only
3682 once. */
3683 /* This section must exist if ctf_bfdopen() succeeded. */
3684 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3685 sect->size = 0;
3686 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3687
3688 if (any_ctf)
3689 sect->flags |= SEC_EXCLUDE;
3690 any_ctf = 1;
3691 }
3692
3693 if (!any_ctf)
3694 {
3695 ctf_output = NULL;
3696 return;
3697 }
3698
3699 if ((ctf_output = ctf_create (&err)) != NULL)
3700 return;
3701
3702 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3703 ctf_errmsg (err));
3704
3705 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3706 ctf_close (errfile->the_ctf);
3707 }
3708
3709 /* Merge together CTF sections. After this, only the symtab-dependent
3710 function and data object sections need adjustment. */
3711
3712 static void
3713 lang_merge_ctf (void)
3714 {
3715 asection *output_sect;
3716 int flags = 0;
3717
3718 if (!ctf_output)
3719 return;
3720
3721 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3722
3723 /* If the section was discarded, don't waste time merging. */
3724 if (output_sect == NULL)
3725 {
3726 ctf_dict_close (ctf_output);
3727 ctf_output = NULL;
3728
3729 LANG_FOR_EACH_INPUT_STATEMENT (file)
3730 {
3731 ctf_close (file->the_ctf);
3732 file->the_ctf = NULL;
3733 }
3734 return;
3735 }
3736
3737 LANG_FOR_EACH_INPUT_STATEMENT (file)
3738 {
3739 if (!file->the_ctf)
3740 continue;
3741
3742 /* Takes ownership of file->the_ctf. */
3743 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3744 {
3745 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3746 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3747 ctf_close (file->the_ctf);
3748 file->the_ctf = NULL;
3749 continue;
3750 }
3751 }
3752
3753 if (!config.ctf_share_duplicated)
3754 flags = CTF_LINK_SHARE_UNCONFLICTED;
3755 else
3756 flags = CTF_LINK_SHARE_DUPLICATED;
3757 if (!config.ctf_variables)
3758 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3759 if (bfd_link_relocatable (&link_info))
3760 flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
3761
3762 if (ctf_link (ctf_output, flags) < 0)
3763 {
3764 lang_ctf_errs_warnings (ctf_output);
3765 einfo (_("%P: warning: CTF linking failed; "
3766 "output will have no CTF section: %s\n"),
3767 ctf_errmsg (ctf_errno (ctf_output)));
3768 if (output_sect)
3769 {
3770 output_sect->size = 0;
3771 output_sect->flags |= SEC_EXCLUDE;
3772 }
3773 }
3774 /* Output any lingering errors that didn't come from ctf_link. */
3775 lang_ctf_errs_warnings (ctf_output);
3776 }
3777
3778 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3779 the CTF, if supported. */
3780
3781 void
3782 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3783 {
3784 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3785 }
3786
3787 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3788 internal format. */
3789 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3790 {
3791 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3792 }
3793
3794 /* Write out the CTF section. Called early, if the emulation isn't going to
3795 need to dedup against the strtab and symtab, then possibly called from the
3796 target linker code if the dedup has happened. */
3797 static void
3798 lang_write_ctf (int late)
3799 {
3800 size_t output_size;
3801 asection *output_sect;
3802
3803 if (!ctf_output)
3804 return;
3805
3806 if (late)
3807 {
3808 /* Emit CTF late if this emulation says it can do so. */
3809 if (ldemul_emit_ctf_early ())
3810 return;
3811 }
3812 else
3813 {
3814 if (!ldemul_emit_ctf_early ())
3815 return;
3816 }
3817
3818 /* Inform the emulation that all the symbols that will be received have
3819 been. */
3820
3821 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3822
3823 /* Emit CTF. */
3824
3825 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3826 if (output_sect)
3827 {
3828 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3829 CTF_COMPRESSION_THRESHOLD);
3830 output_sect->size = output_size;
3831 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3832
3833 lang_ctf_errs_warnings (ctf_output);
3834 if (!output_sect->contents)
3835 {
3836 einfo (_("%P: warning: CTF section emission failed; "
3837 "output will have no CTF section: %s\n"),
3838 ctf_errmsg (ctf_errno (ctf_output)));
3839 output_sect->size = 0;
3840 output_sect->flags |= SEC_EXCLUDE;
3841 }
3842 }
3843
3844 /* This also closes every CTF input file used in the link. */
3845 ctf_dict_close (ctf_output);
3846 ctf_output = NULL;
3847
3848 LANG_FOR_EACH_INPUT_STATEMENT (file)
3849 file->the_ctf = NULL;
3850 }
3851
3852 /* Write out the CTF section late, if the emulation needs that. */
3853
3854 void
3855 ldlang_write_ctf_late (void)
3856 {
3857 /* Trigger a "late call", if the emulation needs one. */
3858
3859 lang_write_ctf (1);
3860 }
3861 #else
3862 static void
3863 ldlang_open_ctf (void)
3864 {
3865 LANG_FOR_EACH_INPUT_STATEMENT (file)
3866 {
3867 asection *sect;
3868
3869 /* If built without CTF, warn and delete all CTF sections from the output.
3870 (The alternative would be to simply concatenate them, which does not
3871 yield a valid CTF section.) */
3872
3873 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3874 {
3875 einfo (_("%P: warning: CTF section in %pB not linkable: "
3876 "%P was built without support for CTF\n"), file->the_bfd);
3877 sect->size = 0;
3878 sect->flags |= SEC_EXCLUDE;
3879 }
3880 }
3881 }
3882
3883 static void lang_merge_ctf (void) {}
3884 void
3885 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3886 ATTRIBUTE_UNUSED) {}
3887 void
3888 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3889 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3890 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3891 void ldlang_write_ctf_late (void) {}
3892 #endif
3893
3894 /* Add the supplied name to the symbol table as an undefined reference.
3895 This is a two step process as the symbol table doesn't even exist at
3896 the time the ld command line is processed. First we put the name
3897 on a list, then, once the output file has been opened, transfer the
3898 name to the symbol table. */
3899
3900 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3901
3902 #define ldlang_undef_chain_list_head entry_symbol.next
3903
3904 void
3905 ldlang_add_undef (const char *const name, bool cmdline ATTRIBUTE_UNUSED)
3906 {
3907 ldlang_undef_chain_list_type *new_undef;
3908
3909 new_undef = stat_alloc (sizeof (*new_undef));
3910 new_undef->next = ldlang_undef_chain_list_head;
3911 ldlang_undef_chain_list_head = new_undef;
3912
3913 new_undef->name = xstrdup (name);
3914
3915 if (link_info.output_bfd != NULL)
3916 insert_undefined (new_undef->name);
3917 }
3918
3919 /* Insert NAME as undefined in the symbol table. */
3920
3921 static void
3922 insert_undefined (const char *name)
3923 {
3924 struct bfd_link_hash_entry *h;
3925
3926 h = bfd_link_hash_lookup (link_info.hash, name, true, false, true);
3927 if (h == NULL)
3928 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3929 if (h->type == bfd_link_hash_new)
3930 {
3931 h->type = bfd_link_hash_undefined;
3932 h->u.undef.abfd = NULL;
3933 h->non_ir_ref_regular = true;
3934 bfd_link_add_undef (link_info.hash, h);
3935 }
3936 }
3937
3938 /* Run through the list of undefineds created above and place them
3939 into the linker hash table as undefined symbols belonging to the
3940 script file. */
3941
3942 static void
3943 lang_place_undefineds (void)
3944 {
3945 ldlang_undef_chain_list_type *ptr;
3946
3947 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3948 insert_undefined (ptr->name);
3949 }
3950
3951 /* Mark -u symbols against garbage collection. */
3952
3953 static void
3954 lang_mark_undefineds (void)
3955 {
3956 ldlang_undef_chain_list_type *ptr;
3957
3958 if (is_elf_hash_table (link_info.hash))
3959 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3960 {
3961 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
3962 bfd_link_hash_lookup (link_info.hash, ptr->name, false, false, true);
3963 if (h != NULL)
3964 h->mark = 1;
3965 }
3966 }
3967
3968 /* Structure used to build the list of symbols that the user has required
3969 be defined. */
3970
3971 struct require_defined_symbol
3972 {
3973 const char *name;
3974 struct require_defined_symbol *next;
3975 };
3976
3977 /* The list of symbols that the user has required be defined. */
3978
3979 static struct require_defined_symbol *require_defined_symbol_list;
3980
3981 /* Add a new symbol NAME to the list of symbols that are required to be
3982 defined. */
3983
3984 void
3985 ldlang_add_require_defined (const char *const name)
3986 {
3987 struct require_defined_symbol *ptr;
3988
3989 ldlang_add_undef (name, true);
3990 ptr = stat_alloc (sizeof (*ptr));
3991 ptr->next = require_defined_symbol_list;
3992 ptr->name = strdup (name);
3993 require_defined_symbol_list = ptr;
3994 }
3995
3996 /* Check that all symbols the user required to be defined, are defined,
3997 raise an error if we find a symbol that is not defined. */
3998
3999 static void
4000 ldlang_check_require_defined_symbols (void)
4001 {
4002 struct require_defined_symbol *ptr;
4003
4004 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4005 {
4006 struct bfd_link_hash_entry *h;
4007
4008 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4009 false, false, true);
4010 if (h == NULL
4011 || (h->type != bfd_link_hash_defined
4012 && h->type != bfd_link_hash_defweak))
4013 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4014 }
4015 }
4016
4017 /* Check for all readonly or some readwrite sections. */
4018
4019 static void
4020 check_input_sections
4021 (lang_statement_union_type *s,
4022 lang_output_section_statement_type *output_section_statement)
4023 {
4024 for (; s != NULL; s = s->header.next)
4025 {
4026 switch (s->header.type)
4027 {
4028 case lang_wild_statement_enum:
4029 walk_wild (&s->wild_statement, check_section_callback,
4030 output_section_statement);
4031 if (!output_section_statement->all_input_readonly)
4032 return;
4033 break;
4034 case lang_constructors_statement_enum:
4035 check_input_sections (constructor_list.head,
4036 output_section_statement);
4037 if (!output_section_statement->all_input_readonly)
4038 return;
4039 break;
4040 case lang_group_statement_enum:
4041 check_input_sections (s->group_statement.children.head,
4042 output_section_statement);
4043 if (!output_section_statement->all_input_readonly)
4044 return;
4045 break;
4046 default:
4047 break;
4048 }
4049 }
4050 }
4051
4052 /* Update wildcard statements if needed. */
4053
4054 static void
4055 update_wild_statements (lang_statement_union_type *s)
4056 {
4057 struct wildcard_list *sec;
4058
4059 switch (sort_section)
4060 {
4061 default:
4062 FAIL ();
4063
4064 case none:
4065 break;
4066
4067 case by_name:
4068 case by_alignment:
4069 for (; s != NULL; s = s->header.next)
4070 {
4071 switch (s->header.type)
4072 {
4073 default:
4074 break;
4075
4076 case lang_wild_statement_enum:
4077 for (sec = s->wild_statement.section_list; sec != NULL;
4078 sec = sec->next)
4079 /* Don't sort .init/.fini sections. */
4080 if (strcmp (sec->spec.name, ".init") != 0
4081 && strcmp (sec->spec.name, ".fini") != 0)
4082 {
4083 switch (sec->spec.sorted)
4084 {
4085 case none:
4086 sec->spec.sorted = sort_section;
4087 break;
4088 case by_name:
4089 if (sort_section == by_alignment)
4090 sec->spec.sorted = by_name_alignment;
4091 break;
4092 case by_alignment:
4093 if (sort_section == by_name)
4094 sec->spec.sorted = by_alignment_name;
4095 break;
4096 default:
4097 break;
4098 }
4099 s->wild_statement.any_specs_sorted = true;
4100 }
4101 break;
4102
4103 case lang_constructors_statement_enum:
4104 update_wild_statements (constructor_list.head);
4105 break;
4106
4107 case lang_output_section_statement_enum:
4108 update_wild_statements
4109 (s->output_section_statement.children.head);
4110 break;
4111
4112 case lang_group_statement_enum:
4113 update_wild_statements (s->group_statement.children.head);
4114 break;
4115 }
4116 }
4117 break;
4118 }
4119 }
4120
4121 /* Open input files and attach to output sections. */
4122
4123 static void
4124 map_input_to_output_sections
4125 (lang_statement_union_type *s, const char *target,
4126 lang_output_section_statement_type *os)
4127 {
4128 for (; s != NULL; s = s->header.next)
4129 {
4130 lang_output_section_statement_type *tos;
4131 flagword flags;
4132 unsigned int type = 0;
4133
4134 switch (s->header.type)
4135 {
4136 case lang_wild_statement_enum:
4137 wild (&s->wild_statement, target, os);
4138 break;
4139 case lang_constructors_statement_enum:
4140 map_input_to_output_sections (constructor_list.head,
4141 target,
4142 os);
4143 break;
4144 case lang_output_section_statement_enum:
4145 tos = &s->output_section_statement;
4146 if (tos->constraint == ONLY_IF_RW
4147 || tos->constraint == ONLY_IF_RO)
4148 {
4149 tos->all_input_readonly = true;
4150 check_input_sections (tos->children.head, tos);
4151 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4152 tos->constraint = -1;
4153 }
4154 if (tos->constraint >= 0)
4155 map_input_to_output_sections (tos->children.head,
4156 target,
4157 tos);
4158 break;
4159 case lang_output_statement_enum:
4160 break;
4161 case lang_target_statement_enum:
4162 target = s->target_statement.target;
4163 break;
4164 case lang_group_statement_enum:
4165 map_input_to_output_sections (s->group_statement.children.head,
4166 target,
4167 os);
4168 break;
4169 case lang_data_statement_enum:
4170 /* Make sure that any sections mentioned in the expression
4171 are initialized. */
4172 exp_init_os (s->data_statement.exp);
4173 /* The output section gets CONTENTS, ALLOC and LOAD, but
4174 these may be overridden by the script. */
4175 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4176 switch (os->sectype)
4177 {
4178 case normal_section:
4179 case overlay_section:
4180 case first_overlay_section:
4181 break;
4182 case noalloc_section:
4183 flags = SEC_HAS_CONTENTS;
4184 break;
4185 case readonly_section:
4186 flags |= SEC_READONLY;
4187 break;
4188 case typed_readonly_section:
4189 flags |= SEC_READONLY;
4190 /* Fall through. */
4191 case type_section:
4192 if (os->sectype_value->type.node_class == etree_name
4193 && os->sectype_value->type.node_code == NAME)
4194 {
4195 const char *name = os->sectype_value->name.name;
4196 if (strcmp (name, "SHT_PROGBITS") == 0)
4197 type = SHT_PROGBITS;
4198 else if (strcmp (name, "SHT_STRTAB") == 0)
4199 type = SHT_STRTAB;
4200 else if (strcmp (name, "SHT_NOTE") == 0)
4201 type = SHT_NOTE;
4202 else if (strcmp (name, "SHT_NOBITS") == 0)
4203 type = SHT_NOBITS;
4204 else if (strcmp (name, "SHT_INIT_ARRAY") == 0)
4205 type = SHT_INIT_ARRAY;
4206 else if (strcmp (name, "SHT_FINI_ARRAY") == 0)
4207 type = SHT_FINI_ARRAY;
4208 else if (strcmp (name, "SHT_PREINIT_ARRAY") == 0)
4209 type = SHT_PREINIT_ARRAY;
4210 else
4211 einfo (_ ("%F%P: invalid type for output section `%s'\n"),
4212 os->name);
4213 }
4214 else
4215 {
4216 exp_fold_tree_no_dot (os->sectype_value);
4217 if (expld.result.valid_p)
4218 type = expld.result.value;
4219 else
4220 einfo (_ ("%F%P: invalid type for output section `%s'\n"),
4221 os->name);
4222 }
4223 break;
4224 case noload_section:
4225 if (bfd_get_flavour (link_info.output_bfd)
4226 == bfd_target_elf_flavour)
4227 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4228 else
4229 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4230 break;
4231 }
4232 if (os->bfd_section == NULL)
4233 init_os (os, flags | SEC_READONLY);
4234 else
4235 os->bfd_section->flags |= flags;
4236 os->bfd_section->type = type;
4237 break;
4238 case lang_input_section_enum:
4239 break;
4240 case lang_fill_statement_enum:
4241 case lang_object_symbols_statement_enum:
4242 case lang_reloc_statement_enum:
4243 case lang_padding_statement_enum:
4244 case lang_input_statement_enum:
4245 if (os != NULL && os->bfd_section == NULL)
4246 init_os (os, 0);
4247 break;
4248 case lang_assignment_statement_enum:
4249 if (os != NULL && os->bfd_section == NULL)
4250 init_os (os, 0);
4251
4252 /* Make sure that any sections mentioned in the assignment
4253 are initialized. */
4254 exp_init_os (s->assignment_statement.exp);
4255 break;
4256 case lang_address_statement_enum:
4257 /* Mark the specified section with the supplied address.
4258 If this section was actually a segment marker, then the
4259 directive is ignored if the linker script explicitly
4260 processed the segment marker. Originally, the linker
4261 treated segment directives (like -Ttext on the
4262 command-line) as section directives. We honor the
4263 section directive semantics for backwards compatibility;
4264 linker scripts that do not specifically check for
4265 SEGMENT_START automatically get the old semantics. */
4266 if (!s->address_statement.segment
4267 || !s->address_statement.segment->used)
4268 {
4269 const char *name = s->address_statement.section_name;
4270
4271 /* Create the output section statement here so that
4272 orphans with a set address will be placed after other
4273 script sections. If we let the orphan placement code
4274 place them in amongst other sections then the address
4275 will affect following script sections, which is
4276 likely to surprise naive users. */
4277 tos = lang_output_section_statement_lookup (name, 0, 1);
4278 tos->addr_tree = s->address_statement.address;
4279 if (tos->bfd_section == NULL)
4280 init_os (tos, 0);
4281 }
4282 break;
4283 case lang_insert_statement_enum:
4284 break;
4285 case lang_input_matcher_enum:
4286 FAIL ();
4287 }
4288 }
4289 }
4290
4291 /* An insert statement snips out all the linker statements from the
4292 start of the list and places them after the output section
4293 statement specified by the insert. This operation is complicated
4294 by the fact that we keep a doubly linked list of output section
4295 statements as well as the singly linked list of all statements.
4296 FIXME someday: Twiddling with the list not only moves statements
4297 from the user's script but also input and group statements that are
4298 built from command line object files and --start-group. We only
4299 get away with this because the list pointers used by file_chain
4300 and input_file_chain are not reordered, and processing via
4301 statement_list after this point mostly ignores input statements.
4302 One exception is the map file, where LOAD and START GROUP/END GROUP
4303 can end up looking odd. */
4304
4305 static void
4306 process_insert_statements (lang_statement_union_type **start)
4307 {
4308 lang_statement_union_type **s;
4309 lang_output_section_statement_type *first_os = NULL;
4310 lang_output_section_statement_type *last_os = NULL;
4311 lang_output_section_statement_type *os;
4312
4313 s = start;
4314 while (*s != NULL)
4315 {
4316 if ((*s)->header.type == lang_output_section_statement_enum)
4317 {
4318 /* Keep pointers to the first and last output section
4319 statement in the sequence we may be about to move. */
4320 os = &(*s)->output_section_statement;
4321
4322 ASSERT (last_os == NULL || last_os->next == os);
4323 last_os = os;
4324
4325 /* Set constraint negative so that lang_output_section_find
4326 won't match this output section statement. At this
4327 stage in linking constraint has values in the range
4328 [-1, ONLY_IN_RW]. */
4329 last_os->constraint = -2 - last_os->constraint;
4330 if (first_os == NULL)
4331 first_os = last_os;
4332 }
4333 else if ((*s)->header.type == lang_group_statement_enum)
4334 {
4335 /* A user might put -T between --start-group and
4336 --end-group. One way this odd construct might arise is
4337 from a wrapper around ld to change library search
4338 behaviour. For example:
4339 #! /bin/sh
4340 exec real_ld --start-group "$@" --end-group
4341 This isn't completely unreasonable so go looking inside a
4342 group statement for insert statements. */
4343 process_insert_statements (&(*s)->group_statement.children.head);
4344 }
4345 else if ((*s)->header.type == lang_insert_statement_enum)
4346 {
4347 lang_insert_statement_type *i = &(*s)->insert_statement;
4348 lang_output_section_statement_type *where;
4349 lang_statement_union_type **ptr;
4350 lang_statement_union_type *first;
4351
4352 if (link_info.non_contiguous_regions)
4353 {
4354 einfo (_("warning: INSERT statement in linker script is "
4355 "incompatible with --enable-non-contiguous-regions.\n"));
4356 }
4357
4358 where = lang_output_section_find (i->where);
4359 if (where != NULL && i->is_before)
4360 {
4361 do
4362 where = where->prev;
4363 while (where != NULL && where->constraint < 0);
4364 }
4365 if (where == NULL)
4366 {
4367 einfo (_("%F%P: %s not found for insert\n"), i->where);
4368 return;
4369 }
4370
4371 /* Deal with reordering the output section statement list. */
4372 if (last_os != NULL)
4373 {
4374 asection *first_sec, *last_sec;
4375 struct lang_output_section_statement_struct **next;
4376
4377 /* Snip out the output sections we are moving. */
4378 first_os->prev->next = last_os->next;
4379 if (last_os->next == NULL)
4380 {
4381 next = &first_os->prev->next;
4382 lang_os_list.tail = (lang_statement_union_type **) next;
4383 }
4384 else
4385 last_os->next->prev = first_os->prev;
4386 /* Add them in at the new position. */
4387 last_os->next = where->next;
4388 if (where->next == NULL)
4389 {
4390 next = &last_os->next;
4391 lang_os_list.tail = (lang_statement_union_type **) next;
4392 }
4393 else
4394 where->next->prev = last_os;
4395 first_os->prev = where;
4396 where->next = first_os;
4397
4398 /* Move the bfd sections in the same way. */
4399 first_sec = NULL;
4400 last_sec = NULL;
4401 for (os = first_os; os != NULL; os = os->next)
4402 {
4403 os->constraint = -2 - os->constraint;
4404 if (os->bfd_section != NULL
4405 && os->bfd_section->owner != NULL)
4406 {
4407 last_sec = os->bfd_section;
4408 if (first_sec == NULL)
4409 first_sec = last_sec;
4410 }
4411 if (os == last_os)
4412 break;
4413 }
4414 if (last_sec != NULL)
4415 {
4416 asection *sec = where->bfd_section;
4417 if (sec == NULL)
4418 sec = output_prev_sec_find (where);
4419
4420 /* The place we want to insert must come after the
4421 sections we are moving. So if we find no
4422 section or if the section is the same as our
4423 last section, then no move is needed. */
4424 if (sec != NULL && sec != last_sec)
4425 {
4426 /* Trim them off. */
4427 if (first_sec->prev != NULL)
4428 first_sec->prev->next = last_sec->next;
4429 else
4430 link_info.output_bfd->sections = last_sec->next;
4431 if (last_sec->next != NULL)
4432 last_sec->next->prev = first_sec->prev;
4433 else
4434 link_info.output_bfd->section_last = first_sec->prev;
4435 /* Add back. */
4436 if (sec->owner == NULL)
4437 /* SEC is the absolute section, from the
4438 first dummy output section statement. Add
4439 back the sections we trimmed off to the
4440 start of the bfd sections. */
4441 sec = NULL;
4442 if (sec != NULL)
4443 last_sec->next = sec->next;
4444 else
4445 last_sec->next = link_info.output_bfd->sections;
4446 if (last_sec->next != NULL)
4447 last_sec->next->prev = last_sec;
4448 else
4449 link_info.output_bfd->section_last = last_sec;
4450 first_sec->prev = sec;
4451 if (first_sec->prev != NULL)
4452 first_sec->prev->next = first_sec;
4453 else
4454 link_info.output_bfd->sections = first_sec;
4455 }
4456 }
4457 }
4458
4459 lang_statement_union_type *after = (void *) where;
4460 if (where == &lang_os_list.head->output_section_statement
4461 && where->next == first_os)
4462 {
4463 /* PR30155. Handle a corner case where the statement
4464 list is something like the following:
4465 . LOAD t.o
4466 . .data 0x0000000000000000 0x0
4467 . [0x0000000000000000] b = .
