Fix: A potential null_pointer_deference bug
[binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2023 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "filenames.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29 #include "ctf-api.h"
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43 #include "elf-bfd.h"
44 #include "bfdver.h"
45
46 #if BFD_SUPPORTS_PLUGINS
47 #include "plugin.h"
48 #endif
49
50 #ifndef offsetof
51 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
52 #endif
53
54 /* Convert between addresses in bytes and sizes in octets.
55 For currently supported targets, octets_per_byte is always a power
56 of two, so we can use shifts. */
57 #define TO_ADDR(X) ((X) >> opb_shift)
58 #define TO_SIZE(X) ((X) << opb_shift)
59
60 /* Local variables. */
61 static struct obstack stat_obstack;
62 static struct obstack map_obstack;
63 static struct obstack pt_obstack;
64
65 #define obstack_chunk_alloc xmalloc
66 #define obstack_chunk_free free
67 static const char *entry_symbol_default = "start";
68 static bool map_head_is_link_order = false;
69 static lang_output_section_statement_type *default_common_section;
70 static bool map_option_f;
71 static bfd_vma print_dot;
72 static lang_input_statement_type *first_file;
73 static const char *current_target;
74 static lang_statement_list_type *stat_save[10];
75 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
76 static struct unique_sections *unique_section_list;
77 static struct asneeded_minfo *asneeded_list_head;
78 static unsigned int opb_shift = 0;
79
80 /* Forward declarations. */
81 static void exp_init_os (etree_type *);
82 static lang_input_statement_type *lookup_name (const char *);
83 static bool wont_add_section_p (asection *,
84 lang_output_section_statement_type *);
85 static void insert_undefined (const char *);
86 static bool sort_def_symbol (struct bfd_link_hash_entry *, void *);
87 static lang_statement_union_type *new_statement (enum statement_enum type,
88 size_t size,
89 lang_statement_list_type *list);
90 static void print_statement (lang_statement_union_type *,
91 lang_output_section_statement_type *);
92 static void print_statement_list (lang_statement_union_type *,
93 lang_output_section_statement_type *);
94 static void print_statements (void);
95 static void print_input_section (asection *, bool);
96 static bool lang_one_common (struct bfd_link_hash_entry *, void *);
97 static void lang_record_phdrs (void);
98 static void lang_do_version_exports_section (void);
99 static void lang_finalize_version_expr_head
100 (struct bfd_elf_version_expr_head *);
101 static void lang_do_memory_regions (bool);
102
103 /* Exported variables. */
104 const char *output_target;
105 lang_output_section_statement_type *abs_output_section;
106 /* Header for list of statements corresponding to any files involved in the
107 link, either specified from the command-line or added implicitely (eg.
108 archive member used to resolved undefined symbol, wildcard statement from
109 linker script, etc.). Next pointer is in next field of a
110 lang_statement_header_type (reached via header field in a
111 lang_statement_union). */
112 lang_statement_list_type statement_list;
113 lang_statement_list_type lang_os_list;
114 lang_statement_list_type *stat_ptr = &statement_list;
115 /* Header for list of statements corresponding to files used in the final
116 executable. This can be either object file specified on the command-line
117 or library member resolving an undefined reference. Next pointer is in next
118 field of a lang_input_statement_type (reached via input_statement field in a
119 lang_statement_union). */
120 lang_statement_list_type file_chain = { NULL, NULL };
121 /* Header for list of statements corresponding to files specified on the
122 command-line for linking. It thus contains real object files and archive
123 but not archive members. Next pointer is in next_real_file field of a
124 lang_input_statement_type statement (reached via input_statement field in a
125 lang_statement_union). */
126 lang_statement_list_type input_file_chain;
127 static const char *current_input_file;
128 struct bfd_elf_dynamic_list **current_dynamic_list_p;
129 struct bfd_sym_chain entry_symbol = { NULL, NULL };
130 const char *entry_section = ".text";
131 struct lang_input_statement_flags input_flags;
132 bool entry_from_cmdline;
133 bool lang_has_input_file = false;
134 bool had_output_filename = false;
135 bool lang_float_flag = false;
136 bool delete_output_file_on_failure = false;
137 bool enable_linker_version = false;
138 struct lang_phdr *lang_phdr_list;
139 struct lang_nocrossrefs *nocrossref_list;
140 struct asneeded_minfo **asneeded_list_tail;
141 #ifdef ENABLE_LIBCTF
142 static ctf_dict_t *ctf_output;
143 #endif
144
145 /* Functions that traverse the linker script and might evaluate
146 DEFINED() need to increment this at the start of the traversal. */
147 int lang_statement_iteration = 0;
148
149 /* Count times through one_lang_size_sections_pass after mark phase. */
150 static int lang_sizing_iteration = 0;
151
152 /* Return TRUE if the PATTERN argument is a wildcard pattern.
153 Although backslashes are treated specially if a pattern contains
154 wildcards, we do not consider the mere presence of a backslash to
155 be enough to cause the pattern to be treated as a wildcard.
156 That lets us handle DOS filenames more naturally. */
157 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
158
159 #define new_stat(x, y) \
160 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
161
162 #define outside_section_address(q) \
163 ((q)->output_offset + (q)->output_section->vma)
164
165 #define outside_symbol_address(q) \
166 ((q)->value + outside_section_address (q->section))
167
168 /* CTF sections smaller than this are not compressed: compression of
169 dictionaries this small doesn't gain much, and this lets consumers mmap the
170 sections directly out of the ELF file and use them with no decompression
171 overhead if they want to. */
172 #define CTF_COMPRESSION_THRESHOLD 4096
173
174 void *
175 stat_alloc (size_t size)
176 {
177 return obstack_alloc (&stat_obstack, size);
178 }
179
180 /* Code for handling simple wildcards without going through fnmatch,
181 which can be expensive because of charset translations etc. */
182
183 /* A simple wild is a literal string followed by a single '*',
184 where the literal part is at least 4 characters long. */
185
186 static bool
187 is_simple_wild (const char *name)
188 {
189 size_t len = strcspn (name, "*?[");
190 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
191 }
192
193 static bool
194 match_simple_wild (const char *pattern, const char *name)
195 {
196 /* The first four characters of the pattern are guaranteed valid
197 non-wildcard characters. So we can go faster. */
198 if (pattern[0] != name[0] || pattern[1] != name[1]
199 || pattern[2] != name[2] || pattern[3] != name[3])
200 return false;
201
202 pattern += 4;
203 name += 4;
204 while (*pattern != '*')
205 if (*name++ != *pattern++)
206 return false;
207
208 return true;
209 }
210
211 static int
212 name_match (const char *pattern, const char *name)
213 {
214 if (is_simple_wild (pattern))
215 return !match_simple_wild (pattern, name);
216 if (wildcardp (pattern))
217 return fnmatch (pattern, name, 0);
218 return strcmp (pattern, name);
219 }
220
221 /* Given an analyzed wildcard_spec SPEC, match it against NAME,
222 returns zero on a match, non-zero if there's no match. */
223
224 static int
225 spec_match (const struct wildcard_spec *spec, const char *name)
226 {
227 size_t nl = spec->namelen;
228 size_t pl = spec->prefixlen;
229 size_t sl = spec->suffixlen;
230 size_t inputlen = strlen (name);
231 int r;
232
233 if (pl)
234 {
235 if (inputlen < pl)
236 return 1;
237
238 r = memcmp (spec->name, name, pl);
239 if (r)
240 return r;
241 }
242
243 if (sl)
244 {
245 if (inputlen < sl)
246 return 1;
247
248 r = memcmp (spec->name + nl - sl, name + inputlen - sl, sl);
249 if (r)
250 return r;
251 }
252
253 if (nl == pl + sl + 1 && spec->name[pl] == '*')
254 return 0;
255
256 if (nl > pl)
257 return fnmatch (spec->name + pl, name + pl, 0);
258
259 if (inputlen >= nl)
260 return name[nl];
261
262 return 0;
263 }
264
265 static char *
266 ldirname (const char *name)
267 {
268 const char *base = lbasename (name);
269 char *dirname;
270
271 while (base > name && IS_DIR_SEPARATOR (base[-1]))
272 --base;
273 if (base == name)
274 return strdup (".");
275 dirname = strdup (name);
276 dirname[base - name] = '\0';
277 return dirname;
278 }
279
280 /* If PATTERN is of the form archive:file, return a pointer to the
281 separator. If not, return NULL. */
282
283 static char *
284 archive_path (const char *pattern)
285 {
286 char *p = NULL;
287
288 if (link_info.path_separator == 0)
289 return p;
290
291 p = strchr (pattern, link_info.path_separator);
292 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
293 if (p == NULL || link_info.path_separator != ':')
294 return p;
295
296 /* Assume a match on the second char is part of drive specifier,
297 as in "c:\silly.dos". */
298 if (p == pattern + 1 && ISALPHA (*pattern))
299 p = strchr (p + 1, link_info.path_separator);
300 #endif
301 return p;
302 }
303
304 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
305 return whether F matches FILE_SPEC. */
306
307 static bool
308 input_statement_is_archive_path (const char *file_spec, char *sep,
309 lang_input_statement_type *f)
310 {
311 bool match = false;
312
313 if ((*(sep + 1) == 0
314 || name_match (sep + 1, f->filename) == 0)
315 && ((sep != file_spec)
316 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
317 {
318 match = true;
319
320 if (sep != file_spec)
321 {
322 const char *aname = bfd_get_filename (f->the_bfd->my_archive);
323 *sep = 0;
324 match = name_match (file_spec, aname) == 0;
325 *sep = link_info.path_separator;
326 }
327 }
328 return match;
329 }
330
331 static bool
332 unique_section_p (const asection *sec,
333 const lang_output_section_statement_type *os)
334 {
335 struct unique_sections *unam;
336 const char *secnam;
337
338 if (!link_info.resolve_section_groups
339 && sec->owner != NULL
340 && bfd_is_group_section (sec->owner, sec))
341 return !(os != NULL
342 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
343
344 secnam = sec->name;
345 for (unam = unique_section_list; unam; unam = unam->next)
346 if (name_match (unam->name, secnam) == 0)
347 return true;
348
349 return false;
350 }
351
352 /* Generic traversal routines for finding matching sections. */
353
354 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
355 false. */
356
357 static bool
358 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
359 lang_input_statement_type *file)
360 {
361 struct name_list *list_tmp;
362
363 for (list_tmp = exclude_list;
364 list_tmp;
365 list_tmp = list_tmp->next)
366 {
367 char *p = archive_path (list_tmp->name);
368
369 if (p != NULL)
370 {
371 if (input_statement_is_archive_path (list_tmp->name, p, file))
372 return true;
373 }
374
375 else if (name_match (list_tmp->name, file->filename) == 0)
376 return true;
377
378 /* FIXME: Perhaps remove the following at some stage? Matching
379 unadorned archives like this was never documented and has
380 been superceded by the archive:path syntax. */
381 else if (file->the_bfd != NULL
382 && file->the_bfd->my_archive != NULL
383 && name_match (list_tmp->name,
384 bfd_get_filename (file->the_bfd->my_archive)) == 0)
385 return true;
386 }
387
388 return false;
389 }
390
391 /* Add SECTION (from input FILE) to the list of matching sections
392 within PTR (the matching wildcard is SEC). */
393
394 static void
395 add_matching_section (lang_wild_statement_type *ptr,
396 struct wildcard_list *sec,
397 asection *section,
398 lang_input_statement_type *file)
399 {
400 lang_input_matcher_type *new_section;
401 /* Add a section reference to the list. */
402 new_section = new_stat (lang_input_matcher, &ptr->matching_sections);
403 new_section->section = section;
404 new_section->pattern = sec;
405 new_section->input_stmt = file;
406 }
407
408 /* Process section S (from input file FILE) in relation to wildcard
409 statement PTR. We already know that a prefix of the name of S matches
410 some wildcard in PTR's wildcard list. Here we check if the filename
411 matches as well (if it's specified) and if any of the wildcards in fact
412 does match. */
413
414 static void
415 walk_wild_section_match (lang_wild_statement_type *ptr,
416 lang_input_statement_type *file,
417 asection *s)
418 {
419 struct wildcard_list *sec;
420 const char *file_spec = ptr->filename;
421 char *p;
422
423 /* Check if filenames match. */
424 if (file_spec == NULL)
425 ;
426 else if ((p = archive_path (file_spec)) != NULL)
427 {
428 if (!input_statement_is_archive_path (file_spec, p, file))
429 return;
430 }
431 else if (wildcardp (file_spec))
432 {
433 if (fnmatch (file_spec, file->filename, 0) != 0)
434 return;
435 }
436 else
437 {
438 /* XXX Matching against non-wildcard filename in wild statements
439 was done by going through lookup_name, which uses
440 ->local_sym_name to compare against, not ->filename. We retain
441 this behaviour even though the above code paths use filename.
442 It would be more logical to use it here as well, in which
443 case the above wildcard() arm could be folded into this by using
444 name_match. This would also solve the worry of what to do
445 about unset local_sym_name (in which case lookup_name simply adds
446 the input file again). */
447 const char *filename = file->local_sym_name;
448 lang_input_statement_type *arch_is;
449 if (filename && filename_cmp (filename, file_spec) == 0)
450 ;
451 /* FIXME: see also walk_wild_file_in_exclude_list for why we
452 also check parents BFD (local_sym_)name to match input statements
453 with unadorned archive names. */
454 else if (file->the_bfd
455 && file->the_bfd->my_archive
456 && (arch_is = bfd_usrdata (file->the_bfd->my_archive))
457 && arch_is->local_sym_name
458 && filename_cmp (arch_is->local_sym_name, file_spec) == 0)
459 ;
460 else
461 return;
462 }
463
464 /* If filename is excluded we're done. */
465 if (walk_wild_file_in_exclude_list (ptr->exclude_name_list, file))
466 return;
467
468 /* Check section name against each wildcard spec. If there's no
469 wildcard all sections match. */
470 sec = ptr->section_list;
471 if (sec == NULL)
472 add_matching_section (ptr, sec, s, file);
473 else
474 {
475 const char *sname = bfd_section_name (s);
476 for (; sec != NULL; sec = sec->next)
477 {
478 if (sec->spec.name != NULL
479 && spec_match (&sec->spec, sname) != 0)
480 continue;
481
482 /* Don't process sections from files which were excluded. */
483 if (!walk_wild_file_in_exclude_list (sec->spec.exclude_name_list,
484 file))
485 add_matching_section (ptr, sec, s, file);
486 }
487 }
488 }
489
490 /* Return the numerical value of the init_priority attribute from
491 section name NAME. */
492
493 static int
494 get_init_priority (const asection *sec)
495 {
496 const char *name = bfd_section_name (sec);
497 const char *dot;
498
499 /* GCC uses the following section names for the init_priority
500 attribute with numerical values 101 to 65535 inclusive. A
501 lower value means a higher priority.
502
503 1: .init_array.NNNNN/.fini_array.NNNNN: Where NNNNN is the
504 decimal numerical value of the init_priority attribute.
505 The order of execution in .init_array is forward and
506 .fini_array is backward.
507 2: .ctors.NNNNN/.dtors.NNNNN: Where NNNNN is 65535 minus the
508 decimal numerical value of the init_priority attribute.
509 The order of execution in .ctors is backward and .dtors
510 is forward.
511
512 .init_array.NNNNN sections would normally be placed in an output
513 .init_array section, .fini_array.NNNNN in .fini_array,
514 .ctors.NNNNN in .ctors, and .dtors.NNNNN in .dtors. This means
515 we should sort by increasing number (and could just use
516 SORT_BY_NAME in scripts). However if .ctors.NNNNN sections are
517 being placed in .init_array (which may also contain
518 .init_array.NNNNN sections) or .dtors.NNNNN sections are being
519 placed in .fini_array then we need to extract the init_priority
520 attribute and sort on that. */
521 dot = strrchr (name, '.');
522 if (dot != NULL && ISDIGIT (dot[1]))
523 {
524 char *end;
525 unsigned long init_priority = strtoul (dot + 1, &end, 10);
526 if (*end == 0)
527 {
528 if (dot == name + 6
529 && (strncmp (name, ".ctors", 6) == 0
530 || strncmp (name, ".dtors", 6) == 0))
531 init_priority = 65535 - init_priority;
532 if (init_priority <= INT_MAX)
533 return init_priority;
534 }
535 }
536 return -1;
537 }
538
539 /* Compare sections ASEC and BSEC according to SORT. */
540
541 static int
542 compare_section (sort_type sort, asection *asec, asection *bsec)
543 {
544 int ret;
545 int a_priority, b_priority;
546
547 switch (sort)
548 {
549 default:
550 abort ();
551
552 case by_init_priority:
553 a_priority = get_init_priority (asec);
554 b_priority = get_init_priority (bsec);
555 if (a_priority < 0 || b_priority < 0)
556 goto sort_by_name;
557 ret = a_priority - b_priority;
558 if (ret)
559 break;
560 else
561 goto sort_by_name;
562
563 case by_alignment_name:
564 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
565 if (ret)
566 break;
567 /* Fall through. */
568
569 case by_name:
570 sort_by_name:
571 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
572 break;
573
574 case by_name_alignment:
575 ret = strcmp (bfd_section_name (asec), bfd_section_name (bsec));
576 if (ret)
577 break;
578 /* Fall through. */
579
580 case by_alignment:
581 ret = bfd_section_alignment (bsec) - bfd_section_alignment (asec);
582 break;
583 }
584
585 return ret;
586 }
587
588 /* PE puts the sort key in the input statement. */
589
590 static const char *
591 sort_filename (bfd *abfd)
592 {
593 lang_input_statement_type *is = bfd_usrdata (abfd);
594 if (is->sort_key)
595 return is->sort_key;
596 return bfd_get_filename (abfd);
597 }
598
599 /* Handle wildcard sorting. This returns the place in a binary search tree
600 where this FILE:SECTION should be inserted for wild statement WILD where
601 the spec SEC was the matching one. The tree is later linearized. */
602
603 static lang_section_bst_type **
604 wild_sort (lang_wild_statement_type *wild,
605 struct wildcard_list *sec,
606 lang_input_statement_type *file,
607 asection *section)
608 {
609 lang_section_bst_type **tree;
610
611 if (!wild->filenames_sorted
612 && (sec == NULL || sec->spec.sorted == none
613 || sec->spec.sorted == by_none))
614 {
615 /* We might be called even if _this_ spec doesn't need sorting,
616 in which case we simply append at the right end of tree. */
617 return wild->rightmost;
618 }
619
620 tree = &wild->tree;
621 while (*tree)
622 {
623 /* Sorting by filename takes precedence over sorting by section
624 name. */
625
626 if (wild->filenames_sorted)
627 {
628 const char *fn, *ln;
629 bool fa, la;
630 int i;
631 asection *lsec = (*tree)->section;
632
633 /* The PE support for the .idata section as generated by
634 dlltool assumes that files will be sorted by the name of
635 the archive and then the name of the file within the
636 archive. */
637
638 fa = file->the_bfd->my_archive != NULL;
639 if (fa)
640 fn = sort_filename (file->the_bfd->my_archive);
641 else
642 fn = sort_filename (file->the_bfd);
643
644 la = lsec->owner->my_archive != NULL;
645 if (la)
646 ln = sort_filename (lsec->owner->my_archive);
647 else
648 ln = sort_filename (lsec->owner);
649
650 i = filename_cmp (fn, ln);
651 if (i > 0)
652 { tree = &((*tree)->right); continue; }
653 else if (i < 0)
654 { tree = &((*tree)->left); continue; }
655
656 if (fa || la)
657 {
658 if (fa)
659 fn = sort_filename (file->the_bfd);
660 if (la)
661 ln = sort_filename (lsec->owner);
662
663 i = filename_cmp (fn, ln);
664 if (i > 0)
665 { tree = &((*tree)->right); continue; }
666 else if (i < 0)
667 { tree = &((*tree)->left); continue; }
668 }
669 }
670
671 /* Here either the files are not sorted by name, or we are
672 looking at the sections for this file. */
673
674 /* Find the correct node to append this section. */
675 if (sec && sec->spec.sorted != none && sec->spec.sorted != by_none
676 && compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
677 tree = &((*tree)->left);
678 else
679 tree = &((*tree)->right);
680 }
681
682 return tree;
683 }
684
685 /* Use wild_sort to build a BST to sort sections. */
686
687 static void
688 output_section_callback_sort (lang_wild_statement_type *ptr,
689 struct wildcard_list *sec,
690 asection *section,
691 lang_input_statement_type *file,
692 void *output)
693 {
694 lang_section_bst_type *node;
695 lang_section_bst_type **tree;
696 lang_output_section_statement_type *os;
697
698 os = (lang_output_section_statement_type *) output;
699
700 if (unique_section_p (section, os))
701 return;
702
703 /* Don't add sections to the tree when we already know that
704 lang_add_section won't do anything with it. */
705 if (wont_add_section_p (section, os))
706 return;
707
708 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
709 node->left = 0;
710 node->right = 0;
711 node->section = section;
712 node->pattern = ptr->section_list;
713
714 tree = wild_sort (ptr, sec, file, section);
715 if (tree != NULL)
716 {
717 *tree = node;
718 if (tree == ptr->rightmost)
719 ptr->rightmost = &node->right;
720 }
721 }
722
723 /* Convert a sorted sections' BST back to list form. */
724
725 static void
726 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
727 lang_section_bst_type *tree,
728 void *output)
729 {
730 if (tree->left)
731 output_section_callback_tree_to_list (ptr, tree->left, output);
732
733 lang_add_section (&ptr->children, tree->section, tree->pattern,
734 ptr->section_flag_list,
735 (lang_output_section_statement_type *) output);
736
737 if (tree->right)
738 output_section_callback_tree_to_list (ptr, tree->right, output);
739
740 free (tree);
741 }
742
743 \f
744 /* Sections are matched against wildcard statements via a prefix tree.
745 The prefix tree holds prefixes of all matching patterns (up to the first
746 wildcard character), and the wild statement from which those patterns
747 came. When matching a section name against the tree we're walking through
748 the tree character by character. Each statement we hit is one that
749 potentially matches. This is checked by actually going through the
750 (glob) matching routines.
751
752 When the section name turns out to actually match we record that section
753 in the wild statements list of matching sections. */
754
755 /* A prefix can be matched by multiple statement, so we need a list of them. */
756 struct wild_stmt_list
757 {
758 lang_wild_statement_type *stmt;
759 struct wild_stmt_list *next;
760 };
761
762 /* The prefix tree itself. */
763 struct prefixtree
764 {
765 /* The list of all children (linked via .next). */
766 struct prefixtree *child;
767 struct prefixtree *next;
768 /* This tree node is responsible for the prefix of parent plus 'c'. */
769 char c;
770 /* The statements that potentially can match this prefix. */
771 struct wild_stmt_list *stmt;
772 };
773
774 /* We always have a root node in the prefix tree. It corresponds to the
775 empty prefix. E.g. a glob like "*" would sit in this root. */
776 static struct prefixtree the_root, *ptroot = &the_root;
777
778 /* Given a prefix tree in *TREE, corresponding to prefix P, find or
779 INSERT the tree node corresponding to prefix P+C. */
780
781 static struct prefixtree *
782 get_prefix_tree (struct prefixtree **tree, char c, bool insert)
783 {
784 struct prefixtree *t;
785 for (t = *tree; t; t = t->next)
786 if (t->c == c)
787 return t;
788 if (!insert)
789 return NULL;
790 t = (struct prefixtree *) obstack_alloc (&pt_obstack, sizeof *t);
791 t->child = NULL;
792 t->next = *tree;
793 t->c = c;
794 t->stmt = NULL;
795 *tree = t;
796 return t;
797 }
798
799 /* Add STMT to the set of statements that can be matched by the prefix
800 corresponding to prefix tree T. */
801
802 static void
803 pt_add_stmt (struct prefixtree *t, lang_wild_statement_type *stmt)
804 {
805 struct wild_stmt_list *sl, **psl;
806 sl = (struct wild_stmt_list *) obstack_alloc (&pt_obstack, sizeof *sl);
807 sl->stmt = stmt;
808 sl->next = NULL;
809 psl = &t->stmt;
810 while (*psl)
811 psl = &(*psl)->next;
812 *psl = sl;
813 }
814
815 /* Insert STMT into the global prefix tree. */
816
817 static void
818 insert_prefix_tree (lang_wild_statement_type *stmt)
819 {
820 struct wildcard_list *sec;
821 struct prefixtree *t;
822
823 if (!stmt->section_list)
824 {
825 /* If we have no section_list (no wildcards in the wild STMT),
826 then every section name will match, so add this to the root. */
827 pt_add_stmt (ptroot, stmt);
828 return;
829 }
830
831 for (sec = stmt->section_list; sec; sec = sec->next)
832 {
833 const char *name = sec->spec.name ? sec->spec.name : "*";
834 char c;
835 t = ptroot;
836 for (; (c = *name); name++)
837 {
838 if (c == '*' || c == '[' || c == '?')
839 break;
840 t = get_prefix_tree (&t->child, c, true);
841 }
842 /* If we hit a glob character, the matching prefix is what we saw
843 until now. If we hit the end of pattern (hence it's no glob) then
844 we can do better: we only need to record a match when a section name
845 completely matches, not merely a prefix, so record the trailing 0
846 as well. */
847 if (!c)
848 t = get_prefix_tree (&t->child, 0, true);
849 pt_add_stmt (t, stmt);
850 }
851 }
852
853 /* Dump T indented by INDENT spaces. */
854
855 static void
856 debug_prefix_tree_rec (struct prefixtree *t, int indent)
857 {
858 for (; t; t = t->next)
859 {
860 struct wild_stmt_list *sl;
861 printf ("%*s %c", indent, "", t->c);
862 for (sl = t->stmt; sl; sl = sl->next)
863 {
864 struct wildcard_list *curr;
865 printf (" %p ", sl->stmt);
866 for (curr = sl->stmt->section_list; curr; curr = curr->next)
867 printf ("%s ", curr->spec.name ? curr->spec.name : "*");
868 }
869 printf ("\n");
870 debug_prefix_tree_rec (t->child, indent + 2);
871 }
872 }
873
874 /* Dump the global prefix tree. */
875
876 static void
877 debug_prefix_tree (void)
878 {
879 debug_prefix_tree_rec (ptroot, 2);
880 }
881
882 /* Like strcspn() but start to look from the end to beginning of
883 S. Returns the length of the suffix of S consisting entirely
884 of characters not in REJECT. */
885
886 static size_t
887 rstrcspn (const char *s, const char *reject)
888 {
889 size_t len = strlen (s), sufflen = 0;
890 while (len--)
891 {
892 char c = s[len];
893 if (strchr (reject, c) != 0)
894 break;
895 sufflen++;
896 }
897 return sufflen;
898 }
899
900 /* Analyze the wildcards in wild statement PTR to setup various
901 things for quick matching. */
902
903 static void
904 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
905 {
906 struct wildcard_list *sec;
907
908 ptr->tree = NULL;
909 ptr->rightmost = &ptr->tree;
910
911 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
912 {
913 if (sec->spec.name)
914 {
915 sec->spec.namelen = strlen (sec->spec.name);
916 sec->spec.prefixlen = strcspn (sec->spec.name, "?*[");
917 sec->spec.suffixlen = rstrcspn (sec->spec.name + sec->spec.prefixlen,
918 "?*]");
919 }
920 else
921 sec->spec.namelen = sec->spec.prefixlen = sec->spec.suffixlen = 0;
922 }
923
924 insert_prefix_tree (ptr);
925 }
926
927 /* Match all sections from FILE against the global prefix tree,
928 and record them into each wild statement that has a match. */
929
930 static void
931 resolve_wild_sections (lang_input_statement_type *file)
932 {
933 asection *s;
934
935 if (file->flags.just_syms)
936 return;
937
938 for (s = file->the_bfd->sections; s != NULL; s = s->next)
939 {
940 const char *sname = bfd_section_name (s);
941 char c = 1;
942 struct prefixtree *t = ptroot;
943 //printf (" YYY consider %s of %s\n", sname, file->the_bfd->filename);
944 do
945 {
946 if (t->stmt)
947 {
948 struct wild_stmt_list *sl;
949 for (sl = t->stmt; sl; sl = sl->next)
950 {
951 walk_wild_section_match (sl->stmt, file, s);
952 //printf (" ZZZ maybe place into %p\n", sl->stmt);
953 }
954 }
955 if (!c)
956 break;
957 c = *sname++;
958 t = get_prefix_tree (&t->child, c, false);
959 }
960 while (t);
961 }
962 }
963
964 /* Match all sections from all input files against the global prefix tree. */
965
966 static void
967 resolve_wilds (void)
968 {
969 LANG_FOR_EACH_INPUT_STATEMENT (f)
970 {
971 //printf("XXX %s\n", f->filename);
972 if (f->the_bfd == NULL
973 || !bfd_check_format (f->the_bfd, bfd_archive))
974 resolve_wild_sections (f);
975 else
976 {
977 bfd *member;
978
979 /* This is an archive file. We must map each member of the
980 archive separately. */
981 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
982 while (member != NULL)
983 {
984 /* When lookup_name is called, it will call the add_symbols
985 entry point for the archive. For each element of the
986 archive which is included, BFD will call ldlang_add_file,
987 which will set the usrdata field of the member to the
988 lang_input_statement. */
989 if (bfd_usrdata (member) != NULL)
990 resolve_wild_sections (bfd_usrdata (member));
991
992 member = bfd_openr_next_archived_file (f->the_bfd, member);
993 }
994 }
995 }
996 }
997
998 /* For each input section that matches wild statement S calls
999 CALLBACK with DATA. */
1000
1001 static void
1002 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
1003 {
1004 lang_statement_union_type *l;
1005
1006 for (l = s->matching_sections.head; l; l = l->header.next)
1007 {
1008 (*callback) (s, l->input_matcher.pattern, l->input_matcher.section,
1009 l->input_matcher.input_stmt, data);
1010 }
1011 }
1012
1013 /* lang_for_each_statement walks the parse tree and calls the provided
1014 function for each node, except those inside output section statements
1015 with constraint set to -1. */
1016
1017 void
1018 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
1019 lang_statement_union_type *s)
1020 {
1021 for (; s != NULL; s = s->header.next)
1022 {
1023 func (s);
1024
1025 switch (s->header.type)
1026 {
1027 case lang_constructors_statement_enum:
1028 lang_for_each_statement_worker (func, constructor_list.head);
1029 break;
1030 case lang_output_section_statement_enum:
1031 if (s->output_section_statement.constraint != -1)
1032 lang_for_each_statement_worker
1033 (func, s->output_section_statement.children.head);
1034 break;
1035 case lang_wild_statement_enum:
1036 lang_for_each_statement_worker (func,
1037 s->wild_statement.children.head);
1038 break;
1039 case lang_group_statement_enum:
1040 lang_for_each_statement_worker (func,
1041 s->group_statement.children.head);
1042 break;
1043 case lang_data_statement_enum:
1044 case lang_reloc_statement_enum:
1045 case lang_object_symbols_statement_enum:
1046 case lang_output_statement_enum:
1047 case lang_target_statement_enum:
1048 case lang_input_section_enum:
1049 case lang_input_statement_enum:
1050 case lang_assignment_statement_enum:
1051 case lang_padding_statement_enum:
1052 case lang_address_statement_enum:
1053 case lang_fill_statement_enum:
1054 case lang_insert_statement_enum:
1055 break;
1056 default:
1057 FAIL ();
1058 break;
1059 }
1060 }
1061 }
1062
1063 void
1064 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1065 {
1066 lang_for_each_statement_worker (func, statement_list.head);
1067 }
1068
1069 /*----------------------------------------------------------------------*/
1070
1071 void
1072 lang_list_init (lang_statement_list_type *list)
1073 {
1074 list->head = NULL;
1075 list->tail = &list->head;
1076 }
1077
1078 static void
1079 lang_statement_append (lang_statement_list_type *list,
1080 void *element,
1081 void *field)
1082 {
1083 *(list->tail) = element;
1084 list->tail = field;
1085 }
1086
1087 void
1088 push_stat_ptr (lang_statement_list_type *new_ptr)
1089 {
1090 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1091 abort ();
1092 *stat_save_ptr++ = stat_ptr;
1093 stat_ptr = new_ptr;
1094 }
1095
1096 void
1097 pop_stat_ptr (void)
1098 {
1099 if (stat_save_ptr <= stat_save)
1100 abort ();
1101 stat_ptr = *--stat_save_ptr;
1102 }
1103
1104 /* Build a new statement node for the parse tree. */
1105
1106 static lang_statement_union_type *
1107 new_statement (enum statement_enum type,
1108 size_t size,
1109 lang_statement_list_type *list)
1110 {
1111 lang_statement_union_type *new_stmt;
1112
1113 new_stmt = stat_alloc (size);
1114 new_stmt->header.type = type;
1115 new_stmt->header.next = NULL;
1116 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1117 return new_stmt;
1118 }
1119
1120 /* Build a new input file node for the language. There are several
1121 ways in which we treat an input file, eg, we only look at symbols,
1122 or prefix it with a -l etc.
1123
1124 We can be supplied with requests for input files more than once;
1125 they may, for example be split over several lines like foo.o(.text)
1126 foo.o(.data) etc, so when asked for a file we check that we haven't
1127 got it already so we don't duplicate the bfd. */
1128
1129 static lang_input_statement_type *
1130 new_afile (const char *name,
1131 lang_input_file_enum_type file_type,
1132 const char *target,
1133 const char *from_filename)
1134 {
1135 lang_input_statement_type *p;
1136
1137 lang_has_input_file = true;
1138
1139 /* PR 30632: It is OK for name to be NULL. For example
1140 see the initialization of first_file in lang_init(). */
1141 if (name != NULL)
1142 {
1143 name = ldfile_possibly_remap_input (name);
1144 /* But if a name is remapped to NULL, it should be ignored. */
1145 if (name == NULL)
1146 return NULL;
1147 }
1148
1149 p = new_stat (lang_input_statement, stat_ptr);
1150 memset (&p->the_bfd, 0,
1151 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1152 p->extra_search_path = NULL;
1153 p->target = target;
1154 p->flags.dynamic = input_flags.dynamic;
1155 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1156 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1157 p->flags.whole_archive = input_flags.whole_archive;
1158 p->flags.sysrooted = input_flags.sysrooted;
1159 p->sort_key = NULL;
1160
1161 switch (file_type)
1162 {
1163 case lang_input_file_is_symbols_only_enum:
1164 p->filename = name;
1165 p->local_sym_name = name;
1166 p->flags.real = true;
1167 p->flags.just_syms = true;
1168 break;
1169 case lang_input_file_is_fake_enum:
1170 p->filename = name;
1171 p->local_sym_name = name;
1172 break;
1173 case lang_input_file_is_l_enum:
1174 if (name[0] == ':' && name[1] != '\0')
1175 {
1176 p->filename = name + 1;
1177 p->flags.full_name_provided = true;
1178 }
1179 else
1180 p->filename = name;
1181 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1182 p->flags.maybe_archive = true;
1183 p->flags.real = true;
1184 p->flags.search_dirs = true;
1185 break;
1186 case lang_input_file_is_marker_enum:
1187 p->filename = name;
1188 p->local_sym_name = name;
1189 p->flags.search_dirs = true;
1190 break;
1191 case lang_input_file_is_search_file_enum:
1192 p->filename = name;
1193 p->local_sym_name = name;
1194 /* If name is a relative path, search the directory of the current linker
1195 script first. */
1196 if (from_filename && !IS_ABSOLUTE_PATH (name))
1197 p->extra_search_path = ldirname (from_filename);
1198 p->flags.real = true;
1199 p->flags.search_dirs = true;
1200 break;
1201 case lang_input_file_is_file_enum:
1202 p->filename = name;
1203 p->local_sym_name = name;
1204 p->flags.real = true;
1205 break;
1206 default:
1207 FAIL ();
1208 }
1209
1210 lang_statement_append (&input_file_chain, p, &p->next_real_file);
1211 return p;
1212 }
1213
1214 lang_input_statement_type *
1215 lang_add_input_file (const char *name,
1216 lang_input_file_enum_type file_type,
1217 const char *target)
1218 {
1219 if (name != NULL
1220 && (*name == '=' || startswith (name, "$SYSROOT")))
1221 {
1222 lang_input_statement_type *ret;
1223 char *sysrooted_name
1224 = concat (ld_sysroot,
1225 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1226 (const char *) NULL);
1227
1228 /* We've now forcibly prepended the sysroot, making the input
1229 file independent of the context. Therefore, temporarily
1230 force a non-sysrooted context for this statement, so it won't
1231 get the sysroot prepended again when opened. (N.B. if it's a
1232 script, any child nodes with input files starting with "/"
1233 will be handled as "sysrooted" as they'll be found to be
1234 within the sysroot subdirectory.) */
1235 unsigned int outer_sysrooted = input_flags.sysrooted;
1236 input_flags.sysrooted = 0;
1237 ret = new_afile (sysrooted_name, file_type, target, NULL);
1238 input_flags.sysrooted = outer_sysrooted;
1239 return ret;
1240 }
1241
1242 return new_afile (name, file_type, target, current_input_file);
1243 }
1244
1245 struct out_section_hash_entry
1246 {
1247 struct bfd_hash_entry root;
1248 lang_statement_union_type s;
1249 };
1250
1251 /* The hash table. */
1252
1253 static struct bfd_hash_table output_section_statement_table;
1254
1255 /* Support routines for the hash table used by lang_output_section_find,
1256 initialize the table, fill in an entry and remove the table. */
1257
1258 static struct bfd_hash_entry *
1259 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1260 struct bfd_hash_table *table,
1261 const char *string)
1262 {
1263 lang_output_section_statement_type **nextp;
1264 struct out_section_hash_entry *ret;
1265
1266 if (entry == NULL)
1267 {
1268 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1269 sizeof (*ret));
1270 if (entry == NULL)
1271 return entry;
1272 }
1273
1274 entry = bfd_hash_newfunc (entry, table, string);
1275 if (entry == NULL)
1276 return entry;
1277
1278 ret = (struct out_section_hash_entry *) entry;
1279 memset (&ret->s, 0, sizeof (ret->s));
1280 ret->s.header.type = lang_output_section_statement_enum;
1281 ret->s.output_section_statement.subsection_alignment = NULL;
1282 ret->s.output_section_statement.section_alignment = NULL;
1283 ret->s.output_section_statement.block_value = 1;
1284 lang_list_init (&ret->s.output_section_statement.children);
1285 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1286
1287 /* For every output section statement added to the list, except the
1288 first one, lang_os_list.tail points to the "next"
1289 field of the last element of the list. */
1290 if (lang_os_list.head != NULL)
1291 ret->s.output_section_statement.prev
1292 = ((lang_output_section_statement_type *)
1293 ((char *) lang_os_list.tail
1294 - offsetof (lang_output_section_statement_type, next)));
1295
1296 /* GCC's strict aliasing rules prevent us from just casting the
1297 address, so we store the pointer in a variable and cast that
1298 instead. */
1299 nextp = &ret->s.output_section_statement.next;
1300 lang_statement_append (&lang_os_list, &ret->s, nextp);
1301 return &ret->root;
1302 }
1303
1304 static void
1305 output_section_statement_table_init (void)
1306 {
1307 if (!bfd_hash_table_init_n (&output_section_statement_table,
1308 output_section_statement_newfunc,
1309 sizeof (struct out_section_hash_entry),
1310 61))
1311 einfo (_("%F%P: can not create hash table: %E\n"));
1312 }
1313
1314 static void
1315 output_section_statement_table_free (void)
1316 {
1317 bfd_hash_table_free (&output_section_statement_table);
1318 }
1319
1320 /* Build enough state so that the parser can build its tree. */
1321
1322 void
1323 lang_init (void)
1324 {
1325 obstack_begin (&stat_obstack, 1000);
1326 obstack_init (&pt_obstack);
1327
1328 stat_ptr = &statement_list;
1329
1330 output_section_statement_table_init ();
1331
1332 lang_list_init (stat_ptr);
1333
1334 lang_list_init (&input_file_chain);
1335 lang_list_init (&lang_os_list);
1336 lang_list_init (&file_chain);
1337 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1338 NULL);
1339 abs_output_section =
1340 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, 1);
1341
1342 abs_output_section->bfd_section = bfd_abs_section_ptr;
1343
1344 asneeded_list_head = NULL;
1345 asneeded_list_tail = &asneeded_list_head;
1346 }
1347
1348 void
1349 lang_finish (void)
1350 {
1351 output_section_statement_table_free ();
1352 ldfile_remap_input_free ();
1353 }
1354
1355 /*----------------------------------------------------------------------
1356 A region is an area of memory declared with the
1357 MEMORY { name:org=exp, len=exp ... }
1358 syntax.
1359
1360 We maintain a list of all the regions here.
1361
1362 If no regions are specified in the script, then the default is used
1363 which is created when looked up to be the entire data space.
1364
1365 If create is true we are creating a region inside a MEMORY block.
1366 In this case it is probably an error to create a region that has
1367 already been created. If we are not inside a MEMORY block it is
1368 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1369 and so we issue a warning.
1370
1371 Each region has at least one name. The first name is either
1372 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1373 alias names to an existing region within a script with
1374 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1375 region. */
1376
1377 static lang_memory_region_type *lang_memory_region_list;
1378 static lang_memory_region_type **lang_memory_region_list_tail
1379 = &lang_memory_region_list;
1380
1381 lang_memory_region_type *
1382 lang_memory_region_lookup (const char *const name, bool create)
1383 {
1384 lang_memory_region_name *n;
1385 lang_memory_region_type *r;
1386 lang_memory_region_type *new_region;
1387
1388 /* NAME is NULL for LMA memspecs if no region was specified. */
1389 if (name == NULL)
1390 return NULL;
1391
1392 for (r = lang_memory_region_list; r != NULL; r = r->next)
1393 for (n = &r->name_list; n != NULL; n = n->next)
1394 if (strcmp (n->name, name) == 0)
1395 {
1396 if (create)
1397 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1398 NULL, name);
1399 return r;
1400 }
1401
1402 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1403 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1404 NULL, name);
1405
1406 new_region = stat_alloc (sizeof (lang_memory_region_type));
1407
1408 new_region->name_list.name = xstrdup (name);
1409 new_region->name_list.next = NULL;
1410 new_region->next = NULL;
1411 new_region->origin_exp = NULL;
1412 new_region->origin = 0;
1413 new_region->length_exp = NULL;
1414 new_region->length = ~(bfd_size_type) 0;
1415 new_region->current = 0;
1416 new_region->last_os = NULL;
1417 new_region->flags = 0;
1418 new_region->not_flags = 0;
1419 new_region->had_full_message = false;
1420
1421 *lang_memory_region_list_tail = new_region;
1422 lang_memory_region_list_tail = &new_region->next;
1423
1424 return new_region;
1425 }
1426
1427 void
1428 lang_memory_region_alias (const char *alias, const char *region_name)
1429 {
1430 lang_memory_region_name *n;
1431 lang_memory_region_type *r;
1432 lang_memory_region_type *region;
1433
1434 /* The default region must be unique. This ensures that it is not necessary
1435 to iterate through the name list if someone wants the check if a region is
1436 the default memory region. */
1437 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1438 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1439 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1440
1441 /* Look for the target region and check if the alias is not already
1442 in use. */
1443 region = NULL;
1444 for (r = lang_memory_region_list; r != NULL; r = r->next)
1445 for (n = &r->name_list; n != NULL; n = n->next)
1446 {
1447 if (region == NULL && strcmp (n->name, region_name) == 0)
1448 region = r;
1449 if (strcmp (n->name, alias) == 0)
1450 einfo (_("%F%P:%pS: error: redefinition of memory region "
1451 "alias `%s'\n"),
1452 NULL, alias);
1453 }
1454
1455 /* Check if the target region exists. */
1456 if (region == NULL)
1457 einfo (_("%F%P:%pS: error: memory region `%s' "
1458 "for alias `%s' does not exist\n"),
1459 NULL, region_name, alias);
1460
1461 /* Add alias to region name list. */
1462 n = stat_alloc (sizeof (lang_memory_region_name));
1463 n->name = xstrdup (alias);
1464 n->next = region->name_list.next;
1465 region->name_list.next = n;
1466 }
1467
1468 static lang_memory_region_type *
1469 lang_memory_default (asection *section)
1470 {
1471 lang_memory_region_type *p;
1472
1473 flagword sec_flags = section->flags;
1474
1475 /* Override SEC_DATA to mean a writable section. */
1476 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1477 sec_flags |= SEC_DATA;
1478
1479 for (p = lang_memory_region_list; p != NULL; p = p->next)
1480 {
1481 if ((p->flags & sec_flags) != 0
1482 && (p->not_flags & sec_flags) == 0)
1483 {
1484 return p;
1485 }
1486 }
1487 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
1488 }
1489
1490 /* Get the output section statement directly from the userdata. */
1491
1492 lang_output_section_statement_type *
1493 lang_output_section_get (const asection *output_section)
1494 {
1495 return bfd_section_userdata (output_section);
1496 }
1497
1498 /* Find or create an output_section_statement with the given NAME.
1499 If CONSTRAINT is non-zero match one with that constraint, otherwise
1500 match any non-negative constraint. If CREATE is 0 return NULL when
1501 no match exists. If CREATE is 1, create an output_section_statement
1502 when no match exists or if CONSTRAINT is SPECIAL. If CREATE is 2,
1503 always make a new output_section_statement. */
1504
1505 lang_output_section_statement_type *
1506 lang_output_section_statement_lookup (const char *name,
1507 int constraint,
1508 int create)
1509 {
1510 struct out_section_hash_entry *entry;
1511
1512 entry = ((struct out_section_hash_entry *)
1513 bfd_hash_lookup (&output_section_statement_table, name,
1514 create != 0, false));
1515 if (entry == NULL)
1516 {
1517 if (create)
1518 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1519 return NULL;
1520 }
1521
1522 if (entry->s.output_section_statement.name != NULL)
1523 {
1524 /* We have a section of this name, but it might not have the correct
1525 constraint. */
1526 struct out_section_hash_entry *last_ent;
1527
1528 name = entry->s.output_section_statement.name;
1529 do
1530 {
1531 if (create != 2
1532 && !(create && constraint == SPECIAL)
1533 && (constraint == entry->s.output_section_statement.constraint
1534 || (constraint == 0
1535 && entry->s.output_section_statement.constraint >= 0)))
1536 return &entry->s.output_section_statement;
1537 last_ent = entry;
1538 entry = (struct out_section_hash_entry *) entry->root.next;
1539 }
1540 while (entry != NULL
1541 && name == entry->s.output_section_statement.name);
1542
1543 if (!create)
1544 return NULL;
1545
1546 entry
1547 = ((struct out_section_hash_entry *)
1548 output_section_statement_newfunc (NULL,
1549 &output_section_statement_table,
1550 name));
1551 if (entry == NULL)
1552 {
1553 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1554 return NULL;
1555 }
1556 entry->root = last_ent->root;
1557 last_ent->root.next = &entry->root;
1558 }
1559
1560 entry->s.output_section_statement.name = name;
1561 entry->s.output_section_statement.constraint = constraint;
1562 entry->s.output_section_statement.dup_output = (create == 2
1563 || constraint == SPECIAL);
1564 return &entry->s.output_section_statement;
1565 }
1566
1567 /* Find the next output_section_statement with the same name as OS.
1568 If CONSTRAINT is non-zero, find one with that constraint otherwise
1569 match any non-negative constraint. */
1570
1571 lang_output_section_statement_type *
1572 next_matching_output_section_statement (lang_output_section_statement_type *os,
1573 int constraint)
1574 {
1575 /* All output_section_statements are actually part of a
1576 struct out_section_hash_entry. */
1577 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1578 ((char *) os
1579 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1580 const char *name = os->name;
1581
1582 ASSERT (name == entry->root.string);
1583 do
1584 {
1585 entry = (struct out_section_hash_entry *) entry->root.next;
1586 if (entry == NULL
1587 || name != entry->s.output_section_statement.name)
1588 return NULL;
1589 }
1590 while (constraint != entry->s.output_section_statement.constraint
1591 && (constraint != 0
1592 || entry->s.output_section_statement.constraint < 0));
1593
1594 return &entry->s.output_section_statement;
1595 }
1596
1597 /* A variant of lang_output_section_find used by place_orphan.
1598 Returns the output statement that should precede a new output
1599 statement for SEC. If an exact match is found on certain flags,
1600 sets *EXACT too. */
1601
1602 lang_output_section_statement_type *
1603 lang_output_section_find_by_flags (const asection *sec,
1604 flagword sec_flags,
1605 lang_output_section_statement_type **exact,
1606 lang_match_sec_type_func match_type)
1607 {
1608 lang_output_section_statement_type *first, *look, *found;
1609 flagword look_flags, differ;
1610
1611 /* We know the first statement on this list is *ABS*. May as well
1612 skip it. */
1613 first = (void *) lang_os_list.head;
1614 first = first->next;
1615
1616 /* First try for an exact match. */
1617 found = NULL;
1618 for (look = first; look; look = look->next)
1619 {
1620 look_flags = look->flags;
1621 if (look->bfd_section != NULL)
1622 {
1623 look_flags = look->bfd_section->flags;
1624 if (match_type && !match_type (link_info.output_bfd,
1625 look->bfd_section,
1626 sec->owner, sec))
1627 continue;
1628 }
1629 differ = look_flags ^ sec_flags;
1630 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1631 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1632 found = look;
1633 }
1634 if (found != NULL)
1635 {
1636 if (exact != NULL)
1637 *exact = found;
1638 return found;
1639 }
1640
1641 if ((sec_flags & SEC_CODE) != 0
1642 && (sec_flags & SEC_ALLOC) != 0)
1643 {
1644 /* Try for a rw code section. */
1645 for (look = first; look; look = look->next)
1646 {
1647 look_flags = look->flags;
1648 if (look->bfd_section != NULL)
1649 {
1650 look_flags = look->bfd_section->flags;
1651 if (match_type && !match_type (link_info.output_bfd,
1652 look->bfd_section,
1653 sec->owner, sec))
1654 continue;
1655 }
1656 differ = look_flags ^ sec_flags;
1657 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1658 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1659 found = look;
1660 }
1661 }
1662 else if ((sec_flags & SEC_READONLY) != 0
1663 && (sec_flags & SEC_ALLOC) != 0)
1664 {
1665 /* .rodata can go after .text, .sdata2 after .rodata. */
1666 for (look = first; look; look = look->next)
1667 {
1668 look_flags = look->flags;
1669 if (look->bfd_section != NULL)
1670 {
1671 look_flags = look->bfd_section->flags;
1672 if (match_type && !match_type (link_info.output_bfd,
1673 look->bfd_section,
1674 sec->owner, sec))
1675 continue;
1676 }
1677 differ = look_flags ^ sec_flags;
1678 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1679 | SEC_READONLY | SEC_SMALL_DATA))
1680 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1681 | SEC_READONLY))
1682 && !(look_flags & SEC_SMALL_DATA)))
1683 found = look;
1684 }
1685 }
1686 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1687 && (sec_flags & SEC_ALLOC) != 0)
1688 {
1689 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1690 as if it were a loaded section, and don't use match_type. */
1691 bool seen_thread_local = false;
1692
1693 match_type = NULL;
1694 for (look = first; look; look = look->next)
1695 {
1696 look_flags = look->flags;
1697 if (look->bfd_section != NULL)
1698 look_flags = look->bfd_section->flags;
1699
1700 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1701 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1702 {
1703 /* .tdata and .tbss must be adjacent and in that order. */
1704 if (!(look_flags & SEC_LOAD)
1705 && (sec_flags & SEC_LOAD))
1706 /* ..so if we're at a .tbss section and we're placing
1707 a .tdata section stop looking and return the
1708 previous section. */
1709 break;
1710 found = look;
1711 seen_thread_local = true;
1712 }
1713 else if (seen_thread_local)
1714 break;
1715 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1716 found = look;
1717 }
1718 }
1719 else if ((sec_flags & SEC_SMALL_DATA) != 0
1720 && (sec_flags & SEC_ALLOC) != 0)
1721 {
1722 /* .sdata goes after .data, .sbss after .sdata. */
1723 for (look = first; look; look = look->next)
1724 {
1725 look_flags = look->flags;
1726 if (look->bfd_section != NULL)
1727 {
1728 look_flags = look->bfd_section->flags;
1729 if (match_type && !match_type (link_info.output_bfd,
1730 look->bfd_section,
1731 sec->owner, sec))
1732 continue;
1733 }
1734 differ = look_flags ^ sec_flags;
1735 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1736 | SEC_THREAD_LOCAL))
1737 || ((look_flags & SEC_SMALL_DATA)
1738 && !(sec_flags & SEC_HAS_CONTENTS)))
1739 found = look;
1740 }
1741 }
1742 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1743 && (sec_flags & SEC_ALLOC) != 0)
1744 {
1745 /* .data goes after .rodata. */
1746 for (look = first; look; look = look->next)
1747 {
1748 look_flags = look->flags;
1749 if (look->bfd_section != NULL)
1750 {
1751 look_flags = look->bfd_section->flags;
1752 if (match_type && !match_type (link_info.output_bfd,
1753 look->bfd_section,
1754 sec->owner, sec))
1755 continue;
1756 }
1757 differ = look_flags ^ sec_flags;
1758 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1759 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1760 found = look;
1761 }
1762 }
1763 else if ((sec_flags & SEC_ALLOC) != 0)
1764 {
1765 /* .bss goes after any other alloc section. */
1766 for (look = first; look; look = look->next)
1767 {
1768 look_flags = look->flags;
1769 if (look->bfd_section != NULL)
1770 {
1771 look_flags = look->bfd_section->flags;
1772 if (match_type && !match_type (link_info.output_bfd,
1773 look->bfd_section,
1774 sec->owner, sec))
1775 continue;
1776 }
1777 differ = look_flags ^ sec_flags;
1778 if (!(differ & SEC_ALLOC))
1779 found = look;
1780 }
1781 }
1782 else
1783 {
1784 /* non-alloc go last. */
1785 for (look = first; look; look = look->next)
1786 {
1787 look_flags = look->flags;
1788 if (look->bfd_section != NULL)
1789 look_flags = look->bfd_section->flags;
1790 differ = look_flags ^ sec_flags;
1791 if (!(differ & SEC_DEBUGGING))
1792 found = look;
1793 }
1794 return found;
1795 }
1796
1797 if (found || !match_type)
1798 return found;
1799
1800 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1801 }
1802
1803 /* Find the last output section before given output statement.
1804 Used by place_orphan. */
1805
1806 static asection *
1807 output_prev_sec_find (lang_output_section_statement_type *os)
1808 {
1809 lang_output_section_statement_type *lookup;
1810
1811 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1812 {
1813 if (lookup->constraint < 0)
1814 continue;
1815
1816 if (lookup->bfd_section != NULL)
1817 return lookup->bfd_section;
1818 }
1819
1820 return NULL;
1821 }
1822
1823 /* Look for a suitable place for a new output section statement. The
1824 idea is to skip over anything that might be inside a SECTIONS {}
1825 statement in a script, before we find another output section
1826 statement. Assignments to "dot" before an output section statement
1827 are assumed to belong to it, except in two cases; The first
1828 assignment to dot, and assignments before non-alloc sections.