4468 . *(.data)
4469 . .data 0x0000000000000000 0x0 t.o
4470 . 0x0000000000000000 0x4 LONG 0x0
4471 . INSERT BEFORE .text.start
4472 . [0x0000000000000004] a = .
4473 . .text.start 0x0000000000000000 0x0
4474 . [0x0000000000000000] c = .
4475 . OUTPUT(a.out elf64-x86-64)
4476 Here we do not want to allow insert_os_after to
4477 choose a point inside the list we are moving.
4478 That would lose the list. Instead, let
4479 insert_os_after work from the INSERT, which in this
4480 particular example will result in inserting after
4481 the assignment "a = .". */
4482 after = *s;
4483 }
4484 ptr = insert_os_after (after);
4485 /* Snip everything from the start of the list, up to and
4486 including the insert statement we are currently processing. */
4487 first = *start;
4488 *start = (*s)->header.next;
4489 /* Add them back where they belong, minus the insert. */
4490 *s = *ptr;
4491 if (*s == NULL)
4492 statement_list.tail = s;
4493 *ptr = first;
4494 s = start;
4495 first_os = NULL;
4496 last_os = NULL;
4497 continue;
4498 }
4499 s = &(*s)->header.next;
4500 }
4501
4502 /* Undo constraint twiddling. */
4503 for (os = first_os; os != NULL; os = os->next)
4504 {
4505 os->constraint = -2 - os->constraint;
4506 if (os == last_os)
4507 break;
4508 }
4509 }
4510
4511 /* An output section might have been removed after its statement was
4512 added. For example, ldemul_before_allocation can remove dynamic
4513 sections if they turn out to be not needed. Clean them up here. */
4514
4515 void
4516 strip_excluded_output_sections (void)
4517 {
4518 lang_output_section_statement_type *os;
4519
4520 /* Run lang_size_sections (if not already done). */
4521 if (expld.phase != lang_mark_phase_enum)
4522 {
4523 expld.phase = lang_mark_phase_enum;
4524 expld.dataseg.phase = exp_seg_none;
4525 one_lang_size_sections_pass (NULL, false);
4526 lang_reset_memory_regions ();
4527 }
4528
4529 for (os = (void *) lang_os_list.head;
4530 os != NULL;
4531 os = os->next)
4532 {
4533 asection *output_section;
4534 bool exclude;
4535
4536 if (os->constraint < 0)
4537 continue;
4538
4539 output_section = os->bfd_section;
4540 if (output_section == NULL)
4541 continue;
4542
4543 exclude = (output_section->rawsize == 0
4544 && (output_section->flags & SEC_KEEP) == 0
4545 && !bfd_section_removed_from_list (link_info.output_bfd,
4546 output_section));
4547
4548 /* Some sections have not yet been sized, notably .gnu.version,
4549 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4550 input sections, so don't drop output sections that have such
4551 input sections unless they are also marked SEC_EXCLUDE. */
4552 if (exclude && output_section->map_head.s != NULL)
4553 {
4554 asection *s;
4555
4556 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4557 if ((s->flags & SEC_EXCLUDE) == 0
4558 && ((s->flags & SEC_LINKER_CREATED) != 0
4559 || link_info.emitrelocations))
4560 {
4561 exclude = false;
4562 break;
4563 }
4564 }
4565
4566 if (exclude)
4567 {
4568 /* We don't set bfd_section to NULL since bfd_section of the
4569 removed output section statement may still be used. */
4570 if (!os->update_dot)
4571 os->ignored = true;
4572 output_section->flags |= SEC_EXCLUDE;
4573 bfd_section_list_remove (link_info.output_bfd, output_section);
4574 link_info.output_bfd->section_count--;
4575 }
4576 }
4577 }
4578
4579 /* Called from ldwrite to clear out asection.map_head and
4580 asection.map_tail for use as link_orders in ldwrite. */
4581
4582 void
4583 lang_clear_os_map (void)
4584 {
4585 lang_output_section_statement_type *os;
4586
4587 if (map_head_is_link_order)
4588 return;
4589
4590 for (os = (void *) lang_os_list.head;
4591 os != NULL;
4592 os = os->next)
4593 {
4594 asection *output_section;
4595
4596 if (os->constraint < 0)
4597 continue;
4598
4599 output_section = os->bfd_section;
4600 if (output_section == NULL)
4601 continue;
4602
4603 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4604 output_section->map_head.link_order = NULL;
4605 output_section->map_tail.link_order = NULL;
4606 }
4607
4608 /* Stop future calls to lang_add_section from messing with map_head
4609 and map_tail link_order fields. */
4610 map_head_is_link_order = true;
4611 }
4612
4613 static void
4614 print_output_section_statement
4615 (lang_output_section_statement_type *output_section_statement)
4616 {
4617 asection *section = output_section_statement->bfd_section;
4618 int len;
4619
4620 if (output_section_statement != abs_output_section)
4621 {
4622 minfo ("\n%s", output_section_statement->name);
4623
4624 if (section != NULL)
4625 {
4626 print_dot = section->vma;
4627
4628 len = strlen (output_section_statement->name);
4629 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4630 {
4631 print_nl ();
4632 len = 0;
4633 }
4634 print_spaces (SECTION_NAME_MAP_LENGTH - len);
4635
4636 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4637
4638 if (section->vma != section->lma)
4639 minfo (_(" load address 0x%V"), section->lma);
4640
4641 if (output_section_statement->update_dot_tree != NULL)
4642 exp_fold_tree (output_section_statement->update_dot_tree,
4643 bfd_abs_section_ptr, &print_dot);
4644 }
4645
4646 print_nl ();
4647 }
4648
4649 print_statement_list (output_section_statement->children.head,
4650 output_section_statement);
4651 }
4652
4653 static void
4654 print_assignment (lang_assignment_statement_type *assignment,
4655 lang_output_section_statement_type *output_section)
4656 {
4657 bool is_dot;
4658 etree_type *tree;
4659 asection *osec;
4660
4661 print_spaces (SECTION_NAME_MAP_LENGTH);
4662
4663 if (assignment->exp->type.node_class == etree_assert)
4664 {
4665 is_dot = false;
4666 tree = assignment->exp->assert_s.child;
4667 }
4668 else
4669 {
4670 const char *dst = assignment->exp->assign.dst;
4671
4672 is_dot = (dst[0] == '.' && dst[1] == 0);
4673 tree = assignment->exp;
4674 }
4675
4676 osec = output_section->bfd_section;
4677 if (osec == NULL)
4678 osec = bfd_abs_section_ptr;
4679
4680 if (assignment->exp->type.node_class != etree_provide)
4681 exp_fold_tree (tree, osec, &print_dot);
4682 else
4683 expld.result.valid_p = false;
4684
4685 char buf[32];
4686 const char *str = buf;
4687 if (expld.result.valid_p)
4688 {
4689 bfd_vma value;
4690
4691 if (assignment->exp->type.node_class == etree_assert
4692 || is_dot
4693 || expld.assign_name != NULL)
4694 {
4695 value = expld.result.value;
4696
4697 if (expld.result.section != NULL)
4698 value += expld.result.section->vma;
4699
4700 buf[0] = '0';
4701 buf[1] = 'x';
4702 bfd_sprintf_vma (link_info.output_bfd, buf + 2, value);
4703 if (is_dot)
4704 print_dot = value;
4705 }
4706 else
4707 {
4708 struct bfd_link_hash_entry *h;
4709
4710 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4711 false, false, true);
4712 if (h != NULL
4713 && (h->type == bfd_link_hash_defined
4714 || h->type == bfd_link_hash_defweak))
4715 {
4716 value = h->u.def.value;
4717 value += h->u.def.section->output_section->vma;
4718 value += h->u.def.section->output_offset;
4719
4720 buf[0] = '[';
4721 buf[1] = '0';
4722 buf[2] = 'x';
4723 bfd_sprintf_vma (link_info.output_bfd, buf + 3, value);
4724 strcat (buf, "]");
4725 }
4726 else
4727 str = "[unresolved]";
4728 }
4729 }
4730 else
4731 {
4732 if (assignment->exp->type.node_class == etree_provide)
4733 str = "[!provide]";
4734 else
4735 str = "*undef*";
4736 }
4737 expld.assign_name = NULL;
4738
4739 fprintf (config.map_file, "%-34s", str);
4740 exp_print_tree (assignment->exp);
4741 print_nl ();
4742 }
4743
4744 static void
4745 print_input_statement (lang_input_statement_type *statm)
4746 {
4747 if (statm->filename != NULL)
4748 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4749 }
4750
4751 /* Print all symbols defined in a particular section. This is called
4752 via bfd_link_hash_traverse, or by print_all_symbols. */
4753
4754 bool
4755 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4756 {
4757 asection *sec = (asection *) ptr;
4758
4759 if ((hash_entry->type == bfd_link_hash_defined
4760 || hash_entry->type == bfd_link_hash_defweak)
4761 && sec == hash_entry->u.def.section)
4762 {
4763 print_spaces (SECTION_NAME_MAP_LENGTH);
4764 minfo ("0x%V ",
4765 (hash_entry->u.def.value
4766 + hash_entry->u.def.section->output_offset
4767 + hash_entry->u.def.section->output_section->vma));
4768
4769 minfo (" %pT\n", hash_entry->root.string);
4770 }
4771
4772 return true;
4773 }
4774
4775 static int
4776 hash_entry_addr_cmp (const void *a, const void *b)
4777 {
4778 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4779 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4780
4781 if (l->u.def.value < r->u.def.value)
4782 return -1;
4783 else if (l->u.def.value > r->u.def.value)
4784 return 1;
4785 else
4786 return 0;
4787 }
4788
4789 static void
4790 print_all_symbols (asection *sec)
4791 {
4792 input_section_userdata_type *ud = bfd_section_userdata (sec);
4793 struct map_symbol_def *def;
4794 struct bfd_link_hash_entry **entries;
4795 unsigned int i;
4796
4797 if (!ud)
4798 return;
4799
4800 *ud->map_symbol_def_tail = 0;
4801
4802 /* Sort the symbols by address. */
4803 entries = (struct bfd_link_hash_entry **)
4804 obstack_alloc (&map_obstack,
4805 ud->map_symbol_def_count * sizeof (*entries));
4806
4807 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4808 entries[i] = def->entry;
4809
4810 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4811 hash_entry_addr_cmp);
4812
4813 /* Print the symbols. */
4814 for (i = 0; i < ud->map_symbol_def_count; i++)
4815 ldemul_print_symbol (entries[i], sec);
4816
4817 obstack_free (&map_obstack, entries);
4818 }
4819
4820 /* Returns TRUE if SYM is a symbol suitable for printing
4821 in a linker map as a local symbol. */
4822
4823 static bool
4824 ld_is_local_symbol (asymbol * sym)
4825 {
4826 const char * name = bfd_asymbol_name (sym);
4827
4828 if (name == NULL || *name == 0)
4829 return false;
4830
4831 if (strcmp (name, "(null)") == 0)
4832 return false;
4833
4834 /* Skip .Lxxx and such like. */
4835 if (bfd_is_local_label (link_info.output_bfd, sym))
4836 return false;
4837
4838 /* FIXME: This is intended to skip ARM mapping symbols,
4839 which for some reason are not excluded by bfd_is_local_label,
4840 but maybe it is wrong for other architectures.
4841 It would be better to fix bfd_is_local_label. */
4842 if (*name == '$')
4843 return false;
4844
4845 /* Some local symbols, eg _GLOBAL_OFFSET_TABLE_, are present
4846 in the hash table, so do not print duplicates here. */
4847 struct bfd_link_hash_entry * h;
4848 h = bfd_link_hash_lookup (link_info.hash, name, false /* create */,
4849 false /* copy */, true /* follow */);
4850 if (h == NULL)
4851 return true;
4852
4853 /* Symbols from the plugin owned BFD will not get their own
4854 iteration of this function, but can be on the link_info
4855 list. So include them here. */
4856 if (h->u.def.section->owner != NULL
4857 && ((bfd_get_file_flags (h->u.def.section->owner) & (BFD_LINKER_CREATED | BFD_PLUGIN))
4858 == (BFD_LINKER_CREATED | BFD_PLUGIN)))
4859 return true;
4860
4861 return false;
4862 }
4863
4864 /* Print information about an input section to the map file. */
4865
4866 static void
4867 print_input_section (asection *i, bool is_discarded)
4868 {
4869 bfd_size_type size = i->size;
4870 int len;
4871 bfd_vma addr;
4872
4873 init_opb (i);
4874
4875 minfo (" %s", i->name);
4876
4877 len = 1 + strlen (i->name);
4878 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4879 {
4880 print_nl ();
4881 len = 0;
4882 }
4883 print_spaces (SECTION_NAME_MAP_LENGTH - len);
4884
4885 if (i->output_section != NULL
4886 && i->output_section->owner == link_info.output_bfd)
4887 addr = i->output_section->vma + i->output_offset;
4888 else
4889 {
4890 addr = print_dot;
4891 if (!is_discarded)
4892 size = 0;
4893 }
4894
4895 char buf[32];
4896 bfd_sprintf_vma (link_info.output_bfd, buf, addr);
4897 minfo ("0x%s %W %pB\n", buf, TO_ADDR (size), i->owner);
4898
4899 if (size != i->rawsize && i->rawsize != 0)
4900 {
4901 len = SECTION_NAME_MAP_LENGTH + 3 + strlen (buf);
4902 print_spaces (len);
4903 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4904 }
4905
4906 if (i->output_section != NULL
4907 && i->output_section->owner == link_info.output_bfd)
4908 {
4909 if (link_info.reduce_memory_overheads)
4910 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4911 else
4912 print_all_symbols (i);
4913
4914 /* Update print_dot, but make sure that we do not move it
4915 backwards - this could happen if we have overlays and a
4916 later overlay is shorter than an earier one. */
4917 if (addr + TO_ADDR (size) > print_dot)
4918 print_dot = addr + TO_ADDR (size);
4919
4920 if (config.print_map_locals)
4921 {
4922 long storage_needed;
4923
4924 /* FIXME: It would be better to cache this table, rather
4925 than recreating it for each output section. */
4926 /* FIXME: This call is not working for non-ELF based targets.
4927 Find out why. */
4928 storage_needed = bfd_get_symtab_upper_bound (link_info.output_bfd);
4929 if (storage_needed > 0)
4930 {
4931 asymbol ** symbol_table;
4932 long number_of_symbols;
4933 long j;
4934
4935 symbol_table = xmalloc (storage_needed);
4936 number_of_symbols = bfd_canonicalize_symtab (link_info.output_bfd, symbol_table);
4937
4938 for (j = 0; j < number_of_symbols; j++)
4939 {
4940 asymbol * sym = symbol_table[j];
4941 bfd_vma sym_addr = sym->value + i->output_section->vma;
4942
4943 if (sym->section == i->output_section
4944 && (sym->flags & BSF_LOCAL) != 0
4945 && sym_addr >= addr
4946 && sym_addr < print_dot
4947 && ld_is_local_symbol (sym))
4948 {
4949 print_spaces (SECTION_NAME_MAP_LENGTH);
4950 minfo ("0x%V (local) %s\n", sym_addr, bfd_asymbol_name (sym));
4951 }
4952 }
4953
4954 free (symbol_table);
4955 }
4956 }
4957 }
4958 }
4959
4960 static void
4961 print_fill_statement (lang_fill_statement_type *fill)
4962 {
4963 size_t size;
4964 unsigned char *p;
4965 fputs (" FILL mask 0x", config.map_file);
4966 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4967 fprintf (config.map_file, "%02x", *p);
4968 fputs ("\n", config.map_file);
4969 }
4970
4971 static void
4972 print_data_statement (lang_data_statement_type *data)
4973 {
4974 bfd_vma addr;
4975 bfd_size_type size;
4976 const char *name;
4977
4978 init_opb (data->output_section);
4979 print_spaces (SECTION_NAME_MAP_LENGTH);
4980
4981 addr = data->output_offset;
4982 if (data->output_section != NULL)
4983 addr += data->output_section->vma;
4984
4985 switch (data->type)
4986 {
4987 default:
4988 abort ();
4989 case BYTE:
4990 size = BYTE_SIZE;
4991 name = "BYTE";
4992 break;
4993 case SHORT:
4994 size = SHORT_SIZE;
4995 name = "SHORT";
4996 break;
4997 case LONG:
4998 size = LONG_SIZE;
4999 name = "LONG";
5000 break;
5001 case QUAD:
5002 size = QUAD_SIZE;
5003 name = "QUAD";
5004 break;
5005 case SQUAD:
5006 size = QUAD_SIZE;
5007 name = "SQUAD";
5008 break;
5009 }
5010
5011 if (size < TO_SIZE ((unsigned) 1))
5012 size = TO_SIZE ((unsigned) 1);
5013 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
5014
5015 if (data->exp->type.node_class != etree_value)
5016 {
5017 print_space ();
5018 exp_print_tree (data->exp);
5019 }
5020
5021 print_nl ();
5022
5023 print_dot = addr + TO_ADDR (size);
5024 }
5025
5026 /* Print an address statement. These are generated by options like
5027 -Ttext. */
5028
5029 static void
5030 print_address_statement (lang_address_statement_type *address)
5031 {
5032 minfo (_("Address of section %s set to "), address->section_name);
5033 exp_print_tree (address->address);
5034 print_nl ();
5035 }
5036
5037 /* Print a reloc statement. */
5038
5039 static void
5040 print_reloc_statement (lang_reloc_statement_type *reloc)
5041 {
5042 bfd_vma addr;
5043 bfd_size_type size;
5044
5045 init_opb (reloc->output_section);
5046 print_spaces (SECTION_NAME_MAP_LENGTH);
5047
5048 addr = reloc->output_offset;
5049 if (reloc->output_section != NULL)
5050 addr += reloc->output_section->vma;
5051
5052 size = bfd_get_reloc_size (reloc->howto);
5053
5054 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
5055
5056 if (reloc->name != NULL)
5057 minfo ("%s+", reloc->name);
5058 else
5059 minfo ("%s+", reloc->section->name);
5060
5061 exp_print_tree (reloc->addend_exp);
5062
5063 print_nl ();
5064
5065 print_dot = addr + TO_ADDR (size);
5066 }
5067
5068 static void
5069 print_padding_statement (lang_padding_statement_type *s)
5070 {
5071 int len;
5072 bfd_vma addr;
5073
5074 init_opb (s->output_section);
5075 minfo (" *fill*");
5076
5077 len = sizeof " *fill*" - 1;
5078 print_spaces (SECTION_NAME_MAP_LENGTH - len);
5079
5080 addr = s->output_offset;
5081 if (s->output_section != NULL)
5082 addr += s->output_section->vma;
5083 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
5084
5085 if (s->fill->size != 0)
5086 {
5087 size_t size;
5088 unsigned char *p;
5089 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
5090 fprintf (config.map_file, "%02x", *p);
5091 }
5092
5093 print_nl ();
5094
5095 print_dot = addr + TO_ADDR (s->size);
5096 }
5097
5098 static void
5099 print_wild_statement (lang_wild_statement_type *w,
5100 lang_output_section_statement_type *os)
5101 {
5102 struct wildcard_list *sec;
5103
5104 print_space ();
5105
5106 if (w->exclude_name_list)
5107 {
5108 name_list *tmp;
5109 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5110 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5111 minfo (" %s", tmp->name);
5112 minfo (") ");
5113 }
5114
5115 if (w->filenames_sorted)
5116 minfo ("SORT_BY_NAME(");
5117 if (w->filename != NULL)
5118 minfo ("%s", w->filename);
5119 else
5120 minfo ("*");
5121 if (w->filenames_sorted)
5122 minfo (")");
5123
5124 minfo ("(");
5125 for (sec = w->section_list; sec; sec = sec->next)
5126 {
5127 int closing_paren = 0;
5128
5129 switch (sec->spec.sorted)
5130 {
5131 case none:
5132 break;
5133
5134 case by_name:
5135 minfo ("SORT_BY_NAME(");
5136 closing_paren = 1;
5137 break;
5138
5139 case by_alignment:
5140 minfo ("SORT_BY_ALIGNMENT(");
5141 closing_paren = 1;
5142 break;
5143
5144 case by_name_alignment:
5145 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5146 closing_paren = 2;
5147 break;
5148
5149 case by_alignment_name:
5150 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5151 closing_paren = 2;
5152 break;
5153
5154 case by_none:
5155 minfo ("SORT_NONE(");
5156 closing_paren = 1;
5157 break;
5158
5159 case by_init_priority:
5160 minfo ("SORT_BY_INIT_PRIORITY(");
5161 closing_paren = 1;
5162 break;
5163 }
5164
5165 if (sec->spec.exclude_name_list != NULL)
5166 {
5167 name_list *tmp;
5168 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5169 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5170 minfo (" %s", tmp->name);
5171 minfo (") ");
5172 }
5173 if (sec->spec.name != NULL)
5174 minfo ("%s", sec->spec.name);
5175 else
5176 minfo ("*");
5177 for (;closing_paren > 0; closing_paren--)
5178 minfo (")");
5179 if (sec->next)
5180 minfo (" ");
5181 }
5182 minfo (")");
5183
5184 print_nl ();
5185
5186 print_statement_list (w->children.head, os);
5187 }
5188
5189 /* Print a group statement. */
5190
5191 static void
5192 print_group (lang_group_statement_type *s,
5193 lang_output_section_statement_type *os)
5194 {
5195 fprintf (config.map_file, "START GROUP\n");
5196 print_statement_list (s->children.head, os);
5197 fprintf (config.map_file, "END GROUP\n");
5198 }
5199
5200 /* Print the list of statements in S.
5201 This can be called for any statement type. */
5202
5203 static void
5204 print_statement_list (lang_statement_union_type *s,
5205 lang_output_section_statement_type *os)
5206 {
5207 while (s != NULL)
5208 {
5209 print_statement (s, os);
5210 s = s->header.next;
5211 }
5212 }
5213
5214 /* Print the first statement in statement list S.
5215 This can be called for any statement type. */
5216
5217 static void
5218 print_statement (lang_statement_union_type *s,
5219 lang_output_section_statement_type *os)
5220 {
5221 switch (s->header.type)
5222 {
5223 default:
5224 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5225 FAIL ();
5226 break;
5227 case lang_constructors_statement_enum:
5228 if (constructor_list.head != NULL)
5229 {
5230 if (constructors_sorted)
5231 minfo (" SORT (CONSTRUCTORS)\n");
5232 else
5233 minfo (" CONSTRUCTORS\n");
5234 print_statement_list (constructor_list.head, os);
5235 }
5236 break;
5237 case lang_wild_statement_enum:
5238 print_wild_statement (&s->wild_statement, os);
5239 break;
5240 case lang_address_statement_enum:
5241 print_address_statement (&s->address_statement);
5242 break;
5243 case lang_object_symbols_statement_enum:
5244 minfo (" CREATE_OBJECT_SYMBOLS\n");
5245 break;
5246 case lang_fill_statement_enum:
5247 print_fill_statement (&s->fill_statement);
5248 break;
5249 case lang_data_statement_enum:
5250 print_data_statement (&s->data_statement);
5251 break;
5252 case lang_reloc_statement_enum:
5253 print_reloc_statement (&s->reloc_statement);
5254 break;
5255 case lang_input_section_enum:
5256 print_input_section (s->input_section.section, false);
5257 break;
5258 case lang_padding_statement_enum:
5259 print_padding_statement (&s->padding_statement);
5260 break;
5261 case lang_output_section_statement_enum:
5262 print_output_section_statement (&s->output_section_statement);
5263 break;
5264 case lang_assignment_statement_enum:
5265 print_assignment (&s->assignment_statement, os);
5266 break;
5267 case lang_target_statement_enum:
5268 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5269 break;
5270 case lang_output_statement_enum:
5271 minfo ("OUTPUT(%s", s->output_statement.name);
5272 if (output_target != NULL)
5273 minfo (" %s", output_target);
5274 minfo (")\n");
5275 break;
5276 case lang_input_statement_enum:
5277 print_input_statement (&s->input_statement);
5278 break;
5279 case lang_group_statement_enum:
5280 print_group (&s->group_statement, os);
5281 break;
5282 case lang_insert_statement_enum:
5283 minfo ("INSERT %s %s\n",
5284 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5285 s->insert_statement.where);
5286 break;
5287 }
5288 }
5289
5290 static void
5291 print_statements (void)
5292 {
5293 print_statement_list (statement_list.head, abs_output_section);
5294 }
5295
5296 /* Print the first N statements in statement list S to STDERR.
5297 If N == 0, nothing is printed.
5298 If N < 0, the entire list is printed.
5299 Intended to be called from GDB. */
5300
5301 void
5302 dprint_statement (lang_statement_union_type *s, int n)
5303 {
5304 FILE *map_save = config.map_file;
5305
5306 config.map_file = stderr;
5307
5308 if (n < 0)
5309 print_statement_list (s, abs_output_section);
5310 else
5311 {
5312 while (s && --n >= 0)
5313 {
5314 print_statement (s, abs_output_section);
5315 s = s->header.next;
5316 }
5317 }
5318
5319 config.map_file = map_save;
5320 }
5321
5322 static void
5323 insert_pad (lang_statement_union_type **ptr,
5324 fill_type *fill,
5325 bfd_size_type alignment_needed,
5326 asection *output_section,
5327 bfd_vma dot)
5328 {
5329 static fill_type zero_fill;
5330 lang_statement_union_type *pad = NULL;
5331
5332 if (ptr != &statement_list.head)
5333 pad = ((lang_statement_union_type *)
5334 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5335 if (pad != NULL
5336 && pad->header.type == lang_padding_statement_enum
5337 && pad->padding_statement.output_section == output_section)
5338 {
5339 /* Use the existing pad statement. */
5340 }
5341 else if ((pad = *ptr) != NULL
5342 && pad->header.type == lang_padding_statement_enum
5343 && pad->padding_statement.output_section == output_section)
5344 {
5345 /* Use the existing pad statement. */
5346 }
5347 else
5348 {
5349 /* Make a new padding statement, linked into existing chain. */
5350 pad = stat_alloc (sizeof (lang_padding_statement_type));
5351 pad->header.next = *ptr;
5352 *ptr = pad;
5353 pad->header.type = lang_padding_statement_enum;
5354 pad->padding_statement.output_section = output_section;
5355 if (fill == NULL)
5356 fill = &zero_fill;
5357 pad->padding_statement.fill = fill;
5358 }
5359 pad->padding_statement.output_offset = dot - output_section->vma;
5360 pad->padding_statement.size = alignment_needed;
5361 if (!(output_section->flags & SEC_FIXED_SIZE))
5362 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5363 - output_section->vma);
5364 }
5365
5366 /* Work out how much this section will move the dot point. */
5367
5368 static bfd_vma
5369 size_input_section
5370 (lang_statement_union_type **this_ptr,
5371 lang_output_section_statement_type *output_section_statement,
5372 fill_type *fill,
5373 bool *removed,
5374 bfd_vma dot)
5375 {
5376 lang_input_section_type *is = &((*this_ptr)->input_section);
5377 asection *i = is->section;
5378 asection *o = output_section_statement->bfd_section;
5379 *removed = 0;
5380
5381 if (link_info.non_contiguous_regions)
5382 {
5383 /* If the input section I has already been successfully assigned
5384 to an output section other than O, don't bother with it and
5385 let the caller remove it from the list. Keep processing in
5386 case we have already handled O, because the repeated passes
5387 have reinitialized its size. */
5388 if (i->already_assigned && i->already_assigned != o)
5389 {
5390 *removed = 1;
5391 return dot;
5392 }
5393 }
5394
5395 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5396 i->output_offset = i->vma - o->vma;
5397 else if (((i->flags & SEC_EXCLUDE) != 0)
5398 || output_section_statement->ignored)
5399 i->output_offset = dot - o->vma;
5400 else
5401 {
5402 bfd_size_type alignment_needed;
5403
5404 /* Align this section first to the input sections requirement,
5405 then to the output section's requirement. If this alignment
5406 is greater than any seen before, then record it too. Perform
5407 the alignment by inserting a magic 'padding' statement. */
5408
5409 if (output_section_statement->subsection_alignment != NULL)
5410 i->alignment_power
5411 = exp_get_power (output_section_statement->subsection_alignment,
5412 "subsection alignment");
5413
5414 if (o->alignment_power < i->alignment_power)
5415 o->alignment_power = i->alignment_power;
5416
5417 alignment_needed = align_power (dot, i->alignment_power) - dot;
5418
5419 if (alignment_needed != 0)
5420 {
5421 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5422 dot += alignment_needed;
5423 }
5424
5425 if (link_info.non_contiguous_regions)
5426 {
5427 /* If I would overflow O, let the caller remove I from the
5428 list. */
5429 if (output_section_statement->region)
5430 {
5431 bfd_vma end = output_section_statement->region->origin
5432 + output_section_statement->region->length;
5433
5434 if (dot + TO_ADDR (i->size) > end)
5435 {
5436 if (i->flags & SEC_LINKER_CREATED)
5437 einfo (_("%F%P: Output section `%pA' not large enough for "
5438 "the linker-created stubs section `%pA'.\n"),
5439 i->output_section, i);
5440
5441 if (i->rawsize && i->rawsize != i->size)
5442 einfo (_("%F%P: Relaxation not supported with "
5443 "--enable-non-contiguous-regions (section `%pA' "
5444 "would overflow `%pA' after it changed size).\n"),
5445 i, i->output_section);
5446
5447 *removed = 1;
5448 dot = end;
5449 i->output_section = NULL;
5450 return dot;
5451 }
5452 }
5453 }
5454
5455 /* Remember where in the output section this input section goes. */
5456 i->output_offset = dot - o->vma;
5457
5458 /* Mark how big the output section must be to contain this now. */
5459 dot += TO_ADDR (i->size);
5460 if (!(o->flags & SEC_FIXED_SIZE))
5461 o->size = TO_SIZE (dot - o->vma);
5462
5463 if (link_info.non_contiguous_regions)
5464 {
5465 /* Record that I was successfully assigned to O, and update
5466 its actual output section too. */
5467 i->already_assigned = o;
5468 i->output_section = o;
5469 }
5470 }
5471
5472 return dot;
5473 }
5474
5475 struct check_sec
5476 {
5477 asection *sec;
5478 bool warned;
5479 };
5480
5481 static int
5482 sort_sections_by_lma (const void *arg1, const void *arg2)
5483 {
5484 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5485 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5486
5487 if (sec1->lma < sec2->lma)
5488 return -1;
5489 else if (sec1->lma > sec2->lma)
5490 return 1;
5491 else if (sec1->id < sec2->id)
5492 return -1;
5493 else if (sec1->id > sec2->id)
5494 return 1;
5495
5496 return 0;
5497 }
5498
5499 static int
5500 sort_sections_by_vma (const void *arg1, const void *arg2)
5501 {
5502 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5503 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5504
5505 if (sec1->vma < sec2->vma)
5506 return -1;
5507 else if (sec1->vma > sec2->vma)
5508 return 1;
5509 else if (sec1->id < sec2->id)
5510 return -1;
5511 else if (sec1->id > sec2->id)
5512 return 1;
5513
5514 return 0;
5515 }
5516
5517 #define IS_TBSS(s) \
5518 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5519
5520 #define IGNORE_SECTION(s) \
5521 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5522
5523 /* Check to see if any allocated sections overlap with other allocated
5524 sections. This can happen if a linker script specifies the output
5525 section addresses of the two sections. Also check whether any memory
5526 region has overflowed. */
5527
5528 static void
5529 lang_check_section_addresses (void)
5530 {
5531 asection *s, *p;
5532 struct check_sec *sections;
5533 size_t i, count;
5534 bfd_vma addr_mask;
5535 bfd_vma s_start;
5536 bfd_vma s_end;
5537 bfd_vma p_start = 0;
5538 bfd_vma p_end = 0;
5539 lang_memory_region_type *m;
5540 bool overlays;
5541
5542 /* Detect address space overflow on allocated sections. */
5543 addr_mask = ((bfd_vma) 1 <<
5544 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5545 addr_mask = (addr_mask << 1) + 1;
5546 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5547 if ((s->flags & SEC_ALLOC) != 0)
5548 {
5549 s_end = (s->vma + s->size) & addr_mask;
5550 if (s_end != 0 && s_end < (s->vma & addr_mask))
5551 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5552 s->name);
5553 else
5554 {
5555 s_end = (s->lma + s->size) & addr_mask;
5556 if (s_end != 0 && s_end < (s->lma & addr_mask))
5557 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5558 s->name);
5559 }
5560 }
5561
5562 if (bfd_count_sections (link_info.output_bfd) <= 1)
5563 return;
5564
5565 count = bfd_count_sections (link_info.output_bfd);
5566 sections = XNEWVEC (struct check_sec, count);
5567
5568 /* Scan all sections in the output list. */
5569 count = 0;
5570 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5571 {
5572 if (IGNORE_SECTION (s)
5573 || s->size == 0)
5574 continue;
5575
5576 sections[count].sec = s;
5577 sections[count].warned = false;
5578 count++;
5579 }
5580
5581 if (count <= 1)
5582 {
5583 free (sections);
5584 return;
5585 }
5586
5587 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5588
5589 /* First check section LMAs. There should be no overlap of LMAs on
5590 loadable sections, even with overlays. */
5591 for (p = NULL, i = 0; i < count; i++)
5592 {
5593 s = sections[i].sec;
5594 init_opb (s);
5595 if ((s->flags & SEC_LOAD) != 0)
5596 {
5597 s_start = s->lma;
5598 s_end = s_start + TO_ADDR (s->size) - 1;
5599
5600 /* Look for an overlap. We have sorted sections by lma, so
5601 we know that s_start >= p_start. Besides the obvious
5602 case of overlap when the current section starts before
5603 the previous one ends, we also must have overlap if the
5604 previous section wraps around the address space. */
5605 if (p != NULL
5606 && (s_start <= p_end
5607 || p_end < p_start))
5608 {
5609 einfo (_("%X%P: section %s LMA [%V,%V]"
5610 " overlaps section %s LMA [%V,%V]\n"),
5611 s->name, s_start, s_end, p->name, p_start, p_end);
5612 sections[i].warned = true;
5613 }
5614 p = s;
5615 p_start = s_start;
5616 p_end = s_end;
5617 }
5618 }
5619
5620 /* If any non-zero size allocated section (excluding tbss) starts at
5621 exactly the same VMA as another such section, then we have
5622 overlays. Overlays generated by the OVERLAY keyword will have
5623 this property. It is possible to intentionally generate overlays
5624 that fail this test, but it would be unusual. */
5625 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5626 overlays = false;
5627 p_start = sections[0].sec->vma;
5628 for (i = 1; i < count; i++)
5629 {
5630 s_start = sections[i].sec->vma;
5631 if (p_start == s_start)
5632 {
5633 overlays = true;
5634 break;
5635 }
5636 p_start = s_start;
5637 }
5638
5639 /* Now check section VMAs if no overlays were detected. */
5640 if (!overlays)
5641 {
5642 for (p = NULL, i = 0; i < count; i++)
5643 {
5644 s = sections[i].sec;
5645 init_opb (s);
5646 s_start = s->vma;
5647 s_end = s_start + TO_ADDR (s->size) - 1;
5648
5649 if (p != NULL
5650 && !sections[i].warned
5651 && (s_start <= p_end
5652 || p_end < p_start))
5653 einfo (_("%X%P: section %s VMA [%V,%V]"
5654 " overlaps section %s VMA [%V,%V]\n"),
5655 s->name, s_start, s_end, p->name, p_start, p_end);
5656 p = s;
5657 p_start = s_start;
5658 p_end = s_end;
5659 }
5660 }
5661
5662 free (sections);
5663
5664 /* If any memory region has overflowed, report by how much.
5665 We do not issue this diagnostic for regions that had sections
5666 explicitly placed outside their bounds; os_region_check's
5667 diagnostics are adequate for that case.
5668
5669 FIXME: It is conceivable that m->current - (m->origin + m->length)
5670 might overflow a 32-bit integer. There is, alas, no way to print
5671 a bfd_vma quantity in decimal. */
5672 for (m = lang_memory_region_list; m; m = m->next)
5673 if (m->had_full_message)
5674 {
5675 unsigned long over = m->current - (m->origin + m->length);
5676 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5677 "%X%P: region `%s' overflowed by %lu bytes\n",
5678 over),
5679 m->name_list.name, over);
5680 }
5681 }
5682
5683 /* Make sure the new address is within the region. We explicitly permit the
5684 current address to be at the exact end of the region when the address is
5685 non-zero, in case the region is at the end of addressable memory and the
5686 calculation wraps around. */
5687
5688 static void
5689 os_region_check (lang_output_section_statement_type *os,
5690 lang_memory_region_type *region,
5691 etree_type *tree,
5692 bfd_vma rbase)
5693 {
5694 if ((region->current < region->origin
5695 || (region->current - region->origin > region->length))
5696 && ((region->current != region->origin + region->length)
5697 || rbase == 0))
5698 {
5699 if (tree != NULL)
5700 {
5701 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5702 " is not within region `%s'\n"),
5703 region->current,
5704 os->bfd_section->owner,
5705 os->bfd_section->name,
5706 region->name_list.name);
5707 }
5708 else if (!region->had_full_message)
5709 {
5710 region->had_full_message = true;
5711
5712 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5713 os->bfd_section->owner,
5714 os->bfd_section->name,
5715 region->name_list.name);
5716 }
5717 }
5718 }
5719
5720 static void
5721 ldlang_check_relro_region (lang_statement_union_type *s)
5722 {
5723 seg_align_type *seg = &expld.dataseg;
5724
5725 if (seg->relro == exp_seg_relro_start)
5726 {
5727 if (!seg->relro_start_stat)
5728 seg->relro_start_stat = s;
5729 else
5730 {
5731 ASSERT (seg->relro_start_stat == s);
5732 }
5733 }
5734 else if (seg->relro == exp_seg_relro_end)
5735 {
5736 if (!seg->relro_end_stat)
5737 seg->relro_end_stat = s;
5738 else
5739 {
5740 ASSERT (seg->relro_end_stat == s);
5741 }
5742 }
5743 }
5744
5745 /* Set the sizes for all the output sections. */
5746
5747 static bfd_vma
5748 lang_size_sections_1
5749 (lang_statement_union_type **prev,
5750 lang_output_section_statement_type *output_section_statement,
5751 fill_type *fill,
5752 bfd_vma dot,
5753 bool *relax,
5754 bool check_regions)
5755 {
5756 lang_statement_union_type *s;
5757 lang_statement_union_type *prev_s = NULL;
5758 bool removed_prev_s = false;
5759
5760 /* Size up the sections from their constituent parts. */
5761 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5762 {
5763 bool removed = false;
5764
5765 switch (s->header.type)
5766 {
5767 case lang_output_section_statement_enum:
5768 {
5769 bfd_vma newdot, after, dotdelta;
5770 lang_output_section_statement_type *os;
5771 lang_memory_region_type *r;
5772 int section_alignment = 0;
5773
5774 os = &s->output_section_statement;
5775 init_opb (os->bfd_section);
5776 if (os->constraint == -1)
5777 break;
5778
5779 /* FIXME: We shouldn't need to zero section vmas for ld -r
5780 here, in lang_insert_orphan, or in the default linker scripts.
5781 This is covering for coff backend linker bugs. See PR6945. */
5782 if (os->addr_tree == NULL
5783 && bfd_link_relocatable (&link_info)
5784 && (bfd_get_flavour (link_info.output_bfd)
5785 == bfd_target_coff_flavour))
5786 os->addr_tree = exp_intop (0);
5787 if (os->addr_tree != NULL)
5788 {
5789 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5790
5791 if (expld.result.valid_p)
5792 {
5793 dot = expld.result.value;
5794 if (expld.result.section != NULL)
5795 dot += expld.result.section->vma;
5796 }
5797 else if (expld.phase != lang_mark_phase_enum)
5798 einfo (_("%F%P:%pS: non constant or forward reference"
5799 " address expression for section %s\n"),
5800 os->addr_tree, os->name);
5801 }
5802
5803 if (os->bfd_section == NULL)
5804 /* This section was removed or never actually created. */
5805 break;
5806
5807 /* If this is a COFF shared library section, use the size and
5808 address from the input section. FIXME: This is COFF
5809 specific; it would be cleaner if there were some other way
5810 to do this, but nothing simple comes to mind. */
5811 if (((bfd_get_flavour (link_info.output_bfd)
5812 == bfd_target_ecoff_flavour)
5813 || (bfd_get_flavour (link_info.output_bfd)
5814 == bfd_target_coff_flavour))
5815 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5816 {
5817 asection *input;
5818
5819 if (os->children.head == NULL
5820 || os->children.head->header.next != NULL
5821 || (os->children.head->header.type
5822 != lang_input_section_enum))
5823 einfo (_("%X%P: internal error on COFF shared library"
5824 " section %s\n"), os->name);
5825
5826 input = os->children.head->input_section.section;
5827 bfd_set_section_vma (os->bfd_section,
5828 bfd_section_vma (input));
5829 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5830 os->bfd_section->size = input->size;
5831 break;
5832 }
5833
5834 newdot = dot;
5835 dotdelta = 0;
5836 if (bfd_is_abs_section (os->bfd_section))
5837 {
5838 /* No matter what happens, an abs section starts at zero. */
5839 ASSERT (os->bfd_section->vma == 0);
5840 }
5841 else
5842 {
5843 if (os->addr_tree == NULL)
5844 {
5845 /* No address specified for this section, get one
5846 from the region specification. */
5847 if (os->region == NULL
5848 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5849 && os->region->name_list.name[0] == '*'
5850 && strcmp (os->region->name_list.name,
5851 DEFAULT_MEMORY_REGION) == 0))
5852 {
5853 os->region = lang_memory_default (os->bfd_section);
5854 }
5855
5856 /* If a loadable section is using the default memory
5857 region, and some non default memory regions were
5858 defined, issue an error message. */
5859 if (!os->ignored
5860 && !IGNORE_SECTION (os->bfd_section)
5861 && !bfd_link_relocatable (&link_info)
5862 && check_regions
5863 && strcmp (os->region->name_list.name,
5864 DEFAULT_MEMORY_REGION) == 0
5865 && lang_memory_region_list != NULL
5866 && (strcmp (lang_memory_region_list->name_list.name,
5867 DEFAULT_MEMORY_REGION) != 0
5868 || lang_memory_region_list->next != NULL)
5869 && lang_sizing_iteration == 1)
5870 {
5871 /* By default this is an error rather than just a
5872 warning because if we allocate the section to the
5873 default memory region we can end up creating an
5874 excessively large binary, or even seg faulting when
5875 attempting to perform a negative seek. See
5876 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5877 for an example of this. This behaviour can be
5878 overridden by the using the --no-check-sections
5879 switch. */
5880 if (command_line.check_section_addresses)
5881 einfo (_("%F%P: error: no memory region specified"
5882 " for loadable section `%s'\n"),
5883 bfd_section_name (os->bfd_section));
5884 else
5885 einfo (_("%P: warning: no memory region specified"
5886 " for loadable section `%s'\n"),
5887 bfd_section_name (os->bfd_section));
5888 }
5889
5890 newdot = os->region->current;
5891 section_alignment = os->bfd_section->alignment_power;
5892 }
5893 else
5894 section_alignment = exp_get_power (os->section_alignment,
5895 "section alignment");
5896
5897 /* Align to what the section needs. */
5898 if (section_alignment > 0)
5899 {
5900 bfd_vma savedot = newdot;
5901 bfd_vma diff = 0;
5902
5903 newdot = align_power (newdot, section_alignment);
5904 dotdelta = newdot - savedot;
5905
5906 if (lang_sizing_iteration == 1)
5907 diff = dotdelta;
5908 else if (lang_sizing_iteration > 1)
5909 {
5910 /* Only report adjustments that would change
5911 alignment from what we have already reported. */
5912 diff = newdot - os->bfd_section->vma;
5913 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5914 diff = 0;
5915 }
5916 if (diff != 0
5917 && (config.warn_section_align
5918 || os->addr_tree != NULL))
5919 einfo (_("%P: warning: "
5920 "start of section %s changed by %ld\n"),
5921 os->name, (long) diff);
5922 }
5923
5924 bfd_set_section_vma (os->bfd_section, newdot);
5925
5926 os->bfd_section->output_offset = 0;
5927 }
5928
5929 lang_size_sections_1 (&os->children.head, os,
5930 os->fill, newdot, relax, check_regions);
5931
5932 os->processed_vma = true;
5933
5934 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5935 /* Except for some special linker created sections,
5936 no output section should change from zero size
5937 after strip_excluded_output_sections. A non-zero
5938 size on an ignored section indicates that some
5939 input section was not sized early enough. */
5940 ASSERT (os->bfd_section->size == 0);
5941 else
5942 {
5943 dot = os->bfd_section->vma;
5944
5945 /* Put the section within the requested block size, or
5946 align at the block boundary. */
5947 after = ((dot
5948 + TO_ADDR (os->bfd_section->size)
5949 + os->block_value - 1)
5950 & - (bfd_vma) os->block_value);
5951
5952 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5953 os->bfd_section->size = TO_SIZE (after
5954 - os->bfd_section->vma);
5955 }
5956
5957 /* Set section lma. */
5958 r = os->region;
5959 if (r == NULL)
5960 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
5961
5962 if (os->load_base)
5963 {
5964 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5965 os->bfd_section->lma = lma;
5966 }
5967 else if (os->lma_region != NULL)
5968 {
5969 bfd_vma lma = os->lma_region->current;
5970
5971 if (os->align_lma_with_input)
5972 lma += dotdelta;
5973 else
5974 {
5975 /* When LMA_REGION is the same as REGION, align the LMA
5976 as we did for the VMA, possibly including alignment
5977 from the bfd section. If a different region, then
5978 only align according to the value in the output
5979 statement. */
5980 if (os->lma_region != os->region)
5981 section_alignment = exp_get_power (os->section_alignment,
5982 "section alignment");
5983 if (section_alignment > 0)
5984 lma = align_power (lma, section_alignment);
5985 }
5986 os->bfd_section->lma = lma;
5987 }
5988 else if (r->last_os != NULL
5989 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5990 {
5991 bfd_vma lma;
5992 asection *last;
5993
5994 last = r->last_os->output_section_statement.bfd_section;
5995
5996 /* A backwards move of dot should be accompanied by
5997 an explicit assignment to the section LMA (ie.