1829 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1830 similar assignments that set the initial address, or we might
1831 insert non-alloc note sections among assignments setting end of
1832 image symbols. */
1833
1834 static lang_statement_union_type **
1835 insert_os_after (lang_statement_union_type *after)
1836 {
1837 lang_statement_union_type **where;
1838 lang_statement_union_type **assign = NULL;
1839 bool ignore_first;
1840
1841 ignore_first = after == lang_os_list.head;
1842
1843 for (where = &after->header.next;
1844 *where != NULL;
1845 where = &(*where)->header.next)
1846 {
1847 switch ((*where)->header.type)
1848 {
1849 case lang_assignment_statement_enum:
1850 if (assign == NULL)
1851 {
1852 lang_assignment_statement_type *ass;
1853
1854 ass = &(*where)->assignment_statement;
1855 if (ass->exp->type.node_class != etree_assert
1856 && ass->exp->assign.dst[0] == '.'
1857 && ass->exp->assign.dst[1] == 0)
1858 {
1859 if (!ignore_first)
1860 assign = where;
1861 ignore_first = false;
1862 }
1863 }
1864 continue;
1865 case lang_wild_statement_enum:
1866 case lang_input_section_enum:
1867 case lang_object_symbols_statement_enum:
1868 case lang_fill_statement_enum:
1869 case lang_data_statement_enum:
1870 case lang_reloc_statement_enum:
1871 case lang_padding_statement_enum:
1872 case lang_constructors_statement_enum:
1873 assign = NULL;
1874 ignore_first = false;
1875 continue;
1876 case lang_output_section_statement_enum:
1877 if (assign != NULL)
1878 {
1879 asection *s = (*where)->output_section_statement.bfd_section;
1880
1881 if (s == NULL
1882 || s->map_head.s == NULL
1883 || (s->flags & SEC_ALLOC) != 0)
1884 where = assign;
1885 }
1886 break;
1887 case lang_input_statement_enum:
1888 case lang_address_statement_enum:
1889 case lang_target_statement_enum:
1890 case lang_output_statement_enum:
1891 case lang_group_statement_enum:
1892 case lang_insert_statement_enum:
1893 continue;
1894 case lang_input_matcher_enum:
1895 FAIL ();
1896 }
1897 break;
1898 }
1899
1900 return where;
1901 }
1902
1903 lang_output_section_statement_type *
1904 lang_insert_orphan (asection *s,
1905 const char *secname,
1906 int constraint,
1907 lang_output_section_statement_type *after,
1908 struct orphan_save *place,
1909 etree_type *address,
1910 lang_statement_list_type *add_child)
1911 {
1912 lang_statement_list_type add;
1913 lang_output_section_statement_type *os;
1914 lang_output_section_statement_type **os_tail;
1915
1916 /* If we have found an appropriate place for the output section
1917 statements for this orphan, add them to our own private list,
1918 inserting them later into the global statement list. */
1919 if (after != NULL)
1920 {
1921 lang_list_init (&add);
1922 push_stat_ptr (&add);
1923 }
1924
1925 if (bfd_link_relocatable (&link_info)
1926 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1927 address = exp_intop (0);
1928
1929 os_tail = (lang_output_section_statement_type **) lang_os_list.tail;
1930 os = lang_enter_output_section_statement (
1931 secname, address, normal_section, 0, NULL, NULL, NULL, constraint, 0);
1932
1933 if (add_child == NULL)
1934 add_child = &os->children;
1935 lang_add_section (add_child, s, NULL, NULL, os);
1936
1937 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1938 {
1939 const char *region = (after->region
1940 ? after->region->name_list.name
1941 : DEFAULT_MEMORY_REGION);
1942 const char *lma_region = (after->lma_region
1943 ? after->lma_region->name_list.name
1944 : NULL);
1945 lang_leave_output_section_statement (NULL, region, after->phdrs,
1946 lma_region);
1947 }
1948 else
1949 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1950 NULL);
1951
1952 /* Restore the global list pointer. */
1953 if (after != NULL)
1954 pop_stat_ptr ();
1955
1956 if (after != NULL && os->bfd_section != NULL)
1957 {
1958 asection *snew, *as;
1959 bool place_after = place->stmt == NULL;
1960 bool insert_after = true;
1961
1962 snew = os->bfd_section;
1963
1964 /* Shuffle the bfd section list to make the output file look
1965 neater. This is really only cosmetic. */
1966 if (place->section == NULL
1967 && after != (void *) lang_os_list.head)
1968 {
1969 asection *bfd_section = after->bfd_section;
1970
1971 /* If the output statement hasn't been used to place any input
1972 sections (and thus doesn't have an output bfd_section),
1973 look for the closest prior output statement having an
1974 output section. */
1975 if (bfd_section == NULL)
1976 bfd_section = output_prev_sec_find (after);
1977
1978 if (bfd_section != NULL
1979 && bfd_section->owner != NULL
1980 && bfd_section != snew)
1981 place->section = &bfd_section->next;
1982 }
1983
1984 if (place->section == NULL)
1985 place->section = &link_info.output_bfd->sections;
1986
1987 as = *place->section;
1988
1989 if (!as)
1990 {
1991 /* Put the section at the end of the list. */
1992
1993 /* Unlink the section. */
1994 bfd_section_list_remove (link_info.output_bfd, snew);
1995
1996 /* Now tack it back on in the right place. */
1997 bfd_section_list_append (link_info.output_bfd, snew);
1998 }
1999 else if ((bfd_get_flavour (link_info.output_bfd)
2000 == bfd_target_elf_flavour)
2001 && (bfd_get_flavour (s->owner)
2002 == bfd_target_elf_flavour)
2003 && ((elf_section_type (s) == SHT_NOTE
2004 && (s->flags & SEC_LOAD) != 0)
2005 || (elf_section_type (as) == SHT_NOTE
2006 && (as->flags & SEC_LOAD) != 0)))
2007 {
2008 /* Make sure that output note sections are grouped and sorted
2009 by alignments when inserting a note section or insert a
2010 section after a note section, */
2011 asection *sec;
2012 /* A specific section after which the output note section
2013 should be placed. */
2014 asection *after_sec;
2015 /* True if we need to insert the orphan section after a
2016 specific section to maintain output note section order. */
2017 bool after_sec_note = false;
2018
2019 static asection *first_orphan_note = NULL;
2020
2021 /* Group and sort output note section by alignments in
2022 ascending order. */
2023 after_sec = NULL;
2024 if (elf_section_type (s) == SHT_NOTE
2025 && (s->flags & SEC_LOAD) != 0)
2026 {
2027 /* Search from the beginning for the last output note
2028 section with equal or larger alignments. NB: Don't
2029 place orphan note section after non-note sections. */
2030
2031 first_orphan_note = NULL;
2032 for (sec = link_info.output_bfd->sections;
2033 (sec != NULL
2034 && !bfd_is_abs_section (sec));
2035 sec = sec->next)
2036 if (sec != snew
2037 && elf_section_type (sec) == SHT_NOTE
2038 && (sec->flags & SEC_LOAD) != 0)
2039 {
2040 if (!first_orphan_note)
2041 first_orphan_note = sec;
2042 if (sec->alignment_power >= s->alignment_power)
2043 after_sec = sec;
2044 }
2045 else if (first_orphan_note)
2046 {
2047 /* Stop if there is non-note section after the first
2048 orphan note section. */
2049 break;
2050 }
2051
2052 /* If this will be the first orphan note section, it can
2053 be placed at the default location. */
2054 after_sec_note = first_orphan_note != NULL;
2055 if (after_sec == NULL && after_sec_note)
2056 {
2057 /* If all output note sections have smaller
2058 alignments, place the section before all
2059 output orphan note sections. */
2060 after_sec = first_orphan_note;
2061 insert_after = false;
2062 }
2063 }
2064 else if (first_orphan_note)
2065 {
2066 /* Don't place non-note sections in the middle of orphan
2067 note sections. */
2068 after_sec_note = true;
2069 after_sec = as;
2070 for (sec = as->next;
2071 (sec != NULL
2072 && !bfd_is_abs_section (sec));
2073 sec = sec->next)
2074 if (elf_section_type (sec) == SHT_NOTE
2075 && (sec->flags & SEC_LOAD) != 0)
2076 after_sec = sec;
2077 }
2078
2079 if (after_sec_note)
2080 {
2081 if (after_sec)
2082 {
2083 /* Search forward to insert OS after AFTER_SEC output
2084 statement. */
2085 lang_output_section_statement_type *stmt, *next;
2086 bool found = false;
2087 for (stmt = after; stmt != NULL; stmt = next)
2088 {
2089 next = stmt->next;
2090 if (insert_after)
2091 {
2092 if (stmt->bfd_section == after_sec)
2093 {
2094 place_after = true;
2095 found = true;
2096 after = stmt;
2097 break;
2098 }
2099 }
2100 else
2101 {
2102 /* If INSERT_AFTER is FALSE, place OS before
2103 AFTER_SEC output statement. */
2104 if (next && next->bfd_section == after_sec)
2105 {
2106 place_after = true;
2107 found = true;
2108 after = stmt;
2109 break;
2110 }
2111 }
2112 }
2113
2114 /* Search backward to insert OS after AFTER_SEC output
2115 statement. */
2116 if (!found)
2117 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2118 {
2119 if (insert_after)
2120 {
2121 if (stmt->bfd_section == after_sec)
2122 {
2123 place_after = true;
2124 after = stmt;
2125 break;
2126 }
2127 }
2128 else
2129 {
2130 /* If INSERT_AFTER is FALSE, place OS before
2131 AFTER_SEC output statement. */
2132 if (stmt->next->bfd_section == after_sec)
2133 {
2134 place_after = true;
2135 after = stmt;
2136 break;
2137 }
2138 }
2139 }
2140 }
2141
2142 if (after_sec == NULL
2143 || (insert_after && after_sec->next != snew)
2144 || (!insert_after && after_sec->prev != snew))
2145 {
2146 /* Unlink the section. */
2147 bfd_section_list_remove (link_info.output_bfd, snew);
2148
2149 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2150 prepend SNEW. */
2151 if (after_sec)
2152 {
2153 if (insert_after)
2154 bfd_section_list_insert_after (link_info.output_bfd,
2155 after_sec, snew);
2156 else
2157 bfd_section_list_insert_before (link_info.output_bfd,
2158 after_sec, snew);
2159 }
2160 else
2161 bfd_section_list_prepend (link_info.output_bfd, snew);
2162 }
2163 }
2164 else if (as != snew && as->prev != snew)
2165 {
2166 /* Unlink the section. */
2167 bfd_section_list_remove (link_info.output_bfd, snew);
2168
2169 /* Now tack it back on in the right place. */
2170 bfd_section_list_insert_before (link_info.output_bfd,
2171 as, snew);
2172 }
2173 }
2174 else if (as != snew && as->prev != snew)
2175 {
2176 /* Unlink the section. */
2177 bfd_section_list_remove (link_info.output_bfd, snew);
2178
2179 /* Now tack it back on in the right place. */
2180 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2181 }
2182
2183 /* Save the end of this list. Further ophans of this type will
2184 follow the one we've just added. */
2185 place->section = &snew->next;
2186
2187 /* The following is non-cosmetic. We try to put the output
2188 statements in some sort of reasonable order here, because they
2189 determine the final load addresses of the orphan sections.
2190 In addition, placing output statements in the wrong order may
2191 require extra segments. For instance, given a typical
2192 situation of all read-only sections placed in one segment and
2193 following that a segment containing all the read-write
2194 sections, we wouldn't want to place an orphan read/write
2195 section before or amongst the read-only ones. */
2196 if (add.head != NULL)
2197 {
2198 lang_output_section_statement_type *newly_added_os;
2199
2200 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2201 if (place_after)
2202 {
2203 lang_statement_union_type **where;
2204
2205 where = insert_os_after ((lang_statement_union_type *) after);
2206 *add.tail = *where;
2207 *where = add.head;
2208
2209 place->os_tail = &after->next;
2210 }
2211 else
2212 {
2213 /* Put it after the last orphan statement we added. */
2214 *add.tail = *place->stmt;
2215 *place->stmt = add.head;
2216 }
2217
2218 /* Fix the global list pointer if we happened to tack our
2219 new list at the tail. */
2220 if (*stat_ptr->tail == add.head)
2221 stat_ptr->tail = add.tail;
2222
2223 /* Save the end of this list. */
2224 place->stmt = add.tail;
2225
2226 /* Do the same for the list of output section statements. */
2227 newly_added_os = *os_tail;
2228 *os_tail = NULL;
2229 newly_added_os->prev = (lang_output_section_statement_type *)
2230 ((char *) place->os_tail
2231 - offsetof (lang_output_section_statement_type, next));
2232 newly_added_os->next = *place->os_tail;
2233 if (newly_added_os->next != NULL)
2234 newly_added_os->next->prev = newly_added_os;
2235 *place->os_tail = newly_added_os;
2236 place->os_tail = &newly_added_os->next;
2237
2238 /* Fixing the global list pointer here is a little different.
2239 We added to the list in lang_enter_output_section_statement,
2240 trimmed off the new output_section_statment above when
2241 assigning *os_tail = NULL, but possibly added it back in
2242 the same place when assigning *place->os_tail. */
2243 if (*os_tail == NULL)
2244 lang_os_list.tail = (lang_statement_union_type **) os_tail;
2245 }
2246 }
2247 return os;
2248 }
2249
2250 static void
2251 lang_print_asneeded (void)
2252 {
2253 struct asneeded_minfo *m;
2254
2255 if (asneeded_list_head == NULL)
2256 return;
2257
2258 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2259
2260 for (m = asneeded_list_head; m != NULL; m = m->next)
2261 {
2262 int len;
2263
2264 minfo ("%s", m->soname);
2265 len = strlen (m->soname);
2266
2267 if (len >= 29)
2268 {
2269 print_nl ();
2270 len = 0;
2271 }
2272 print_spaces (30 - len);
2273
2274 if (m->ref != NULL)
2275 minfo ("%pB ", m->ref);
2276 minfo ("(%pT)\n", m->name);
2277 }
2278 }
2279
2280 static void
2281 lang_map_flags (flagword flag)
2282 {
2283 if (flag & SEC_ALLOC)
2284 minfo ("a");
2285
2286 if (flag & SEC_CODE)
2287 minfo ("x");
2288
2289 if (flag & SEC_READONLY)
2290 minfo ("r");
2291
2292 if (flag & SEC_DATA)
2293 minfo ("w");
2294
2295 if (flag & SEC_LOAD)
2296 minfo ("l");
2297 }
2298
2299 void
2300 lang_map (void)
2301 {
2302 lang_memory_region_type *m;
2303 bool dis_header_printed = false;
2304
2305 ldfile_print_input_remaps ();
2306
2307 LANG_FOR_EACH_INPUT_STATEMENT (file)
2308 {
2309 asection *s;
2310
2311 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2312 || file->flags.just_syms)
2313 continue;
2314
2315 if (config.print_map_discarded)
2316 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2317 if ((s->output_section == NULL
2318 || s->output_section->owner != link_info.output_bfd)
2319 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2320 {
2321 if (! dis_header_printed)
2322 {
2323 minfo (_("\nDiscarded input sections\n\n"));
2324 dis_header_printed = true;
2325 }
2326
2327 print_input_section (s, true);
2328 }
2329 }
2330 if (config.print_map_discarded && ! dis_header_printed)
2331 minfo (_("\nThere are no discarded input sections\n"));
2332
2333 minfo (_("\nMemory Configuration\n\n"));
2334 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2335 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2336
2337 for (m = lang_memory_region_list; m != NULL; m = m->next)
2338 {
2339 fprintf (config.map_file, "%-16s", m->name_list.name);
2340
2341 char buf[32];
2342 bfd_sprintf_vma (link_info.output_bfd, buf, m->origin);
2343 fprintf (config.map_file, " 0x%-16s", buf);
2344 bfd_sprintf_vma (link_info.output_bfd, buf, m->length);
2345 fprintf (config.map_file,
2346 " 0x%*s", m->flags || m->not_flags ? -17 : 0, buf);
2347 if (m->flags)
2348 lang_map_flags (m->flags);
2349
2350 if (m->not_flags)
2351 {
2352 minfo ("!");
2353 lang_map_flags (m->not_flags);
2354 }
2355
2356 print_nl ();
2357 }
2358
2359 minfo (_("\nLinker script and memory map\n\n"));
2360
2361 if (!link_info.reduce_memory_overheads)
2362 {
2363 obstack_begin (&map_obstack, 1000);
2364 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2365 }
2366 expld.phase = lang_fixed_phase_enum;
2367 lang_statement_iteration++;
2368 print_statements ();
2369
2370 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2371 config.map_file);
2372 }
2373
2374 static bool
2375 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2376 void *info ATTRIBUTE_UNUSED)
2377 {
2378 if ((hash_entry->type == bfd_link_hash_defined
2379 || hash_entry->type == bfd_link_hash_defweak)
2380 && hash_entry->u.def.section->owner != link_info.output_bfd
2381 && hash_entry->u.def.section->owner != NULL)
2382 {
2383 input_section_userdata_type *ud;
2384 struct map_symbol_def *def;
2385
2386 ud = bfd_section_userdata (hash_entry->u.def.section);
2387 if (!ud)
2388 {
2389 ud = stat_alloc (sizeof (*ud));
2390 bfd_set_section_userdata (hash_entry->u.def.section, ud);
2391 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2392 ud->map_symbol_def_count = 0;
2393 }
2394 else if (!ud->map_symbol_def_tail)
2395 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2396
2397 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2398 def->entry = hash_entry;
2399 *(ud->map_symbol_def_tail) = def;
2400 ud->map_symbol_def_tail = &def->next;
2401 ud->map_symbol_def_count++;
2402 }
2403 return true;
2404 }
2405
2406 /* Initialize an output section. */
2407
2408 static void
2409 init_os (lang_output_section_statement_type *s, flagword flags)
2410 {
2411 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2412 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2413
2414 if (!s->dup_output)
2415 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2416 if (s->bfd_section == NULL)
2417 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2418 s->name, flags);
2419 if (s->bfd_section == NULL)
2420 {
2421 einfo (_("%F%P: output format %s cannot represent section"
2422 " called %s: %E\n"),
2423 link_info.output_bfd->xvec->name, s->name);
2424 }
2425 s->bfd_section->output_section = s->bfd_section;
2426 s->bfd_section->output_offset = 0;
2427
2428 /* Set the userdata of the output section to the output section
2429 statement to avoid lookup. */
2430 bfd_set_section_userdata (s->bfd_section, s);
2431
2432 /* If there is a base address, make sure that any sections it might
2433 mention are initialized. */
2434 if (s->addr_tree != NULL)
2435 exp_init_os (s->addr_tree);
2436
2437 if (s->load_base != NULL)
2438 exp_init_os (s->load_base);
2439
2440 /* If supplied an alignment, set it. */
2441 if (s->section_alignment != NULL)
2442 s->bfd_section->alignment_power = exp_get_power (s->section_alignment, s,
2443 "section alignment");
2444 }
2445
2446 static flagword
2447 get_os_init_flag (lang_output_section_statement_type * os)
2448 {
2449 if (os != NULL)
2450 switch (os->sectype)
2451 {
2452 case readonly_section: return SEC_READONLY;
2453 case noload_section: return SEC_NEVER_LOAD;
2454 default: break;
2455 }
2456
2457 return 0;
2458 }
2459
2460 /* Make sure that all output sections mentioned in an expression are
2461 initialized. */
2462
2463 static void
2464 exp_init_os (etree_type *exp)
2465 {
2466 switch (exp->type.node_class)
2467 {
2468 case etree_assign:
2469 case etree_provide:
2470 case etree_provided:
2471 exp_init_os (exp->assign.src);
2472 break;
2473
2474 case etree_binary:
2475 exp_init_os (exp->binary.lhs);
2476 exp_init_os (exp->binary.rhs);
2477 break;
2478
2479 case etree_trinary:
2480 exp_init_os (exp->trinary.cond);
2481 exp_init_os (exp->trinary.lhs);
2482 exp_init_os (exp->trinary.rhs);
2483 break;
2484
2485 case etree_assert:
2486 exp_init_os (exp->assert_s.child);
2487 break;
2488
2489 case etree_unary:
2490 exp_init_os (exp->unary.child);
2491 break;
2492
2493 case etree_name:
2494 switch (exp->type.node_code)
2495 {
2496 case ADDR:
2497 case LOADADDR:
2498 {
2499 lang_output_section_statement_type *os;
2500
2501 os = lang_output_section_find (exp->name.name);
2502 if (os != NULL && os->bfd_section == NULL)
2503 init_os (os, get_os_init_flag (os));
2504 }
2505 }
2506 break;
2507
2508 default:
2509 break;
2510 }
2511 }
2512 \f
2513 static void
2514 section_already_linked (bfd *abfd, asection *sec, void *data)
2515 {
2516 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2517
2518 /* If we are only reading symbols from this object, then we want to
2519 discard all sections. */
2520 if (entry->flags.just_syms)
2521 {
2522 bfd_link_just_syms (abfd, sec, &link_info);
2523 return;
2524 }
2525
2526 /* Deal with SHF_EXCLUDE ELF sections. */
2527 if (!bfd_link_relocatable (&link_info)
2528 && (abfd->flags & BFD_PLUGIN) == 0
2529 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2530 sec->output_section = bfd_abs_section_ptr;
2531
2532 if (!(abfd->flags & DYNAMIC))
2533 bfd_section_already_linked (abfd, sec, &link_info);
2534 }
2535 \f
2536
2537 /* Returns true if SECTION is one we know will be discarded based on its
2538 section flags, otherwise returns false. */
2539
2540 static bool
2541 lang_discard_section_p (asection *section)
2542 {
2543 bool discard;
2544 flagword flags = section->flags;
2545
2546 /* Discard sections marked with SEC_EXCLUDE. */
2547 discard = (flags & SEC_EXCLUDE) != 0;
2548
2549 /* Discard the group descriptor sections when we're finally placing the
2550 sections from within the group. */
2551 if ((flags & SEC_GROUP) != 0
2552 && link_info.resolve_section_groups)
2553 discard = true;
2554
2555 /* Discard debugging sections if we are stripping debugging
2556 information. */
2557 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2558 && (flags & SEC_DEBUGGING) != 0)
2559 discard = true;
2560
2561 /* Discard non-alloc sections if we are stripping section headers. */
2562 else if (config.no_section_header && (flags & SEC_ALLOC) == 0)
2563 discard = true;
2564
2565 return discard;
2566 }
2567
2568 /* Return TRUE if SECTION is never going to be added to output statement
2569 OUTPUT. lang_add_section() definitely won't do anything with SECTION
2570 if this returns TRUE. It may do something (or not) if this returns FALSE.
2571
2572 Can be used as early-out to filter matches. This may set
2573 output_section of SECTION, if it was unset, to the abs section in case
2574 we discover SECTION to be always discarded. This may also give
2575 warning messages. */
2576
2577 static bool
2578 wont_add_section_p (asection *section,
2579 lang_output_section_statement_type *output)
2580 {
2581 bool discard;
2582
2583 /* Is this section one we know should be discarded? */
2584 discard = lang_discard_section_p (section);
2585
2586 /* Discard input sections which are assigned to a section named
2587 DISCARD_SECTION_NAME. */
2588 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2589 discard = true;
2590
2591 if (discard)
2592 {
2593 if (section->output_section == NULL)
2594 {
2595 /* This prevents future calls from assigning this section or
2596 warning about it again. */
2597 section->output_section = bfd_abs_section_ptr;
2598 }
2599 else if (bfd_is_abs_section (section->output_section))
2600 ;
2601 else if (link_info.non_contiguous_regions_warnings)
2602 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions makes "
2603 "section `%pA' from `%pB' match /DISCARD/ clause.\n"),
2604 NULL, section, section->owner);
2605
2606 return true;
2607 }
2608
2609 if (section->output_section != NULL)
2610 {
2611 if (!link_info.non_contiguous_regions)
2612 return true;
2613
2614 /* SECTION has already been handled in a special way
2615 (eg. LINK_ONCE): skip it. */
2616 if (bfd_is_abs_section (section->output_section))
2617 return true;
2618
2619 /* Already assigned to the same output section, do not process
2620 it again, to avoid creating loops between duplicate sections
2621 later. */
2622 if (section->output_section == output->bfd_section)
2623 return true;
2624
2625 if (link_info.non_contiguous_regions_warnings && output->bfd_section)
2626 einfo (_("%P:%pS: warning: --enable-non-contiguous-regions may "
2627 "change behaviour for section `%pA' from `%pB' (assigned to "
2628 "%pA, but additional match: %pA)\n"),
2629 NULL, section, section->owner, section->output_section,
2630 output->bfd_section);
2631
2632 /* SECTION has already been assigned to an output section, but
2633 the user allows it to be mapped to another one in case it
2634 overflows. We'll later update the actual output section in
2635 size_input_section as appropriate. */
2636 }
2637
2638 return false;
2639 }
2640
2641 /* The wild routines.
2642
2643 These expand statements like *(.text) and foo.o to a list of
2644 explicit actions, like foo.o(.text), bar.o(.text) and
2645 foo.o(.text, .data). */
2646
2647 /* Add SECTION to the output section OUTPUT. Do this by creating a
2648 lang_input_section statement which is placed at PTR. */
2649
2650 void
2651 lang_add_section (lang_statement_list_type *ptr,
2652 asection *section,
2653 struct wildcard_list *pattern,
2654 struct flag_info *sflag_info,
2655 lang_output_section_statement_type *output)
2656 {
2657 flagword flags = section->flags;
2658
2659 lang_input_section_type *new_section;
2660 bfd *abfd = link_info.output_bfd;
2661
2662 if (wont_add_section_p (section, output))
2663 return;
2664
2665 if (sflag_info)
2666 {
2667 bool keep;
2668
2669 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2670 if (!keep)
2671 return;
2672 }
2673
2674 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2675 to an output section, because we want to be able to include a
2676 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2677 section (I don't know why we want to do this, but we do).
2678 build_link_order in ldwrite.c handles this case by turning
2679 the embedded SEC_NEVER_LOAD section into a fill. */
2680 flags &= ~ SEC_NEVER_LOAD;
2681
2682 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2683 already been processed. One reason to do this is that on pe
2684 format targets, .text$foo sections go into .text and it's odd
2685 to see .text with SEC_LINK_ONCE set. */
2686 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2687 {
2688 if (link_info.resolve_section_groups)
2689 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2690 else
2691 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2692 }
2693 else if (!bfd_link_relocatable (&link_info))
2694 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2695
2696 switch (output->sectype)
2697 {
2698 case normal_section:
2699 case overlay_section:
2700 case first_overlay_section:
2701 case type_section:
2702 break;
2703 case noalloc_section:
2704 flags &= ~SEC_ALLOC;
2705 break;
2706 case typed_readonly_section:
2707 case readonly_section:
2708 flags |= SEC_READONLY;
2709 break;
2710 case noload_section:
2711 flags &= ~SEC_LOAD;
2712 flags |= SEC_NEVER_LOAD;
2713 /* Unfortunately GNU ld has managed to evolve two different
2714 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2715 alloc, no contents section. All others get a noload, noalloc
2716 section. */
2717 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2718 flags &= ~SEC_HAS_CONTENTS;
2719 else
2720 flags &= ~SEC_ALLOC;
2721 break;
2722 }
2723
2724 if (output->bfd_section == NULL)
2725 init_os (output, flags);
2726
2727 /* If SEC_READONLY is not set in the input section, then clear
2728 it from the output section. */
2729 output->bfd_section->flags &= flags | ~SEC_READONLY;
2730
2731 if (output->bfd_section->linker_has_input)
2732 {
2733 /* Only set SEC_READONLY flag on the first input section. */
2734 flags &= ~ SEC_READONLY;
2735
2736 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2737 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2738 != (flags & (SEC_MERGE | SEC_STRINGS))
2739 || ((flags & SEC_MERGE) != 0
2740 && output->bfd_section->entsize != section->entsize))
2741 {
2742 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2743 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2744 }
2745 }
2746 output->bfd_section->flags |= flags;
2747
2748 if (!output->bfd_section->linker_has_input)
2749 {
2750 output->bfd_section->linker_has_input = 1;
2751 /* This must happen after flags have been updated. The output
2752 section may have been created before we saw its first input
2753 section, eg. for a data statement. */
2754 bfd_init_private_section_data (section->owner, section,
2755 link_info.output_bfd,
2756 output->bfd_section,
2757 &link_info);
2758 if ((flags & SEC_MERGE) != 0)
2759 output->bfd_section->entsize = section->entsize;
2760 }
2761
2762 if ((flags & SEC_TIC54X_BLOCK) != 0
2763 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2764 {
2765 /* FIXME: This value should really be obtained from the bfd... */
2766 output->block_value = 128;
2767 }
2768
2769 /* When a .ctors section is placed in .init_array it must be copied
2770 in reverse order. Similarly for .dtors. Set that up. */
2771 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
2772 && ((startswith (section->name, ".ctors")
2773 && strcmp (output->bfd_section->name, ".init_array") == 0)
2774 || (startswith (section->name, ".dtors")
2775 && strcmp (output->bfd_section->name, ".fini_array") == 0))
2776 && (section->name[6] == 0 || section->name[6] == '.'))
2777 section->flags |= SEC_ELF_REVERSE_COPY;
2778
2779 if (section->alignment_power > output->bfd_section->alignment_power)
2780 output->bfd_section->alignment_power = section->alignment_power;
2781
2782 section->output_section = output->bfd_section;
2783
2784 if (!map_head_is_link_order)
2785 {
2786 asection *s = output->bfd_section->map_tail.s;
2787 output->bfd_section->map_tail.s = section;
2788 section->map_head.s = NULL;
2789 section->map_tail.s = s;
2790 if (s != NULL)
2791 s->map_head.s = section;
2792 else
2793 output->bfd_section->map_head.s = section;
2794 }
2795
2796 /* Add a section reference to the list. */
2797 new_section = new_stat (lang_input_section, ptr);
2798 new_section->section = section;
2799 new_section->pattern = pattern;
2800 }
2801
2802 /* Expand a wild statement for a particular FILE. SECTION may be
2803 NULL, in which case it is a wild card. This assumes that the
2804 wild statement doesn't need any sorting (of filenames or sections). */
2805
2806 static void
2807 output_section_callback_nosort (lang_wild_statement_type *ptr,
2808 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2809 asection *section,
2810 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2811 void *output)
2812 {
2813 lang_output_section_statement_type *os;
2814
2815 os = (lang_output_section_statement_type *) output;
2816
2817 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2818 if (unique_section_p (section, os))
2819 return;
2820
2821 lang_add_section (&ptr->children, section, ptr->section_list,
2822 ptr->section_flag_list, os);
2823 }
2824
2825 /* Check if all sections in a wild statement for a particular FILE
2826 are readonly. */
2827
2828 static void
2829 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2830 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2831 asection *section,
2832 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2833 void *output)
2834 {
2835 lang_output_section_statement_type *os;
2836
2837 os = (lang_output_section_statement_type *) output;
2838
2839 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2840 if (unique_section_p (section, os))
2841 return;
2842
2843 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2844 os->all_input_readonly = false;
2845 }
2846
2847 /* This is passed a file name which must have been seen already and
2848 added to the statement tree. We will see if it has been opened
2849 already and had its symbols read. If not then we'll read it. */
2850
2851 static lang_input_statement_type *
2852 lookup_name (const char *name)
2853 {
2854 lang_input_statement_type *search;
2855
2856 for (search = (void *) input_file_chain.head;
2857 search != NULL;
2858 search = search->next_real_file)
2859 {
2860 /* Use the local_sym_name as the name of the file that has
2861 already been loaded as filename might have been transformed
2862 via the search directory lookup mechanism. */
2863 const char *filename = search->local_sym_name;
2864
2865 if (filename != NULL
2866 && filename_cmp (filename, name) == 0)
2867 break;
2868 }
2869
2870 if (search == NULL)
2871 {
2872 /* Arrange to splice the input statement added by new_afile into
2873 statement_list after the current input_file_chain tail.
2874 We know input_file_chain is not an empty list, and that
2875 lookup_name was called via open_input_bfds. Later calls to
2876 lookup_name should always match an existing input_statement. */
2877 lang_statement_union_type **tail = stat_ptr->tail;
2878 lang_statement_union_type **after
2879 = (void *) ((char *) input_file_chain.tail
2880 - offsetof (lang_input_statement_type, next_real_file)
2881 + offsetof (lang_input_statement_type, header.next));
2882 lang_statement_union_type *rest = *after;
2883 stat_ptr->tail = after;
2884 search = new_afile (name, lang_input_file_is_search_file_enum,
2885 default_target, NULL);
2886 *stat_ptr->tail = rest;
2887 if (*tail == NULL)
2888 stat_ptr->tail = tail;
2889 }
2890
2891 /* If we have already added this file, or this file is not real
2892 don't add this file. */
2893 if (search->flags.loaded || !search->flags.real)
2894 return search;
2895
2896 if (!load_symbols (search, NULL))
2897 return NULL;
2898
2899 return search;
2900 }
2901
2902 /* Save LIST as a list of libraries whose symbols should not be exported. */
2903
2904 struct excluded_lib
2905 {
2906 char *name;
2907 struct excluded_lib *next;
2908 };
2909 static struct excluded_lib *excluded_libs;
2910
2911 void
2912 add_excluded_libs (const char *list)
2913 {
2914 const char *p = list, *end;
2915
2916 while (*p != '\0')
2917 {
2918 struct excluded_lib *entry;
2919 end = strpbrk (p, ",:");
2920 if (end == NULL)
2921 end = p + strlen (p);
2922 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2923 entry->next = excluded_libs;
2924 entry->name = (char *) xmalloc (end - p + 1);
2925 memcpy (entry->name, p, end - p);
2926 entry->name[end - p] = '\0';
2927 excluded_libs = entry;
2928 if (*end == '\0')
2929 break;
2930 p = end + 1;
2931 }
2932 }
2933
2934 static void
2935 check_excluded_libs (bfd *abfd)
2936 {
2937 struct excluded_lib *lib = excluded_libs;
2938
2939 while (lib)
2940 {
2941 int len = strlen (lib->name);
2942 const char *filename = lbasename (bfd_get_filename (abfd));
2943
2944 if (strcmp (lib->name, "ALL") == 0)
2945 {
2946 abfd->no_export = true;
2947 return;
2948 }
2949
2950 if (filename_ncmp (lib->name, filename, len) == 0
2951 && (filename[len] == '\0'
2952 || (filename[len] == '.' && filename[len + 1] == 'a'
2953 && filename[len + 2] == '\0')))
2954 {
2955 abfd->no_export = true;
2956 return;
2957 }
2958
2959 lib = lib->next;
2960 }
2961 }
2962
2963 /* Get the symbols for an input file. */
2964
2965 bool
2966 load_symbols (lang_input_statement_type *entry,
2967 lang_statement_list_type *place)
2968 {
2969 char **matching;
2970
2971 if (entry->flags.loaded)
2972 return true;
2973
2974 ldfile_open_file (entry);
2975
2976 /* Do not process further if the file was missing. */
2977 if (entry->flags.missing_file)
2978 return true;
2979
2980 if (trace_files || verbose)
2981 info_msg ("%pI\n", entry);
2982
2983 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2984 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2985 {
2986 bfd_error_type err;
2987 struct lang_input_statement_flags save_flags;
2988 extern FILE *yyin;
2989
2990 err = bfd_get_error ();
2991
2992 /* See if the emulation has some special knowledge. */
2993 if (ldemul_unrecognized_file (entry))
2994 {
2995 if (err == bfd_error_file_ambiguously_recognized)
2996 free (matching);
2997 return true;
2998 }
2999
3000 if (err == bfd_error_file_ambiguously_recognized)
3001 {
3002 char **p;
3003
3004 einfo (_("%P: %pB: file not recognized: %E;"
3005 " matching formats:"), entry->the_bfd);
3006 for (p = matching; *p != NULL; p++)
3007 einfo (" %s", *p);
3008 free (matching);
3009 einfo ("%F\n");
3010 }
3011 else if (err != bfd_error_file_not_recognized
3012 || place == NULL)
3013 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
3014
3015 bfd_close (entry->the_bfd);
3016 entry->the_bfd = NULL;
3017
3018 /* Try to interpret the file as a linker script. */
3019 save_flags = input_flags;
3020 ldfile_open_command_file (entry->filename);
3021
3022 push_stat_ptr (place);
3023 input_flags.add_DT_NEEDED_for_regular
3024 = entry->flags.add_DT_NEEDED_for_regular;
3025 input_flags.add_DT_NEEDED_for_dynamic
3026 = entry->flags.add_DT_NEEDED_for_dynamic;
3027 input_flags.whole_archive = entry->flags.whole_archive;
3028 input_flags.dynamic = entry->flags.dynamic;
3029
3030 ldfile_assumed_script = true;
3031 parser_input = input_script;
3032 current_input_file = entry->filename;
3033 yyparse ();
3034 current_input_file = NULL;
3035 ldfile_assumed_script = false;
3036
3037 /* missing_file is sticky. sysrooted will already have been
3038 restored when seeing EOF in yyparse, but no harm to restore
3039 again. */
3040 save_flags.missing_file |= input_flags.missing_file;
3041 input_flags = save_flags;
3042 pop_stat_ptr ();
3043 fclose (yyin);
3044 yyin = NULL;
3045 entry->flags.loaded = true;
3046
3047 return true;
3048 }
3049
3050 if (ldemul_recognized_file (entry))
3051 return true;
3052
3053 /* We don't call ldlang_add_file for an archive. Instead, the
3054 add_symbols entry point will call ldlang_add_file, via the
3055 add_archive_element callback, for each element of the archive
3056 which is used. */
3057 switch (bfd_get_format (entry->the_bfd))
3058 {
3059 default:
3060 break;
3061
3062 case bfd_object:
3063 if (!entry->flags.reload)
3064 ldlang_add_file (entry);
3065 break;
3066
3067 case bfd_archive:
3068 check_excluded_libs (entry->the_bfd);
3069
3070 bfd_set_usrdata (entry->the_bfd, entry);
3071 if (entry->flags.whole_archive)
3072 {
3073 bfd *member = NULL;
3074 bool loaded = true;
3075
3076 for (;;)
3077 {
3078 bfd *subsbfd;
3079 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3080
3081 if (member == NULL)
3082 break;
3083
3084 if (!bfd_check_format (member, bfd_object))
3085 {
3086 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3087 entry->the_bfd, member);
3088 loaded = false;
3089 }
3090
3091 subsbfd = member;
3092 if (!(*link_info.callbacks
3093 ->add_archive_element) (&link_info, member,
3094 "--whole-archive", &subsbfd))
3095 abort ();
3096
3097 /* Potentially, the add_archive_element hook may have set a
3098 substitute BFD for us. */
3099 if (!bfd_link_add_symbols (subsbfd, &link_info))
3100 {
3101 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3102 loaded = false;
3103 }
3104 }
3105
3106 entry->flags.loaded = loaded;
3107 return loaded;
3108 }
3109 break;
3110 }
3111
3112 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3113 entry->flags.loaded = true;
3114 else
3115 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3116
3117 return entry->flags.loaded;
3118 }
3119
3120 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3121 may be NULL, indicating that it is a wildcard. Separate
3122 lang_input_section statements are created for each part of the
3123 expansion; they are added after the wild statement S. OUTPUT is
3124 the output section. */
3125
3126 static void
3127 wild (lang_wild_statement_type *s,
3128 const char *target ATTRIBUTE_UNUSED,
3129 lang_output_section_statement_type *output)
3130 {
3131 struct wildcard_list *sec;
3132
3133 if (s->filenames_sorted || s->any_specs_sorted)
3134 {
3135 lang_section_bst_type *tree;
3136
3137 walk_wild (s, output_section_callback_sort, output);
3138
3139 tree = s->tree;
3140 if (tree)
3141 {
3142 output_section_callback_tree_to_list (s, tree, output);
3143 s->tree = NULL;
3144 s->rightmost = &s->tree;
3145 }
3146 }
3147 else
3148 walk_wild (s, output_section_callback_nosort, output);
3149
3150 if (default_common_section == NULL)
3151 for (sec = s->section_list; sec != NULL; sec = sec->next)
3152 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3153 {
3154 /* Remember the section that common is going to in case we
3155 later get something which doesn't know where to put it. */
3156 default_common_section = output;
3157 break;
3158 }
3159 }
3160
3161 /* Return TRUE iff target is the sought target. */
3162
3163 static int
3164 get_target (const bfd_target *target, void *data)
3165 {
3166 const char *sought = (const char *) data;
3167
3168 return strcmp (target->name, sought) == 0;
3169 }
3170
3171 /* Like strcpy() but convert to lower case as well. */
3172
3173 static void
3174 stricpy (char *dest, const char *src)
3175 {
3176 char c;
3177
3178 while ((c = *src++) != 0)
3179 *dest++ = TOLOWER (c);
3180
3181 *dest = 0;
3182 }
3183
3184 /* Remove the first occurrence of needle (if any) in haystack
3185 from haystack. */
3186
3187 static void
3188 strcut (char *haystack, const char *needle)
3189 {
3190 haystack = strstr (haystack, needle);
3191
3192 if (haystack)
3193 {
3194 char *src;
3195
3196 for (src = haystack + strlen (needle); *src;)
3197 *haystack++ = *src++;
3198
3199 *haystack = 0;
3200 }
3201 }
3202
3203 /* Compare two target format name strings.
3204 Return a value indicating how "similar" they are. */
3205
3206 static int
3207 name_compare (const char *first, const char *second)
3208 {
3209 char *copy1;
3210 char *copy2;
3211 int result;
3212
3213 copy1 = (char *) xmalloc (strlen (first) + 1);
3214 copy2 = (char *) xmalloc (strlen (second) + 1);
3215
3216 /* Convert the names to lower case. */
3217 stricpy (copy1, first);
3218 stricpy (copy2, second);
3219
3220 /* Remove size and endian strings from the name. */
3221 strcut (copy1, "big");
3222 strcut (copy1, "little");
3223 strcut (copy2, "big");
3224 strcut (copy2, "little");
3225
3226 /* Return a value based on how many characters match,
3227 starting from the beginning. If both strings are
3228 the same then return 10 * their length. */
3229 for (result = 0; copy1[result] == copy2[result]; result++)
3230 if (copy1[result] == 0)
3231 {
3232 result *= 10;
3233 break;
3234 }
3235
3236 free (copy1);
3237 free (copy2);
3238
3239 return result;
3240 }
3241
3242 /* Set by closest_target_match() below. */
3243 static const bfd_target *winner;
3244
3245 /* Scan all the valid bfd targets looking for one that has the endianness
3246 requirement that was specified on the command line, and is the nearest
3247 match to the original output target. */
3248
3249 static int
3250 closest_target_match (const bfd_target *target, void *data)
3251 {
3252 const bfd_target *original = (const bfd_target *) data;
3253
3254 if (command_line.endian == ENDIAN_BIG
3255 && target->byteorder != BFD_ENDIAN_BIG)
3256 return 0;
3257
3258 if (command_line.endian == ENDIAN_LITTLE
3259 && target->byteorder != BFD_ENDIAN_LITTLE)
3260 return 0;
3261
3262 /* Must be the same flavour. */
3263 if (target->flavour != original->flavour)
3264 return 0;
3265
3266 /* Ignore generic big and little endian elf vectors. */
3267 if (strcmp (target->name, "elf32-big") == 0
3268 || strcmp (target->name, "elf64-big") == 0
3269 || strcmp (target->name, "elf32-little") == 0
3270 || strcmp (target->name, "elf64-little") == 0)
3271 return 0;
3272
3273 /* If we have not found a potential winner yet, then record this one. */
3274 if (winner == NULL)
3275 {
3276 winner = target;
3277 return 0;
3278 }
3279
3280 /* Oh dear, we now have two potential candidates for a successful match.
3281 Compare their names and choose the better one. */
3282 if (name_compare (target->name, original->name)
3283 > name_compare (winner->name, original->name))
3284 winner = target;
3285
3286 /* Keep on searching until wqe have checked them all. */
3287 return 0;
3288 }
3289
3290 /* Return the BFD target format of the first input file. */
3291
3292 static const char *
3293 get_first_input_target (void)
3294 {
3295 const char *target = NULL;
3296
3297 LANG_FOR_EACH_INPUT_STATEMENT (s)
3298 {
3299 if (s->header.type == lang_input_statement_enum
3300 && s->flags.real)
3301 {
3302 ldfile_open_file (s);
3303
3304 if (s->the_bfd != NULL
3305 && bfd_check_format (s->the_bfd, bfd_object))
3306 {
3307 target = bfd_get_target (s->the_bfd);
3308
3309 if (target != NULL)
3310 break;
3311 }
3312 }
3313 }
3314
3315 return target;
3316 }
3317
3318 const char *
3319 lang_get_output_target (void)
3320 {
3321 const char *target;
3322
3323 /* Has the user told us which output format to use? */
3324 if (output_target != NULL)
3325 return output_target;
3326
3327 /* No - has the current target been set to something other than
3328 the default? */
3329 if (current_target != default_target && current_target != NULL)
3330 return current_target;
3331
3332 /* No - can we determine the format of the first input file? */
3333 target = get_first_input_target ();
3334 if (target != NULL)
3335 return target;
3336
3337 /* Failed - use the default output target. */
3338 return default_target;
3339 }
3340
3341 /* Open the output file. */
3342
3343 static void
3344 open_output (const char *name)
3345 {
3346 lang_input_statement_type *f;
3347 char *out = lrealpath (name);
3348
3349 for (f = (void *) input_file_chain.head;
3350 f != NULL;
3351 f = f->next_real_file)
3352 if (f->flags.real)
3353 {
3354 char *in = lrealpath (f->local_sym_name);
3355 if (filename_cmp (in, out) == 0)
3356 einfo (_("%F%P: input file '%s' is the same as output file\n"),
3357 f->filename);
3358 free (in);
3359 }
3360 free (out);
3361
3362 output_target = lang_get_output_target ();
3363
3364 /* Has the user requested a particular endianness on the command
3365 line? */
3366 if (command_line.endian != ENDIAN_UNSET)
3367 {
3368 /* Get the chosen target. */
3369 const bfd_target *target
3370 = bfd_iterate_over_targets (get_target, (void *) output_target);
3371
3372 /* If the target is not supported, we cannot do anything. */
3373 if (target != NULL)
3374 {
3375 enum bfd_endian desired_endian;
3376
3377 if (command_line.endian == ENDIAN_BIG)
3378 desired_endian = BFD_ENDIAN_BIG;
3379 else
3380 desired_endian = BFD_ENDIAN_LITTLE;
3381
3382 /* See if the target has the wrong endianness. This should
3383 not happen if the linker script has provided big and
3384 little endian alternatives, but some scrips don't do
3385 this. */
3386 if (target->byteorder != desired_endian)
3387 {
3388 /* If it does, then see if the target provides
3389 an alternative with the correct endianness. */
3390 if (target->alternative_target != NULL
3391 && (target->alternative_target->byteorder == desired_endian))
3392 output_target = target->alternative_target->name;
3393 else
3394 {
3395 /* Try to find a target as similar as possible to
3396 the default target, but which has the desired
3397 endian characteristic. */
3398 bfd_iterate_over_targets (closest_target_match,
3399 (void *) target);
3400
3401 /* Oh dear - we could not find any targets that
3402 satisfy our requirements. */
3403 if (winner == NULL)
3404 einfo (_("%P: warning: could not find any targets"
3405 " that match endianness requirement\n"));
3406 else
3407 output_target = winner->name;
3408 }
3409 }
3410 }
3411 }
3412
3413 link_info.output_bfd = bfd_openw (name, output_target);
3414
3415 if (link_info.output_bfd == NULL)
3416 {
3417 if (bfd_get_error () == bfd_error_invalid_target)
3418 einfo (_("%F%P: target %s not found\n"), output_target);
3419
3420 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3421 }
3422
3423 delete_output_file_on_failure = true;
3424
3425 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3426 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3427 if (!bfd_set_arch_mach (link_info.output_bfd,
3428 ldfile_output_architecture,
3429 ldfile_output_machine))
3430 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3431
3432 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3433 if (link_info.hash == NULL)
3434 einfo (_("%F%P: can not create hash table: %E\n"));
3435
3436 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3437 }
3438
3439 static void
3440 ldlang_open_output (lang_statement_union_type *statement)
3441 {
3442 switch (statement->header.type)
3443 {
3444 case lang_output_statement_enum:
3445 ASSERT (link_info.output_bfd == NULL);
3446 open_output (statement->output_statement.name);
3447 ldemul_set_output_arch ();
3448 if (config.magic_demand_paged
3449 && !bfd_link_relocatable (&link_info))
3450 link_info.output_bfd->flags |= D_PAGED;
3451 else
3452 link_info.output_bfd->flags &= ~D_PAGED;
3453 if (config.text_read_only)
3454 link_info.output_bfd->flags |= WP_TEXT;
3455 else
3456 link_info.output_bfd->flags &= ~WP_TEXT;
3457 if (link_info.traditional_format)
3458 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3459 else
3460 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3461 if (config.no_section_header)
3462 link_info.output_bfd->flags |= BFD_NO_SECTION_HEADER;
3463 else
3464 link_info.output_bfd->flags &= ~BFD_NO_SECTION_HEADER;
3465 break;
3466
3467 case lang_target_statement_enum:
3468 current_target = statement->target_statement.target;
3469 break;
3470 default:
3471 break;
3472 }
3473 }
3474
3475 static void
3476 init_opb (asection *s)
3477 {
3478 unsigned int x;
3479
3480 opb_shift = 0;
3481 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour
3482 && s != NULL
3483 && (s->flags & SEC_ELF_OCTETS) != 0)
3484 return;
3485
3486 x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3487 ldfile_output_machine);
3488 if (x > 1)
3489 while ((x & 1) == 0)
3490 {
3491 x >>= 1;
3492 ++opb_shift;
3493 }
3494 ASSERT (x == 1);
3495 }
3496
3497 /* Open all the input files. */
3498
3499 enum open_bfd_mode
3500 {
3501 OPEN_BFD_NORMAL = 0,
3502 OPEN_BFD_FORCE = 1,
3503 OPEN_BFD_RESCAN = 2
3504 };
3505 #if BFD_SUPPORTS_PLUGINS
3506 static lang_input_statement_type *plugin_insert = NULL;
3507 static struct bfd_link_hash_entry *plugin_undefs = NULL;
3508 #endif
3509
3510 static void
3511 open_input_bfds (lang_statement_union_type *s,
3512 lang_output_section_statement_type *os,
3513 enum open_bfd_mode mode)
3514 {
3515 for (; s != NULL; s = s->header.next)
3516 {
3517 switch (s->header.type)
3518 {
3519 case lang_constructors_statement_enum:
3520 open_input_bfds (constructor_list.head, os, mode);
3521 break;
3522 case lang_output_section_statement_enum:
3523 os = &s->output_section_statement;
3524 open_input_bfds (os->children.head, os, mode);
3525 break;
3526 case lang_wild_statement_enum:
3527 /* Maybe we should load the file's symbols. */
3528 if ((mode & OPEN_BFD_RESCAN) == 0
3529 && s->wild_statement.filename
3530 && !wildcardp (s->wild_statement.filename)
3531 && !archive_path (s->wild_statement.filename))
3532 lookup_name (s->wild_statement.filename);
3533 open_input_bfds (s->wild_statement.children.head, os, mode);
3534 break;
3535 case lang_group_statement_enum:
3536 {
3537 struct bfd_link_hash_entry *undefs;
3538 #if BFD_SUPPORTS_PLUGINS
3539 lang_input_statement_type *plugin_insert_save;
3540 #endif
3541
3542 /* We must continually search the entries in the group
3543 until no new symbols are added to the list of undefined
3544 symbols. */
3545
3546 do
3547 {
3548 #if BFD_SUPPORTS_PLUGINS
3549 plugin_insert_save = plugin_insert;
3550 #endif
3551 undefs = link_info.hash->undefs_tail;
3552 open_input_bfds (s->group_statement.children.head, os,
3553 mode | OPEN_BFD_FORCE);
3554 }
3555 while (undefs != link_info.hash->undefs_tail
3556 #if BFD_SUPPORTS_PLUGINS
3557 /* Objects inserted by a plugin, which are loaded
3558 before we hit this loop, may have added new
3559 undefs. */
3560 || (plugin_insert != plugin_insert_save && plugin_undefs)
3561 #endif
3562 );
3563 }
3564 break;
3565 case lang_target_statement_enum:
3566 current_target = s->target_statement.target;
3567 break;
3568 case lang_input_statement_enum:
3569 if (s->input_statement.flags.real)
3570 {
3571 lang_statement_union_type **os_tail;
3572 lang_statement_list_type add;
3573 bfd *abfd;
3574
3575 s->input_statement.target = current_target;
3576
3577 /* If we are being called from within a group, and this
3578 is an archive which has already been searched, then
3579 force it to be researched unless the whole archive
3580 has been loaded already. Do the same for a rescan.
3581 Likewise reload --as-needed shared libs. */
3582 if (mode != OPEN_BFD_NORMAL
3583 #if BFD_SUPPORTS_PLUGINS
3584 && ((mode & OPEN_BFD_RESCAN) == 0
3585 || plugin_insert == NULL)
3586 #endif
3587 && s->input_statement.flags.loaded
3588 && (abfd = s->input_statement.the_bfd) != NULL
3589 && ((bfd_get_format (abfd) == bfd_archive
3590 && !s->input_statement.flags.whole_archive)
3591 || (bfd_get_format (abfd) == bfd_object
3592 && ((abfd->flags) & DYNAMIC) != 0
3593 && s->input_statement.flags.add_DT_NEEDED_for_regular
3594 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3595 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3596 {
3597 s->input_statement.flags.loaded = false;
3598 s->input_statement.flags.reload = true;
3599 }
3600
3601 os_tail = lang_os_list.tail;
3602 lang_list_init (&add);
3603
3604 if (!load_symbols (&s->input_statement, &add))
3605 config.make_executable = false;
3606
3607 if (add.head != NULL)
3608 {
3609 /* If this was a script with output sections then
3610 tack any added statements on to the end of the
3611 list. This avoids having to reorder the output
3612 section statement list. Very likely the user
3613 forgot -T, and whatever we do here will not meet
3614 naive user expectations. */
3615 if (os_tail != lang_os_list.tail)
3616 {
3617 einfo (_("%P: warning: %s contains output sections;"
3618 " did you forget -T?\n"),
3619 s->input_statement.filename);
3620 *stat_ptr->tail = add.head;
3621 stat_ptr->tail = add.tail;
3622 }
3623 else
3624 {
3625 *add.tail = s->header.next;
3626 s->header.next = add.head;
3627 }
3628 }
3629 }
3630 #if BFD_SUPPORTS_PLUGINS
3631 /* If we have found the point at which a plugin added new
3632 files, clear plugin_insert to enable archive rescan. */
3633 if (&s->input_statement == plugin_insert)
3634 plugin_insert = NULL;
3635 #endif
3636 break;
3637 case lang_assignment_statement_enum:
3638 if (s->assignment_statement.exp->type.node_class != etree_assert)
3639 exp_fold_tree_no_dot (s->assignment_statement.exp, os);
3640 break;
3641 default:
3642 break;
3643 }
3644 }
3645
3646 /* Exit if any of the files were missing. */
3647 if (input_flags.missing_file)
3648 einfo ("%F");
3649 }
3650
3651 #ifdef ENABLE_LIBCTF
3652 /* Emit CTF errors and warnings. fp can be NULL to report errors/warnings
3653 that happened specifically at CTF open time. */
3654 static void
3655 lang_ctf_errs_warnings (ctf_dict_t *fp)
3656 {
3657 ctf_next_t *i = NULL;
3658 char *text;
3659 int is_warning;
3660 int err;
3661
3662 while ((text = ctf_errwarning_next (fp, &i, &is_warning, &err)) != NULL)
3663 {
3664 einfo (_("%s: %s\n"), is_warning ? _("CTF warning"): _("CTF error"),
3665 text);
3666 free (text);
3667 }
3668 if (err != ECTF_NEXT_END)
3669 {
3670 einfo (_("CTF error: cannot get CTF errors: `%s'\n"),
3671 ctf_errmsg (err));
3672 }
3673
3674 /* `err' returns errors from the error/warning iterator in particular.