5998 os->load_base set) because backwards moves can
5999 create overlapping LMAs. */
6000 if (dot < last->vma
6001 && os->bfd_section->size != 0
6002 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
6003 {
6004 /* If dot moved backwards then leave lma equal to
6005 vma. This is the old default lma, which might
6006 just happen to work when the backwards move is
6007 sufficiently large. Nag if this changes anything,
6008 so people can fix their linker scripts. */
6009
6010 if (last->vma != last->lma)
6011 einfo (_("%P: warning: dot moved backwards "
6012 "before `%s'\n"), os->name);
6013 }
6014 else
6015 {
6016 /* If this is an overlay, set the current lma to that
6017 at the end of the previous section. */
6018 if (os->sectype == overlay_section)
6019 lma = last->lma + TO_ADDR (last->size);
6020
6021 /* Otherwise, keep the same lma to vma relationship
6022 as the previous section. */
6023 else
6024 lma = os->bfd_section->vma + last->lma - last->vma;
6025
6026 if (section_alignment > 0)
6027 lma = align_power (lma, section_alignment);
6028 os->bfd_section->lma = lma;
6029 }
6030 }
6031 os->processed_lma = true;
6032
6033 /* Keep track of normal sections using the default
6034 lma region. We use this to set the lma for
6035 following sections. Overlays or other linker
6036 script assignment to lma might mean that the
6037 default lma == vma is incorrect.
6038 To avoid warnings about dot moving backwards when using
6039 -Ttext, don't start tracking sections until we find one
6040 of non-zero size or with lma set differently to vma.
6041 Do this tracking before we short-cut the loop so that we
6042 track changes for the case where the section size is zero,
6043 but the lma is set differently to the vma. This is
6044 important, if an orphan section is placed after an
6045 otherwise empty output section that has an explicit lma
6046 set, we want that lma reflected in the orphans lma. */
6047 if (((!IGNORE_SECTION (os->bfd_section)
6048 && (os->bfd_section->size != 0
6049 || (r->last_os == NULL
6050 && os->bfd_section->vma != os->bfd_section->lma)
6051 || (r->last_os != NULL
6052 && dot >= (r->last_os->output_section_statement
6053 .bfd_section->vma))))
6054 || os->sectype == first_overlay_section)
6055 && os->lma_region == NULL
6056 && !bfd_link_relocatable (&link_info))
6057 r->last_os = s;
6058
6059 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
6060 break;
6061
6062 /* .tbss sections effectively have zero size. */
6063 if (!IS_TBSS (os->bfd_section)
6064 || bfd_link_relocatable (&link_info))
6065 dotdelta = TO_ADDR (os->bfd_section->size);
6066 else
6067 dotdelta = 0;
6068 dot += dotdelta;
6069
6070 if (os->update_dot_tree != 0)
6071 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
6072
6073 /* Update dot in the region ?
6074 We only do this if the section is going to be allocated,
6075 since unallocated sections do not contribute to the region's
6076 overall size in memory. */
6077 if (os->region != NULL
6078 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
6079 {
6080 os->region->current = dot;
6081
6082 if (check_regions)
6083 /* Make sure the new address is within the region. */
6084 os_region_check (os, os->region, os->addr_tree,
6085 os->bfd_section->vma);
6086
6087 if (os->lma_region != NULL && os->lma_region != os->region
6088 && ((os->bfd_section->flags & SEC_LOAD)
6089 || os->align_lma_with_input))
6090 {
6091 os->lma_region->current = os->bfd_section->lma + dotdelta;
6092
6093 if (check_regions)
6094 os_region_check (os, os->lma_region, NULL,
6095 os->bfd_section->lma);
6096 }
6097 }
6098 }
6099 break;
6100
6101 case lang_constructors_statement_enum:
6102 dot = lang_size_sections_1 (&constructor_list.head,
6103 output_section_statement,
6104 fill, dot, relax, check_regions);
6105 break;
6106
6107 case lang_data_statement_enum:
6108 {
6109 unsigned int size = 0;
6110
6111 s->data_statement.output_offset =
6112 dot - output_section_statement->bfd_section->vma;
6113 s->data_statement.output_section =
6114 output_section_statement->bfd_section;
6115
6116 /* We might refer to provided symbols in the expression, and
6117 need to mark them as needed. */
6118 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6119
6120 switch (s->data_statement.type)
6121 {
6122 default:
6123 abort ();
6124 case QUAD:
6125 case SQUAD:
6126 size = QUAD_SIZE;
6127 break;
6128 case LONG:
6129 size = LONG_SIZE;
6130 break;
6131 case SHORT:
6132 size = SHORT_SIZE;
6133 break;
6134 case BYTE:
6135 size = BYTE_SIZE;
6136 break;
6137 }
6138 if (size < TO_SIZE ((unsigned) 1))
6139 size = TO_SIZE ((unsigned) 1);
6140 dot += TO_ADDR (size);
6141 if (!(output_section_statement->bfd_section->flags
6142 & SEC_FIXED_SIZE))
6143 output_section_statement->bfd_section->size
6144 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6145
6146 }
6147 break;
6148
6149 case lang_reloc_statement_enum:
6150 {
6151 int size;
6152
6153 s->reloc_statement.output_offset =
6154 dot - output_section_statement->bfd_section->vma;
6155 s->reloc_statement.output_section =
6156 output_section_statement->bfd_section;
6157 size = bfd_get_reloc_size (s->reloc_statement.howto);
6158 dot += TO_ADDR (size);
6159 if (!(output_section_statement->bfd_section->flags
6160 & SEC_FIXED_SIZE))
6161 output_section_statement->bfd_section->size
6162 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
6163 }
6164 break;
6165
6166 case lang_wild_statement_enum:
6167 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6168 output_section_statement,
6169 fill, dot, relax, check_regions);
6170 break;
6171
6172 case lang_object_symbols_statement_enum:
6173 link_info.create_object_symbols_section
6174 = output_section_statement->bfd_section;
6175 output_section_statement->bfd_section->flags |= SEC_KEEP;
6176 break;
6177
6178 case lang_output_statement_enum:
6179 case lang_target_statement_enum:
6180 break;
6181
6182 case lang_input_section_enum:
6183 {
6184 asection *i;
6185
6186 i = s->input_section.section;
6187 if (relax)
6188 {
6189 bool again;
6190
6191 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6192 einfo (_("%F%P: can't relax section: %E\n"));
6193 if (again)
6194 *relax = true;
6195 }
6196 dot = size_input_section (prev, output_section_statement,
6197 fill, &removed, dot);
6198 }
6199 break;
6200
6201 case lang_input_statement_enum:
6202 break;
6203
6204 case lang_fill_statement_enum:
6205 s->fill_statement.output_section =
6206 output_section_statement->bfd_section;
6207
6208 fill = s->fill_statement.fill;
6209 break;
6210
6211 case lang_assignment_statement_enum:
6212 {
6213 bfd_vma newdot = dot;
6214 etree_type *tree = s->assignment_statement.exp;
6215
6216 expld.dataseg.relro = exp_seg_relro_none;
6217
6218 exp_fold_tree (tree,
6219 output_section_statement->bfd_section,
6220 &newdot);
6221
6222 ldlang_check_relro_region (s);
6223
6224 expld.dataseg.relro = exp_seg_relro_none;
6225
6226 /* This symbol may be relative to this section. */
6227 if ((tree->type.node_class == etree_provided
6228 || tree->type.node_class == etree_assign)
6229 && (tree->assign.dst [0] != '.'
6230 || tree->assign.dst [1] != '\0'))
6231 output_section_statement->update_dot = 1;
6232
6233 if (!output_section_statement->ignored)
6234 {
6235 if (output_section_statement == abs_output_section)
6236 {
6237 /* If we don't have an output section, then just adjust
6238 the default memory address. */
6239 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6240 false)->current = newdot;
6241 }
6242 else if (newdot != dot)
6243 {
6244 /* Insert a pad after this statement. We can't
6245 put the pad before when relaxing, in case the
6246 assignment references dot. */
6247 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6248 output_section_statement->bfd_section, dot);
6249
6250 /* Don't neuter the pad below when relaxing. */
6251 s = s->header.next;
6252
6253 /* If dot is advanced, this implies that the section
6254 should have space allocated to it, unless the
6255 user has explicitly stated that the section
6256 should not be allocated. */
6257 if (output_section_statement->sectype != noalloc_section
6258 && (output_section_statement->sectype != noload_section
6259 || (bfd_get_flavour (link_info.output_bfd)
6260 == bfd_target_elf_flavour)))
6261 output_section_statement->bfd_section->flags |= SEC_ALLOC;
6262 }
6263 dot = newdot;
6264 }
6265 }
6266 break;
6267
6268 case lang_padding_statement_enum:
6269 /* If this is the first time lang_size_sections is called,
6270 we won't have any padding statements. If this is the
6271 second or later passes when relaxing, we should allow
6272 padding to shrink. If padding is needed on this pass, it
6273 will be added back in. */
6274 s->padding_statement.size = 0;
6275
6276 /* Make sure output_offset is valid. If relaxation shrinks
6277 the section and this pad isn't needed, it's possible to
6278 have output_offset larger than the final size of the
6279 section. bfd_set_section_contents will complain even for
6280 a pad size of zero. */
6281 s->padding_statement.output_offset
6282 = dot - output_section_statement->bfd_section->vma;
6283 break;
6284
6285 case lang_group_statement_enum:
6286 dot = lang_size_sections_1 (&s->group_statement.children.head,
6287 output_section_statement,
6288 fill, dot, relax, check_regions);
6289 break;
6290
6291 case lang_insert_statement_enum:
6292 break;
6293
6294 /* We can only get here when relaxing is turned on. */
6295 case lang_address_statement_enum:
6296 break;
6297
6298 default:
6299 FAIL ();
6300 break;
6301 }
6302
6303 /* If an input section doesn't fit in the current output
6304 section, remove it from the list. Handle the case where we
6305 have to remove an input_section statement here: there is a
6306 special case to remove the first element of the list. */
6307 if (link_info.non_contiguous_regions && removed)
6308 {
6309 /* If we removed the first element during the previous
6310 iteration, override the loop assignment of prev_s. */
6311 if (removed_prev_s)
6312 prev_s = NULL;
6313
6314 if (prev_s)
6315 {
6316 /* If there was a real previous input section, just skip
6317 the current one. */
6318 prev_s->header.next=s->header.next;
6319 s = prev_s;
6320 removed_prev_s = false;
6321 }
6322 else
6323 {
6324 /* Remove the first input section of the list. */
6325 *prev = s->header.next;
6326 removed_prev_s = true;
6327 }
6328
6329 /* Move to next element, unless we removed the head of the
6330 list. */
6331 if (!removed_prev_s)
6332 prev = &s->header.next;
6333 }
6334 else
6335 {
6336 prev = &s->header.next;
6337 removed_prev_s = false;
6338 }
6339 }
6340 return dot;
6341 }
6342
6343 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6344 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6345 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6346 segments. We are allowed an opportunity to override this decision. */
6347
6348 bool
6349 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6350 bfd *abfd ATTRIBUTE_UNUSED,
6351 asection *current_section,
6352 asection *previous_section,
6353 bool new_segment)
6354 {
6355 lang_output_section_statement_type *cur;
6356 lang_output_section_statement_type *prev;
6357
6358 /* The checks below are only necessary when the BFD library has decided
6359 that the two sections ought to be placed into the same segment. */
6360 if (new_segment)
6361 return true;
6362
6363 /* Paranoia checks. */
6364 if (current_section == NULL || previous_section == NULL)
6365 return new_segment;
6366
6367 /* If this flag is set, the target never wants code and non-code
6368 sections comingled in the same segment. */
6369 if (config.separate_code
6370 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6371 return true;
6372
6373 /* Find the memory regions associated with the two sections.
6374 We call lang_output_section_find() here rather than scanning the list
6375 of output sections looking for a matching section pointer because if
6376 we have a large number of sections then a hash lookup is faster. */
6377 cur = lang_output_section_find (current_section->name);
6378 prev = lang_output_section_find (previous_section->name);
6379
6380 /* More paranoia. */
6381 if (cur == NULL || prev == NULL)
6382 return new_segment;
6383
6384 /* If the regions are different then force the sections to live in
6385 different segments. See the email thread starting at the following
6386 URL for the reasons why this is necessary:
6387 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6388 return cur->region != prev->region;
6389 }
6390
6391 void
6392 one_lang_size_sections_pass (bool *relax, bool check_regions)
6393 {
6394 lang_statement_iteration++;
6395 if (expld.phase != lang_mark_phase_enum)
6396 lang_sizing_iteration++;
6397 lang_size_sections_1 (&statement_list.head, abs_output_section,
6398 0, 0, relax, check_regions);
6399 }
6400
6401 static bool
6402 lang_size_segment (void)
6403 {
6404 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6405 a page could be saved in the data segment. */
6406 seg_align_type *seg = &expld.dataseg;
6407 bfd_vma first, last;
6408
6409 first = -seg->base & (seg->commonpagesize - 1);
6410 last = seg->end & (seg->commonpagesize - 1);
6411 if (first && last
6412 && ((seg->base & ~(seg->commonpagesize - 1))
6413 != (seg->end & ~(seg->commonpagesize - 1)))
6414 && first + last <= seg->commonpagesize)
6415 {
6416 seg->phase = exp_seg_adjust;
6417 return true;
6418 }
6419
6420 seg->phase = exp_seg_done;
6421 return false;
6422 }
6423
6424 static bfd_vma
6425 lang_size_relro_segment_1 (void)
6426 {
6427 seg_align_type *seg = &expld.dataseg;
6428 bfd_vma relro_end, desired_end;
6429 asection *sec;
6430
6431 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6432 relro_end = (seg->relro_end + seg->relropagesize - 1) & -seg->relropagesize;
6433
6434 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6435 desired_end = relro_end - seg->relro_offset;
6436
6437 /* For sections in the relro segment.. */
6438 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6439 if ((sec->flags & SEC_ALLOC) != 0
6440 && sec->vma >= seg->base
6441 && sec->vma < seg->relro_end - seg->relro_offset)
6442 {
6443 /* Where do we want to put this section so that it ends as
6444 desired? */
6445 bfd_vma start, end, bump;
6446
6447 end = start = sec->vma;
6448 if (!IS_TBSS (sec))
6449 end += TO_ADDR (sec->size);
6450 bump = desired_end - end;
6451 /* We'd like to increase START by BUMP, but we must heed
6452 alignment so the increase might be less than optimum. */
6453 start += bump;
6454 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6455 /* This is now the desired end for the previous section. */
6456 desired_end = start;
6457 }
6458
6459 seg->phase = exp_seg_relro_adjust;
6460 ASSERT (desired_end >= seg->base);
6461 seg->base = desired_end;
6462 return relro_end;
6463 }
6464
6465 static bool
6466 lang_size_relro_segment (bool *relax, bool check_regions)
6467 {
6468 bool do_reset = false;
6469
6470 if (link_info.relro && expld.dataseg.relro_end)
6471 {
6472 bfd_vma data_initial_base = expld.dataseg.base;
6473 bfd_vma data_relro_end = lang_size_relro_segment_1 ();
6474
6475 lang_reset_memory_regions ();
6476 one_lang_size_sections_pass (relax, check_regions);
6477
6478 /* Assignments to dot, or to output section address in a user
6479 script have increased padding over the original. Revert. */
6480 if (expld.dataseg.relro_end > data_relro_end)
6481 {
6482 expld.dataseg.base = data_initial_base;
6483 do_reset = true;
6484 }
6485 }
6486 else if (lang_size_segment ())
6487 do_reset = true;
6488
6489 return do_reset;
6490 }
6491
6492 void
6493 lang_size_sections (bool *relax, bool check_regions)
6494 {
6495 expld.phase = lang_allocating_phase_enum;
6496 expld.dataseg.phase = exp_seg_none;
6497
6498 one_lang_size_sections_pass (relax, check_regions);
6499
6500 if (expld.dataseg.phase != exp_seg_end_seen)
6501 expld.dataseg.phase = exp_seg_done;
6502
6503 if (expld.dataseg.phase == exp_seg_end_seen)
6504 {
6505 bool do_reset
6506 = lang_size_relro_segment (relax, check_regions);
6507
6508 if (do_reset)
6509 {
6510 lang_reset_memory_regions ();
6511 one_lang_size_sections_pass (relax, check_regions);
6512 }
6513
6514 if (link_info.relro && expld.dataseg.relro_end)
6515 {
6516 link_info.relro_start = expld.dataseg.base;
6517 link_info.relro_end = expld.dataseg.relro_end;
6518 }
6519 }
6520 }
6521
6522 static lang_output_section_statement_type *current_section;
6523 static lang_assignment_statement_type *current_assign;
6524 static bool prefer_next_section;
6525
6526 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6527
6528 static bfd_vma
6529 lang_do_assignments_1 (lang_statement_union_type *s,
6530 lang_output_section_statement_type *current_os,
6531 fill_type *fill,
6532 bfd_vma dot,
6533 bool *found_end)
6534 {
6535 for (; s != NULL; s = s->header.next)
6536 {
6537 switch (s->header.type)
6538 {
6539 case lang_constructors_statement_enum:
6540 dot = lang_do_assignments_1 (constructor_list.head,
6541 current_os, fill, dot, found_end);
6542 break;
6543
6544 case lang_output_section_statement_enum:
6545 {
6546 lang_output_section_statement_type *os;
6547 bfd_vma newdot;
6548
6549 os = &(s->output_section_statement);
6550 os->after_end = *found_end;
6551 init_opb (os->bfd_section);
6552 newdot = dot;
6553 if (os->bfd_section != NULL)
6554 {
6555 if (!os->ignored && (os->bfd_section->flags & SEC_ALLOC) != 0)
6556 {
6557 current_section = os;
6558 prefer_next_section = false;
6559 }
6560 newdot = os->bfd_section->vma;
6561 }
6562 newdot = lang_do_assignments_1 (os->children.head,
6563 os, os->fill, newdot, found_end);
6564 if (!os->ignored)
6565 {
6566 if (os->bfd_section != NULL)
6567 {
6568 newdot = os->bfd_section->vma;
6569
6570 /* .tbss sections effectively have zero size. */
6571 if (!IS_TBSS (os->bfd_section)
6572 || bfd_link_relocatable (&link_info))
6573 newdot += TO_ADDR (os->bfd_section->size);
6574
6575 if (os->update_dot_tree != NULL)
6576 exp_fold_tree (os->update_dot_tree,
6577 bfd_abs_section_ptr, &newdot);
6578 }
6579 dot = newdot;
6580 }
6581 }
6582 break;
6583
6584 case lang_wild_statement_enum:
6585
6586 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6587 current_os, fill, dot, found_end);
6588 break;
6589
6590 case lang_object_symbols_statement_enum:
6591 case lang_output_statement_enum:
6592 case lang_target_statement_enum:
6593 break;
6594
6595 case lang_data_statement_enum:
6596 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
6597 if (expld.result.valid_p)
6598 {
6599 s->data_statement.value = expld.result.value;
6600 if (expld.result.section != NULL)
6601 s->data_statement.value += expld.result.section->vma;
6602 }
6603 else if (expld.phase == lang_final_phase_enum)
6604 einfo (_("%F%P: invalid data statement\n"));
6605 {
6606 unsigned int size;
6607 switch (s->data_statement.type)
6608 {
6609 default:
6610 abort ();
6611 case QUAD:
6612 case SQUAD:
6613 size = QUAD_SIZE;
6614 break;
6615 case LONG:
6616 size = LONG_SIZE;
6617 break;
6618 case SHORT:
6619 size = SHORT_SIZE;
6620 break;
6621 case BYTE:
6622 size = BYTE_SIZE;
6623 break;
6624 }
6625 if (size < TO_SIZE ((unsigned) 1))
6626 size = TO_SIZE ((unsigned) 1);
6627 dot += TO_ADDR (size);
6628 }
6629 break;
6630
6631 case lang_reloc_statement_enum:
6632 exp_fold_tree (s->reloc_statement.addend_exp,
6633 bfd_abs_section_ptr, &dot);
6634 if (expld.result.valid_p)
6635 s->reloc_statement.addend_value = expld.result.value;
6636 else if (expld.phase == lang_final_phase_enum)
6637 einfo (_("%F%P: invalid reloc statement\n"));
6638 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6639 break;
6640
6641 case lang_input_section_enum:
6642 {
6643 asection *in = s->input_section.section;
6644
6645 if ((in->flags & SEC_EXCLUDE) == 0)
6646 dot += TO_ADDR (in->size);
6647 }
6648 break;
6649
6650 case lang_input_statement_enum:
6651 break;
6652
6653 case lang_fill_statement_enum:
6654 fill = s->fill_statement.fill;
6655 break;
6656
6657 case lang_assignment_statement_enum:
6658 current_assign = &s->assignment_statement;
6659 if (current_assign->exp->type.node_class != etree_assert)
6660 {
6661 const char *p = current_assign->exp->assign.dst;
6662
6663 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6664 prefer_next_section = true;
6665
6666 while (*p == '_')
6667 ++p;
6668 if (strcmp (p, "end") == 0)
6669 *found_end = true;
6670 }
6671 exp_fold_tree (s->assignment_statement.exp,
6672 (current_os->bfd_section != NULL
6673 ? current_os->bfd_section : bfd_und_section_ptr),
6674 &dot);
6675 break;
6676
6677 case lang_padding_statement_enum:
6678 dot += TO_ADDR (s->padding_statement.size);
6679 break;
6680
6681 case lang_group_statement_enum:
6682 dot = lang_do_assignments_1 (s->group_statement.children.head,
6683 current_os, fill, dot, found_end);
6684 break;
6685
6686 case lang_insert_statement_enum:
6687 break;
6688
6689 case lang_address_statement_enum:
6690 break;
6691
6692 default:
6693 FAIL ();
6694 break;
6695 }
6696 }
6697 return dot;
6698 }
6699
6700 void
6701 lang_do_assignments (lang_phase_type phase)
6702 {
6703 bool found_end = false;
6704
6705 current_section = NULL;
6706 prefer_next_section = false;
6707 expld.phase = phase;
6708 lang_statement_iteration++;
6709 lang_do_assignments_1 (statement_list.head,
6710 abs_output_section, NULL, 0, &found_end);
6711 }
6712
6713 /* For an assignment statement outside of an output section statement,
6714 choose the best of neighbouring output sections to use for values
6715 of "dot". */
6716
6717 asection *
6718 section_for_dot (void)
6719 {
6720 asection *s;
6721
6722 /* Assignments belong to the previous output section, unless there
6723 has been an assignment to "dot", in which case following
6724 assignments belong to the next output section. (The assumption
6725 is that an assignment to "dot" is setting up the address for the
6726 next output section.) Except that past the assignment to "_end"
6727 we always associate with the previous section. This exception is
6728 for targets like SH that define an alloc .stack or other
6729 weirdness after non-alloc sections. */
6730 if (current_section == NULL || prefer_next_section)
6731 {
6732 lang_statement_union_type *stmt;
6733 lang_output_section_statement_type *os;
6734
6735 for (stmt = (lang_statement_union_type *) current_assign;
6736 stmt != NULL;
6737 stmt = stmt->header.next)
6738 if (stmt->header.type == lang_output_section_statement_enum)
6739 break;
6740
6741 os = stmt ? &stmt->output_section_statement : NULL;
6742 while (os != NULL
6743 && !os->after_end
6744 && (os->bfd_section == NULL
6745 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6746 || bfd_section_removed_from_list (link_info.output_bfd,
6747 os->bfd_section)))
6748 os = os->next;
6749
6750 if (current_section == NULL || os == NULL || !os->after_end)
6751 {
6752 if (os != NULL)
6753 s = os->bfd_section;
6754 else
6755 s = link_info.output_bfd->section_last;
6756 while (s != NULL
6757 && ((s->flags & SEC_ALLOC) == 0
6758 || (s->flags & SEC_THREAD_LOCAL) != 0))
6759 s = s->prev;
6760 if (s != NULL)
6761 return s;
6762
6763 return bfd_abs_section_ptr;
6764 }
6765 }
6766
6767 s = current_section->bfd_section;
6768
6769 /* The section may have been stripped. */
6770 while (s != NULL
6771 && ((s->flags & SEC_EXCLUDE) != 0
6772 || (s->flags & SEC_ALLOC) == 0
6773 || (s->flags & SEC_THREAD_LOCAL) != 0
6774 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6775 s = s->prev;
6776 if (s == NULL)
6777 s = link_info.output_bfd->sections;
6778 while (s != NULL
6779 && ((s->flags & SEC_ALLOC) == 0
6780 || (s->flags & SEC_THREAD_LOCAL) != 0))
6781 s = s->next;
6782 if (s != NULL)
6783 return s;
6784
6785 return bfd_abs_section_ptr;
6786 }
6787
6788 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6789
6790 static struct bfd_link_hash_entry **start_stop_syms;
6791 static size_t start_stop_count = 0;
6792 static size_t start_stop_alloc = 0;
6793
6794 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6795 to start_stop_syms. */
6796
6797 static void
6798 lang_define_start_stop (const char *symbol, asection *sec)
6799 {
6800 struct bfd_link_hash_entry *h;
6801
6802 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6803 if (h != NULL)
6804 {
6805 if (start_stop_count == start_stop_alloc)
6806 {
6807 start_stop_alloc = 2 * start_stop_alloc + 10;
6808 start_stop_syms
6809 = xrealloc (start_stop_syms,
6810 start_stop_alloc * sizeof (*start_stop_syms));
6811 }
6812 start_stop_syms[start_stop_count++] = h;
6813 }
6814 }
6815
6816 /* Check for input sections whose names match references to
6817 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6818 preliminary definitions. */
6819
6820 static void
6821 lang_init_start_stop (void)
6822 {
6823 bfd *abfd;
6824 asection *s;
6825 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6826
6827 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6828 for (s = abfd->sections; s != NULL; s = s->next)
6829 {
6830 const char *ps;
6831 const char *secname = s->name;
6832
6833 for (ps = secname; *ps != '\0'; ps++)
6834 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6835 break;
6836 if (*ps == '\0')
6837 {
6838 char *symbol = (char *) xmalloc (10 + strlen (secname));
6839
6840 symbol[0] = leading_char;
6841 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6842 lang_define_start_stop (symbol, s);
6843
6844 symbol[1] = leading_char;
6845 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6846 lang_define_start_stop (symbol + 1, s);
6847
6848 free (symbol);
6849 }
6850 }
6851 }
6852
6853 /* Iterate over start_stop_syms. */
6854
6855 static void
6856 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6857 {
6858 size_t i;
6859
6860 for (i = 0; i < start_stop_count; ++i)
6861 func (start_stop_syms[i]);
6862 }
6863
6864 /* __start and __stop symbols are only supposed to be defined by the
6865 linker for orphan sections, but we now extend that to sections that
6866 map to an output section of the same name. The symbols were
6867 defined early for --gc-sections, before we mapped input to output
6868 sections, so undo those that don't satisfy this rule. */
6869
6870 static void
6871 undef_start_stop (struct bfd_link_hash_entry *h)
6872 {
6873 if (h->ldscript_def)
6874 return;
6875
6876 if (h->u.def.section->output_section == NULL
6877 || h->u.def.section->output_section->owner != link_info.output_bfd
6878 || strcmp (h->u.def.section->name,
6879 h->u.def.section->output_section->name) != 0)
6880 {
6881 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6882 h->u.def.section->name);
6883 if (sec != NULL)
6884 {
6885 /* When there are more than one input sections with the same
6886 section name, SECNAME, linker picks the first one to define
6887 __start_SECNAME and __stop_SECNAME symbols. When the first
6888 input section is removed by comdat group, we need to check
6889 if there is still an output section with section name
6890 SECNAME. */
6891 asection *i;
6892 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6893 if (strcmp (h->u.def.section->name, i->name) == 0)
6894 {
6895 h->u.def.section = i;
6896 return;
6897 }
6898 }
6899 h->type = bfd_link_hash_undefined;
6900 h->u.undef.abfd = NULL;
6901 if (is_elf_hash_table (link_info.hash))
6902 {
6903 const struct elf_backend_data *bed;
6904 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
6905 unsigned int was_forced = eh->forced_local;
6906
6907 bed = get_elf_backend_data (link_info.output_bfd);
6908 (*bed->elf_backend_hide_symbol) (&link_info, eh, true);
6909 if (!eh->ref_regular_nonweak)
6910 h->type = bfd_link_hash_undefweak;
6911 eh->def_regular = 0;
6912 eh->forced_local = was_forced;
6913 }
6914 }
6915 }
6916
6917 static void
6918 lang_undef_start_stop (void)
6919 {
6920 foreach_start_stop (undef_start_stop);
6921 }
6922
6923 /* Check for output sections whose names match references to
6924 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6925 preliminary definitions. */
6926
6927 static void
6928 lang_init_startof_sizeof (void)
6929 {
6930 asection *s;
6931
6932 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6933 {
6934 const char *secname = s->name;
6935 char *symbol = (char *) xmalloc (10 + strlen (secname));
6936
6937 sprintf (symbol, ".startof.%s", secname);
6938 lang_define_start_stop (symbol, s);
6939
6940 memcpy (symbol + 1, ".size", 5);
6941 lang_define_start_stop (symbol + 1, s);
6942 free (symbol);
6943 }
6944 }
6945
6946 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6947
6948 static void
6949 set_start_stop (struct bfd_link_hash_entry *h)
6950 {
6951 if (h->ldscript_def
6952 || h->type != bfd_link_hash_defined)
6953 return;
6954
6955 if (h->root.string[0] == '.')