3675 These never assert. But if we have an fp, that could have recorded
3676 an assertion failure: assert if it has done so. */
3677 ASSERT (!fp || ctf_errno (fp) != ECTF_INTERNAL);
3678 }
3679
3680 /* Open the CTF sections in the input files with libctf: if any were opened,
3681 create a fake input file that we'll write the merged CTF data to later
3682 on. */
3683
3684 static void
3685 ldlang_open_ctf (void)
3686 {
3687 int any_ctf = 0;
3688 int err;
3689
3690 LANG_FOR_EACH_INPUT_STATEMENT (file)
3691 {
3692 asection *sect;
3693
3694 /* Incoming files from the compiler have a single ctf_dict_t in them
3695 (which is presented to us by the libctf API in a ctf_archive_t
3696 wrapper): files derived from a previous relocatable link have a CTF
3697 archive containing possibly many CTF files. */
3698
3699 if ((file->the_ctf = ctf_bfdopen (file->the_bfd, &err)) == NULL)
3700 {
3701 if (err != ECTF_NOCTFDATA)
3702 {
3703 lang_ctf_errs_warnings (NULL);
3704 einfo (_("%P: warning: CTF section in %pB not loaded; "
3705 "its types will be discarded: %s\n"), file->the_bfd,
3706 ctf_errmsg (err));
3707 }
3708 continue;
3709 }
3710
3711 /* Prevent the contents of this section from being written, while
3712 requiring the section itself to be duplicated in the output, but only
3713 once. */
3714 /* This section must exist if ctf_bfdopen() succeeded. */
3715 sect = bfd_get_section_by_name (file->the_bfd, ".ctf");
3716 sect->size = 0;
3717 sect->flags |= SEC_NEVER_LOAD | SEC_HAS_CONTENTS | SEC_LINKER_CREATED;
3718
3719 if (any_ctf)
3720 sect->flags |= SEC_EXCLUDE;
3721 any_ctf = 1;
3722 }
3723
3724 if (!any_ctf)
3725 {
3726 ctf_output = NULL;
3727 return;
3728 }
3729
3730 if ((ctf_output = ctf_create (&err)) != NULL)
3731 return;
3732
3733 einfo (_("%P: warning: CTF output not created: `%s'\n"),
3734 ctf_errmsg (err));
3735
3736 LANG_FOR_EACH_INPUT_STATEMENT (errfile)
3737 ctf_close (errfile->the_ctf);
3738 }
3739
3740 /* Merge together CTF sections. After this, only the symtab-dependent
3741 function and data object sections need adjustment. */
3742
3743 static void
3744 lang_merge_ctf (void)
3745 {
3746 asection *output_sect;
3747 int flags = 0;
3748
3749 if (!ctf_output)
3750 return;
3751
3752 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3753
3754 /* If the section was discarded, don't waste time merging. */
3755 if (output_sect == NULL)
3756 {
3757 ctf_dict_close (ctf_output);
3758 ctf_output = NULL;
3759
3760 LANG_FOR_EACH_INPUT_STATEMENT (file)
3761 {
3762 ctf_close (file->the_ctf);
3763 file->the_ctf = NULL;
3764 }
3765 return;
3766 }
3767
3768 LANG_FOR_EACH_INPUT_STATEMENT (file)
3769 {
3770 if (!file->the_ctf)
3771 continue;
3772
3773 /* Takes ownership of file->the_ctf. */
3774 if (ctf_link_add_ctf (ctf_output, file->the_ctf, file->filename) < 0)
3775 {
3776 einfo (_("%P: warning: CTF section in %pB cannot be linked: `%s'\n"),
3777 file->the_bfd, ctf_errmsg (ctf_errno (ctf_output)));
3778 ctf_close (file->the_ctf);
3779 file->the_ctf = NULL;
3780 continue;
3781 }
3782 }
3783
3784 if (!config.ctf_share_duplicated)
3785 flags = CTF_LINK_SHARE_UNCONFLICTED;
3786 else
3787 flags = CTF_LINK_SHARE_DUPLICATED;
3788 if (!config.ctf_variables)
3789 flags |= CTF_LINK_OMIT_VARIABLES_SECTION;
3790 if (bfd_link_relocatable (&link_info))
3791 flags |= CTF_LINK_NO_FILTER_REPORTED_SYMS;
3792
3793 if (ctf_link (ctf_output, flags) < 0)
3794 {
3795 lang_ctf_errs_warnings (ctf_output);
3796 einfo (_("%P: warning: CTF linking failed; "
3797 "output will have no CTF section: %s\n"),
3798 ctf_errmsg (ctf_errno (ctf_output)));
3799 if (output_sect)
3800 {
3801 output_sect->size = 0;
3802 output_sect->flags |= SEC_EXCLUDE;
3803 }
3804 }
3805 /* Output any lingering errors that didn't come from ctf_link. */
3806 lang_ctf_errs_warnings (ctf_output);
3807 }
3808
3809 /* Let the emulation acquire strings from the dynamic strtab to help it optimize
3810 the CTF, if supported. */
3811
3812 void
3813 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab)
3814 {
3815 ldemul_acquire_strings_for_ctf (ctf_output, dynstrtab);
3816 }
3817
3818 /* Inform the emulation about the addition of a new dynamic symbol, in BFD
3819 internal format. */
3820 void ldlang_ctf_new_dynsym (int symidx, struct elf_internal_sym *sym)
3821 {
3822 ldemul_new_dynsym_for_ctf (ctf_output, symidx, sym);
3823 }
3824
3825 /* Write out the CTF section. Called early, if the emulation isn't going to
3826 need to dedup against the strtab and symtab, then possibly called from the
3827 target linker code if the dedup has happened. */
3828 static void
3829 lang_write_ctf (int late)
3830 {
3831 size_t output_size;
3832 asection *output_sect;
3833
3834 if (!ctf_output)
3835 return;
3836
3837 if (late)
3838 {
3839 /* Emit CTF late if this emulation says it can do so. */
3840 if (ldemul_emit_ctf_early ())
3841 return;
3842 }
3843 else
3844 {
3845 if (!ldemul_emit_ctf_early ())
3846 return;
3847 }
3848
3849 /* Inform the emulation that all the symbols that will be received have
3850 been. */
3851
3852 ldemul_new_dynsym_for_ctf (ctf_output, 0, NULL);
3853
3854 /* Emit CTF. */
3855
3856 output_sect = bfd_get_section_by_name (link_info.output_bfd, ".ctf");
3857 if (output_sect)
3858 {
3859 output_sect->contents = ctf_link_write (ctf_output, &output_size,
3860 CTF_COMPRESSION_THRESHOLD);
3861 output_sect->size = output_size;
3862 output_sect->flags |= SEC_IN_MEMORY | SEC_KEEP;
3863
3864 lang_ctf_errs_warnings (ctf_output);
3865 if (!output_sect->contents)
3866 {
3867 einfo (_("%P: warning: CTF section emission failed; "
3868 "output will have no CTF section: %s\n"),
3869 ctf_errmsg (ctf_errno (ctf_output)));
3870 output_sect->size = 0;
3871 output_sect->flags |= SEC_EXCLUDE;
3872 }
3873 }
3874
3875 /* This also closes every CTF input file used in the link. */
3876 ctf_dict_close (ctf_output);
3877 ctf_output = NULL;
3878
3879 LANG_FOR_EACH_INPUT_STATEMENT (file)
3880 file->the_ctf = NULL;
3881 }
3882
3883 /* Write out the CTF section late, if the emulation needs that. */
3884
3885 void
3886 ldlang_write_ctf_late (void)
3887 {
3888 /* Trigger a "late call", if the emulation needs one. */
3889
3890 lang_write_ctf (1);
3891 }
3892 #else
3893 static void
3894 ldlang_open_ctf (void)
3895 {
3896 LANG_FOR_EACH_INPUT_STATEMENT (file)
3897 {
3898 asection *sect;
3899
3900 /* If built without CTF, warn and delete all CTF sections from the output.
3901 (The alternative would be to simply concatenate them, which does not
3902 yield a valid CTF section.) */
3903
3904 if ((sect = bfd_get_section_by_name (file->the_bfd, ".ctf")) != NULL)
3905 {
3906 einfo (_("%P: warning: CTF section in %pB not linkable: "
3907 "%P was built without support for CTF\n"), file->the_bfd);
3908 sect->size = 0;
3909 sect->flags |= SEC_EXCLUDE;
3910 }
3911 }
3912 }
3913
3914 static void lang_merge_ctf (void) {}
3915 void
3916 ldlang_ctf_acquire_strings (struct elf_strtab_hash *dynstrtab
3917 ATTRIBUTE_UNUSED) {}
3918 void
3919 ldlang_ctf_new_dynsym (int symidx ATTRIBUTE_UNUSED,
3920 struct elf_internal_sym *sym ATTRIBUTE_UNUSED) {}
3921 static void lang_write_ctf (int late ATTRIBUTE_UNUSED) {}
3922 void ldlang_write_ctf_late (void) {}
3923 #endif
3924
3925 /* Add the supplied name to the symbol table as an undefined reference.
3926 This is a two step process as the symbol table doesn't even exist at
3927 the time the ld command line is processed. First we put the name
3928 on a list, then, once the output file has been opened, transfer the
3929 name to the symbol table. */
3930
3931 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3932
3933 #define ldlang_undef_chain_list_head entry_symbol.next
3934
3935 void
3936 ldlang_add_undef (const char *const name, bool cmdline ATTRIBUTE_UNUSED)
3937 {
3938 ldlang_undef_chain_list_type *new_undef;
3939
3940 new_undef = stat_alloc (sizeof (*new_undef));
3941 new_undef->next = ldlang_undef_chain_list_head;
3942 ldlang_undef_chain_list_head = new_undef;
3943
3944 new_undef->name = xstrdup (name);
3945
3946 if (link_info.output_bfd != NULL)
3947 insert_undefined (new_undef->name);
3948 }
3949
3950 /* Insert NAME as undefined in the symbol table. */
3951
3952 static void
3953 insert_undefined (const char *name)
3954 {
3955 struct bfd_link_hash_entry *h;
3956
3957 h = bfd_link_hash_lookup (link_info.hash, name, true, false, true);
3958 if (h == NULL)
3959 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3960 if (h->type == bfd_link_hash_new)
3961 {
3962 h->type = bfd_link_hash_undefined;
3963 h->u.undef.abfd = NULL;
3964 h->non_ir_ref_regular = true;
3965 bfd_link_add_undef (link_info.hash, h);
3966 }
3967 }
3968
3969 /* Run through the list of undefineds created above and place them
3970 into the linker hash table as undefined symbols belonging to the
3971 script file. */
3972
3973 static void
3974 lang_place_undefineds (void)
3975 {
3976 ldlang_undef_chain_list_type *ptr;
3977
3978 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3979 insert_undefined (ptr->name);
3980 }
3981
3982 /* Mark -u symbols against garbage collection. */
3983
3984 static void
3985 lang_mark_undefineds (void)
3986 {
3987 ldlang_undef_chain_list_type *ptr;
3988
3989 if (is_elf_hash_table (link_info.hash))
3990 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3991 {
3992 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
3993 bfd_link_hash_lookup (link_info.hash, ptr->name, false, false, true);
3994 if (h != NULL)
3995 h->mark = 1;
3996 }
3997 }
3998
3999 /* Structure used to build the list of symbols that the user has required
4000 be defined. */
4001
4002 struct require_defined_symbol
4003 {
4004 const char *name;
4005 struct require_defined_symbol *next;
4006 };
4007
4008 /* The list of symbols that the user has required be defined. */
4009
4010 static struct require_defined_symbol *require_defined_symbol_list;
4011
4012 /* Add a new symbol NAME to the list of symbols that are required to be
4013 defined. */
4014
4015 void
4016 ldlang_add_require_defined (const char *const name)
4017 {
4018 struct require_defined_symbol *ptr;
4019
4020 ldlang_add_undef (name, true);
4021 ptr = stat_alloc (sizeof (*ptr));
4022 ptr->next = require_defined_symbol_list;
4023 ptr->name = strdup (name);
4024 require_defined_symbol_list = ptr;
4025 }
4026
4027 /* Check that all symbols the user required to be defined, are defined,
4028 raise an error if we find a symbol that is not defined. */
4029
4030 static void
4031 ldlang_check_require_defined_symbols (void)
4032 {
4033 struct require_defined_symbol *ptr;
4034
4035 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
4036 {
4037 struct bfd_link_hash_entry *h;
4038
4039 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
4040 false, false, true);
4041 if (h == NULL
4042 || (h->type != bfd_link_hash_defined
4043 && h->type != bfd_link_hash_defweak))
4044 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
4045 }
4046 }
4047
4048 /* Check for all readonly or some readwrite sections. */
4049
4050 static void
4051 check_input_sections
4052 (lang_statement_union_type *s,
4053 lang_output_section_statement_type *output_section_statement)
4054 {
4055 for (; s != NULL; s = s->header.next)
4056 {
4057 switch (s->header.type)
4058 {
4059 case lang_wild_statement_enum:
4060 walk_wild (&s->wild_statement, check_section_callback,
4061 output_section_statement);
4062 if (!output_section_statement->all_input_readonly)
4063 return;
4064 break;
4065 case lang_constructors_statement_enum:
4066 check_input_sections (constructor_list.head,
4067 output_section_statement);
4068 if (!output_section_statement->all_input_readonly)
4069 return;
4070 break;
4071 case lang_group_statement_enum:
4072 check_input_sections (s->group_statement.children.head,
4073 output_section_statement);
4074 if (!output_section_statement->all_input_readonly)
4075 return;
4076 break;
4077 default:
4078 break;
4079 }
4080 }
4081 }
4082
4083 /* Update wildcard statements if needed. */
4084
4085 static void
4086 update_wild_statements (lang_statement_union_type *s)
4087 {
4088 struct wildcard_list *sec;
4089
4090 switch (sort_section)
4091 {
4092 default:
4093 FAIL ();
4094
4095 case none:
4096 break;
4097
4098 case by_name:
4099 case by_alignment:
4100 for (; s != NULL; s = s->header.next)
4101 {
4102 switch (s->header.type)
4103 {
4104 default:
4105 break;
4106
4107 case lang_wild_statement_enum:
4108 for (sec = s->wild_statement.section_list; sec != NULL;
4109 sec = sec->next)
4110 /* Don't sort .init/.fini sections. */
4111 if (strcmp (sec->spec.name, ".init") != 0
4112 && strcmp (sec->spec.name, ".fini") != 0)
4113 {
4114 switch (sec->spec.sorted)
4115 {
4116 case none:
4117 sec->spec.sorted = sort_section;
4118 break;
4119 case by_name:
4120 if (sort_section == by_alignment)
4121 sec->spec.sorted = by_name_alignment;
4122 break;
4123 case by_alignment:
4124 if (sort_section == by_name)
4125 sec->spec.sorted = by_alignment_name;
4126 break;
4127 default:
4128 break;
4129 }
4130 s->wild_statement.any_specs_sorted = true;
4131 }
4132 break;
4133
4134 case lang_constructors_statement_enum:
4135 update_wild_statements (constructor_list.head);
4136 break;
4137
4138 case lang_output_section_statement_enum:
4139 update_wild_statements
4140 (s->output_section_statement.children.head);
4141 break;
4142
4143 case lang_group_statement_enum:
4144 update_wild_statements (s->group_statement.children.head);
4145 break;
4146 }
4147 }
4148 break;
4149 }
4150 }
4151
4152 /* Open input files and attach to output sections. */
4153
4154 static void
4155 map_input_to_output_sections
4156 (lang_statement_union_type *s, const char *target,
4157 lang_output_section_statement_type *os)
4158 {
4159 for (; s != NULL; s = s->header.next)
4160 {
4161 lang_output_section_statement_type *tos;
4162 flagword flags;
4163 unsigned int type = 0;
4164
4165 switch (s->header.type)
4166 {
4167 case lang_wild_statement_enum:
4168 wild (&s->wild_statement, target, os);
4169 break;
4170 case lang_constructors_statement_enum:
4171 map_input_to_output_sections (constructor_list.head,
4172 target,
4173 os);
4174 break;
4175 case lang_output_section_statement_enum:
4176 tos = &s->output_section_statement;
4177 if (tos->constraint == ONLY_IF_RW
4178 || tos->constraint == ONLY_IF_RO)
4179 {
4180 tos->all_input_readonly = true;
4181 check_input_sections (tos->children.head, tos);
4182 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
4183 tos->constraint = -1;
4184 }
4185 if (tos->constraint >= 0)
4186 map_input_to_output_sections (tos->children.head,
4187 target,
4188 tos);
4189 break;
4190 case lang_output_statement_enum:
4191 break;
4192 case lang_target_statement_enum:
4193 target = s->target_statement.target;
4194 break;
4195 case lang_group_statement_enum:
4196 map_input_to_output_sections (s->group_statement.children.head,
4197 target,
4198 os);
4199 break;
4200 case lang_data_statement_enum:
4201 if (os == NULL)
4202 /* This should never happen. */
4203 FAIL ();
4204 /* Make sure that any sections mentioned in the expression
4205 are initialized. */
4206 exp_init_os (s->data_statement.exp);
4207 /* The output section gets CONTENTS, ALLOC and LOAD, but
4208 these may be overridden by the script. */
4209 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
4210 switch (os->sectype)
4211 {
4212 case normal_section:
4213 case overlay_section:
4214 case first_overlay_section:
4215 break;
4216 case noalloc_section:
4217 flags = SEC_HAS_CONTENTS;
4218 break;
4219 case readonly_section:
4220 flags |= SEC_READONLY;
4221 break;
4222 case typed_readonly_section:
4223 flags |= SEC_READONLY;
4224 /* Fall through. */
4225 case type_section:
4226 if (os->sectype_value->type.node_class == etree_name
4227 && os->sectype_value->type.node_code == NAME)
4228 {
4229 const char *name = os->sectype_value->name.name;
4230 if (strcmp (name, "SHT_PROGBITS") == 0)
4231 type = SHT_PROGBITS;
4232 else if (strcmp (name, "SHT_STRTAB") == 0)
4233 type = SHT_STRTAB;
4234 else if (strcmp (name, "SHT_NOTE") == 0)
4235 type = SHT_NOTE;
4236 else if (strcmp (name, "SHT_NOBITS") == 0)
4237 type = SHT_NOBITS;
4238 else if (strcmp (name, "SHT_INIT_ARRAY") == 0)
4239 type = SHT_INIT_ARRAY;
4240 else if (strcmp (name, "SHT_FINI_ARRAY") == 0)
4241 type = SHT_FINI_ARRAY;
4242 else if (strcmp (name, "SHT_PREINIT_ARRAY") == 0)
4243 type = SHT_PREINIT_ARRAY;
4244 else
4245 einfo (_ ("%F%P: invalid type for output section `%s'\n"),
4246 os->name);
4247 }
4248 else
4249 {
4250 exp_fold_tree_no_dot (os->sectype_value, os);
4251 if (expld.result.valid_p)
4252 type = expld.result.value;
4253 else
4254 einfo (_ ("%F%P: invalid type for output section `%s'\n"),
4255 os->name);
4256 }
4257 break;
4258 case noload_section:
4259 if (bfd_get_flavour (link_info.output_bfd)
4260 == bfd_target_elf_flavour)
4261 flags = SEC_NEVER_LOAD | SEC_ALLOC;
4262 else
4263 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
4264 break;
4265 }
4266 if (os->bfd_section == NULL)
4267 init_os (os, flags | SEC_READONLY);
4268 else
4269 os->bfd_section->flags |= flags;
4270 os->bfd_section->type = type;
4271 break;
4272 case lang_input_section_enum:
4273 break;
4274 case lang_fill_statement_enum:
4275 case lang_object_symbols_statement_enum:
4276 case lang_reloc_statement_enum:
4277 case lang_padding_statement_enum:
4278 case lang_input_statement_enum:
4279 if (os != NULL && os->bfd_section == NULL)
4280 init_os (os, 0);
4281 break;
4282
4283 case lang_assignment_statement_enum:
4284 if (os != NULL && os->bfd_section == NULL)
4285 init_os (os, get_os_init_flag (os));
4286
4287 /* Make sure that any sections mentioned in the assignment
4288 are initialized. */
4289 exp_init_os (s->assignment_statement.exp);
4290 break;
4291
4292 case lang_address_statement_enum:
4293 /* Mark the specified section with the supplied address.
4294 If this section was actually a segment marker, then the
4295 directive is ignored if the linker script explicitly
4296 processed the segment marker. Originally, the linker
4297 treated segment directives (like -Ttext on the
4298 command-line) as section directives. We honor the
4299 section directive semantics for backwards compatibility;
4300 linker scripts that do not specifically check for
4301 SEGMENT_START automatically get the old semantics. */
4302 if (!s->address_statement.segment
4303 || !s->address_statement.segment->used)
4304 {
4305 const char *name = s->address_statement.section_name;
4306
4307 /* Create the output section statement here so that
4308 orphans with a set address will be placed after other
4309 script sections. If we let the orphan placement code
4310 place them in amongst other sections then the address
4311 will affect following script sections, which is
4312 likely to surprise naive users. */
4313 tos = lang_output_section_statement_lookup (name, 0, 1);
4314 tos->addr_tree = s->address_statement.address;
4315 if (tos->bfd_section == NULL)
4316 init_os (tos, 0);
4317 }
4318 break;
4319 case lang_insert_statement_enum:
4320 break;
4321 case lang_input_matcher_enum:
4322 FAIL ();
4323 }
4324 }
4325 }
4326
4327 /* An insert statement snips out all the linker statements from the
4328 start of the list and places them after the output section
4329 statement specified by the insert. This operation is complicated
4330 by the fact that we keep a doubly linked list of output section
4331 statements as well as the singly linked list of all statements.
4332 FIXME someday: Twiddling with the list not only moves statements
4333 from the user's script but also input and group statements that are
4334 built from command line object files and --start-group. We only
4335 get away with this because the list pointers used by file_chain
4336 and input_file_chain are not reordered, and processing via
4337 statement_list after this point mostly ignores input statements.
4338 One exception is the map file, where LOAD and START GROUP/END GROUP
4339 can end up looking odd. */
4340
4341 static void
4342 process_insert_statements (lang_statement_union_type **start)
4343 {
4344 lang_statement_union_type **s;
4345 lang_output_section_statement_type *first_os = NULL;
4346 lang_output_section_statement_type *last_os = NULL;
4347 lang_output_section_statement_type *os;
4348
4349 s = start;
4350 while (*s != NULL)
4351 {
4352 if ((*s)->header.type == lang_output_section_statement_enum)
4353 {
4354 /* Keep pointers to the first and last output section
4355 statement in the sequence we may be about to move. */
4356 os = &(*s)->output_section_statement;
4357
4358 ASSERT (last_os == NULL || last_os->next == os);
4359 last_os = os;
4360
4361 /* Set constraint negative so that lang_output_section_find
4362 won't match this output section statement. At this
4363 stage in linking constraint has values in the range
4364 [-1, ONLY_IN_RW]. */
4365 last_os->constraint = -2 - last_os->constraint;
4366 if (first_os == NULL)
4367 first_os = last_os;
4368 }
4369 else if ((*s)->header.type == lang_group_statement_enum)
4370 {
4371 /* A user might put -T between --start-group and
4372 --end-group. One way this odd construct might arise is
4373 from a wrapper around ld to change library search
4374 behaviour. For example:
4375 #! /bin/sh
4376 exec real_ld --start-group "$@" --end-group
4377 This isn't completely unreasonable so go looking inside a
4378 group statement for insert statements. */
4379 process_insert_statements (&(*s)->group_statement.children.head);
4380 }
4381 else if ((*s)->header.type == lang_insert_statement_enum)
4382 {
4383 lang_insert_statement_type *i = &(*s)->insert_statement;
4384 lang_output_section_statement_type *where;
4385 lang_statement_union_type **ptr;
4386 lang_statement_union_type *first;
4387
4388 if (link_info.non_contiguous_regions)
4389 {
4390 einfo (_("warning: INSERT statement in linker script is "
4391 "incompatible with --enable-non-contiguous-regions.\n"));
4392 }
4393
4394 where = lang_output_section_find (i->where);
4395 if (where != NULL && i->is_before)
4396 {
4397 do
4398 where = where->prev;
4399 while (where != NULL && where->constraint < 0);
4400 }
4401 if (where == NULL)
4402 {
4403 einfo (_("%F%P: %s not found for insert\n"), i->where);
4404 return;
4405 }
4406
4407 /* Deal with reordering the output section statement list. */
4408 if (last_os != NULL)
4409 {
4410 asection *first_sec, *last_sec;
4411 struct lang_output_section_statement_struct **next;
4412
4413 /* Snip out the output sections we are moving. */
4414 first_os->prev->next = last_os->next;
4415 if (last_os->next == NULL)
4416 {
4417 next = &first_os->prev->next;
4418 lang_os_list.tail = (lang_statement_union_type **) next;
4419 }
4420 else
4421 last_os->next->prev = first_os->prev;
4422 /* Add them in at the new position. */
4423 last_os->next = where->next;
4424 if (where->next == NULL)
4425 {
4426 next = &last_os->next;
4427 lang_os_list.tail = (lang_statement_union_type **) next;
4428 }
4429 else
4430 where->next->prev = last_os;
4431 first_os->prev = where;
4432 where->next = first_os;
4433
4434 /* Move the bfd sections in the same way. */
4435 first_sec = NULL;
4436 last_sec = NULL;
4437 for (os = first_os; os != NULL; os = os->next)
4438 {
4439 os->constraint = -2 - os->constraint;
4440 if (os->bfd_section != NULL
4441 && os->bfd_section->owner != NULL)
4442 {
4443 last_sec = os->bfd_section;
4444 if (first_sec == NULL)
4445 first_sec = last_sec;
4446 }
4447 if (os == last_os)
4448 break;
4449 }
4450 if (last_sec != NULL)
4451 {
4452 asection *sec = where->bfd_section;
4453 if (sec == NULL)
4454 sec = output_prev_sec_find (where);
4455
4456 /* The place we want to insert must come after the
4457 sections we are moving. So if we find no
4458 section or if the section is the same as our
4459 last section, then no move is needed. */
4460 if (sec != NULL && sec != last_sec)
4461 {
4462 /* Trim them off. */
4463 if (first_sec->prev != NULL)
4464 first_sec->prev->next = last_sec->next;
4465 else
4466 link_info.output_bfd->sections = last_sec->next;
4467 if (last_sec->next != NULL)
4468 last_sec->next->prev = first_sec->prev;
4469 else
4470 link_info.output_bfd->section_last = first_sec->prev;
4471 /* Add back. */
4472 if (sec->owner == NULL)
4473 /* SEC is the absolute section, from the
4474 first dummy output section statement. Add
4475 back the sections we trimmed off to the
4476 start of the bfd sections. */
4477 sec = NULL;
4478 if (sec != NULL)
4479 last_sec->next = sec->next;
4480 else
4481 last_sec->next = link_info.output_bfd->sections;
4482 if (last_sec->next != NULL)
4483 last_sec->next->prev = last_sec;
4484 else
4485 link_info.output_bfd->section_last = last_sec;
4486 first_sec->prev = sec;
4487 if (first_sec->prev != NULL)
4488 first_sec->prev->next = first_sec;
4489 else
4490 link_info.output_bfd->sections = first_sec;
4491 }
4492 }
4493 }
4494
4495 lang_statement_union_type *after = (void *) where;
4496 if (where == &lang_os_list.head->output_section_statement
4497 && where->next == first_os)
4498 {
4499 /* PR30155. Handle a corner case where the statement
4500 list is something like the following:
4501 . LOAD t.o
4502 . .data 0x0000000000000000 0x0
4503 . [0x0000000000000000] b = .
4504 . *(.data)
4505 . .data 0x0000000000000000 0x0 t.o
4506 . 0x0000000000000000 0x4 LONG 0x0
4507 . INSERT BEFORE .text.start
4508 . [0x0000000000000004] a = .
4509 . .text.start 0x0000000000000000 0x0
4510 . [0x0000000000000000] c = .
4511 . OUTPUT(a.out elf64-x86-64)
4512 Here we do not want to allow insert_os_after to
4513 choose a point inside the list we are moving.
4514 That would lose the list. Instead, let
4515 insert_os_after work from the INSERT, which in this
4516 particular example will result in inserting after
4517 the assignment "a = .". */
4518 after = *s;
4519 }
4520 ptr = insert_os_after (after);
4521 /* Snip everything from the start of the list, up to and
4522 including the insert statement we are currently processing. */
4523 first = *start;
4524 *start = (*s)->header.next;
4525 /* Add them back where they belong, minus the insert. */
4526 *s = *ptr;
4527 if (*s == NULL)
4528 statement_list.tail = s;
4529 *ptr = first;
4530 s = start;
4531 first_os = NULL;
4532 last_os = NULL;
4533 continue;
4534 }
4535 s = &(*s)->header.next;
4536 }
4537
4538 /* Undo constraint twiddling. */
4539 for (os = first_os; os != NULL; os = os->next)
4540 {
4541 os->constraint = -2 - os->constraint;
4542 if (os == last_os)
4543 break;
4544 }
4545 }
4546
4547 /* An output section might have been removed after its statement was
4548 added. For example, ldemul_before_allocation can remove dynamic
4549 sections if they turn out to be not needed. Clean them up here. */
4550
4551 void
4552 strip_excluded_output_sections (void)
4553 {
4554 lang_output_section_statement_type *os;
4555
4556 /* Run lang_size_sections (if not already done). */
4557 if (expld.phase != lang_mark_phase_enum)
4558 {
4559 expld.phase = lang_mark_phase_enum;
4560 expld.dataseg.phase = exp_seg_none;
4561 one_lang_size_sections_pass (NULL, false);
4562 lang_reset_memory_regions ();
4563 }
4564
4565 for (os = (void *) lang_os_list.head;
4566 os != NULL;
4567 os = os->next)
4568 {
4569 asection *output_section;
4570 bool exclude;
4571
4572 if (os->constraint < 0)
4573 continue;
4574
4575 output_section = os->bfd_section;
4576 if (output_section == NULL)
4577 continue;
4578
4579 exclude = (output_section->rawsize == 0
4580 && (output_section->flags & SEC_KEEP) == 0
4581 && !bfd_section_removed_from_list (link_info.output_bfd,
4582 output_section));
4583
4584 /* Some sections have not yet been sized, notably .gnu.version,
4585 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4586 input sections, so don't drop output sections that have such
4587 input sections unless they are also marked SEC_EXCLUDE. */
4588 if (exclude && output_section->map_head.s != NULL)
4589 {
4590 asection *s;
4591
4592 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4593 if ((s->flags & SEC_EXCLUDE) == 0
4594 && ((s->flags & SEC_LINKER_CREATED) != 0
4595 || link_info.emitrelocations))
4596 {
4597 exclude = false;
4598 break;
4599 }
4600 }
4601
4602 if (exclude)
4603 {
4604 /* We don't set bfd_section to NULL since bfd_section of the
4605 removed output section statement may still be used. */
4606 if (!os->update_dot)
4607 os->ignored = true;
4608 output_section->flags |= SEC_EXCLUDE;
4609 bfd_section_list_remove (link_info.output_bfd, output_section);
4610 link_info.output_bfd->section_count--;
4611 }
4612 }
4613 }
4614
4615 /* Called from ldwrite to clear out asection.map_head and
4616 asection.map_tail for use as link_orders in ldwrite. */
4617
4618 void
4619 lang_clear_os_map (void)
4620 {
4621 lang_output_section_statement_type *os;
4622
4623 if (map_head_is_link_order)
4624 return;
4625
4626 for (os = (void *) lang_os_list.head;
4627 os != NULL;
4628 os = os->next)
4629 {
4630 asection *output_section;
4631
4632 if (os->constraint < 0)
4633 continue;
4634
4635 output_section = os->bfd_section;
4636 if (output_section == NULL)
4637 continue;
4638
4639 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4640 output_section->map_head.link_order = NULL;
4641 output_section->map_tail.link_order = NULL;
4642 }
4643
4644 /* Stop future calls to lang_add_section from messing with map_head
4645 and map_tail link_order fields. */
4646 map_head_is_link_order = true;
4647 }
4648
4649 static void
4650 print_output_section_statement
4651 (lang_output_section_statement_type *output_section_statement)
4652 {
4653 asection *section = output_section_statement->bfd_section;
4654 int len;
4655
4656 if (output_section_statement != abs_output_section)
4657 {
4658 minfo ("\n%s", output_section_statement->name);
4659
4660 if (section != NULL)
4661 {
4662 print_dot = section->vma;
4663
4664 len = strlen (output_section_statement->name);
4665 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4666 {
4667 print_nl ();
4668 len = 0;
4669 }
4670 print_spaces (SECTION_NAME_MAP_LENGTH - len);
4671
4672 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4673
4674 if (section->vma != section->lma)
4675 minfo (_(" load address 0x%V"), section->lma);
4676
4677 if (output_section_statement->update_dot_tree != NULL)
4678 exp_fold_tree (output_section_statement->update_dot_tree,
4679 output_section_statement,
4680 bfd_abs_section_ptr, &print_dot);
4681 }
4682
4683 print_nl ();
4684 }
4685
4686 print_statement_list (output_section_statement->children.head,
4687 output_section_statement);
4688 }
4689
4690 static void
4691 print_assignment (lang_assignment_statement_type *assignment,
4692 lang_output_section_statement_type *output_section)
4693 {
4694 bool is_dot;
4695 etree_type *tree;
4696 asection *osec;
4697
4698 print_spaces (SECTION_NAME_MAP_LENGTH);
4699
4700 if (assignment->exp->type.node_class == etree_assert)
4701 {
4702 is_dot = false;
4703 tree = assignment->exp->assert_s.child;
4704 }
4705 else
4706 {
4707 const char *dst = assignment->exp->assign.dst;
4708
4709 is_dot = (dst[0] == '.' && dst[1] == 0);
4710 tree = assignment->exp;
4711 }
4712
4713 osec = output_section->bfd_section;
4714 if (osec == NULL)
4715 osec = bfd_abs_section_ptr;
4716
4717 if (assignment->exp->type.node_class != etree_provide)
4718 exp_fold_tree (tree, output_section, osec, &print_dot);
4719 else
4720 expld.result.valid_p = false;
4721
4722 char buf[32];
4723 const char *str = buf;
4724 if (expld.result.valid_p)
4725 {
4726 bfd_vma value;
4727
4728 if (assignment->exp->type.node_class == etree_assert
4729 || is_dot
4730 || expld.assign_name != NULL)
4731 {
4732 value = expld.result.value;
4733
4734 if (expld.result.section != NULL)
4735 value += expld.result.section->vma;
4736
4737 buf[0] = '0';
4738 buf[1] = 'x';
4739 bfd_sprintf_vma (link_info.output_bfd, buf + 2, value);
4740 if (is_dot)
4741 print_dot = value;
4742 }
4743 else
4744 {
4745 struct bfd_link_hash_entry *h;
4746
4747 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4748 false, false, true);
4749 if (h != NULL
4750 && (h->type == bfd_link_hash_defined
4751 || h->type == bfd_link_hash_defweak))
4752 {
4753 value = h->u.def.value;
4754 value += h->u.def.section->output_section->vma;
4755 value += h->u.def.section->output_offset;
4756
4757 buf[0] = '[';
4758 buf[1] = '0';
4759 buf[2] = 'x';
4760 bfd_sprintf_vma (link_info.output_bfd, buf + 3, value);
4761 strcat (buf, "]");
4762 }
4763 else
4764 str = "[unresolved]";
4765 }
4766 }
4767 else
4768 {
4769 if (assignment->exp->type.node_class == etree_provide)
4770 str = "[!provide]";
4771 else
4772 str = "*undef*";
4773 }
4774 expld.assign_name = NULL;
4775
4776 fprintf (config.map_file, "%-34s", str);
4777 exp_print_tree (assignment->exp);
4778 print_nl ();
4779 }
4780
4781 static void
4782 print_input_statement (lang_input_statement_type *statm)
4783 {
4784 if (statm->filename != NULL)
4785 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4786 }
4787
4788 /* Print all symbols defined in a particular section. This is called
4789 via bfd_link_hash_traverse, or by print_all_symbols. */
4790
4791 bool
4792 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4793 {
4794 asection *sec = (asection *) ptr;
4795
4796 if ((hash_entry->type == bfd_link_hash_defined
4797 || hash_entry->type == bfd_link_hash_defweak)
4798 && sec == hash_entry->u.def.section)
4799 {
4800 print_spaces (SECTION_NAME_MAP_LENGTH);
4801 minfo ("0x%V ",
4802 (hash_entry->u.def.value
4803 + hash_entry->u.def.section->output_offset
4804 + hash_entry->u.def.section->output_section->vma));
4805
4806 minfo (" %pT\n", hash_entry->root.string);
4807 }
4808
4809 return true;
4810 }
4811
4812 static int
4813 hash_entry_addr_cmp (const void *a, const void *b)
4814 {
4815 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4816 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4817
4818 if (l->u.def.value < r->u.def.value)
4819 return -1;
4820 else if (l->u.def.value > r->u.def.value)
4821 return 1;
4822 else
4823 return 0;
4824 }
4825
4826 static void
4827 print_all_symbols (asection *sec)
4828 {
4829 input_section_userdata_type *ud = bfd_section_userdata (sec);
4830 struct map_symbol_def *def;
4831 struct bfd_link_hash_entry **entries;
4832 unsigned int i;
4833
4834 if (!ud)
4835 return;
4836
4837 *ud->map_symbol_def_tail = 0;
4838
4839 /* Sort the symbols by address. */
4840 entries = (struct bfd_link_hash_entry **)
4841 obstack_alloc (&map_obstack,
4842 ud->map_symbol_def_count * sizeof (*entries));
4843
4844 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4845 entries[i] = def->entry;
4846
4847 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4848 hash_entry_addr_cmp);
4849
4850 /* Print the symbols. */
4851 for (i = 0; i < ud->map_symbol_def_count; i++)
4852 ldemul_print_symbol (entries[i], sec);
4853
4854 obstack_free (&map_obstack, entries);
4855 }
4856
4857 /* Returns TRUE if SYM is a symbol suitable for printing
4858 in a linker map as a local symbol. */
4859
4860 static bool
4861 ld_is_local_symbol (asymbol * sym)
4862 {
4863 const char * name = bfd_asymbol_name (sym);
4864
4865 if (name == NULL || *name == 0)
4866 return false;
4867
4868 if (strcmp (name, "(null)") == 0)
4869 return false;
4870
4871 /* Skip .Lxxx and such like. */
4872 if (bfd_is_local_label (link_info.output_bfd, sym))
4873 return false;
4874
4875 /* FIXME: This is intended to skip ARM mapping symbols,
4876 which for some reason are not excluded by bfd_is_local_label,
4877 but maybe it is wrong for other architectures.
4878 It would be better to fix bfd_is_local_label. */
4879 if (*name == '$')
4880 return false;
4881
4882 /* Some local symbols, eg _GLOBAL_OFFSET_TABLE_, are present
4883 in the hash table, so do not print duplicates here. */
4884 struct bfd_link_hash_entry * h;
4885 h = bfd_link_hash_lookup (link_info.hash, name, false /* create */,
4886 false /* copy */, true /* follow */);
4887 if (h == NULL)
4888 return true;
4889
4890 /* Symbols from the plugin owned BFD will not get their own
4891 iteration of this function, but can be on the link_info
4892 list. So include them here. */
4893 if (h->u.def.section->owner != NULL
4894 && ((bfd_get_file_flags (h->u.def.section->owner) & (BFD_LINKER_CREATED | BFD_PLUGIN))
4895 == (BFD_LINKER_CREATED | BFD_PLUGIN)))
4896 return true;
4897
4898 return false;
4899 }
4900
4901 /* Print information about an input section to the map file. */
4902
4903 static void
4904 print_input_section (asection *i, bool is_discarded)
4905 {
4906 bfd_size_type size = i->size;
4907 int len;
4908 bfd_vma addr;
4909
4910 init_opb (i);
4911
4912 minfo (" %s", i->name);
4913
4914 len = 1 + strlen (i->name);
4915 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4916 {
4917 print_nl ();
4918 len = 0;
4919 }
4920 print_spaces (SECTION_NAME_MAP_LENGTH - len);
4921
4922 if (i->output_section != NULL
4923 && i->output_section->owner == link_info.output_bfd)
4924 addr = i->output_section->vma + i->output_offset;
4925 else
4926 {
4927 addr = print_dot;
4928 if (!is_discarded)
4929 size = 0;
4930 }
4931
4932 char buf[32];
4933 bfd_sprintf_vma (link_info.output_bfd, buf, addr);
4934 minfo ("0x%s %W %pB\n", buf, TO_ADDR (size), i->owner);
4935
4936 if (size != i->rawsize && i->rawsize != 0)
4937 {
4938 len = SECTION_NAME_MAP_LENGTH + 3 + strlen (buf);
4939 print_spaces (len);
4940 minfo (_("%W (size before relaxing)\n"), TO_ADDR (i->rawsize));
4941 }
4942
4943 if (i->output_section != NULL
4944 && i->output_section->owner == link_info.output_bfd)
4945 {
4946 if (link_info.reduce_memory_overheads)
4947 bfd_link_hash_traverse (link_info.hash, ldemul_print_symbol, i);
4948 else
4949 print_all_symbols (i);
4950
4951 /* Update print_dot, but make sure that we do not move it
4952 backwards - this could happen if we have overlays and a
4953 later overlay is shorter than an earier one. */
4954 if (addr + TO_ADDR (size) > print_dot)
4955 print_dot = addr + TO_ADDR (size);
4956
4957 if (config.print_map_locals)
4958 {
4959 long storage_needed;
4960
4961 /* FIXME: It would be better to cache this table, rather
4962 than recreating it for each output section. */
4963 /* FIXME: This call is not working for non-ELF based targets.
4964 Find out why. */
4965 storage_needed = bfd_get_symtab_upper_bound (link_info.output_bfd);
4966 if (storage_needed > 0)
4967 {
4968 asymbol ** symbol_table;
4969 long number_of_symbols;
4970 long j;
4971
4972 symbol_table = xmalloc (storage_needed);
4973 number_of_symbols = bfd_canonicalize_symtab (link_info.output_bfd, symbol_table);
4974
4975 for (j = 0; j < number_of_symbols; j++)
4976 {
4977 asymbol * sym = symbol_table[j];
4978 bfd_vma sym_addr = sym->value + i->output_section->vma;
4979
4980 if (sym->section == i->output_section
4981 && (sym->flags & BSF_LOCAL) != 0
4982 && sym_addr >= addr
4983 && sym_addr < print_dot
4984 && ld_is_local_symbol (sym))
4985 {
4986 print_spaces (SECTION_NAME_MAP_LENGTH);
4987 minfo ("0x%V (local) %s\n", sym_addr, bfd_asymbol_name (sym));
4988 }
4989 }
4990
4991 free (symbol_table);
4992 }
4993 }
4994 }
4995 }
4996
4997 static void
4998 print_fill_statement (lang_fill_statement_type *fill)
4999 {
5000 size_t size;
5001 unsigned char *p;
5002 fputs (" FILL mask 0x", config.map_file);
5003 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
5004 fprintf (config.map_file, "%02x", *p);
5005 fputs ("\n", config.map_file);
5006 }
5007
5008 static void
5009 print_data_statement (lang_data_statement_type *data)
5010 {
5011 bfd_vma addr;
5012 bfd_size_type size;
5013 const char *name;
5014
5015 init_opb (data->output_section);
5016 print_spaces (SECTION_NAME_MAP_LENGTH);
5017
5018 addr = data->output_offset;
5019 if (data->output_section != NULL)
5020 addr += data->output_section->vma;
5021
5022 switch (data->type)
5023 {
5024 default:
5025 abort ();
5026 case BYTE:
5027 size = BYTE_SIZE;
5028 name = "BYTE";
5029 break;
5030 case SHORT:
5031 size = SHORT_SIZE;
5032 name = "SHORT";
5033 break;
5034 case LONG:
5035 size = LONG_SIZE;
5036 name = "LONG";
5037 break;
5038 case QUAD:
5039 size = QUAD_SIZE;
5040 name = "QUAD";
5041 break;
5042 case SQUAD:
5043 size = QUAD_SIZE;
5044 name = "SQUAD";
5045 break;
5046 }
5047
5048 if (size < TO_SIZE ((unsigned) 1))
5049 size = TO_SIZE ((unsigned) 1);
5050 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
5051
5052 if (data->exp->type.node_class != etree_value)
5053 {
5054 print_space ();
5055 exp_print_tree (data->exp);
5056 }
5057
5058 print_nl ();
5059
5060 print_dot = addr + TO_ADDR (size);
5061 }
5062
5063 /* Print an address statement. These are generated by options like
5064 -Ttext. */
5065
5066 static void
5067 print_address_statement (lang_address_statement_type *address)
5068 {
5069 minfo (_("Address of section %s set to "), address->section_name);
5070 exp_print_tree (address->address);
5071 print_nl ();
5072 }
5073
5074 /* Print a reloc statement. */
5075
5076 static void
5077 print_reloc_statement (lang_reloc_statement_type *reloc)
5078 {
5079 bfd_vma addr;
5080 bfd_size_type size;
5081
5082 init_opb (reloc->output_section);
5083 print_spaces (SECTION_NAME_MAP_LENGTH);
5084
5085 addr = reloc->output_offset;
5086 if (reloc->output_section != NULL)
5087 addr += reloc->output_section->vma;
5088
5089 size = bfd_get_reloc_size (reloc->howto);
5090
5091 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
5092
5093 if (reloc->name != NULL)
5094 minfo ("%s+", reloc->name);
5095 else
5096 minfo ("%s+", reloc->section->name);
5097
5098 exp_print_tree (reloc->addend_exp);
5099
5100 print_nl ();
5101
5102 print_dot = addr + TO_ADDR (size);
5103 }
5104
5105 static void
5106 print_padding_statement (lang_padding_statement_type *s)
5107 {
5108 int len;
5109 bfd_vma addr;
5110
5111 init_opb (s->output_section);
5112 minfo (" *fill*");
5113
5114 len = sizeof " *fill*" - 1;
5115 print_spaces (SECTION_NAME_MAP_LENGTH - len);
5116
5117 addr = s->output_offset;
5118 if (s->output_section != NULL)
5119 addr += s->output_section->vma;
5120 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
5121
5122 if (s->fill->size != 0)
5123 {
5124 size_t size;
5125 unsigned char *p;
5126 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
5127 fprintf (config.map_file, "%02x", *p);
5128 }
5129
5130 print_nl ();
5131
5132 print_dot = addr + TO_ADDR (s->size);
5133 }
5134
5135 static void
5136 print_wild_statement (lang_wild_statement_type *w,
5137 lang_output_section_statement_type *os)
5138 {
5139 struct wildcard_list *sec;
5140
5141 print_space ();
5142
5143 if (w->exclude_name_list)
5144 {
5145 name_list *tmp;
5146 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
5147 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
5148 minfo (" %s", tmp->name);
5149 minfo (") ");
5150 }
5151
5152 if (w->filenames_sorted)
5153 minfo ("SORT_BY_NAME(");
5154 if (w->filename != NULL)
5155 minfo ("%s", w->filename);
5156 else
5157 minfo ("*");
5158 if (w->filenames_sorted)
5159 minfo (")");
5160
5161 minfo ("(");
5162 for (sec = w->section_list; sec; sec = sec->next)
5163 {
5164 int closing_paren = 0;
5165
5166 switch (sec->spec.sorted)
5167 {
5168 case none:
5169 break;
5170
5171 case by_name:
5172 minfo ("SORT_BY_NAME(");
5173 closing_paren = 1;
5174 break;
5175
5176 case by_alignment:
5177 minfo ("SORT_BY_ALIGNMENT(");
5178 closing_paren = 1;
5179 break;
5180
5181 case by_name_alignment:
5182 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
5183 closing_paren = 2;
5184 break;
5185
5186 case by_alignment_name:
5187 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
5188 closing_paren = 2;
5189 break;
5190
5191 case by_none:
5192 minfo ("SORT_NONE(");
5193 closing_paren = 1;
5194 break;
5195
5196 case by_init_priority:
5197 minfo ("SORT_BY_INIT_PRIORITY(");
5198 closing_paren = 1;
5199 break;
5200 }
5201
5202 if (sec->spec.exclude_name_list != NULL)
5203 {
5204 name_list *tmp;
5205 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
5206 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
5207 minfo (" %s", tmp->name);
5208 minfo (") ");
5209 }
5210 if (sec->spec.name != NULL)
5211 minfo ("%s", sec->spec.name);
5212 else
5213 minfo ("*");
5214 for (;closing_paren > 0; closing_paren--)
5215 minfo (")");
5216 if (sec->next)
5217 minfo (" ");
5218 }
5219 minfo (")");
5220
5221 print_nl ();
5222
5223 print_statement_list (w->children.head, os);
5224 }
5225
5226 /* Print a group statement. */
5227
5228 static void
5229 print_group (lang_group_statement_type *s,
5230 lang_output_section_statement_type *os)
5231 {
5232 fprintf (config.map_file, "START GROUP\n");
5233 print_statement_list (s->children.head, os);
5234 fprintf (config.map_file, "END GROUP\n");
5235 }
5236
5237 /* Print the list of statements in S.
5238 This can be called for any statement type. */
5239
5240 static void
5241 print_statement_list (lang_statement_union_type *s,
5242 lang_output_section_statement_type *os)
5243 {
5244 while (s != NULL)
5245 {
5246 print_statement (s, os);
5247 s = s->header.next;
5248 }
5249 }
5250
5251 /* Print the first statement in statement list S.
5252 This can be called for any statement type. */
5253
5254 static void
5255 print_statement (lang_statement_union_type *s,
5256 lang_output_section_statement_type *os)
5257 {
5258 switch (s->header.type)
5259 {
5260 default:
5261 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
5262 FAIL ();
5263 break;
5264 case lang_constructors_statement_enum:
5265 if (constructor_list.head != NULL)
5266 {
5267 if (constructors_sorted)
5268 minfo (" SORT (CONSTRUCTORS)\n");
5269 else
5270 minfo (" CONSTRUCTORS\n");
5271 print_statement_list (constructor_list.head, os);
5272 }
5273 break;
5274 case lang_wild_statement_enum:
5275 print_wild_statement (&s->wild_statement, os);
5276 break;
5277 case lang_address_statement_enum:
5278 print_address_statement (&s->address_statement);
5279 break;
5280 case lang_object_symbols_statement_enum:
5281 minfo (" CREATE_OBJECT_SYMBOLS\n");
5282 break;
5283 case lang_fill_statement_enum:
5284 print_fill_statement (&s->fill_statement);
5285 break;
5286 case lang_data_statement_enum:
5287 print_data_statement (&s->data_statement);
5288 break;
5289 case lang_reloc_statement_enum:
5290 print_reloc_statement (&s->reloc_statement);
5291 break;
5292 case lang_input_section_enum:
5293 print_input_section (s->input_section.section, false);
5294 break;
5295 case lang_padding_statement_enum:
5296 print_padding_statement (&s->padding_statement);
5297 break;
5298 case lang_output_section_statement_enum:
5299 print_output_section_statement (&s->output_section_statement);
5300 break;
5301 case lang_assignment_statement_enum:
5302 print_assignment (&s->assignment_statement, os);
5303 break;
5304 case lang_target_statement_enum:
5305 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
5306 break;
5307 case lang_output_statement_enum:
5308 minfo ("OUTPUT(%s", s->output_statement.name);
5309 if (output_target != NULL)
5310 minfo (" %s", output_target);
5311 minfo (")\n");
5312 break;
5313 case lang_input_statement_enum:
5314 print_input_statement (&s->input_statement);
5315 break;
5316 case lang_group_statement_enum:
5317 print_group (&s->group_statement, os);
5318 break;
5319 case lang_insert_statement_enum:
5320 minfo ("INSERT %s %s\n",
5321 s->insert_statement.is_before ? "BEFORE" : "AFTER",
5322 s->insert_statement.where);
5323 break;
5324 }
5325 }
5326
5327 static void
5328 print_statements (void)
5329 {
5330 print_statement_list (statement_list.head, abs_output_section);
5331 }
5332
5333 /* Print the first N statements in statement list S to STDERR.