6956 {
6957 /* .startof. or .sizeof. symbol.
6958 .startof. already has final value. */
6959 if (h->root.string[2] == 'i')
6960 {
6961 /* .sizeof. */
6962 h->u.def.value = TO_ADDR (h->u.def.section->size);
6963 h->u.def.section = bfd_abs_section_ptr;
6964 }
6965 }
6966 else
6967 {
6968 /* __start or __stop symbol. */
6969 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6970
6971 h->u.def.section = h->u.def.section->output_section;
6972 if (h->root.string[4 + has_lead] == 'o')
6973 {
6974 /* __stop_ */
6975 h->u.def.value = TO_ADDR (h->u.def.section->size);
6976 }
6977 }
6978 }
6979
6980 static void
6981 lang_finalize_start_stop (void)
6982 {
6983 foreach_start_stop (set_start_stop);
6984 }
6985
6986 static void
6987 lang_symbol_tweaks (void)
6988 {
6989 /* Give initial values for __start and __stop symbols, so that ELF
6990 gc_sections will keep sections referenced by these symbols. Must
6991 be done before lang_do_assignments. */
6992 if (config.build_constructors)
6993 lang_init_start_stop ();
6994
6995 /* Make __ehdr_start hidden, and set def_regular even though it is
6996 likely undefined at this stage. For lang_check_relocs. */
6997 if (is_elf_hash_table (link_info.hash)
6998 && !bfd_link_relocatable (&link_info))
6999 {
7000 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
7001 bfd_link_hash_lookup (link_info.hash, "__ehdr_start",
7002 false, false, true);
7003
7004 /* Only adjust the export class if the symbol was referenced
7005 and not defined, otherwise leave it alone. */
7006 if (h != NULL
7007 && (h->root.type == bfd_link_hash_new
7008 || h->root.type == bfd_link_hash_undefined
7009 || h->root.type == bfd_link_hash_undefweak
7010 || h->root.type == bfd_link_hash_common))
7011 {
7012 const struct elf_backend_data *bed;
7013 bed = get_elf_backend_data (link_info.output_bfd);
7014 (*bed->elf_backend_hide_symbol) (&link_info, h, true);
7015 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
7016 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
7017 h->def_regular = 1;
7018 h->root.linker_def = 1;
7019 h->root.rel_from_abs = 1;
7020 }
7021 }
7022 }
7023
7024 static void
7025 lang_end (void)
7026 {
7027 struct bfd_link_hash_entry *h;
7028 bool warn;
7029
7030 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
7031 || bfd_link_dll (&link_info))
7032 warn = entry_from_cmdline;
7033 else
7034 warn = true;
7035
7036 /* Force the user to specify a root when generating a relocatable with
7037 --gc-sections, unless --gc-keep-exported was also given. */
7038 if (bfd_link_relocatable (&link_info)
7039 && link_info.gc_sections
7040 && !link_info.gc_keep_exported)
7041 {
7042 struct bfd_sym_chain *sym;
7043
7044 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
7045 {
7046 h = bfd_link_hash_lookup (link_info.hash, sym->name,
7047 false, false, false);
7048 if (h != NULL
7049 && (h->type == bfd_link_hash_defined
7050 || h->type == bfd_link_hash_defweak)
7051 && !bfd_is_const_section (h->u.def.section))
7052 break;
7053 }
7054 if (!sym)
7055 einfo (_("%F%P: --gc-sections requires a defined symbol root "
7056 "specified by -e or -u\n"));
7057 }
7058
7059 if (entry_symbol.name == NULL)
7060 {
7061 /* No entry has been specified. Look for the default entry, but
7062 don't warn if we don't find it. */
7063 entry_symbol.name = entry_symbol_default;
7064 warn = false;
7065 }
7066
7067 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
7068 false, false, true);
7069 if (h != NULL
7070 && (h->type == bfd_link_hash_defined
7071 || h->type == bfd_link_hash_defweak)
7072 && h->u.def.section->output_section != NULL)
7073 {
7074 bfd_vma val;
7075
7076 val = (h->u.def.value
7077 + bfd_section_vma (h->u.def.section->output_section)
7078 + h->u.def.section->output_offset);
7079 if (!bfd_set_start_address (link_info.output_bfd, val))
7080 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
7081 }
7082 else
7083 {
7084 bfd_vma val;
7085 const char *send;
7086
7087 /* We couldn't find the entry symbol. Try parsing it as a
7088 number. */
7089 val = bfd_scan_vma (entry_symbol.name, &send, 0);
7090 if (*send == '\0')
7091 {
7092 if (!bfd_set_start_address (link_info.output_bfd, val))
7093 einfo (_("%F%P: can't set start address\n"));
7094 }
7095 /* BZ 2004952: Only use the start of the entry section for executables. */
7096 else if bfd_link_executable (&link_info)
7097 {
7098 asection *ts;
7099
7100 /* Can't find the entry symbol, and it's not a number. Use
7101 the first address in the text section. */
7102 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
7103 if (ts != NULL)
7104 {
7105 if (warn)
7106 einfo (_("%P: warning: cannot find entry symbol %s;"
7107 " defaulting to %V\n"),
7108 entry_symbol.name,
7109 bfd_section_vma (ts));
7110 if (!bfd_set_start_address (link_info.output_bfd,
7111 bfd_section_vma (ts)))
7112 einfo (_("%F%P: can't set start address\n"));
7113 }
7114 else
7115 {
7116 if (warn)
7117 einfo (_("%P: warning: cannot find entry symbol %s;"
7118 " not setting start address\n"),
7119 entry_symbol.name);
7120 }
7121 }
7122 else
7123 {
7124 if (warn)
7125 einfo (_("%P: warning: cannot find entry symbol %s;"
7126 " not setting start address\n"),
7127 entry_symbol.name);
7128 }
7129 }
7130 }
7131
7132 /* This is a small function used when we want to ignore errors from
7133 BFD. */
7134
7135 static void
7136 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
7137 va_list ap ATTRIBUTE_UNUSED)
7138 {
7139 /* Don't do anything. */
7140 }
7141
7142 /* Check that the architecture of all the input files is compatible
7143 with the output file. Also call the backend to let it do any
7144 other checking that is needed. */
7145
7146 static void
7147 lang_check (void)
7148 {
7149 lang_input_statement_type *file;
7150 bfd *input_bfd;
7151 const bfd_arch_info_type *compatible;
7152
7153 for (file = (void *) file_chain.head;
7154 file != NULL;
7155 file = file->next)
7156 {
7157 #if BFD_SUPPORTS_PLUGINS
7158 /* Don't check format of files claimed by plugin. */
7159 if (file->flags.claimed)
7160 continue;
7161 #endif /* BFD_SUPPORTS_PLUGINS */
7162 input_bfd = file->the_bfd;
7163 compatible
7164 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7165 command_line.accept_unknown_input_arch);
7166
7167 /* In general it is not possible to perform a relocatable
7168 link between differing object formats when the input
7169 file has relocations, because the relocations in the
7170 input format may not have equivalent representations in
7171 the output format (and besides BFD does not translate
7172 relocs for other link purposes than a final link). */
7173 if (!file->flags.just_syms
7174 && (bfd_link_relocatable (&link_info)
7175 || link_info.emitrelocations)
7176 && (compatible == NULL
7177 || (bfd_get_flavour (input_bfd)
7178 != bfd_get_flavour (link_info.output_bfd)))
7179 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7180 {
7181 einfo (_("%F%P: relocatable linking with relocations from"
7182 " format %s (%pB) to format %s (%pB) is not supported\n"),
7183 bfd_get_target (input_bfd), input_bfd,
7184 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7185 /* einfo with %F exits. */
7186 }
7187
7188 if (compatible == NULL)
7189 {
7190 if (command_line.warn_mismatch)
7191 einfo (_("%X%P: %s architecture of input file `%pB'"
7192 " is incompatible with %s output\n"),
7193 bfd_printable_name (input_bfd), input_bfd,
7194 bfd_printable_name (link_info.output_bfd));
7195 }
7196
7197 /* If the input bfd has no contents, it shouldn't set the
7198 private data of the output bfd. */
7199 else if (!file->flags.just_syms
7200 && ((input_bfd->flags & DYNAMIC) != 0
7201 || bfd_count_sections (input_bfd) != 0))
7202 {
7203 bfd_error_handler_type pfn = NULL;
7204
7205 /* If we aren't supposed to warn about mismatched input
7206 files, temporarily set the BFD error handler to a
7207 function which will do nothing. We still want to call
7208 bfd_merge_private_bfd_data, since it may set up
7209 information which is needed in the output file. */
7210 if (!command_line.warn_mismatch)
7211 pfn = bfd_set_error_handler (ignore_bfd_errors);
7212 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7213 {
7214 if (command_line.warn_mismatch)
7215 einfo (_("%X%P: failed to merge target specific data"
7216 " of file %pB\n"), input_bfd);
7217 }
7218 if (!command_line.warn_mismatch)
7219 bfd_set_error_handler (pfn);
7220 }
7221 }
7222 }
7223
7224 /* Look through all the global common symbols and attach them to the
7225 correct section. The -sort-common command line switch may be used
7226 to roughly sort the entries by alignment. */
7227
7228 static void
7229 lang_common (void)
7230 {
7231 if (link_info.inhibit_common_definition)
7232 return;
7233 if (bfd_link_relocatable (&link_info)
7234 && !command_line.force_common_definition)
7235 return;
7236
7237 if (!config.sort_common)
7238 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7239 else
7240 {
7241 unsigned int power;
7242
7243 if (config.sort_common == sort_descending)
7244 {
7245 for (power = 4; power > 0; power--)
7246 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7247
7248 power = 0;
7249 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7250 }
7251 else
7252 {
7253 for (power = 0; power <= 4; power++)
7254 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7255
7256 power = (unsigned int) -1;
7257 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7258 }
7259 }
7260 }
7261
7262 /* Place one common symbol in the correct section. */
7263
7264 static bool
7265 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7266 {
7267 unsigned int power_of_two;
7268 bfd_vma size;
7269 asection *section;
7270
7271 if (h->type != bfd_link_hash_common)
7272 return true;
7273
7274 size = h->u.c.size;
7275 power_of_two = h->u.c.p->alignment_power;
7276
7277 if (config.sort_common == sort_descending
7278 && power_of_two < *(unsigned int *) info)
7279 return true;
7280 else if (config.sort_common == sort_ascending
7281 && power_of_two > *(unsigned int *) info)
7282 return true;
7283
7284 section = h->u.c.p->section;
7285 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7286 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7287 h->root.string);
7288
7289 if (config.map_file != NULL)
7290 {
7291 static bool header_printed;
7292 int len;
7293 char *name;
7294 char buf[32];
7295
7296 if (!header_printed)
7297 {
7298 minfo (_("\nAllocating common symbols\n"));
7299 minfo (_("Common symbol size file\n\n"));
7300 header_printed = true;
7301 }
7302
7303 name = bfd_demangle (link_info.output_bfd, h->root.string,
7304 DMGL_ANSI | DMGL_PARAMS);
7305 if (name == NULL)
7306 {
7307 minfo ("%s", h->root.string);
7308 len = strlen (h->root.string);
7309 }
7310 else
7311 {
7312 minfo ("%s", name);
7313 len = strlen (name);
7314 free (name);
7315 }
7316
7317 if (len >= 19)
7318 {
7319 print_nl ();
7320 len = 0;
7321 }
7322
7323 sprintf (buf, "%" PRIx64, (uint64_t) size);
7324 fprintf (config.map_file, "%*s0x%-16s", 20 - len, "", buf);
7325
7326 minfo ("%pB\n", section->owner);
7327 }
7328
7329 return true;
7330 }
7331
7332 /* Handle a single orphan section S, placing the orphan into an appropriate
7333 output section. The effects of the --orphan-handling command line
7334 option are handled here. */
7335
7336 static void
7337 ldlang_place_orphan (asection *s)
7338 {
7339 if (config.orphan_handling == orphan_handling_discard)
7340 {
7341 lang_output_section_statement_type *os;
7342 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7343 if (os->addr_tree == NULL
7344 && (bfd_link_relocatable (&link_info)
7345 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7346 os->addr_tree = exp_intop (0);
7347 lang_add_section (&os->children, s, NULL, NULL, os);
7348 }
7349 else
7350 {
7351 lang_output_section_statement_type *os;
7352 const char *name = s->name;
7353 int constraint = 0;
7354
7355 if (config.orphan_handling == orphan_handling_error)
7356 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7357 s, s->owner);
7358
7359 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7360 constraint = SPECIAL;
7361
7362 os = ldemul_place_orphan (s, name, constraint);
7363 if (os == NULL)
7364 {
7365 os = lang_output_section_statement_lookup (name, constraint, 1);
7366 if (os->addr_tree == NULL
7367 && (bfd_link_relocatable (&link_info)
7368 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7369 os->addr_tree = exp_intop (0);
7370 lang_add_section (&os->children, s, NULL, NULL, os);
7371 }
7372
7373 if (config.orphan_handling == orphan_handling_warn)
7374 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7375 "placed in section `%s'\n"),
7376 s, s->owner, os->name);
7377 }
7378 }
7379
7380 /* Run through the input files and ensure that every input section has
7381 somewhere to go. If one is found without a destination then create
7382 an input request and place it into the statement tree. */
7383
7384 static void
7385 lang_place_orphans (void)
7386 {
7387 LANG_FOR_EACH_INPUT_STATEMENT (file)
7388 {
7389 asection *s;
7390
7391 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7392 {
7393 if (s->output_section == NULL)
7394 {
7395 /* This section of the file is not attached, root
7396 around for a sensible place for it to go. */
7397
7398 if (file->flags.just_syms)
7399 bfd_link_just_syms (file->the_bfd, s, &link_info);
7400 else if (lang_discard_section_p (s))
7401 s->output_section = bfd_abs_section_ptr;
7402 else if (strcmp (s->name, "COMMON") == 0)
7403 {
7404 /* This is a lonely common section which must have
7405 come from an archive. We attach to the section
7406 with the wildcard. */
7407 if (!bfd_link_relocatable (&link_info)
7408 || command_line.force_common_definition)
7409 {
7410 if (default_common_section == NULL)
7411 default_common_section
7412 = lang_output_section_statement_lookup (".bss", 0, 1);
7413 lang_add_section (&default_common_section->children, s,
7414 NULL, NULL, default_common_section);
7415 }
7416 }
7417 else
7418 ldlang_place_orphan (s);
7419 }
7420 }
7421 }
7422 }
7423
7424 void
7425 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7426 {
7427 flagword *ptr_flags;
7428
7429 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7430
7431 while (*flags)
7432 {
7433 switch (*flags)
7434 {
7435 /* PR 17900: An exclamation mark in the attributes reverses
7436 the sense of any of the attributes that follow. */
7437 case '!':
7438 invert = !invert;
7439 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7440 break;
7441
7442 case 'A': case 'a':
7443 *ptr_flags |= SEC_ALLOC;
7444 break;
7445
7446 case 'R': case 'r':
7447 *ptr_flags |= SEC_READONLY;
7448 break;
7449
7450 case 'W': case 'w':
7451 *ptr_flags |= SEC_DATA;
7452 break;
7453
7454 case 'X': case 'x':
7455 *ptr_flags |= SEC_CODE;
7456 break;
7457
7458 case 'L': case 'l':
7459 case 'I': case 'i':
7460 *ptr_flags |= SEC_LOAD;
7461 break;
7462
7463 default:
7464 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7465 *flags, *flags);
7466 break;
7467 }
7468 flags++;
7469 }
7470 }
7471
7472 /* Call a function on each real input file. This function will be
7473 called on an archive, but not on the elements. */
7474
7475 void
7476 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7477 {
7478 lang_input_statement_type *f;
7479
7480 for (f = (void *) input_file_chain.head;
7481 f != NULL;
7482 f = f->next_real_file)
7483 if (f->flags.real)
7484 func (f);
7485 }
7486
7487 /* Call a function on each real file. The function will be called on
7488 all the elements of an archive which are included in the link, but
7489 will not be called on the archive file itself. */
7490
7491 void
7492 lang_for_each_file (void (*func) (lang_input_statement_type *))
7493 {
7494 LANG_FOR_EACH_INPUT_STATEMENT (f)
7495 {
7496 if (f->flags.real)
7497 func (f);
7498 }
7499 }
7500
7501 void
7502 ldlang_add_file (lang_input_statement_type *entry)
7503 {
7504 lang_statement_append (&file_chain, entry, &entry->next);
7505
7506 /* The BFD linker needs to have a list of all input BFDs involved in
7507 a link. */
7508 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7509 && entry->the_bfd->link.next == NULL);
7510 ASSERT (entry->the_bfd != link_info.output_bfd);
7511
7512 *link_info.input_bfds_tail = entry->the_bfd;
7513 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7514 bfd_set_usrdata (entry->the_bfd, entry);
7515 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7516
7517 /* Look through the sections and check for any which should not be
7518 included in the link. We need to do this now, so that we can
7519 notice when the backend linker tries to report multiple
7520 definition errors for symbols which are in sections we aren't
7521 going to link. FIXME: It might be better to entirely ignore
7522 symbols which are defined in sections which are going to be
7523 discarded. This would require modifying the backend linker for
7524 each backend which might set the SEC_LINK_ONCE flag. If we do
7525 this, we should probably handle SEC_EXCLUDE in the same way. */
7526
7527 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7528 }
7529
7530 void
7531 lang_add_output (const char *name, int from_script)
7532 {
7533 /* Make -o on command line override OUTPUT in script. */
7534 if (!had_output_filename || !from_script)
7535 {
7536 output_filename = name;
7537 had_output_filename = true;
7538 }
7539 }
7540
7541 lang_output_section_statement_type *
7542 lang_enter_output_section_statement (const char *output_section_statement_name,
7543 etree_type *address_exp,
7544 enum section_type sectype,
7545 etree_type *sectype_value,
7546 etree_type *align,
7547 etree_type *subalign,
7548 etree_type *ebase,
7549 int constraint,
7550 int align_with_input)
7551 {
7552 lang_output_section_statement_type *os;
7553
7554 os = lang_output_section_statement_lookup (output_section_statement_name,
7555 constraint, 2);
7556 current_section = os;
7557
7558 if (os->addr_tree == NULL)
7559 {
7560 os->addr_tree = address_exp;
7561 }
7562 os->sectype = sectype;
7563 if (sectype == type_section || sectype == typed_readonly_section)
7564 os->sectype_value = sectype_value;
7565 else if (sectype == noload_section)
7566 os->flags = SEC_NEVER_LOAD;
7567 else
7568 os->flags = SEC_NO_FLAGS;
7569 os->block_value = 1;
7570
7571 /* Make next things chain into subchain of this. */
7572 push_stat_ptr (&os->children);
7573
7574 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7575 if (os->align_lma_with_input && align != NULL)
7576 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7577 NULL);
7578
7579 os->subsection_alignment = subalign;
7580 os->section_alignment = align;
7581
7582 os->load_base = ebase;
7583 return os;
7584 }
7585
7586 void
7587 lang_final (void)
7588 {
7589 lang_output_statement_type *new_stmt;
7590
7591 new_stmt = new_stat (lang_output_statement, stat_ptr);
7592 new_stmt->name = output_filename;
7593 }
7594
7595 /* Reset the current counters in the regions. */
7596
7597 void
7598 lang_reset_memory_regions (void)
7599 {
7600 lang_memory_region_type *p = lang_memory_region_list;
7601 asection *o;
7602 lang_output_section_statement_type *os;
7603
7604 for (p = lang_memory_region_list; p != NULL; p = p->next)
7605 {
7606 p->current = p->origin;
7607 p->last_os = NULL;
7608 }
7609
7610 for (os = (void *) lang_os_list.head;
7611 os != NULL;
7612 os = os->next)
7613 {
7614 os->processed_vma = false;
7615 os->processed_lma = false;
7616 }
7617
7618 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7619 {
7620 /* Save the last size for possible use by bfd_relax_section. */
7621 o->rawsize = o->size;
7622 if (!(o->flags & SEC_FIXED_SIZE))
7623 o->size = 0;
7624 }
7625 }
7626
7627 /* Worker for lang_gc_sections_1. */
7628
7629 static void
7630 gc_section_callback (lang_wild_statement_type *ptr,
7631 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7632 asection *section,
7633 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7634 void *data ATTRIBUTE_UNUSED)
7635 {
7636 /* If the wild pattern was marked KEEP, the member sections
7637 should be as well. */
7638 if (ptr->keep_sections)
7639 section->flags |= SEC_KEEP;
7640 }
7641
7642 /* Iterate over sections marking them against GC. */
7643
7644 static void
7645 lang_gc_sections_1 (lang_statement_union_type *s)
7646 {
7647 for (; s != NULL; s = s->header.next)
7648 {
7649 switch (s->header.type)
7650 {
7651 case lang_wild_statement_enum:
7652 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7653 break;
7654 case lang_constructors_statement_enum:
7655 lang_gc_sections_1 (constructor_list.head);
7656 break;
7657 case lang_output_section_statement_enum:
7658 lang_gc_sections_1 (s->output_section_statement.children.head);
7659 break;
7660 case lang_group_statement_enum:
7661 lang_gc_sections_1 (s->group_statement.children.head);
7662 break;
7663 default:
7664 break;
7665 }
7666 }
7667 }
7668
7669 static void
7670 lang_gc_sections (void)
7671 {
7672 /* Keep all sections so marked in the link script. */
7673 lang_gc_sections_1 (statement_list.head);
7674
7675 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7676 the special case of .stabstr debug info. (See bfd/stabs.c)
7677 Twiddle the flag here, to simplify later linker code. */
7678 if (bfd_link_relocatable (&link_info))
7679 {
7680 LANG_FOR_EACH_INPUT_STATEMENT (f)
7681 {
7682 asection *sec;
7683 #if BFD_SUPPORTS_PLUGINS
7684 if (f->flags.claimed)
7685 continue;
7686 #endif
7687 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7688 if ((sec->flags & SEC_DEBUGGING) == 0
7689 || strcmp (sec->name, ".stabstr") != 0)
7690 sec->flags &= ~SEC_EXCLUDE;
7691 }
7692 }
7693
7694 if (link_info.gc_sections)
7695 bfd_gc_sections (link_info.output_bfd, &link_info);
7696 }
7697
7698 /* Worker for lang_find_relro_sections_1. */
7699
7700 static void
7701 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7702 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7703 asection *section,
7704 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7705 void *data)
7706 {
7707 /* Discarded, excluded and ignored sections effectively have zero
7708 size. */
7709 if (section->output_section != NULL
7710 && section->output_section->owner == link_info.output_bfd
7711 && (section->output_section->flags & SEC_EXCLUDE) == 0
7712 && !IGNORE_SECTION (section)
7713 && section->size != 0)
7714 {
7715 bool *has_relro_section = (bool *) data;
7716 *has_relro_section = true;
7717 }
7718 }
7719
7720 /* Iterate over sections for relro sections. */
7721
7722 static void
7723 lang_find_relro_sections_1 (lang_statement_union_type *s,
7724 bool *has_relro_section)
7725 {
7726 if (*has_relro_section)
7727 return;
7728
7729 for (; s != NULL; s = s->header.next)
7730 {
7731 if (s == expld.dataseg.relro_end_stat)
7732 break;
7733
7734 switch (s->header.type)
7735 {
7736 case lang_wild_statement_enum:
7737 walk_wild (&s->wild_statement,
7738 find_relro_section_callback,
7739 has_relro_section);
7740 break;
7741 case lang_constructors_statement_enum:
7742 lang_find_relro_sections_1 (constructor_list.head,
7743 has_relro_section);
7744 break;
7745 case lang_output_section_statement_enum:
7746 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7747 has_relro_section);
7748 break;
7749 case lang_group_statement_enum:
7750 lang_find_relro_sections_1 (s->group_statement.children.head,
7751 has_relro_section);
7752 break;
7753 default:
7754 break;
7755 }
7756 }
7757 }
7758
7759 static void
7760 lang_find_relro_sections (void)
7761 {
7762 bool has_relro_section = false;
7763
7764 /* Check all sections in the link script. */
7765
7766 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7767 &has_relro_section);
7768
7769 if (!has_relro_section)
7770 link_info.relro = false;
7771 }
7772
7773 /* Relax all sections until bfd_relax_section gives up. */
7774
7775 void
7776 lang_relax_sections (bool need_layout)
7777 {
7778 /* NB: Also enable relaxation to layout sections for DT_RELR. */
7779 if (RELAXATION_ENABLED || link_info.enable_dt_relr)
7780 {
7781 /* We may need more than one relaxation pass. */
7782 int i = link_info.relax_pass;
7783
7784 /* The backend can use it to determine the current pass. */
7785 link_info.relax_pass = 0;
7786
7787 while (i--)
7788 {
7789 /* Keep relaxing until bfd_relax_section gives up. */
7790 bool relax_again;
7791
7792 link_info.relax_trip = -1;
7793 do
7794 {
7795 link_info.relax_trip++;
7796
7797 /* Note: pe-dll.c does something like this also. If you find
7798 you need to change this code, you probably need to change
7799 pe-dll.c also. DJ */
7800
7801 /* Do all the assignments with our current guesses as to
7802 section sizes. */
7803 lang_do_assignments (lang_assigning_phase_enum);
7804
7805 /* We must do this after lang_do_assignments, because it uses
7806 size. */
7807 lang_reset_memory_regions ();
7808
7809 /* Perform another relax pass - this time we know where the
7810 globals are, so can make a better guess. */
7811 relax_again = false;
7812 lang_size_sections (&relax_again, false);
7813 }
7814 while (relax_again);
7815
7816 link_info.relax_pass++;
7817 }
7818 need_layout = true;
7819 }
7820
7821 if (need_layout)
7822 {
7823 /* Final extra sizing to report errors. */
7824 lang_do_assignments (lang_assigning_phase_enum);
7825 lang_reset_memory_regions ();
7826 lang_size_sections (NULL, true);
7827 }
7828 }
7829
7830 #if BFD_SUPPORTS_PLUGINS
7831 /* Find the insert point for the plugin's replacement files. We
7832 place them after the first claimed real object file, or if the
7833 first claimed object is an archive member, after the last real
7834 object file immediately preceding the archive. In the event
7835 no objects have been claimed at all, we return the first dummy
7836 object file on the list as the insert point; that works, but
7837 the callee must be careful when relinking the file_chain as it
7838 is not actually on that chain, only the statement_list and the
7839 input_file list; in that case, the replacement files must be
7840 inserted at the head of the file_chain. */
7841
7842 static lang_input_statement_type *
7843 find_replacements_insert_point (bool *before)
7844 {
7845 lang_input_statement_type *claim1, *lastobject;
7846 lastobject = (void *) input_file_chain.head;
7847 for (claim1 = (void *) file_chain.head;
7848 claim1 != NULL;
7849 claim1 = claim1->next)
7850 {
7851 if (claim1->flags.claimed)
7852 {
7853 *before = claim1->flags.claim_archive;
7854 return claim1->flags.claim_archive ? lastobject : claim1;
7855 }
7856 /* Update lastobject if this is a real object file. */
7857 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7858 lastobject = claim1;
7859 }
7860 /* No files were claimed by the plugin. Choose the last object
7861 file found on the list (maybe the first, dummy entry) as the
7862 insert point. */
7863 *before = false;
7864 return lastobject;
7865 }
7866
7867 /* Find where to insert ADD, an archive element or shared library
7868 added during a rescan. */
7869
7870 static lang_input_statement_type **
7871 find_rescan_insertion (lang_input_statement_type *add)
7872 {
7873 bfd *add_bfd = add->the_bfd;
7874 lang_input_statement_type *f;
7875 lang_input_statement_type *last_loaded = NULL;
7876 lang_input_statement_type *before = NULL;
7877 lang_input_statement_type **iter = NULL;
7878
7879 if (add_bfd->my_archive != NULL)
7880 add_bfd = add_bfd->my_archive;
7881
7882 /* First look through the input file chain, to find an object file
7883 before the one we've rescanned. Normal object files always
7884 appear on both the input file chain and the file chain, so this
7885 lets us get quickly to somewhere near the correct place on the
7886 file chain if it is full of archive elements. Archives don't
7887 appear on the file chain, but if an element has been extracted
7888 then their input_statement->next points at it. */
7889 for (f = (void *) input_file_chain.head;
7890 f != NULL;
7891 f = f->next_real_file)
7892 {
7893 if (f->the_bfd == add_bfd)
7894 {
7895 before = last_loaded;
7896 if (f->next != NULL)
7897 return &f->next->next;
7898 }
7899 if (f->the_bfd != NULL && f->next != NULL)
7900 last_loaded = f;
7901 }
7902
7903 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7904 *iter != NULL;
7905 iter = &(*iter)->next)
7906 if (!(*iter)->flags.claim_archive
7907 && (*iter)->the_bfd->my_archive == NULL)
7908 break;
7909
7910 return iter;
7911 }
7912
7913 /* Insert SRCLIST into DESTLIST after given element by chaining
7914 on FIELD as the next-pointer. (Counterintuitively does not need
7915 a pointer to the actual after-node itself, just its chain field.) */
7916
7917 static void
7918 lang_list_insert_after (lang_statement_list_type *destlist,
7919 lang_statement_list_type *srclist,
7920 lang_statement_union_type **field)
7921 {
7922 *(srclist->tail) = *field;
7923 *field = srclist->head;
7924 if (destlist->tail == field)
7925 destlist->tail = srclist->tail;
7926 }
7927
7928 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7929 was taken as a copy of it and leave them in ORIGLIST. */
7930
7931 static void
7932 lang_list_remove_tail (lang_statement_list_type *destlist,
7933 lang_statement_list_type *origlist)
7934 {
7935 union lang_statement_union **savetail;
7936 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7937 ASSERT (origlist->head == destlist->head);
7938 savetail = origlist->tail;
7939 origlist->head = *(savetail);
7940 origlist->tail = destlist->tail;
7941 destlist->tail = savetail;
7942 *savetail = NULL;
7943 }
7944
7945 static lang_statement_union_type **
7946 find_next_input_statement (lang_statement_union_type **s)
7947 {
7948 for ( ; *s; s = &(*s)->header.next)
7949 {
7950 lang_statement_union_type **t;
7951 switch ((*s)->header.type)
7952 {
7953 case lang_input_statement_enum:
7954 return s;
7955 case lang_wild_statement_enum:
7956 t = &(*s)->wild_statement.children.head;
7957 break;
7958 case lang_group_statement_enum:
7959 t = &(*s)->group_statement.children.head;
7960 break;
7961 case lang_output_section_statement_enum:
7962 t = &(*s)->output_section_statement.children.head;
7963 break;
7964 default:
7965 continue;
7966 }
7967 t = find_next_input_statement (t);
7968 if (*t)
7969 return t;
7970 }
7971 return s;
7972 }
7973 #endif /* BFD_SUPPORTS_PLUGINS */
7974
7975 /* Add NAME to the list of garbage collection entry points. */
7976
7977 void
7978 lang_add_gc_name (const char *name)
7979 {
7980 struct bfd_sym_chain *sym;
7981
7982 if (name == NULL)
7983 return;
7984
7985 sym = stat_alloc (sizeof (*sym));
7986
7987 sym->next = link_info.gc_sym_list;
7988 sym->name = name;
7989 link_info.gc_sym_list = sym;
7990 }
7991
7992 /* Check relocations. */
7993
7994 static void
7995 lang_check_relocs (void)
7996 {
7997 if (link_info.check_relocs_after_open_input)
7998 {
7999 bfd *abfd;
8000
8001 for (abfd = link_info.input_bfds;
8002 abfd != (bfd *) NULL; abfd = abfd->link.next)
8003 if (!bfd_link_check_relocs (abfd, &link_info))
8004 {
8005 /* No object output, fail return. */
8006 config.make_executable = false;
8007 /* Note: we do not abort the loop, but rather
8008 continue the scan in case there are other
8009 bad relocations to report. */
8010 }
8011 }
8012 }
8013
8014 /* Look through all output sections looking for places where we can
8015 propagate forward the lma region. */
8016
8017 static void
8018 lang_propagate_lma_regions (void)
8019 {
8020 lang_output_section_statement_type *os;
8021
8022 for (os = (void *) lang_os_list.head;
8023 os != NULL;
8024 os = os->next)
8025 {
8026 if (os->prev != NULL
8027 && os->lma_region == NULL
8028 && os->load_base == NULL
8029 && os->addr_tree == NULL
8030 && os->region == os->prev->region)
8031 os->lma_region = os->prev->lma_region;
8032 }
8033 }
8034
8035 static void
8036 warn_non_contiguous_discards (void)
8037 {
8038 LANG_FOR_EACH_INPUT_STATEMENT (file)
8039 {
8040 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
8041 || file->flags.just_syms)
8042 continue;
8043
8044 for (asection *s = file->the_bfd->sections; s != NULL; s = s->next)
8045 if (s->output_section == NULL
8046 && (s->flags & SEC_LINKER_CREATED) == 0)
8047 einfo (_("%P: warning: --enable-non-contiguous-regions "
8048 "discards section `%pA' from `%pB'\n"),
8049 s, file->the_bfd);
8050 }
8051 }
8052
8053 static void
8054 reset_one_wild (lang_statement_union_type *statement)
8055 {
8056 if (statement->header.type == lang_wild_statement_enum)
8057 {
8058 lang_wild_statement_type *stmt = &statement->wild_statement;
8059 lang_list_init (&stmt->matching_sections);
8060 }
8061 }
8062
8063 static void
8064 reset_resolved_wilds (void)
8065 {
8066 lang_for_each_statement (reset_one_wild);
8067 }
8068
8069 void
8070 lang_process (void)
8071 {
8072 /* Finalize dynamic list. */
8073 if (link_info.dynamic_list)
8074 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
8075
8076 current_target = default_target;
8077
8078 /* Open the output file. */
8079 lang_for_each_statement (ldlang_open_output);
8080 init_opb (NULL);
8081
8082 ldemul_create_output_section_statements ();
8083
8084 /* Add to the hash table all undefineds on the command line. */
8085 lang_place_undefineds ();
8086
8087 if (!bfd_section_already_linked_table_init ())
8088 einfo (_("%F%P: can not create hash table: %E\n"));
8089
8090 /* A first pass through the memory regions ensures that if any region
8091 references a symbol for its origin or length then this symbol will be
8092 added to the symbol table. Having these symbols in the symbol table
8093 means that when we call open_input_bfds PROVIDE statements will
8094 trigger to provide any needed symbols. The regions origins and
8095 lengths are not assigned as a result of this call. */
8096 lang_do_memory_regions (false);
8097
8098 /* Create a bfd for each input file. */
8099 current_target = default_target;
8100 lang_statement_iteration++;
8101 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
8102
8103 /* Now that open_input_bfds has processed assignments and provide
8104 statements we can give values to symbolic origin/length now. */
8105 lang_do_memory_regions (true);
8106
8107 ldemul_before_plugin_all_symbols_read ();
8108
8109 #if BFD_SUPPORTS_PLUGINS
8110 if (link_info.lto_plugin_active)
8111 {
8112 lang_statement_list_type added;
8113 lang_statement_list_type files, inputfiles;
8114
8115 /* Now all files are read, let the plugin(s) decide if there
8116 are any more to be added to the link before we call the
8117 emulation's after_open hook. We create a private list of
8118 input statements for this purpose, which we will eventually
8119 insert into the global statement list after the first claimed
8120 file. */
8121 added = *stat_ptr;
8122 /* We need to manipulate all three chains in synchrony. */
8123 files = file_chain;
8124 inputfiles = input_file_chain;
8125 if (plugin_call_all_symbols_read ())
8126 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
8127 plugin_error_plugin ());
8128 link_info.lto_all_symbols_read = true;
8129 /* Open any newly added files, updating the file chains. */
8130 plugin_undefs = link_info.hash->undefs_tail;
8131 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
8132 if (plugin_undefs == link_info.hash->undefs_tail)
8133 plugin_undefs = NULL;
8134 /* Restore the global list pointer now they have all been added. */
8135 lang_list_remove_tail (stat_ptr, &added);
8136 /* And detach the fresh ends of the file lists. */
8137 lang_list_remove_tail (&file_chain, &files);
8138 lang_list_remove_tail (&input_file_chain, &inputfiles);
8139 /* Were any new files added? */
8140 if (added.head != NULL)
8141 {
8142 /* If so, we will insert them into the statement list immediately
8143 after the first input file that was claimed by the plugin,
8144 unless that file was an archive in which case it is inserted
8145 immediately before. */
8146 bool before;
8147 lang_statement_union_type **prev;
8148 plugin_insert = find_replacements_insert_point (&before);
8149 /* If a plugin adds input files without having claimed any, we
8150 don't really have a good idea where to place them. Just putting
8151 them at the start or end of the list is liable to leave them
8152 outside the crtbegin...crtend range. */
8153 ASSERT (plugin_insert != NULL);
8154 /* Splice the new statement list into the old one. */
8155 prev = &plugin_insert->header.next;
8156 if (before)
8157 {
8158 prev = find_next_input_statement (prev);
8159 if (*prev != (void *) plugin_insert->next_real_file)
8160 {
8161 /* We didn't find the expected input statement.
8162 Fall back to adding after plugin_insert. */
8163 prev = &plugin_insert->header.next;
8164 }
8165 }
8166 lang_list_insert_after (stat_ptr, &added, prev);
8167 /* Likewise for the file chains. */
8168 lang_list_insert_after (&input_file_chain, &inputfiles,
8169 (void *) &plugin_insert->next_real_file);
8170 /* We must be careful when relinking file_chain; we may need to
8171 insert the new files at the head of the list if the insert
8172 point chosen is the dummy first input file. */
8173 if (plugin_insert->filename)
8174 lang_list_insert_after (&file_chain, &files,
8175 (void *) &plugin_insert->next);
8176 else
8177 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8178
8179 /* Rescan archives in case new undefined symbols have appeared. */
8180 files = file_chain;
8181 lang_statement_iteration++;
8182 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
8183 lang_list_remove_tail (&file_chain, &files);
8184 while (files.head != NULL)
8185 {
8186 lang_input_statement_type **insert;
8187 lang_input_statement_type **iter, *temp;
8188 bfd *my_arch;
8189
8190 insert = find_rescan_insertion (&files.head->input_statement);
8191 /* All elements from an archive can be added at once. */
8192 iter = &files.head->input_statement.next;
8193 my_arch = files.head->input_statement.the_bfd->my_archive;
8194 if (my_arch != NULL)
8195 for (; *iter != NULL; iter = &(*iter)->next)
8196 if ((*iter)->the_bfd->my_archive != my_arch)
8197 break;
8198 temp = *insert;
8199 *insert = &files.head->input_statement;
8200 files.head = (lang_statement_union_type *) *iter;
8201 *iter = temp;
8202 if (file_chain.tail == (lang_statement_union_type **) insert)
8203 file_chain.tail = (lang_statement_union_type **) iter;
8204 if (my_arch != NULL)
8205 {
8206 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8207 if (parent != NULL)
8208 parent->next = (lang_input_statement_type *)
8209 ((char *) iter
8210 - offsetof (lang_input_statement_type, next));
8211 }
8212 }
8213 }
8214 }
8215 #endif /* BFD_SUPPORTS_PLUGINS */
8216
8217 struct bfd_sym_chain **sym = &link_info.gc_sym_list;
8218 while (*sym)
8219 sym = &(*sym)->next;
8220
8221 *sym = &entry_symbol;
8222
8223 if (entry_symbol.name == NULL)
8224 {
8225 *sym = ldlang_undef_chain_list_head;
8226
8227 /* entry_symbol is normally initialised by an ENTRY definition in the
8228 linker script or the -e command line option. But if neither of
8229 these have been used, the target specific backend may still have
8230 provided an entry symbol via a call to lang_default_entry().