5334 If N == 0, nothing is printed.
5335 If N < 0, the entire list is printed.
5336 Intended to be called from GDB. */
5337
5338 void
5339 dprint_statement (lang_statement_union_type *s, int n)
5340 {
5341 FILE *map_save = config.map_file;
5342
5343 config.map_file = stderr;
5344
5345 if (n < 0)
5346 print_statement_list (s, abs_output_section);
5347 else
5348 {
5349 while (s && --n >= 0)
5350 {
5351 print_statement (s, abs_output_section);
5352 s = s->header.next;
5353 }
5354 }
5355
5356 config.map_file = map_save;
5357 }
5358
5359 static void
5360 insert_pad (lang_statement_union_type **ptr,
5361 fill_type *fill,
5362 bfd_size_type alignment_needed,
5363 asection *output_section,
5364 bfd_vma dot)
5365 {
5366 static fill_type zero_fill;
5367 lang_statement_union_type *pad = NULL;
5368
5369 if (ptr != &statement_list.head)
5370 pad = ((lang_statement_union_type *)
5371 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
5372 if (pad != NULL
5373 && pad->header.type == lang_padding_statement_enum
5374 && pad->padding_statement.output_section == output_section)
5375 {
5376 /* Use the existing pad statement. */
5377 }
5378 else if ((pad = *ptr) != NULL
5379 && pad->header.type == lang_padding_statement_enum
5380 && pad->padding_statement.output_section == output_section)
5381 {
5382 /* Use the existing pad statement. */
5383 }
5384 else
5385 {
5386 /* Make a new padding statement, linked into existing chain. */
5387 pad = stat_alloc (sizeof (lang_padding_statement_type));
5388 pad->header.next = *ptr;
5389 *ptr = pad;
5390 pad->header.type = lang_padding_statement_enum;
5391 pad->padding_statement.output_section = output_section;
5392 if (fill == NULL)
5393 fill = &zero_fill;
5394 pad->padding_statement.fill = fill;
5395 }
5396 pad->padding_statement.output_offset = dot - output_section->vma;
5397 pad->padding_statement.size = alignment_needed;
5398 if (!(output_section->flags & SEC_FIXED_SIZE))
5399 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
5400 - output_section->vma);
5401 }
5402
5403 /* Work out how much this section will move the dot point. */
5404
5405 static bfd_vma
5406 size_input_section
5407 (lang_statement_union_type **this_ptr,
5408 lang_output_section_statement_type *output_section_statement,
5409 fill_type *fill,
5410 bool *removed,
5411 bfd_vma dot)
5412 {
5413 lang_input_section_type *is = &((*this_ptr)->input_section);
5414 asection *i = is->section;
5415 asection *o = output_section_statement->bfd_section;
5416 *removed = 0;
5417
5418 if (link_info.non_contiguous_regions)
5419 {
5420 /* If the input section I has already been successfully assigned
5421 to an output section other than O, don't bother with it and
5422 let the caller remove it from the list. Keep processing in
5423 case we have already handled O, because the repeated passes
5424 have reinitialized its size. */
5425 if (i->already_assigned && i->already_assigned != o)
5426 {
5427 *removed = 1;
5428 return dot;
5429 }
5430 }
5431
5432 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5433 i->output_offset = i->vma - o->vma;
5434 else if (((i->flags & SEC_EXCLUDE) != 0)
5435 || output_section_statement->ignored)
5436 i->output_offset = dot - o->vma;
5437 else
5438 {
5439 bfd_size_type alignment_needed;
5440
5441 /* Align this section first to the input sections requirement,
5442 then to the output section's requirement. If this alignment
5443 is greater than any seen before, then record it too. Perform
5444 the alignment by inserting a magic 'padding' statement. */
5445
5446 if (output_section_statement->subsection_alignment != NULL)
5447 i->alignment_power
5448 = exp_get_power (output_section_statement->subsection_alignment,
5449 output_section_statement,
5450 "subsection alignment");
5451
5452 if (o->alignment_power < i->alignment_power)
5453 o->alignment_power = i->alignment_power;
5454
5455 alignment_needed = align_power (dot, i->alignment_power) - dot;
5456
5457 if (alignment_needed != 0)
5458 {
5459 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
5460 dot += alignment_needed;
5461 }
5462
5463 if (link_info.non_contiguous_regions)
5464 {
5465 /* If I would overflow O, let the caller remove I from the
5466 list. */
5467 if (output_section_statement->region)
5468 {
5469 bfd_vma end = output_section_statement->region->origin
5470 + output_section_statement->region->length;
5471
5472 if (dot + TO_ADDR (i->size) > end)
5473 {
5474 if (i->flags & SEC_LINKER_CREATED)
5475 einfo (_("%F%P: Output section `%pA' not large enough for "
5476 "the linker-created stubs section `%pA'.\n"),
5477 i->output_section, i);
5478
5479 if (i->rawsize && i->rawsize != i->size)
5480 einfo (_("%F%P: Relaxation not supported with "
5481 "--enable-non-contiguous-regions (section `%pA' "
5482 "would overflow `%pA' after it changed size).\n"),
5483 i, i->output_section);
5484
5485 *removed = 1;
5486 dot = end;
5487 i->output_section = NULL;
5488 return dot;
5489 }
5490 }
5491 }
5492
5493 /* Remember where in the output section this input section goes. */
5494 i->output_offset = dot - o->vma;
5495
5496 /* Mark how big the output section must be to contain this now. */
5497 dot += TO_ADDR (i->size);
5498 if (!(o->flags & SEC_FIXED_SIZE))
5499 o->size = TO_SIZE (dot - o->vma);
5500
5501 if (link_info.non_contiguous_regions)
5502 {
5503 /* Record that I was successfully assigned to O, and update
5504 its actual output section too. */
5505 i->already_assigned = o;
5506 i->output_section = o;
5507 }
5508 }
5509
5510 return dot;
5511 }
5512
5513 struct check_sec
5514 {
5515 asection *sec;
5516 bool warned;
5517 };
5518
5519 static int
5520 sort_sections_by_lma (const void *arg1, const void *arg2)
5521 {
5522 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5523 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5524
5525 if (sec1->lma < sec2->lma)
5526 return -1;
5527 else if (sec1->lma > sec2->lma)
5528 return 1;
5529 else if (sec1->id < sec2->id)
5530 return -1;
5531 else if (sec1->id > sec2->id)
5532 return 1;
5533
5534 return 0;
5535 }
5536
5537 static int
5538 sort_sections_by_vma (const void *arg1, const void *arg2)
5539 {
5540 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
5541 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
5542
5543 if (sec1->vma < sec2->vma)
5544 return -1;
5545 else if (sec1->vma > sec2->vma)
5546 return 1;
5547 else if (sec1->id < sec2->id)
5548 return -1;
5549 else if (sec1->id > sec2->id)
5550 return 1;
5551
5552 return 0;
5553 }
5554
5555 #define IS_TBSS(s) \
5556 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
5557
5558 #define IGNORE_SECTION(s) \
5559 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
5560
5561 /* Check to see if any allocated sections overlap with other allocated
5562 sections. This can happen if a linker script specifies the output
5563 section addresses of the two sections. Also check whether any memory
5564 region has overflowed. */
5565
5566 static void
5567 lang_check_section_addresses (void)
5568 {
5569 asection *s, *p;
5570 struct check_sec *sections;
5571 size_t i, count;
5572 bfd_vma addr_mask;
5573 bfd_vma s_start;
5574 bfd_vma s_end;
5575 bfd_vma p_start = 0;
5576 bfd_vma p_end = 0;
5577 lang_memory_region_type *m;
5578 bool overlays;
5579
5580 /* Detect address space overflow on allocated sections. */
5581 addr_mask = ((bfd_vma) 1 <<
5582 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
5583 addr_mask = (addr_mask << 1) + 1;
5584 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5585 if ((s->flags & SEC_ALLOC) != 0)
5586 {
5587 s_end = (s->vma + s->size) & addr_mask;
5588 if (s_end != 0 && s_end < (s->vma & addr_mask))
5589 einfo (_("%X%P: section %s VMA wraps around address space\n"),
5590 s->name);
5591 else
5592 {
5593 s_end = (s->lma + s->size) & addr_mask;
5594 if (s_end != 0 && s_end < (s->lma & addr_mask))
5595 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5596 s->name);
5597 }
5598 }
5599
5600 if (bfd_count_sections (link_info.output_bfd) <= 1)
5601 return;
5602
5603 count = bfd_count_sections (link_info.output_bfd);
5604 sections = XNEWVEC (struct check_sec, count);
5605
5606 /* Scan all sections in the output list. */
5607 count = 0;
5608 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5609 {
5610 if (IGNORE_SECTION (s)
5611 || s->size == 0)
5612 continue;
5613
5614 sections[count].sec = s;
5615 sections[count].warned = false;
5616 count++;
5617 }
5618
5619 if (count <= 1)
5620 {
5621 free (sections);
5622 return;
5623 }
5624
5625 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5626
5627 /* First check section LMAs. There should be no overlap of LMAs on
5628 loadable sections, even with overlays. */
5629 for (p = NULL, i = 0; i < count; i++)
5630 {
5631 s = sections[i].sec;
5632 init_opb (s);
5633 if ((s->flags & SEC_LOAD) != 0)
5634 {
5635 s_start = s->lma;
5636 s_end = s_start + TO_ADDR (s->size) - 1;
5637
5638 /* Look for an overlap. We have sorted sections by lma, so
5639 we know that s_start >= p_start. Besides the obvious
5640 case of overlap when the current section starts before
5641 the previous one ends, we also must have overlap if the
5642 previous section wraps around the address space. */
5643 if (p != NULL
5644 && (s_start <= p_end
5645 || p_end < p_start))
5646 {
5647 einfo (_("%X%P: section %s LMA [%V,%V]"
5648 " overlaps section %s LMA [%V,%V]\n"),
5649 s->name, s_start, s_end, p->name, p_start, p_end);
5650 sections[i].warned = true;
5651 }
5652 p = s;
5653 p_start = s_start;
5654 p_end = s_end;
5655 }
5656 }
5657
5658 /* If any non-zero size allocated section (excluding tbss) starts at
5659 exactly the same VMA as another such section, then we have
5660 overlays. Overlays generated by the OVERLAY keyword will have
5661 this property. It is possible to intentionally generate overlays
5662 that fail this test, but it would be unusual. */
5663 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5664 overlays = false;
5665 p_start = sections[0].sec->vma;
5666 for (i = 1; i < count; i++)
5667 {
5668 s_start = sections[i].sec->vma;
5669 if (p_start == s_start)
5670 {
5671 overlays = true;
5672 break;
5673 }
5674 p_start = s_start;
5675 }
5676
5677 /* Now check section VMAs if no overlays were detected. */
5678 if (!overlays)
5679 {
5680 for (p = NULL, i = 0; i < count; i++)
5681 {
5682 s = sections[i].sec;
5683 init_opb (s);
5684 s_start = s->vma;
5685 s_end = s_start + TO_ADDR (s->size) - 1;
5686
5687 if (p != NULL
5688 && !sections[i].warned
5689 && (s_start <= p_end
5690 || p_end < p_start))
5691 einfo (_("%X%P: section %s VMA [%V,%V]"
5692 " overlaps section %s VMA [%V,%V]\n"),
5693 s->name, s_start, s_end, p->name, p_start, p_end);
5694 p = s;
5695 p_start = s_start;
5696 p_end = s_end;
5697 }
5698 }
5699
5700 free (sections);
5701
5702 /* If any memory region has overflowed, report by how much.
5703 We do not issue this diagnostic for regions that had sections
5704 explicitly placed outside their bounds; os_region_check's
5705 diagnostics are adequate for that case.
5706
5707 FIXME: It is conceivable that m->current - (m->origin + m->length)
5708 might overflow a 32-bit integer. There is, alas, no way to print
5709 a bfd_vma quantity in decimal. */
5710 for (m = lang_memory_region_list; m; m = m->next)
5711 if (m->had_full_message)
5712 {
5713 unsigned long over = m->current - (m->origin + m->length);
5714 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5715 "%X%P: region `%s' overflowed by %lu bytes\n",
5716 over),
5717 m->name_list.name, over);
5718 }
5719 }
5720
5721 /* Make sure the new address is within the region. We explicitly permit the
5722 current address to be at the exact end of the region when the address is
5723 non-zero, in case the region is at the end of addressable memory and the
5724 calculation wraps around. */
5725
5726 static void
5727 os_region_check (lang_output_section_statement_type *os,
5728 lang_memory_region_type *region,
5729 etree_type *tree,
5730 bfd_vma rbase)
5731 {
5732 if ((region->current < region->origin
5733 || (region->current - region->origin > region->length))
5734 && ((region->current != region->origin + region->length)
5735 || rbase == 0))
5736 {
5737 if (tree != NULL)
5738 {
5739 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5740 " is not within region `%s'\n"),
5741 region->current,
5742 os->bfd_section->owner,
5743 os->bfd_section->name,
5744 region->name_list.name);
5745 }
5746 else if (!region->had_full_message)
5747 {
5748 region->had_full_message = true;
5749
5750 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5751 os->bfd_section->owner,
5752 os->bfd_section->name,
5753 region->name_list.name);
5754 }
5755 }
5756 }
5757
5758 static void
5759 ldlang_check_relro_region (lang_statement_union_type *s)
5760 {
5761 seg_align_type *seg = &expld.dataseg;
5762
5763 if (seg->relro == exp_seg_relro_start)
5764 {
5765 if (!seg->relro_start_stat)
5766 seg->relro_start_stat = s;
5767 else
5768 {
5769 ASSERT (seg->relro_start_stat == s);
5770 }
5771 }
5772 else if (seg->relro == exp_seg_relro_end)
5773 {
5774 if (!seg->relro_end_stat)
5775 seg->relro_end_stat = s;
5776 else
5777 {
5778 ASSERT (seg->relro_end_stat == s);
5779 }
5780 }
5781 }
5782
5783 /* Set the sizes for all the output sections. */
5784
5785 static bfd_vma
5786 lang_size_sections_1
5787 (lang_statement_union_type **prev,
5788 lang_output_section_statement_type *current_os,
5789 fill_type *fill,
5790 bfd_vma dot,
5791 bool *relax,
5792 bool check_regions)
5793 {
5794 lang_statement_union_type *s;
5795 lang_statement_union_type *prev_s = NULL;
5796 bool removed_prev_s = false;
5797 lang_output_section_statement_type *os = current_os;
5798
5799 /* Size up the sections from their constituent parts. */
5800 for (s = *prev; s != NULL; prev_s = s, s = s->header.next)
5801 {
5802 bool removed = false;
5803
5804 switch (s->header.type)
5805 {
5806 case lang_output_section_statement_enum:
5807 {
5808 bfd_vma newdot, after, dotdelta;
5809 lang_memory_region_type *r;
5810 int section_alignment = 0;
5811
5812 os = &s->output_section_statement;
5813 init_opb (os->bfd_section);
5814 if (os->constraint == -1)
5815 break;
5816
5817 /* FIXME: We shouldn't need to zero section vmas for ld -r
5818 here, in lang_insert_orphan, or in the default linker scripts.
5819 This is covering for coff backend linker bugs. See PR6945. */
5820 if (os->addr_tree == NULL
5821 && bfd_link_relocatable (&link_info)
5822 && (bfd_get_flavour (link_info.output_bfd)
5823 == bfd_target_coff_flavour))
5824 os->addr_tree = exp_intop (0);
5825 if (os->addr_tree != NULL)
5826 {
5827 exp_fold_tree (os->addr_tree, os, bfd_abs_section_ptr, &dot);
5828
5829 if (expld.result.valid_p)
5830 {
5831 dot = expld.result.value;
5832 if (expld.result.section != NULL)
5833 dot += expld.result.section->vma;
5834 }
5835 else if (expld.phase != lang_mark_phase_enum)
5836 einfo (_("%F%P:%pS: non constant or forward reference"
5837 " address expression for section %s\n"),
5838 os->addr_tree, os->name);
5839 }
5840
5841 if (os->bfd_section == NULL)
5842 /* This section was removed or never actually created. */
5843 break;
5844
5845 /* If this is a COFF shared library section, use the size and
5846 address from the input section. FIXME: This is COFF
5847 specific; it would be cleaner if there were some other way
5848 to do this, but nothing simple comes to mind. */
5849 if (((bfd_get_flavour (link_info.output_bfd)
5850 == bfd_target_ecoff_flavour)
5851 || (bfd_get_flavour (link_info.output_bfd)
5852 == bfd_target_coff_flavour))
5853 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5854 {
5855 asection *input;
5856
5857 if (os->children.head == NULL
5858 || os->children.head->header.next != NULL
5859 || (os->children.head->header.type
5860 != lang_input_section_enum))
5861 einfo (_("%X%P: internal error on COFF shared library"
5862 " section %s\n"), os->name);
5863
5864 input = os->children.head->input_section.section;
5865 bfd_set_section_vma (os->bfd_section,
5866 bfd_section_vma (input));
5867 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5868 os->bfd_section->size = input->size;
5869 break;
5870 }
5871
5872 newdot = dot;
5873 dotdelta = 0;
5874 if (bfd_is_abs_section (os->bfd_section))
5875 {
5876 /* No matter what happens, an abs section starts at zero. */
5877 ASSERT (os->bfd_section->vma == 0);
5878 }
5879 else
5880 {
5881 if (os->addr_tree == NULL)
5882 {
5883 /* No address specified for this section, get one
5884 from the region specification. */
5885 if (os->region == NULL
5886 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5887 && os->region->name_list.name[0] == '*'
5888 && strcmp (os->region->name_list.name,
5889 DEFAULT_MEMORY_REGION) == 0))
5890 {
5891 os->region = lang_memory_default (os->bfd_section);
5892 }
5893
5894 /* If a loadable section is using the default memory
5895 region, and some non default memory regions were
5896 defined, issue an error message. */
5897 if (!os->ignored
5898 && !IGNORE_SECTION (os->bfd_section)
5899 && !bfd_link_relocatable (&link_info)
5900 && check_regions
5901 && strcmp (os->region->name_list.name,
5902 DEFAULT_MEMORY_REGION) == 0
5903 && lang_memory_region_list != NULL
5904 && (strcmp (lang_memory_region_list->name_list.name,
5905 DEFAULT_MEMORY_REGION) != 0
5906 || lang_memory_region_list->next != NULL)
5907 && lang_sizing_iteration == 1)
5908 {
5909 /* By default this is an error rather than just a
5910 warning because if we allocate the section to the
5911 default memory region we can end up creating an
5912 excessively large binary, or even seg faulting when
5913 attempting to perform a negative seek. See
5914 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5915 for an example of this. This behaviour can be
5916 overridden by the using the --no-check-sections
5917 switch. */
5918 if (command_line.check_section_addresses)
5919 einfo (_("%F%P: error: no memory region specified"
5920 " for loadable section `%s'\n"),
5921 bfd_section_name (os->bfd_section));
5922 else
5923 einfo (_("%P: warning: no memory region specified"
5924 " for loadable section `%s'\n"),
5925 bfd_section_name (os->bfd_section));
5926 }
5927
5928 newdot = os->region->current;
5929 section_alignment = os->bfd_section->alignment_power;
5930 }
5931 else
5932 section_alignment = exp_get_power (os->section_alignment, os,
5933 "section alignment");
5934
5935 /* Align to what the section needs. */
5936 if (section_alignment > 0)
5937 {
5938 bfd_vma savedot = newdot;
5939 bfd_vma diff = 0;
5940
5941 newdot = align_power (newdot, section_alignment);
5942 dotdelta = newdot - savedot;
5943
5944 if (lang_sizing_iteration == 1)
5945 diff = dotdelta;
5946 else if (lang_sizing_iteration > 1)
5947 {
5948 /* Only report adjustments that would change
5949 alignment from what we have already reported. */
5950 diff = newdot - os->bfd_section->vma;
5951 if (!(diff & (((bfd_vma) 1 << section_alignment) - 1)))
5952 diff = 0;
5953 }
5954 if (diff != 0
5955 && (config.warn_section_align
5956 || os->addr_tree != NULL))
5957 einfo (_("%P: warning: "
5958 "start of section %s changed by %ld\n"),
5959 os->name, (long) diff);
5960 }
5961
5962 bfd_set_section_vma (os->bfd_section, newdot);
5963
5964 os->bfd_section->output_offset = 0;
5965 }
5966
5967 lang_size_sections_1 (&os->children.head, os,
5968 os->fill, newdot, relax, check_regions);
5969
5970 os->processed_vma = true;
5971
5972 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5973 /* Except for some special linker created sections,
5974 no output section should change from zero size
5975 after strip_excluded_output_sections. A non-zero
5976 size on an ignored section indicates that some
5977 input section was not sized early enough. */
5978 ASSERT (os->bfd_section->size == 0);
5979 else
5980 {
5981 dot = os->bfd_section->vma;
5982
5983 /* Put the section within the requested block size, or
5984 align at the block boundary. */
5985 after = ((dot
5986 + TO_ADDR (os->bfd_section->size)
5987 + os->block_value - 1)
5988 & - (bfd_vma) os->block_value);
5989
5990 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5991 os->bfd_section->size = TO_SIZE (after
5992 - os->bfd_section->vma);
5993 }
5994
5995 /* Set section lma. */
5996 r = os->region;
5997 if (r == NULL)
5998 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, false);
5999
6000 if (os->load_base)
6001 {
6002 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
6003 os->bfd_section->lma = lma;
6004 }
6005 else if (os->lma_region != NULL)
6006 {
6007 bfd_vma lma = os->lma_region->current;
6008
6009 if (os->align_lma_with_input)
6010 lma += dotdelta;
6011 else
6012 {
6013 /* When LMA_REGION is the same as REGION, align the LMA
6014 as we did for the VMA, possibly including alignment
6015 from the bfd section. If a different region, then
6016 only align according to the value in the output
6017 statement. */
6018 if (os->lma_region != os->region)
6019 section_alignment = exp_get_power (os->section_alignment,
6020 os,
6021 "section alignment");
6022 if (section_alignment > 0)
6023 lma = align_power (lma, section_alignment);
6024 }
6025 os->bfd_section->lma = lma;
6026 }
6027 else if (r->last_os != NULL
6028 && (os->bfd_section->flags & SEC_ALLOC) != 0)
6029 {
6030 bfd_vma lma;
6031 asection *last;
6032
6033 last = r->last_os->output_section_statement.bfd_section;
6034
6035 /* A backwards move of dot should be accompanied by
6036 an explicit assignment to the section LMA (ie.
6037 os->load_base set) because backwards moves can
6038 create overlapping LMAs. */
6039 if (dot < last->vma
6040 && os->bfd_section->size != 0
6041 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
6042 {
6043 /* If dot moved backwards then leave lma equal to
6044 vma. This is the old default lma, which might
6045 just happen to work when the backwards move is
6046 sufficiently large. Nag if this changes anything,
6047 so people can fix their linker scripts. */
6048
6049 if (last->vma != last->lma)
6050 einfo (_("%P: warning: dot moved backwards "
6051 "before `%s'\n"), os->name);
6052 }
6053 else
6054 {
6055 /* If this is an overlay, set the current lma to that
6056 at the end of the previous section. */
6057 if (os->sectype == overlay_section)
6058 lma = last->lma + TO_ADDR (last->size);
6059
6060 /* Otherwise, keep the same lma to vma relationship
6061 as the previous section. */
6062 else
6063 lma = os->bfd_section->vma + last->lma - last->vma;
6064
6065 if (section_alignment > 0)
6066 lma = align_power (lma, section_alignment);
6067 os->bfd_section->lma = lma;
6068 }
6069 }
6070 os->processed_lma = true;
6071
6072 /* Keep track of normal sections using the default
6073 lma region. We use this to set the lma for
6074 following sections. Overlays or other linker
6075 script assignment to lma might mean that the
6076 default lma == vma is incorrect.
6077 To avoid warnings about dot moving backwards when using
6078 -Ttext, don't start tracking sections until we find one
6079 of non-zero size or with lma set differently to vma.
6080 Do this tracking before we short-cut the loop so that we
6081 track changes for the case where the section size is zero,
6082 but the lma is set differently to the vma. This is
6083 important, if an orphan section is placed after an
6084 otherwise empty output section that has an explicit lma
6085 set, we want that lma reflected in the orphans lma. */
6086 if (((!IGNORE_SECTION (os->bfd_section)
6087 && (os->bfd_section->size != 0
6088 || (r->last_os == NULL
6089 && os->bfd_section->vma != os->bfd_section->lma)
6090 || (r->last_os != NULL
6091 && dot >= (r->last_os->output_section_statement
6092 .bfd_section->vma))))
6093 || os->sectype == first_overlay_section)
6094 && os->lma_region == NULL
6095 && !bfd_link_relocatable (&link_info))
6096 r->last_os = s;
6097
6098 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
6099 break;
6100
6101 /* .tbss sections effectively have zero size. */
6102 if (!IS_TBSS (os->bfd_section)
6103 || bfd_link_relocatable (&link_info))
6104 dotdelta = TO_ADDR (os->bfd_section->size);
6105 else
6106 dotdelta = 0;
6107 dot += dotdelta;
6108
6109 if (os->update_dot_tree != 0)
6110 exp_fold_tree (os->update_dot_tree, os, bfd_abs_section_ptr, &dot);
6111
6112 /* Update dot in the region ?
6113 We only do this if the section is going to be allocated,
6114 since unallocated sections do not contribute to the region's
6115 overall size in memory. */
6116 if (os->region != NULL
6117 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
6118 {
6119 os->region->current = dot;
6120
6121 if (check_regions)
6122 /* Make sure the new address is within the region. */
6123 os_region_check (os, os->region, os->addr_tree,
6124 os->bfd_section->vma);
6125
6126 if (os->lma_region != NULL && os->lma_region != os->region
6127 && ((os->bfd_section->flags & SEC_LOAD)
6128 || os->align_lma_with_input))
6129 {
6130 os->lma_region->current = os->bfd_section->lma + dotdelta;
6131
6132 if (check_regions)
6133 os_region_check (os, os->lma_region, NULL,
6134 os->bfd_section->lma);
6135 }
6136 }
6137 }
6138 break;
6139
6140 case lang_constructors_statement_enum:
6141 dot = lang_size_sections_1 (&constructor_list.head, current_os,
6142 fill, dot, relax, check_regions);
6143 break;
6144
6145 case lang_data_statement_enum:
6146 {
6147 unsigned int size = 0;
6148
6149 s->data_statement.output_offset = dot - current_os->bfd_section->vma;
6150 s->data_statement.output_section = current_os->bfd_section;
6151
6152 /* We might refer to provided symbols in the expression, and
6153 need to mark them as needed. */
6154 exp_fold_tree (s->data_statement.exp, os,
6155 bfd_abs_section_ptr, &dot);
6156
6157 switch (s->data_statement.type)
6158 {
6159 default:
6160 abort ();
6161 case QUAD:
6162 case SQUAD:
6163 size = QUAD_SIZE;
6164 break;
6165 case LONG:
6166 size = LONG_SIZE;
6167 break;
6168 case SHORT:
6169 size = SHORT_SIZE;
6170 break;
6171 case BYTE:
6172 size = BYTE_SIZE;
6173 break;
6174 }
6175 if (size < TO_SIZE ((unsigned) 1))
6176 size = TO_SIZE ((unsigned) 1);
6177 dot += TO_ADDR (size);
6178 if (!(current_os->bfd_section->flags & SEC_FIXED_SIZE))
6179 current_os->bfd_section->size
6180 = TO_SIZE (dot - current_os->bfd_section->vma);
6181
6182 }
6183 break;
6184
6185 case lang_reloc_statement_enum:
6186 {
6187 int size;
6188
6189 s->reloc_statement.output_offset
6190 = dot - current_os->bfd_section->vma;
6191 s->reloc_statement.output_section
6192 = current_os->bfd_section;
6193 size = bfd_get_reloc_size (s->reloc_statement.howto);
6194 dot += TO_ADDR (size);
6195 if (!(current_os->bfd_section->flags & SEC_FIXED_SIZE))
6196 current_os->bfd_section->size
6197 = TO_SIZE (dot - current_os->bfd_section->vma);
6198 }
6199 break;
6200
6201 case lang_wild_statement_enum:
6202 dot = lang_size_sections_1 (&s->wild_statement.children.head,
6203 current_os, fill, dot, relax,
6204 check_regions);
6205 break;
6206
6207 case lang_object_symbols_statement_enum:
6208 link_info.create_object_symbols_section = current_os->bfd_section;
6209 current_os->bfd_section->flags |= SEC_KEEP;
6210 break;
6211
6212 case lang_output_statement_enum:
6213 case lang_target_statement_enum:
6214 break;
6215
6216 case lang_input_section_enum:
6217 {
6218 asection *i;
6219
6220 i = s->input_section.section;
6221 if (relax)
6222 {
6223 bool again;
6224
6225 if (!bfd_relax_section (i->owner, i, &link_info, &again))
6226 einfo (_("%F%P: can't relax section: %E\n"));
6227 if (again)
6228 *relax = true;
6229 }
6230 dot = size_input_section (prev, current_os, fill, &removed, dot);
6231 }
6232 break;
6233
6234 case lang_input_statement_enum:
6235 break;
6236
6237 case lang_fill_statement_enum:
6238 s->fill_statement.output_section = current_os->bfd_section;
6239
6240 fill = s->fill_statement.fill;
6241 break;
6242
6243 case lang_assignment_statement_enum:
6244 {
6245 bfd_vma newdot = dot;
6246 etree_type *tree = s->assignment_statement.exp;
6247
6248 expld.dataseg.relro = exp_seg_relro_none;
6249
6250 exp_fold_tree (tree, os, current_os->bfd_section, &newdot);
6251
6252 ldlang_check_relro_region (s);
6253
6254 expld.dataseg.relro = exp_seg_relro_none;
6255
6256 /* This symbol may be relative to this section. */
6257 if ((tree->type.node_class == etree_provided
6258 || tree->type.node_class == etree_assign)
6259 && (tree->assign.dst [0] != '.'