8231 Unfortunately this value will not be processed until lang_end()
8232 is called, long after this function has finished. So detect this
8233 case here and add the target's entry symbol to the list of starting
8234 points for garbage collection resolution. */
8235 lang_add_gc_name (entry_symbol_default);
8236 }
8237
8238 lang_add_gc_name (link_info.init_function);
8239 lang_add_gc_name (link_info.fini_function);
8240
8241 ldemul_after_open ();
8242 if (config.map_file != NULL)
8243 lang_print_asneeded ();
8244
8245 ldlang_open_ctf ();
8246
8247 bfd_section_already_linked_table_free ();
8248
8249 /* Make sure that we're not mixing architectures. We call this
8250 after all the input files have been opened, but before we do any
8251 other processing, so that any operations merge_private_bfd_data
8252 does on the output file will be known during the rest of the
8253 link. */
8254 lang_check ();
8255
8256 /* Handle .exports instead of a version script if we're told to do so. */
8257 if (command_line.version_exports_section)
8258 lang_do_version_exports_section ();
8259
8260 /* Build all sets based on the information gathered from the input
8261 files. */
8262 ldctor_build_sets ();
8263
8264 lang_symbol_tweaks ();
8265
8266 /* PR 13683: We must rerun the assignments prior to running garbage
8267 collection in order to make sure that all symbol aliases are resolved. */
8268 lang_do_assignments (lang_mark_phase_enum);
8269 expld.phase = lang_first_phase_enum;
8270
8271 /* Size up the common data. */
8272 lang_common ();
8273
8274 if (0)
8275 debug_prefix_tree ();
8276
8277 resolve_wilds ();
8278
8279 /* Remove unreferenced sections if asked to. */
8280 lang_gc_sections ();
8281
8282 lang_mark_undefineds ();
8283
8284 /* Check relocations. */
8285 lang_check_relocs ();
8286
8287 ldemul_after_check_relocs ();
8288
8289 /* There might have been new sections created (e.g. as result of
8290 checking relocs to need a .got, or suchlike), so to properly order
8291 them into our lists of matching sections reset them here. */
8292 reset_resolved_wilds ();
8293 resolve_wilds ();
8294
8295 /* Update wild statements in case the user gave --sort-section.
8296 Note how the option might have come after the linker script and
8297 so couldn't have been set when the wild statements were created. */
8298 update_wild_statements (statement_list.head);
8299
8300 /* Run through the contours of the script and attach input sections
8301 to the correct output sections. */
8302 lang_statement_iteration++;
8303 map_input_to_output_sections (statement_list.head, NULL, NULL);
8304
8305 /* Start at the statement immediately after the special abs_section
8306 output statement, so that it isn't reordered. */
8307 process_insert_statements (&lang_os_list.head->header.next);
8308
8309 ldemul_before_place_orphans ();
8310
8311 /* Find any sections not attached explicitly and handle them. */
8312 lang_place_orphans ();
8313
8314 if (!bfd_link_relocatable (&link_info))
8315 {
8316 asection *found;
8317
8318 /* Merge SEC_MERGE sections. This has to be done after GC of
8319 sections, so that GCed sections are not merged, but before
8320 assigning dynamic symbols, since removing whole input sections
8321 is hard then. */
8322 bfd_merge_sections (link_info.output_bfd, &link_info);
8323
8324 /* Look for a text section and set the readonly attribute in it. */
8325 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8326
8327 if (found != NULL)
8328 {
8329 if (config.text_read_only)
8330 found->flags |= SEC_READONLY;
8331 else
8332 found->flags &= ~SEC_READONLY;
8333 }
8334 }
8335
8336 /* Merge together CTF sections. After this, only the symtab-dependent
8337 function and data object sections need adjustment. */
8338 lang_merge_ctf ();
8339
8340 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8341 examining things laid out late, like the strtab. */
8342 lang_write_ctf (0);
8343
8344 /* Copy forward lma regions for output sections in same lma region. */
8345 lang_propagate_lma_regions ();
8346
8347 /* Defining __start/__stop symbols early for --gc-sections to work
8348 around a glibc build problem can result in these symbols being
8349 defined when they should not be. Fix them now. */
8350 if (config.build_constructors)
8351 lang_undef_start_stop ();
8352
8353 /* Define .startof./.sizeof. symbols with preliminary values before
8354 dynamic symbols are created. */
8355 if (!bfd_link_relocatable (&link_info))
8356 lang_init_startof_sizeof ();
8357
8358 /* Do anything special before sizing sections. This is where ELF
8359 and other back-ends size dynamic sections. */
8360 ldemul_before_allocation ();
8361
8362 /* We must record the program headers before we try to fix the
8363 section positions, since they will affect SIZEOF_HEADERS. */
8364 lang_record_phdrs ();
8365
8366 /* Check relro sections. */
8367 if (link_info.relro && !bfd_link_relocatable (&link_info))
8368 lang_find_relro_sections ();
8369
8370 /* Size up the sections. */
8371 lang_size_sections (NULL, !RELAXATION_ENABLED);
8372
8373 /* See if anything special should be done now we know how big
8374 everything is. This is where relaxation is done. */
8375 ldemul_after_allocation ();
8376
8377 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8378 lang_finalize_start_stop ();
8379
8380 /* Do all the assignments again, to report errors. Assignment
8381 statements are processed multiple times, updating symbols; In
8382 open_input_bfds, lang_do_assignments, and lang_size_sections.
8383 Since lang_relax_sections calls lang_do_assignments, symbols are
8384 also updated in ldemul_after_allocation. */
8385 lang_do_assignments (lang_final_phase_enum);
8386
8387 ldemul_finish ();
8388
8389 /* Convert absolute symbols to section relative. */
8390 ldexp_finalize_syms ();
8391
8392 /* Make sure that the section addresses make sense. */
8393 if (command_line.check_section_addresses)
8394 lang_check_section_addresses ();
8395
8396 if (link_info.non_contiguous_regions
8397 && link_info.non_contiguous_regions_warnings)
8398 warn_non_contiguous_discards ();
8399
8400 /* Check any required symbols are known. */
8401 ldlang_check_require_defined_symbols ();
8402
8403 lang_end ();
8404 }
8405
8406 void
8407 lang_add_version_string (void)
8408 {
8409 if (! enable_linker_version)
8410 return;
8411
8412 const char * str = "GNU ld ";
8413 int len = strlen (str);
8414 int i;
8415
8416 for (i = 0 ; i < len ; i++)
8417 lang_add_data (BYTE, exp_intop (str[i]));
8418
8419 str = BFD_VERSION_STRING;
8420 len = strlen (str);
8421
8422 for (i = 0 ; i < len ; i++)
8423 lang_add_data (BYTE, exp_intop (str[i]));
8424
8425 lang_add_data (BYTE, exp_intop ('\0'));
8426 }
8427
8428 /* EXPORTED TO YACC */
8429
8430 void
8431 lang_add_wild (struct wildcard_spec *filespec,
8432 struct wildcard_list *section_list,
8433 bool keep_sections)
8434 {
8435 struct wildcard_list *curr, *next;
8436 lang_wild_statement_type *new_stmt;
8437 bool any_specs_sorted = false;
8438
8439 /* Reverse the list as the parser puts it back to front. */
8440 for (curr = section_list, section_list = NULL;
8441 curr != NULL;
8442 section_list = curr, curr = next)
8443 {
8444 if (curr->spec.sorted != none && curr->spec.sorted != by_none)
8445 any_specs_sorted = true;
8446 next = curr->next;
8447 curr->next = section_list;
8448 }
8449
8450 if (filespec != NULL && filespec->name != NULL)
8451 {
8452 if (strcmp (filespec->name, "*") == 0)
8453 filespec->name = NULL;
8454 else if (!wildcardp (filespec->name))
8455 lang_has_input_file = true;
8456 }
8457
8458 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8459 new_stmt->filename = NULL;
8460 new_stmt->filenames_sorted = false;
8461 new_stmt->any_specs_sorted = any_specs_sorted;
8462 new_stmt->section_flag_list = NULL;
8463 new_stmt->exclude_name_list = NULL;
8464 if (filespec != NULL)
8465 {
8466 new_stmt->filename = filespec->name;
8467 new_stmt->filenames_sorted = filespec->sorted == by_name;
8468 new_stmt->section_flag_list = filespec->section_flag_list;
8469 new_stmt->exclude_name_list = filespec->exclude_name_list;
8470 }
8471 new_stmt->section_list = section_list;
8472 new_stmt->keep_sections = keep_sections;
8473 lang_list_init (&new_stmt->children);
8474 lang_list_init (&new_stmt->matching_sections);
8475 analyze_walk_wild_section_handler (new_stmt);
8476 if (0)
8477 {
8478 printf ("wild %s(", new_stmt->filename ? new_stmt->filename : "*");
8479 for (curr = new_stmt->section_list; curr; curr = curr->next)
8480 printf ("%s ", curr->spec.name ? curr->spec.name : "*");
8481 printf (")\n");
8482 }
8483 }
8484
8485 void
8486 lang_section_start (const char *name, etree_type *address,
8487 const segment_type *segment)
8488 {
8489 lang_address_statement_type *ad;
8490
8491 ad = new_stat (lang_address_statement, stat_ptr);
8492 ad->section_name = name;
8493 ad->address = address;
8494 ad->segment = segment;
8495 }
8496
8497 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8498 because of a -e argument on the command line, or zero if this is
8499 called by ENTRY in a linker script. Command line arguments take
8500 precedence. */
8501
8502 void
8503 lang_add_entry (const char *name, bool cmdline)
8504 {
8505 if (entry_symbol.name == NULL
8506 || cmdline
8507 || !entry_from_cmdline)
8508 {
8509 entry_symbol.name = name;
8510 entry_from_cmdline = cmdline;
8511 }
8512 }
8513
8514 /* Set the default start symbol to NAME. .em files should use this,
8515 not lang_add_entry, to override the use of "start" if neither the
8516 linker script nor the command line specifies an entry point. NAME
8517 must be permanently allocated. */
8518 void
8519 lang_default_entry (const char *name)
8520 {
8521 entry_symbol_default = name;
8522 }
8523
8524 void
8525 lang_add_target (const char *name)
8526 {
8527 lang_target_statement_type *new_stmt;
8528
8529 new_stmt = new_stat (lang_target_statement, stat_ptr);
8530 new_stmt->target = name;
8531 }
8532
8533 void
8534 lang_add_map (const char *name)
8535 {
8536 while (*name)
8537 {
8538 switch (*name)
8539 {
8540 case 'F':
8541 map_option_f = true;
8542 break;
8543 }
8544 name++;
8545 }
8546 }
8547
8548 void
8549 lang_add_fill (fill_type *fill)
8550 {
8551 lang_fill_statement_type *new_stmt;
8552
8553 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8554 new_stmt->fill = fill;
8555 }
8556
8557 void
8558 lang_add_data (int type, union etree_union *exp)
8559 {
8560 lang_data_statement_type *new_stmt;
8561
8562 new_stmt = new_stat (lang_data_statement, stat_ptr);
8563 new_stmt->exp = exp;
8564 new_stmt->type = type;
8565 }
8566
8567 void
8568 lang_add_string (const char *s)
8569 {
8570 bfd_vma len = strlen (s);
8571 bfd_vma i;
8572 bool escape = false;
8573
8574 /* Add byte expressions until end of string. */
8575 for (i = 0 ; i < len; i++)
8576 {
8577 char c = *s++;
8578
8579 if (escape)
8580 {
8581 switch (c)
8582 {
8583 default:
8584 /* Ignore the escape. */
8585 break;
8586
8587 case 'n': c = '\n'; break;
8588 case 'r': c = '\r'; break;
8589 case 't': c = '\t'; break;
8590
8591 case '0':
8592 case '1':
8593 case '2':
8594 case '3':
8595 case '4':
8596 case '5':
8597 case '6':
8598 case '7':
8599 /* We have an octal number. */
8600 {
8601 unsigned int value = c - '0';
8602
8603 c = *s;
8604 if ((c >= '0') && (c <= '7'))
8605 {
8606 value <<= 3;
8607 value += (c - '0');
8608 i++;
8609 s++;
8610
8611 c = *s;
8612 if ((c >= '0') && (c <= '7'))
8613 {
8614 value <<= 3;
8615 value += (c - '0');
8616 i++;
8617 s++;
8618 }
8619 }
8620
8621 if (value > 0xff)
8622 {
8623 /* octal: \777 is treated as '\077' + '7' */
8624 value >>= 3;
8625 i--;
8626 s--;
8627 }
8628
8629 c = value;
8630 }
8631 break;
8632 }
8633
8634 lang_add_data (BYTE, exp_intop (c));
8635 escape = false;
8636 }
8637 else
8638 {
8639 if (c == '\\')
8640 escape = true;
8641 else
8642 lang_add_data (BYTE, exp_intop (c));
8643 }
8644 }
8645
8646 /* Remeber to terminate the string. */
8647 lang_add_data (BYTE, exp_intop (0));
8648 }
8649
8650 /* Create a new reloc statement. RELOC is the BFD relocation type to
8651 generate. HOWTO is the corresponding howto structure (we could
8652 look this up, but the caller has already done so). SECTION is the
8653 section to generate a reloc against, or NAME is the name of the
8654 symbol to generate a reloc against. Exactly one of SECTION and
8655 NAME must be NULL. ADDEND is an expression for the addend. */
8656
8657 void
8658 lang_add_reloc (bfd_reloc_code_real_type reloc,
8659 reloc_howto_type *howto,
8660 asection *section,
8661 const char *name,
8662 union etree_union *addend)
8663 {
8664 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8665
8666 p->reloc = reloc;
8667 p->howto = howto;
8668 p->section = section;
8669 p->name = name;
8670 p->addend_exp = addend;
8671
8672 p->addend_value = 0;
8673 p->output_section = NULL;
8674 p->output_offset = 0;
8675 }
8676
8677 lang_assignment_statement_type *
8678 lang_add_assignment (etree_type *exp)
8679 {
8680 lang_assignment_statement_type *new_stmt;
8681
8682 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8683 new_stmt->exp = exp;
8684 return new_stmt;
8685 }
8686
8687 void
8688 lang_add_attribute (enum statement_enum attribute)
8689 {
8690 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8691 }
8692
8693 void
8694 lang_startup (const char *name)
8695 {
8696 if (first_file->filename != NULL)
8697 {
8698 einfo (_("%F%P: multiple STARTUP files\n"));
8699 }
8700 first_file->filename = name;
8701 first_file->local_sym_name = name;
8702 first_file->flags.real = true;
8703 }
8704
8705 void
8706 lang_float (bool maybe)
8707 {
8708 lang_float_flag = maybe;
8709 }
8710
8711
8712 /* Work out the load- and run-time regions from a script statement, and
8713 store them in *LMA_REGION and *REGION respectively.
8714
8715 MEMSPEC is the name of the run-time region, or the value of
8716 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8717 LMA_MEMSPEC is the name of the load-time region, or null if the
8718 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8719 had an explicit load address.
8720
8721 It is an error to specify both a load region and a load address. */
8722
8723 static void
8724 lang_get_regions (lang_memory_region_type **region,
8725 lang_memory_region_type **lma_region,
8726 const char *memspec,
8727 const char *lma_memspec,
8728 bool have_lma,
8729 bool have_vma)
8730 {
8731 *lma_region = lang_memory_region_lookup (lma_memspec, false);
8732
8733 /* If no runtime region or VMA has been specified, but the load region
8734 has been specified, then use the load region for the runtime region
8735 as well. */
8736 if (lma_memspec != NULL
8737 && !have_vma
8738 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8739 *region = *lma_region;
8740 else
8741 *region = lang_memory_region_lookup (memspec, false);
8742
8743 if (have_lma && lma_memspec != 0)
8744 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8745 NULL);
8746 }
8747
8748 void
8749 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8750 lang_output_section_phdr_list *phdrs,
8751 const char *lma_memspec)
8752 {
8753 lang_get_regions (&current_section->region,
8754 &current_section->lma_region,
8755 memspec, lma_memspec,
8756 current_section->load_base != NULL,
8757 current_section->addr_tree != NULL);
8758
8759 current_section->fill = fill;
8760 current_section->phdrs = phdrs;
8761 pop_stat_ptr ();
8762 }
8763
8764 /* Set the output format type. -oformat overrides scripts. */
8765
8766 void
8767 lang_add_output_format (const char *format,
8768 const char *big,
8769 const char *little,
8770 int from_script)
8771 {
8772 if (output_target == NULL || !from_script)
8773 {
8774 if (command_line.endian == ENDIAN_BIG
8775 && big != NULL)
8776 format = big;
8777 else if (command_line.endian == ENDIAN_LITTLE
8778 && little != NULL)
8779 format = little;
8780
8781 output_target = format;
8782 }
8783 }
8784
8785 void
8786 lang_add_insert (const char *where, int is_before)
8787 {
8788 lang_insert_statement_type *new_stmt;
8789
8790 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8791 new_stmt->where = where;
8792 new_stmt->is_before = is_before;
8793 saved_script_handle = previous_script_handle;
8794 }
8795
8796 /* Enter a group. This creates a new lang_group_statement, and sets
8797 stat_ptr to build new statements within the group. */
8798
8799 void
8800 lang_enter_group (void)
8801 {
8802 lang_group_statement_type *g;
8803
8804 g = new_stat (lang_group_statement, stat_ptr);
8805 lang_list_init (&g->children);
8806 push_stat_ptr (&g->children);
8807 }
8808
8809 /* Leave a group. This just resets stat_ptr to start writing to the
8810 regular list of statements again. Note that this will not work if
8811 groups can occur inside anything else which can adjust stat_ptr,
8812 but currently they can't. */
8813
8814 void
8815 lang_leave_group (void)
8816 {
8817 pop_stat_ptr ();
8818 }
8819
8820 /* Add a new program header. This is called for each entry in a PHDRS
8821 command in a linker script. */
8822
8823 void
8824 lang_new_phdr (const char *name,
8825 etree_type *type,
8826 bool filehdr,
8827 bool phdrs,
8828 etree_type *at,
8829 etree_type *flags)
8830 {
8831 struct lang_phdr *n, **pp;
8832 bool hdrs;
8833
8834 n = stat_alloc (sizeof (struct lang_phdr));
8835 n->next = NULL;
8836 n->name = name;
8837 n->type = exp_get_vma (type, 0, "program header type");
8838 n->filehdr = filehdr;
8839 n->phdrs = phdrs;
8840 n->at = at;
8841 n->flags = flags;
8842
8843 hdrs = n->type == 1 && (phdrs || filehdr);
8844
8845 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8846 if (hdrs
8847 && (*pp)->type == 1
8848 && !((*pp)->filehdr || (*pp)->phdrs))
8849 {
8850 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8851 " when prior PT_LOAD headers lack them\n"), NULL);
8852 hdrs = false;
8853 }
8854
8855 *pp = n;
8856 }
8857
8858 /* Record the program header information in the output BFD. FIXME: We
8859 should not be calling an ELF specific function here. */
8860
8861 static void
8862 lang_record_phdrs (void)
8863 {
8864 unsigned int alc;
8865 asection **secs;
8866 lang_output_section_phdr_list *last;
8867 struct lang_phdr *l;
8868 lang_output_section_statement_type *os;
8869
8870 alc = 10;
8871 secs = (asection **) xmalloc (alc * sizeof (asection *));
8872 last = NULL;
8873
8874 for (l = lang_phdr_list; l != NULL; l = l->next)
8875 {
8876 unsigned int c;
8877 flagword flags;
8878 bfd_vma at;
8879
8880 c = 0;
8881 for (os = (void *) lang_os_list.head;
8882 os != NULL;
8883 os = os->next)
8884 {
8885 lang_output_section_phdr_list *pl;
8886
8887 if (os->constraint < 0)
8888 continue;
8889
8890 pl = os->phdrs;
8891 if (pl != NULL)
8892 last = pl;
8893 else
8894 {
8895 if (os->sectype == noload_section
8896 || os->bfd_section == NULL
8897 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8898 continue;
8899
8900 /* Don't add orphans to PT_INTERP header. */
8901 if (l->type == 3)
8902 continue;
8903
8904 if (last == NULL)
8905 {
8906 lang_output_section_statement_type *tmp_os;
8907
8908 /* If we have not run across a section with a program
8909 header assigned to it yet, then scan forwards to find
8910 one. This prevents inconsistencies in the linker's
8911 behaviour when a script has specified just a single
8912 header and there are sections in that script which are
8913 not assigned to it, and which occur before the first
8914 use of that header. See here for more details:
8915 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8916 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8917 if (tmp_os->phdrs)
8918 {
8919 last = tmp_os->phdrs;
8920 break;
8921 }
8922 if (last == NULL)
8923 einfo (_("%F%P: no sections assigned to phdrs\n"));
8924 }
8925 pl = last;
8926 }
8927
8928 if (os->bfd_section == NULL)
8929 continue;
8930
8931 for (; pl != NULL; pl = pl->next)
8932 {
8933 if (strcmp (pl->name, l->name) == 0)
8934 {
8935 if (c >= alc)
8936 {
8937 alc *= 2;
8938 secs = (asection **) xrealloc (secs,
8939 alc * sizeof (asection *));
8940 }
8941 secs[c] = os->bfd_section;
8942 ++c;
8943 pl->used = true;
8944 }
8945 }
8946 }
8947
8948 if (l->flags == NULL)
8949 flags = 0;
8950 else
8951 flags = exp_get_vma (l->flags, 0, "phdr flags");
8952
8953 if (l->at == NULL)
8954 at = 0;
8955 else
8956 at = exp_get_vma (l->at, 0, "phdr load address");
8957
8958 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8959 l->flags != NULL, flags, l->at != NULL,
8960 at, l->filehdr, l->phdrs, c, secs))
8961 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8962 }
8963
8964 free (secs);
8965
8966 /* Make sure all the phdr assignments succeeded. */
8967 for (os = (void *) lang_os_list.head;
8968 os != NULL;
8969 os = os->next)
8970 {
8971 lang_output_section_phdr_list *pl;
8972
8973 if (os->constraint < 0
8974 || os->bfd_section == NULL)
8975 continue;
8976
8977 for (pl = os->phdrs;
8978 pl != NULL;
8979 pl = pl->next)
8980 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8981 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8982 os->name, pl->name);
8983 }
8984 }
8985
8986 /* Record a list of sections which may not be cross referenced. */
8987
8988 void
8989 lang_add_nocrossref (lang_nocrossref_type *l)
8990 {
8991 struct lang_nocrossrefs *n;
8992
8993 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8994 n->next = nocrossref_list;
8995 n->list = l;
8996 n->onlyfirst = false;
8997 nocrossref_list = n;
8998
8999 /* Set notice_all so that we get informed about all symbols. */
9000 link_info.notice_all = true;
9001 }
9002
9003 /* Record a section that cannot be referenced from a list of sections. */
9004
9005 void
9006 lang_add_nocrossref_to (lang_nocrossref_type *l)
9007 {
9008 lang_add_nocrossref (l);
9009 nocrossref_list->onlyfirst = true;
9010 }
9011 \f
9012 /* Overlay handling. We handle overlays with some static variables. */
9013
9014 /* The overlay virtual address. */
9015 static etree_type *overlay_vma;
9016 /* And subsection alignment. */
9017 static etree_type *overlay_subalign;
9018
9019 /* An expression for the maximum section size seen so far. */
9020 static etree_type *overlay_max;
9021
9022 /* A list of all the sections in this overlay. */
9023
9024 struct overlay_list {
9025 struct overlay_list *next;
9026 lang_output_section_statement_type *os;
9027 };
9028
9029 static struct overlay_list *overlay_list;
9030
9031 /* Start handling an overlay. */
9032
9033 void
9034 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
9035 {
9036 /* The grammar should prevent nested overlays from occurring. */
9037 ASSERT (overlay_vma == NULL
9038 && overlay_subalign == NULL
9039 && overlay_max == NULL);
9040
9041 overlay_vma = vma_expr;
9042 overlay_subalign = subalign;
9043 }
9044
9045 /* Start a section in an overlay. We handle this by calling
9046 lang_enter_output_section_statement with the correct VMA.
9047 lang_leave_overlay sets up the LMA and memory regions. */
9048
9049 void
9050 lang_enter_overlay_section (const char *name)
9051 {
9052 struct overlay_list *n;
9053 etree_type *size;
9054
9055 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
9056 0, 0, overlay_subalign, 0, 0, 0);
9057
9058 /* If this is the first section, then base the VMA of future
9059 sections on this one. This will work correctly even if `.' is
9060 used in the addresses. */
9061 if (overlay_list == NULL)
9062 overlay_vma = exp_nameop (ADDR, name);
9063
9064 /* Remember the section. */
9065 n = (struct overlay_list *) xmalloc (sizeof *n);
9066 n->os = current_section;
9067 n->next = overlay_list;
9068 overlay_list = n;
9069
9070 size = exp_nameop (SIZEOF, name);
9071
9072 /* Arrange to work out the maximum section end address. */
9073 if (overlay_max == NULL)
9074 overlay_max = size;
9075 else
9076 overlay_max = exp_binop (MAX_K, overlay_max, size);
9077 }
9078
9079 /* Finish a section in an overlay. There isn't any special to do
9080 here. */
9081
9082 void
9083 lang_leave_overlay_section (fill_type *fill,
9084 lang_output_section_phdr_list *phdrs)
9085 {
9086 const char *name;
9087 char *clean, *s2;
9088 const char *s1;
9089 char *buf;
9090
9091 name = current_section->name;
9092
9093 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
9094 region and that no load-time region has been specified. It doesn't
9095 really matter what we say here, since lang_leave_overlay will
9096 override it. */
9097 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
9098
9099 /* Define the magic symbols. */
9100
9101 clean = (char *) xmalloc (strlen (name) + 1);
9102 s2 = clean;
9103 for (s1 = name; *s1 != '\0'; s1++)
9104 if (ISALNUM (*s1) || *s1 == '_')
9105 *s2++ = *s1;
9106 *s2 = '\0';
9107
9108 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
9109 sprintf (buf, "__load_start_%s", clean);
9110 lang_add_assignment (exp_provide (buf,
9111 exp_nameop (LOADADDR, name),
9112 false));
9113
9114 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
9115 sprintf (buf, "__load_stop_%s", clean);
9116 lang_add_assignment (exp_provide (buf,
9117 exp_binop ('+',
9118 exp_nameop (LOADADDR, name),
9119 exp_nameop (SIZEOF, name)),
9120 false));
9121
9122 free (clean);
9123 }
9124
9125 /* Finish an overlay. If there are any overlay wide settings, this
9126 looks through all the sections in the overlay and sets them. */
9127
9128 void
9129 lang_leave_overlay (etree_type *lma_expr,
9130 int nocrossrefs,
9131 fill_type *fill,
9132 const char *memspec,
9133 lang_output_section_phdr_list *phdrs,
9134 const char *lma_memspec)
9135 {
9136 lang_memory_region_type *region;
9137 lang_memory_region_type *lma_region;
9138 struct overlay_list *l;
9139 lang_nocrossref_type *nocrossref;
9140
9141 lang_get_regions (&region, &lma_region,
9142 memspec, lma_memspec,
9143 lma_expr != NULL, false);
9144
9145 nocrossref = NULL;
9146
9147 /* After setting the size of the last section, set '.' to end of the
9148 overlay region. */
9149 if (overlay_list != NULL)
9150 {
9151 overlay_list->os->update_dot = 1;
9152 overlay_list->os->update_dot_tree
9153 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), false);
9154 }
9155
9156 l = overlay_list;
9157 while (l != NULL)
9158 {
9159 struct overlay_list *next;
9160
9161 if (fill != NULL && l->os->fill == NULL)
9162 l->os->fill = fill;
9163
9164 l->os->region = region;
9165 l->os->lma_region = lma_region;
9166
9167 /* The first section has the load address specified in the
9168 OVERLAY statement. The rest are worked out from that.
9169 The base address is not needed (and should be null) if
9170 an LMA region was specified. */
9171 if (l->next == 0)
9172 {
9173 l->os->load_base = lma_expr;
9174 l->os->sectype = first_overlay_section;
9175 }
9176 if (phdrs != NULL && l->os->phdrs == NULL)
9177 l->os->phdrs = phdrs;
9178
9179 if (nocrossrefs)
9180 {
9181 lang_nocrossref_type *nc;
9182
9183 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
9184 nc->name = l->os->name;
9185 nc->next = nocrossref;
9186 nocrossref = nc;
9187 }
9188
9189 next = l->next;
9190 free (l);
9191 l = next;
9192 }
9193
9194 if (nocrossref != NULL)
9195 lang_add_nocrossref (nocrossref);
9196
9197 overlay_vma = NULL;
9198 overlay_list = NULL;
9199 overlay_max = NULL;
9200 overlay_subalign = NULL;
9201 }
9202 \f
9203 /* Version handling. This is only useful for ELF. */
9204
9205 /* If PREV is NULL, return first version pattern matching particular symbol.
9206 If PREV is non-NULL, return first version pattern matching particular
9207 symbol after PREV (previously returned by lang_vers_match). */
9208
9209 static struct bfd_elf_version_expr *
9210 lang_vers_match (struct bfd_elf_version_expr_head *head,
9211 struct bfd_elf_version_expr *prev,
9212 const char *sym)
9213 {
9214 const char *c_sym;
9215 const char *cxx_sym = sym;
9216 const char *java_sym = sym;
9217 struct bfd_elf_version_expr *expr = NULL;
9218 enum demangling_styles curr_style;
9219
9220 curr_style = CURRENT_DEMANGLING_STYLE;
9221 cplus_demangle_set_style (no_demangling);
9222 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
9223 if (!c_sym)
9224 c_sym = sym;
9225 cplus_demangle_set_style (curr_style);
9226
9227 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
9228 {
9229 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
9230 DMGL_PARAMS | DMGL_ANSI);
9231 if (!cxx_sym)
9232 cxx_sym = sym;
9233 }
9234 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9235 {
9236 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
9237 if (!java_sym)
9238 java_sym = sym;
9239 }
9240
9241 if (head->htab && (prev == NULL || prev->literal))
9242 {
9243 struct bfd_elf_version_expr e;
9244
9245 switch (prev ? prev->mask : 0)
9246 {
9247 case 0:
9248 if (head->mask & BFD_ELF_VERSION_C_TYPE)
9249 {
9250 e.pattern = c_sym;
9251 expr = (struct bfd_elf_version_expr *)
9252 htab_find ((htab_t) head->htab, &e);
9253 while (expr && strcmp (expr->pattern, c_sym) == 0)
9254 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
9255 goto out_ret;
9256 else
9257 expr = expr->next;
9258 }
9259 /* Fallthrough */
9260 case BFD_ELF_VERSION_C_TYPE:
9261 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
9262 {
9263 e.pattern = cxx_sym;
9264 expr = (struct bfd_elf_version_expr *)
9265 htab_find ((htab_t) head->htab, &e);
9266 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
9267 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9268 goto out_ret;
9269 else
9270 expr = expr->next;
9271 }
9272 /* Fallthrough */
9273 case BFD_ELF_VERSION_CXX_TYPE:
9274 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9275 {
9276 e.pattern = java_sym;
9277 expr = (struct bfd_elf_version_expr *)
9278 htab_find ((htab_t) head->htab, &e);
9279 while (expr && strcmp (expr->pattern, java_sym) == 0)
9280 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9281 goto out_ret;
9282 else
9283 expr = expr->next;
9284 }
9285 /* Fallthrough */
9286 default:
9287 break;
9288 }
9289 }
9290
9291 /* Finally, try the wildcards. */
9292 if (prev == NULL || prev->literal)
9293 expr = head->remaining;
9294 else
9295 expr = prev->next;
9296 for (; expr; expr = expr->next)
9297 {
9298 const char *s;
9299
9300 if (!expr->pattern)
9301 continue;
9302
9303 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9304 break;
9305
9306 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9307 s = java_sym;
9308 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9309 s = cxx_sym;
9310 else
9311 s = c_sym;
9312 if (fnmatch (expr->pattern, s, 0) == 0)
9313 break;
9314 }
9315
9316 out_ret:
9317 if (c_sym != sym)
9318 free ((char *) c_sym);
9319 if (cxx_sym != sym)
9320 free ((char *) cxx_sym);
9321 if (java_sym != sym)
9322 free ((char *) java_sym);
9323 return expr;
9324 }
9325
9326 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9327 return a pointer to the symbol name with any backslash quotes removed. */
9328
9329 static const char *
9330 realsymbol (const char *pattern)
9331 {
9332 const char *p;
9333 bool changed = false, backslash = false;
9334 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9335
9336 for (p = pattern, s = symbol; *p != '\0'; ++p)
9337 {
9338 /* It is a glob pattern only if there is no preceding
9339 backslash. */
9340 if (backslash)
9341 {
9342 /* Remove the preceding backslash. */
9343 *(s - 1) = *p;
9344 backslash = false;
9345 changed = true;
9346 }
9347 else
9348 {
9349 if (*p == '?' || *p == '*' || *p == '[')
9350 {
9351 free (symbol);
9352 return NULL;
9353 }
9354
9355 *s++ = *p;
9356 backslash = *p == '\\';
9357 }
9358 }
9359
9360 if (changed)
9361 {
9362 *s = '\0';
9363 return symbol;
9364 }
9365 else
9366 {
9367 free (symbol);
9368 return pattern;
9369 }
9370 }
9371
9372 /* This is called for each variable name or match expression. NEW_NAME is
9373 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9374 pattern to be matched against symbol names. */
9375
9376 struct bfd_elf_version_expr *
9377 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9378 const char *new_name,
9379 const char *lang,
9380 bool literal_p)
9381 {
9382 struct bfd_elf_version_expr *ret;
9383
9384 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9385 ret->next = orig;
9386 ret->symver = 0;
9387 ret->script = 0;
9388 ret->literal = true;
9389 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9390 if (ret->pattern == NULL)
9391 {
9392 ret->pattern = new_name;
9393 ret->literal = false;
9394 }
9395
9396 if (lang == NULL || strcasecmp (lang, "C") == 0)
9397 ret->mask = BFD_ELF_VERSION_C_TYPE;
9398 else if (strcasecmp (lang, "C++") == 0)
9399 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9400 else if (strcasecmp (lang, "Java") == 0)
9401 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9402 else
9403 {
9404 einfo (_("%X%P: unknown language `%s' in version information\n"),
9405 lang);
9406 ret->mask = BFD_ELF_VERSION_C_TYPE;
9407 }
9408
9409 return ldemul_new_vers_pattern (ret);
9410 }
9411
9412 /* This is called for each set of variable names and match
9413 expressions. */
9414
9415 struct bfd_elf_version_tree *
9416 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9417 struct bfd_elf_version_expr *locals)
9418 {
9419 struct bfd_elf_version_tree *ret;
9420
9421 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9422 ret->globals.list = globals;
9423 ret->locals.list = locals;
9424 ret->match = lang_vers_match;
9425 ret->name_indx = (unsigned int) -1;
9426 return ret;
9427 }
9428
9429 /* This static variable keeps track of version indices. */
9430
9431 static int version_index;
9432
9433 static hashval_t
9434 version_expr_head_hash (const void *p)
9435 {
9436 const struct bfd_elf_version_expr *e =
9437 (const struct bfd_elf_version_expr *) p;
9438
9439 return htab_hash_string (e->pattern);
9440 }
9441
9442 static int
9443 version_expr_head_eq (const void *p1, const void *p2)
9444 {
9445 const struct bfd_elf_version_expr *e1 =
9446 (const struct bfd_elf_version_expr *) p1;
9447 const struct bfd_elf_version_expr *e2 =
9448 (const struct bfd_elf_version_expr *) p2;
9449
9450 return strcmp (e1->pattern, e2->pattern) == 0;
9451 }
9452
9453 static void
9454 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9455 {
9456 size_t count = 0;
9457 struct bfd_elf_version_expr *e, *next;
9458 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9459
9460 for (e = head->list; e; e = e->next)
9461 {
9462 if (e->literal)
9463 count++;
9464 head->mask |= e->mask;
9465 }
9466
9467 if (count)
9468 {
9469 head->htab = htab_create (count * 2, version_expr_head_hash,
9470 version_expr_head_eq, NULL);
9471 list_loc = &head->list;
9472 remaining_loc = &head->remaining;
9473 for (e = head->list; e; e = next)
9474 {
9475 next = e->next;
9476 if (!e->literal)
9477 {
9478 *remaining_loc = e;
9479 remaining_loc = &e->next;
9480 }
9481 else
9482 {
9483 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9484
9485 if (*loc)
9486 {
9487 struct bfd_elf_version_expr *e1, *last;
9488
9489 e1 = (struct bfd_elf_version_expr *) *loc;
9490 last = NULL;
9491 do
9492 {
9493 if (e1->mask == e->mask)
9494 {
9495 last = NULL;
9496 break;
9497 }
9498 last = e1;
9499 e1 = e1->next;
9500 }
9501 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9502
9503 if (last == NULL)
9504 {
9505 /* This is a duplicate. */
9506 /* FIXME: Memory leak. Sometimes pattern is not
9507 xmalloced alone, but in larger chunk of memory. */
9508 /* free (e->pattern); */
9509 free (e);
9510 }
9511 else
9512 {
9513 e->next = last->next;
9514 last->next = e;
9515 }
9516 }
9517 else
9518 {
9519 *loc = e;
9520 *list_loc = e;
9521 list_loc = &e->next;
9522 }
9523 }
9524 }
9525 *remaining_loc = NULL;
9526 *list_loc = head->remaining;
9527 }
9528 else
9529 head->remaining = head->list;
9530 }
9531
9532 /* This is called when we know the name and dependencies of the
9533 version. */
9534
9535 void
9536 lang_register_vers_node (const char *name,
9537 struct bfd_elf_version_tree *version,
9538 struct bfd_elf_version_deps *deps)
9539 {
9540 struct bfd_elf_version_tree *t, **pp;
9541 struct bfd_elf_version_expr *e1;
9542
9543 if (name == NULL)
9544 name = "";
9545
9546 if (link_info.version_info != NULL
9547 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9548 {
9549 einfo (_("%X%P: anonymous version tag cannot be combined"
9550 " with other version tags\n"));
9551 free (version);
9552 return;
9553 }
9554
9555 /* Make sure this node has a unique name. */
9556 for (t = link_info.version_info; t != NULL; t = t->next)
9557 if (strcmp (t->name, name) == 0)
9558 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9559
9560 lang_finalize_version_expr_head (&version->globals);
9561 lang_finalize_version_expr_head (&version->locals);
9562
9563 /* Check the global and local match names, and make sure there
9564 aren't any duplicates. */
9565
9566 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9567 {
9568 for (t = link_info.version_info; t != NULL; t = t->next)
9569 {
9570 struct bfd_elf_version_expr *e2;
9571
9572 if (t->locals.htab && e1->literal)
9573 {
9574 e2 = (struct bfd_elf_version_expr *)
9575 htab_find ((htab_t) t->locals.htab, e1);
9576 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9577 {
9578 if (e1->mask == e2->mask)
9579 einfo (_("%X%P: duplicate expression `%s'"
9580 " in version information\n"), e1->pattern);
9581 e2 = e2->next;
9582 }
9583 }
9584 else if (!e1->literal)
9585 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9586 if (strcmp (e1->pattern, e2->pattern) == 0
9587 && e1->mask == e2->mask)
9588 einfo (_("%X%P: duplicate expression `%s'"
9589 " in version information\n"), e1->pattern);
9590 }
9591 }
9592
9593 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9594 {
9595 for (t = link_info.version_info; t != NULL; t = t->next)
9596 {
9597 struct bfd_elf_version_expr *e2;
9598
9599 if (t->globals.htab && e1->literal)
9600 {
9601 e2 = (struct bfd_elf_version_expr *)
9602 htab_find ((htab_t) t->globals.htab, e1);
9603 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9604 {
9605 if (e1->mask == e2->mask)
9606 einfo (_("%X%P: duplicate expression `%s'"
9607 " in version information\n"),
9608 e1->pattern);
9609 e2 = e2->next;
9610 }
9611 }
9612 else if (!e1->literal)
9613 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9614 if (strcmp (e1->pattern, e2->pattern) == 0
9615 && e1->mask == e2->mask)
9616 einfo (_("%X%P: duplicate expression `%s'"
9617 " in version information\n"), e1->pattern);
9618 }
9619 }
9620
9621 version->deps = deps;
9622 version->name = name;
9623 if (name[0] != '\0')
9624 {
9625 ++version_index;
9626 version->vernum = version_index;
9627 }
9628 else
9629 version->vernum = 0;
9630
9631 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9632 ;
9633 *pp = version;
9634 }
9635
9636 /* This is called when we see a version dependency. */
9637
9638 struct bfd_elf_version_deps *
9639 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9640 {
9641 struct bfd_elf_version_deps *ret;
9642 struct bfd_elf_version_tree *t;
9643
9644 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9645 ret->next = list;
9646
9647 for (t = link_info.version_info; t != NULL; t = t->next)
9648 {
9649 if (strcmp (t->name, name) == 0)
9650 {
9651 ret->version_needed = t;
9652 return ret;
9653 }
9654 }
9655
9656 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9657
9658 ret->version_needed = NULL;
9659 return ret;
9660 }
9661
9662 static void
9663 lang_do_version_exports_section (void)
9664 {
9665 struct bfd_elf_version_expr *greg = NULL, *lreg;
9666
9667 LANG_FOR_EACH_INPUT_STATEMENT (is)
9668 {
9669 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9670 char *contents, *p;
9671 bfd_size_type len;
9672
9673 if (sec == NULL)
9674 continue;
9675
9676 len = sec->size;
9677 contents = (char *) xmalloc (len);
9678 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9679 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9680
9681 p = contents;
9682 while (p < contents + len)
9683 {
9684 greg = lang_new_vers_pattern (greg, p, NULL, false);
9685 p = strchr (p, '\0') + 1;
9686 }
9687
9688 /* Do not free the contents, as we used them creating the regex. */
9689
9690 /* Do not include this section in the link. */
9691 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9692 }
9693
9694 lreg = lang_new_vers_pattern (NULL, "*", NULL, false);
9695 lang_register_vers_node (command_line.version_exports_section,
9696 lang_new_vers_node (greg, lreg), NULL);
9697 }
9698
9699 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9700 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9701 thrown, however, references to symbols in the origin and length fields
9702 will be pushed into the symbol table, this allows PROVIDE statements to
9703 then provide these symbols. This function is called a second time with
9704 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9705 data structures, and throw errors if missing symbols are encountered. */
9706
9707 static void
9708 lang_do_memory_regions (bool update_regions_p)
9709 {
9710 lang_memory_region_type *r = lang_memory_region_list;
9711
9712 for (; r != NULL; r = r->next)
9713 {
9714 if (r->origin_exp)
9715 {
9716 exp_fold_tree_no_dot (r->origin_exp);
9717 if (update_regions_p)
9718 {
9719 if (expld.result.valid_p)
9720 {
9721 r->origin = expld.result.value;
9722 r->current = r->origin;
9723 }
9724 else
9725 einfo (_("%P: invalid origin for memory region %s\n"),
9726 r->name_list.name);
9727 }
9728 }
9729 if (r->length_exp)
9730 {
9731 exp_fold_tree_no_dot (r->length_exp);
9732 if (update_regions_p)
9733 {
9734 if (expld.result.valid_p)
9735 r->length = expld.result.value;
9736 else
9737 einfo (_("%P: invalid length for memory region %s\n"),
9738 r->name_list.name);
9739 }
9740 }
9741 }
9742 }
9743
9744 void
9745 lang_add_unique (const char *name)
9746 {
9747 struct unique_sections *ent;
9748
9749 for (ent = unique_section_list; ent; ent = ent->next)
9750 if (strcmp (ent->name, name) == 0)
9751 return;
9752
9753 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9754 ent->name = xstrdup (name);
9755 ent->next = unique_section_list;
9756 unique_section_list = ent;
9757 }
9758
9759 /* Append the list of dynamic symbols to the existing one. */
9760
9761 void
9762 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9763 struct bfd_elf_version_expr *dynamic)
9764 {
9765 if (*list_p)
9766 {
9767 struct bfd_elf_version_expr *tail;
9768 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9769 ;
9770 tail->next = (*list_p)->head.list;
9771 (*list_p)->head.list = dynamic;
9772 }
9773 else
9774 {
9775 struct bfd_elf_dynamic_list *d;
9776
9777 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9778 d->head.list = dynamic;
9779 d->match = lang_vers_match;
9780 *list_p = d;
9781 }
9782 }
9783
9784 /* Append the list of C++ typeinfo dynamic symbols to the existing
9785 one. */
9786
9787 void
9788 lang_append_dynamic_list_cpp_typeinfo (void)
9789 {
9790 const char *symbols[] =
9791 {
9792 "typeinfo name for*",
9793 "typeinfo for*"
9794 };
9795 struct bfd_elf_version_expr *dynamic = NULL;
9796 unsigned int i;
9797
9798 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9799 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9800 false);
9801
9802 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9803 }
9804
9805 /* Append the list of C++ operator new and delete dynamic symbols to the
9806 existing one. */
9807
9808 void
9809 lang_append_dynamic_list_cpp_new (void)
9810 {
9811 const char *symbols[] =
9812 {
9813 "operator new*",
9814 "operator delete*"
9815 };
9816 struct bfd_elf_version_expr *dynamic = NULL;
9817 unsigned int i;
9818
9819 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9820 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9821 false);
9822
9823 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9824 }
9825
9826 /* Scan a space and/or comma separated string of features. */
9827
9828 void
9829 lang_ld_feature (char *str)
9830 {
9831 char *p, *q;
9832
9833 p = str;
9834 while (*p)
9835 {
9836 char sep;
9837 while (*p == ',' || ISSPACE (*p))
9838 ++p;
9839 if (!*p)
9840 break;
9841 q = p + 1;
9842 while (*q && *q != ',' && !ISSPACE (*q))
9843 ++q;
9844 sep = *q;
9845 *q = 0;
9846 if (strcasecmp (p, "SANE_EXPR") == 0)
9847 config.sane_expr = true;
9848 else
9849 einfo (_("%X%P: unknown feature `%s'\n"), p);
9850 *q = sep;
9851 p = q;
9852 }
9853 }
9854
9855 /* Pretty print memory amount. */
9856
9857 static void
9858 lang_print_memory_size (uint64_t sz)
9859 {
9860 if ((sz & 0x3fffffff) == 0)
9861 printf ("%10" PRIu64 " GB", sz >> 30);
9862 else if ((sz & 0xfffff) == 0)
9863 printf ("%10" PRIu64 " MB", sz >> 20);
9864 else if ((sz & 0x3ff) == 0)
9865 printf ("%10" PRIu64 " KB", sz >> 10);
9866 else
9867 printf (" %10" PRIu64 " B", sz);
9868 }
9869
9870 /* Implement --print-memory-usage: disply per region memory usage. */
9871
9872 void
9873 lang_print_memory_usage (void)
9874 {
9875 lang_memory_region_type *r;
9876
9877 printf ("Memory region Used Size Region Size %%age Used\n");
9878 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9879 {
9880 bfd_vma used_length = r->current - r->origin;
9881
9882 printf ("%16s: ",r->name_list.name);
9883 lang_print_memory_size (used_length);
9884 lang_print_memory_size (r->length);
9885
9886 if (r->length != 0)
9887 {
9888 double percent = used_length * 100.0 / r->length;
9889 printf (" %6.2f%%", percent);
9890 }
9891 printf ("\n");
9892 }
9893 }