6260 || tree->assign.dst [1] != '\0'))
6261 current_os->update_dot = 1;
6262
6263 if (!current_os->ignored)
6264 {
6265 if (current_os == abs_output_section)
6266 {
6267 /* If we don't have an output section, then just adjust
6268 the default memory address. */
6269 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
6270 false)->current = newdot;
6271 }
6272 else if (newdot != dot)
6273 {
6274 /* Insert a pad after this statement. We can't
6275 put the pad before when relaxing, in case the
6276 assignment references dot. */
6277 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
6278 current_os->bfd_section, dot);
6279
6280 /* Don't neuter the pad below when relaxing. */
6281 s = s->header.next;
6282
6283 /* If dot is advanced, this implies that the section
6284 should have space allocated to it, unless the
6285 user has explicitly stated that the section
6286 should not be allocated. */
6287 if (current_os->sectype != noalloc_section
6288 && (current_os->sectype != noload_section
6289 || (bfd_get_flavour (link_info.output_bfd)
6290 == bfd_target_elf_flavour)))
6291 current_os->bfd_section->flags |= SEC_ALLOC;
6292 }
6293 dot = newdot;
6294 }
6295 }
6296 break;
6297
6298 case lang_padding_statement_enum:
6299 /* If this is the first time lang_size_sections is called,
6300 we won't have any padding statements. If this is the
6301 second or later passes when relaxing, we should allow
6302 padding to shrink. If padding is needed on this pass, it
6303 will be added back in. */
6304 s->padding_statement.size = 0;
6305
6306 /* Make sure output_offset is valid. If relaxation shrinks
6307 the section and this pad isn't needed, it's possible to
6308 have output_offset larger than the final size of the
6309 section. bfd_set_section_contents will complain even for
6310 a pad size of zero. */
6311 s->padding_statement.output_offset
6312 = dot - current_os->bfd_section->vma;
6313 break;
6314
6315 case lang_group_statement_enum:
6316 dot = lang_size_sections_1 (&s->group_statement.children.head,
6317 current_os, fill, dot, relax,
6318 check_regions);
6319 break;
6320
6321 case lang_insert_statement_enum:
6322 break;
6323
6324 /* We can only get here when relaxing is turned on. */
6325 case lang_address_statement_enum:
6326 break;
6327
6328 default:
6329 FAIL ();
6330 break;
6331 }
6332
6333 /* If an input section doesn't fit in the current output
6334 section, remove it from the list. Handle the case where we
6335 have to remove an input_section statement here: there is a
6336 special case to remove the first element of the list. */
6337 if (link_info.non_contiguous_regions && removed)
6338 {
6339 /* If we removed the first element during the previous
6340 iteration, override the loop assignment of prev_s. */
6341 if (removed_prev_s)
6342 prev_s = NULL;
6343
6344 if (prev_s)
6345 {
6346 /* If there was a real previous input section, just skip
6347 the current one. */
6348 prev_s->header.next=s->header.next;
6349 s = prev_s;
6350 removed_prev_s = false;
6351 }
6352 else
6353 {
6354 /* Remove the first input section of the list. */
6355 *prev = s->header.next;
6356 removed_prev_s = true;
6357 }
6358
6359 /* Move to next element, unless we removed the head of the
6360 list. */
6361 if (!removed_prev_s)
6362 prev = &s->header.next;
6363 }
6364 else
6365 {
6366 prev = &s->header.next;
6367 removed_prev_s = false;
6368 }
6369 }
6370 return dot;
6371 }
6372
6373 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
6374 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
6375 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
6376 segments. We are allowed an opportunity to override this decision. */
6377
6378 bool
6379 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6380 bfd *abfd ATTRIBUTE_UNUSED,
6381 asection *current_section,
6382 asection *previous_section,
6383 bool new_segment)
6384 {
6385 lang_output_section_statement_type *cur;
6386 lang_output_section_statement_type *prev;
6387
6388 /* The checks below are only necessary when the BFD library has decided
6389 that the two sections ought to be placed into the same segment. */
6390 if (new_segment)
6391 return true;
6392
6393 /* Paranoia checks. */
6394 if (current_section == NULL || previous_section == NULL)
6395 return new_segment;
6396
6397 /* If this flag is set, the target never wants code and non-code
6398 sections comingled in the same segment. */
6399 if (config.separate_code
6400 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
6401 return true;
6402
6403 /* Find the memory regions associated with the two sections.
6404 We call lang_output_section_find() here rather than scanning the list
6405 of output sections looking for a matching section pointer because if
6406 we have a large number of sections then a hash lookup is faster. */
6407 cur = lang_output_section_find (current_section->name);
6408 prev = lang_output_section_find (previous_section->name);
6409
6410 /* More paranoia. */
6411 if (cur == NULL || prev == NULL)
6412 return new_segment;
6413
6414 /* If the regions are different then force the sections to live in
6415 different segments. See the email thread starting at the following
6416 URL for the reasons why this is necessary:
6417 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
6418 return cur->region != prev->region;
6419 }
6420
6421 void
6422 one_lang_size_sections_pass (bool *relax, bool check_regions)
6423 {
6424 lang_statement_iteration++;
6425 if (expld.phase != lang_mark_phase_enum)
6426 lang_sizing_iteration++;
6427 lang_size_sections_1 (&statement_list.head, abs_output_section,
6428 0, 0, relax, check_regions);
6429 }
6430
6431 static bool
6432 lang_size_segment (void)
6433 {
6434 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
6435 a page could be saved in the data segment. */
6436 seg_align_type *seg = &expld.dataseg;
6437 bfd_vma first, last;
6438
6439 first = -seg->base & (seg->commonpagesize - 1);
6440 last = seg->end & (seg->commonpagesize - 1);
6441 if (first && last
6442 && ((seg->base & ~(seg->commonpagesize - 1))
6443 != (seg->end & ~(seg->commonpagesize - 1)))
6444 && first + last <= seg->commonpagesize)
6445 {
6446 seg->phase = exp_seg_adjust;
6447 return true;
6448 }
6449
6450 seg->phase = exp_seg_done;
6451 return false;
6452 }
6453
6454 static bfd_vma
6455 lang_size_relro_segment_1 (void)
6456 {
6457 seg_align_type *seg = &expld.dataseg;
6458 bfd_vma relro_end, desired_end;
6459 asection *sec;
6460
6461 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
6462 relro_end = (seg->relro_end + seg->relropagesize - 1) & -seg->relropagesize;
6463
6464 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
6465 desired_end = relro_end - seg->relro_offset;
6466
6467 /* For sections in the relro segment.. */
6468 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
6469 if ((sec->flags & SEC_ALLOC) != 0
6470 && sec->vma >= seg->base
6471 && sec->vma < seg->relro_end - seg->relro_offset)
6472 {
6473 /* Where do we want to put this section so that it ends as
6474 desired? */
6475 bfd_vma start, end, bump;
6476
6477 end = start = sec->vma;
6478 if (!IS_TBSS (sec))
6479 end += TO_ADDR (sec->size);
6480 bump = desired_end - end;
6481 /* We'd like to increase START by BUMP, but we must heed
6482 alignment so the increase might be less than optimum. */
6483 start += bump;
6484 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
6485 /* This is now the desired end for the previous section. */
6486 desired_end = start;
6487 }
6488
6489 seg->phase = exp_seg_relro_adjust;
6490 ASSERT (desired_end >= seg->base);
6491 seg->base = desired_end;
6492 return relro_end;
6493 }
6494
6495 static bool
6496 lang_size_relro_segment (bool *relax, bool check_regions)
6497 {
6498 bool do_reset = false;
6499
6500 if (link_info.relro && expld.dataseg.relro_end)
6501 {
6502 bfd_vma data_initial_base = expld.dataseg.base;
6503 bfd_vma data_relro_end = lang_size_relro_segment_1 ();
6504
6505 lang_reset_memory_regions ();
6506 one_lang_size_sections_pass (relax, check_regions);
6507
6508 /* Assignments to dot, or to output section address in a user
6509 script have increased padding over the original. Revert. */
6510 if (expld.dataseg.relro_end > data_relro_end)
6511 {
6512 expld.dataseg.base = data_initial_base;
6513 do_reset = true;
6514 }
6515 }
6516 else if (lang_size_segment ())
6517 do_reset = true;
6518
6519 return do_reset;
6520 }
6521
6522 void
6523 lang_size_sections (bool *relax, bool check_regions)
6524 {
6525 expld.phase = lang_allocating_phase_enum;
6526 expld.dataseg.phase = exp_seg_none;
6527
6528 one_lang_size_sections_pass (relax, check_regions);
6529
6530 if (expld.dataseg.phase != exp_seg_end_seen)
6531 expld.dataseg.phase = exp_seg_done;
6532
6533 if (expld.dataseg.phase == exp_seg_end_seen)
6534 {
6535 bool do_reset
6536 = lang_size_relro_segment (relax, check_regions);
6537
6538 if (do_reset)
6539 {
6540 lang_reset_memory_regions ();
6541 one_lang_size_sections_pass (relax, check_regions);
6542 }
6543
6544 if (link_info.relro && expld.dataseg.relro_end)
6545 {
6546 link_info.relro_start = expld.dataseg.base;
6547 link_info.relro_end = expld.dataseg.relro_end;
6548 }
6549 }
6550 }
6551
6552 static lang_output_section_statement_type *current_section;
6553 static lang_assignment_statement_type *current_assign;
6554 static bool prefer_next_section;
6555
6556 /* Worker function for lang_do_assignments. Recursiveness goes here. */
6557
6558 static bfd_vma
6559 lang_do_assignments_1 (lang_statement_union_type *s,
6560 lang_output_section_statement_type *current_os,
6561 fill_type *fill,
6562 bfd_vma dot,
6563 bool *found_end)
6564 {
6565 lang_output_section_statement_type *os = current_os;
6566
6567 for (; s != NULL; s = s->header.next)
6568 {
6569 switch (s->header.type)
6570 {
6571 case lang_constructors_statement_enum:
6572 dot = lang_do_assignments_1 (constructor_list.head,
6573 current_os, fill, dot, found_end);
6574 break;
6575
6576 case lang_output_section_statement_enum:
6577 {
6578 bfd_vma newdot;
6579
6580 os = &s->output_section_statement;
6581 os->after_end = *found_end;
6582 init_opb (os->bfd_section);
6583 newdot = dot;
6584 if (os->bfd_section != NULL)
6585 {
6586 if (!os->ignored && (os->bfd_section->flags & SEC_ALLOC) != 0)
6587 {
6588 current_section = os;
6589 prefer_next_section = false;
6590 }
6591 newdot = os->bfd_section->vma;
6592 }
6593 newdot = lang_do_assignments_1 (os->children.head,
6594 os, os->fill, newdot, found_end);
6595 if (!os->ignored)
6596 {
6597 if (os->bfd_section != NULL)
6598 {
6599 newdot = os->bfd_section->vma;
6600
6601 /* .tbss sections effectively have zero size. */
6602 if (!IS_TBSS (os->bfd_section)
6603 || bfd_link_relocatable (&link_info))
6604 newdot += TO_ADDR (os->bfd_section->size);
6605
6606 if (os->update_dot_tree != NULL)
6607 exp_fold_tree (os->update_dot_tree, os,
6608 bfd_abs_section_ptr, &newdot);
6609 }
6610 dot = newdot;
6611 }
6612 }
6613 break;
6614
6615 case lang_wild_statement_enum:
6616
6617 dot = lang_do_assignments_1 (s->wild_statement.children.head,
6618 current_os, fill, dot, found_end);
6619 break;
6620
6621 case lang_object_symbols_statement_enum:
6622 case lang_output_statement_enum:
6623 case lang_target_statement_enum:
6624 break;
6625
6626 case lang_data_statement_enum:
6627 exp_fold_tree (s->data_statement.exp, os, bfd_abs_section_ptr, &dot);
6628 if (expld.result.valid_p)
6629 {
6630 s->data_statement.value = expld.result.value;
6631 if (expld.result.section != NULL)
6632 s->data_statement.value += expld.result.section->vma;
6633 }
6634 else if (expld.phase == lang_final_phase_enum)
6635 einfo (_("%F%P: invalid data statement\n"));
6636 {
6637 unsigned int size;
6638 switch (s->data_statement.type)
6639 {
6640 default:
6641 abort ();
6642 case QUAD:
6643 case SQUAD:
6644 size = QUAD_SIZE;
6645 break;
6646 case LONG:
6647 size = LONG_SIZE;
6648 break;
6649 case SHORT:
6650 size = SHORT_SIZE;
6651 break;
6652 case BYTE:
6653 size = BYTE_SIZE;
6654 break;
6655 }
6656 if (size < TO_SIZE ((unsigned) 1))
6657 size = TO_SIZE ((unsigned) 1);
6658 dot += TO_ADDR (size);
6659 }
6660 break;
6661
6662 case lang_reloc_statement_enum:
6663 exp_fold_tree (s->reloc_statement.addend_exp, os,
6664 bfd_abs_section_ptr, &dot);
6665 if (expld.result.valid_p)
6666 s->reloc_statement.addend_value = expld.result.value;
6667 else if (expld.phase == lang_final_phase_enum)
6668 einfo (_("%F%P: invalid reloc statement\n"));
6669 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6670 break;
6671
6672 case lang_input_section_enum:
6673 {
6674 asection *in = s->input_section.section;
6675
6676 if ((in->flags & SEC_EXCLUDE) == 0)
6677 dot += TO_ADDR (in->size);
6678 }
6679 break;
6680
6681 case lang_input_statement_enum:
6682 break;
6683
6684 case lang_fill_statement_enum:
6685 fill = s->fill_statement.fill;
6686 break;
6687
6688 case lang_assignment_statement_enum:
6689 current_assign = &s->assignment_statement;
6690 if (current_assign->exp->type.node_class != etree_assert)
6691 {
6692 const char *p = current_assign->exp->assign.dst;
6693
6694 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6695 prefer_next_section = true;
6696
6697 while (*p == '_')
6698 ++p;
6699 if (strcmp (p, "end") == 0)
6700 *found_end = true;
6701 }
6702 exp_fold_tree (s->assignment_statement.exp, os,
6703 (current_os->bfd_section != NULL
6704 ? current_os->bfd_section : bfd_und_section_ptr),
6705 &dot);
6706 break;
6707
6708 case lang_padding_statement_enum:
6709 dot += TO_ADDR (s->padding_statement.size);
6710 break;
6711
6712 case lang_group_statement_enum:
6713 dot = lang_do_assignments_1 (s->group_statement.children.head,
6714 current_os, fill, dot, found_end);
6715 break;
6716
6717 case lang_insert_statement_enum:
6718 break;
6719
6720 case lang_address_statement_enum:
6721 break;
6722
6723 default:
6724 FAIL ();
6725 break;
6726 }
6727 }
6728 return dot;
6729 }
6730
6731 void
6732 lang_do_assignments (lang_phase_type phase)
6733 {
6734 bool found_end = false;
6735
6736 current_section = NULL;
6737 prefer_next_section = false;
6738 expld.phase = phase;
6739 lang_statement_iteration++;
6740 lang_do_assignments_1 (statement_list.head,
6741 abs_output_section, NULL, 0, &found_end);
6742 }
6743
6744 /* For an assignment statement outside of an output section statement,
6745 choose the best of neighbouring output sections to use for values
6746 of "dot". */
6747
6748 asection *
6749 section_for_dot (void)
6750 {
6751 asection *s;
6752
6753 /* Assignments belong to the previous output section, unless there
6754 has been an assignment to "dot", in which case following
6755 assignments belong to the next output section. (The assumption
6756 is that an assignment to "dot" is setting up the address for the
6757 next output section.) Except that past the assignment to "_end"
6758 we always associate with the previous section. This exception is
6759 for targets like SH that define an alloc .stack or other
6760 weirdness after non-alloc sections. */
6761 if (current_section == NULL || prefer_next_section)
6762 {
6763 lang_statement_union_type *stmt;
6764 lang_output_section_statement_type *os;
6765
6766 for (stmt = (lang_statement_union_type *) current_assign;
6767 stmt != NULL;
6768 stmt = stmt->header.next)
6769 if (stmt->header.type == lang_output_section_statement_enum)
6770 break;
6771
6772 os = stmt ? &stmt->output_section_statement : NULL;
6773 while (os != NULL
6774 && !os->after_end
6775 && (os->bfd_section == NULL
6776 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6777 || bfd_section_removed_from_list (link_info.output_bfd,
6778 os->bfd_section)))
6779 os = os->next;
6780
6781 if (current_section == NULL || os == NULL || !os->after_end)
6782 {
6783 if (os != NULL)
6784 s = os->bfd_section;
6785 else
6786 s = link_info.output_bfd->section_last;
6787 while (s != NULL
6788 && ((s->flags & SEC_ALLOC) == 0
6789 || (s->flags & SEC_THREAD_LOCAL) != 0))
6790 s = s->prev;
6791 if (s != NULL)
6792 return s;
6793
6794 return bfd_abs_section_ptr;
6795 }
6796 }
6797
6798 s = current_section->bfd_section;
6799
6800 /* The section may have been stripped. */
6801 while (s != NULL
6802 && ((s->flags & SEC_EXCLUDE) != 0
6803 || (s->flags & SEC_ALLOC) == 0
6804 || (s->flags & SEC_THREAD_LOCAL) != 0
6805 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6806 s = s->prev;
6807 if (s == NULL)
6808 s = link_info.output_bfd->sections;
6809 while (s != NULL
6810 && ((s->flags & SEC_ALLOC) == 0
6811 || (s->flags & SEC_THREAD_LOCAL) != 0))
6812 s = s->next;
6813 if (s != NULL)
6814 return s;
6815
6816 return bfd_abs_section_ptr;
6817 }
6818
6819 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6820
6821 static struct bfd_link_hash_entry **start_stop_syms;
6822 static size_t start_stop_count = 0;
6823 static size_t start_stop_alloc = 0;
6824
6825 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6826 to start_stop_syms. */
6827
6828 static void
6829 lang_define_start_stop (const char *symbol, asection *sec)
6830 {
6831 struct bfd_link_hash_entry *h;
6832
6833 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6834 if (h != NULL)
6835 {
6836 if (start_stop_count == start_stop_alloc)
6837 {
6838 start_stop_alloc = 2 * start_stop_alloc + 10;
6839 start_stop_syms
6840 = xrealloc (start_stop_syms,
6841 start_stop_alloc * sizeof (*start_stop_syms));
6842 }
6843 start_stop_syms[start_stop_count++] = h;
6844 }
6845 }
6846
6847 /* Check for input sections whose names match references to
6848 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6849 preliminary definitions. */
6850
6851 static void
6852 lang_init_start_stop (void)
6853 {
6854 bfd *abfd;
6855 asection *s;
6856 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6857
6858 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6859 for (s = abfd->sections; s != NULL; s = s->next)
6860 {
6861 const char *ps;
6862 const char *secname = s->name;
6863
6864 for (ps = secname; *ps != '\0'; ps++)
6865 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6866 break;
6867 if (*ps == '\0')
6868 {
6869 char *symbol = (char *) xmalloc (10 + strlen (secname));
6870
6871 symbol[0] = leading_char;
6872 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6873 lang_define_start_stop (symbol, s);
6874
6875 symbol[1] = leading_char;
6876 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6877 lang_define_start_stop (symbol + 1, s);
6878
6879 free (symbol);
6880 }
6881 }
6882 }
6883
6884 /* Iterate over start_stop_syms. */
6885
6886 static void
6887 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6888 {
6889 size_t i;
6890
6891 for (i = 0; i < start_stop_count; ++i)
6892 func (start_stop_syms[i]);
6893 }
6894
6895 /* __start and __stop symbols are only supposed to be defined by the
6896 linker for orphan sections, but we now extend that to sections that
6897 map to an output section of the same name. The symbols were
6898 defined early for --gc-sections, before we mapped input to output
6899 sections, so undo those that don't satisfy this rule. */
6900
6901 static void
6902 undef_start_stop (struct bfd_link_hash_entry *h)
6903 {
6904 if (h->ldscript_def)
6905 return;
6906
6907 if (h->u.def.section->output_section == NULL
6908 || h->u.def.section->output_section->owner != link_info.output_bfd
6909 || strcmp (h->u.def.section->name,
6910 h->u.def.section->output_section->name) != 0)
6911 {
6912 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6913 h->u.def.section->name);
6914 if (sec != NULL)
6915 {
6916 /* When there are more than one input sections with the same
6917 section name, SECNAME, linker picks the first one to define
6918 __start_SECNAME and __stop_SECNAME symbols. When the first
6919 input section is removed by comdat group, we need to check
6920 if there is still an output section with section name
6921 SECNAME. */
6922 asection *i;
6923 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6924 if (strcmp (h->u.def.section->name, i->name) == 0)
6925 {
6926 h->u.def.section = i;
6927 return;
6928 }
6929 }
6930 h->type = bfd_link_hash_undefined;
6931 h->u.undef.abfd = NULL;
6932 if (is_elf_hash_table (link_info.hash))
6933 {
6934 const struct elf_backend_data *bed;
6935 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
6936 unsigned int was_forced = eh->forced_local;
6937
6938 bed = get_elf_backend_data (link_info.output_bfd);
6939 (*bed->elf_backend_hide_symbol) (&link_info, eh, true);
6940 if (!eh->ref_regular_nonweak)
6941 h->type = bfd_link_hash_undefweak;
6942 eh->def_regular = 0;
6943 eh->forced_local = was_forced;
6944 }
6945 }
6946 }
6947
6948 static void
6949 lang_undef_start_stop (void)
6950 {
6951 foreach_start_stop (undef_start_stop);
6952 }
6953
6954 /* Check for output sections whose names match references to
6955 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6956 preliminary definitions. */
6957
6958 static void
6959 lang_init_startof_sizeof (void)
6960 {
6961 asection *s;
6962
6963 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6964 {
6965 const char *secname = s->name;
6966 char *symbol = (char *) xmalloc (10 + strlen (secname));
6967
6968 sprintf (symbol, ".startof.%s", secname);
6969 lang_define_start_stop (symbol, s);
6970
6971 memcpy (symbol + 1, ".size", 5);
6972 lang_define_start_stop (symbol + 1, s);
6973 free (symbol);
6974 }
6975 }
6976
6977 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6978
6979 static void
6980 set_start_stop (struct bfd_link_hash_entry *h)
6981 {
6982 if (h->ldscript_def
6983 || h->type != bfd_link_hash_defined)
6984 return;
6985
6986 if (h->root.string[0] == '.')
6987 {
6988 /* .startof. or .sizeof. symbol.
6989 .startof. already has final value. */
6990 if (h->root.string[2] == 'i')
6991 {
6992 /* .sizeof. */
6993 h->u.def.value = TO_ADDR (h->u.def.section->size);
6994 h->u.def.section = bfd_abs_section_ptr;
6995 }
6996 }
6997 else
6998 {
6999 /* __start or __stop symbol. */
7000 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
7001
7002 h->u.def.section = h->u.def.section->output_section;
7003 if (h->root.string[4 + has_lead] == 'o')
7004 {
7005 /* __stop_ */
7006 h->u.def.value = TO_ADDR (h->u.def.section->size);
7007 }
7008 }
7009 }
7010
7011 static void
7012 lang_finalize_start_stop (void)
7013 {
7014 foreach_start_stop (set_start_stop);
7015 }
7016
7017 static void
7018 lang_symbol_tweaks (void)
7019 {
7020 /* Give initial values for __start and __stop symbols, so that ELF
7021 gc_sections will keep sections referenced by these symbols. Must
7022 be done before lang_do_assignments. */
7023 if (config.build_constructors)
7024 lang_init_start_stop ();
7025
7026 /* Make __ehdr_start hidden, and set def_regular even though it is
7027 likely undefined at this stage. For lang_check_relocs. */
7028 if (is_elf_hash_table (link_info.hash)
7029 && !bfd_link_relocatable (&link_info))
7030 {
7031 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *)
7032 bfd_link_hash_lookup (link_info.hash, "__ehdr_start",
7033 false, false, true);
7034
7035 /* Only adjust the export class if the symbol was referenced
7036 and not defined, otherwise leave it alone. */
7037 if (h != NULL
7038 && (h->root.type == bfd_link_hash_new
7039 || h->root.type == bfd_link_hash_undefined
7040 || h->root.type == bfd_link_hash_undefweak
7041 || h->root.type == bfd_link_hash_common))
7042 {
7043 const struct elf_backend_data *bed;
7044 bed = get_elf_backend_data (link_info.output_bfd);
7045 (*bed->elf_backend_hide_symbol) (&link_info, h, true);
7046 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
7047 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
7048 h->def_regular = 1;
7049 h->root.linker_def = 1;
7050 h->root.rel_from_abs = 1;
7051 }
7052 }
7053 }
7054
7055 static void
7056 lang_end (void)
7057 {
7058 struct bfd_link_hash_entry *h;
7059 bool warn;
7060
7061 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
7062 || bfd_link_dll (&link_info))
7063 warn = entry_from_cmdline;
7064 else
7065 warn = true;
7066
7067 /* Force the user to specify a root when generating a relocatable with
7068 --gc-sections, unless --gc-keep-exported was also given. */
7069 if (bfd_link_relocatable (&link_info)
7070 && link_info.gc_sections
7071 && !link_info.gc_keep_exported)
7072 {
7073 struct bfd_sym_chain *sym;
7074
7075 for (sym = link_info.gc_sym_list; sym != NULL; sym = sym->next)
7076 {
7077 h = bfd_link_hash_lookup (link_info.hash, sym->name,
7078 false, false, false);
7079 if (h != NULL
7080 && (h->type == bfd_link_hash_defined
7081 || h->type == bfd_link_hash_defweak)
7082 && !bfd_is_const_section (h->u.def.section))
7083 break;
7084 }
7085 if (!sym)
7086 einfo (_("%F%P: --gc-sections requires a defined symbol root "
7087 "specified by -e or -u\n"));
7088 }
7089
7090 if (entry_symbol.name == NULL)
7091 {
7092 /* No entry has been specified. Look for the default entry, but
7093 don't warn if we don't find it. */
7094 entry_symbol.name = entry_symbol_default;
7095 warn = false;
7096 }
7097
7098 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
7099 false, false, true);
7100 if (h != NULL
7101 && (h->type == bfd_link_hash_defined
7102 || h->type == bfd_link_hash_defweak)
7103 && h->u.def.section->output_section != NULL)
7104 {
7105 bfd_vma val;
7106
7107 val = (h->u.def.value
7108 + bfd_section_vma (h->u.def.section->output_section)
7109 + h->u.def.section->output_offset);
7110 if (!bfd_set_start_address (link_info.output_bfd, val))
7111 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
7112 }
7113 else
7114 {
7115 bfd_vma val;
7116 const char *send;
7117
7118 /* We couldn't find the entry symbol. Try parsing it as a
7119 number. */
7120 val = bfd_scan_vma (entry_symbol.name, &send, 0);
7121 if (*send == '\0')
7122 {
7123 if (!bfd_set_start_address (link_info.output_bfd, val))
7124 einfo (_("%F%P: can't set start address\n"));
7125 }
7126 /* BZ 2004952: Only use the start of the entry section for executables. */
7127 else if bfd_link_executable (&link_info)
7128 {
7129 asection *ts;
7130
7131 /* Can't find the entry symbol, and it's not a number. Use
7132 the first address in the text section. */
7133 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
7134 if (ts != NULL)
7135 {
7136 if (warn)
7137 einfo (_("%P: warning: cannot find entry symbol %s;"
7138 " defaulting to %V\n"),
7139 entry_symbol.name,
7140 bfd_section_vma (ts));
7141 if (!bfd_set_start_address (link_info.output_bfd,
7142 bfd_section_vma (ts)))
7143 einfo (_("%F%P: can't set start address\n"));
7144 }
7145 else
7146 {
7147 if (warn)
7148 einfo (_("%P: warning: cannot find entry symbol %s;"
7149 " not setting start address\n"),
7150 entry_symbol.name);
7151 }
7152 }
7153 else
7154 {
7155 if (warn)
7156 einfo (_("%P: warning: cannot find entry symbol %s;"
7157 " not setting start address\n"),
7158 entry_symbol.name);
7159 }
7160 }
7161 }
7162
7163 /* This is a small function used when we want to ignore errors from
7164 BFD. */
7165
7166 static void
7167 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
7168 va_list ap ATTRIBUTE_UNUSED)
7169 {
7170 /* Don't do anything. */
7171 }
7172
7173 /* Check that the architecture of all the input files is compatible
7174 with the output file. Also call the backend to let it do any
7175 other checking that is needed. */
7176
7177 static void
7178 lang_check (void)
7179 {
7180 lang_input_statement_type *file;
7181 bfd *input_bfd;
7182 const bfd_arch_info_type *compatible;
7183
7184 for (file = (void *) file_chain.head;
7185 file != NULL;
7186 file = file->next)
7187 {
7188 #if BFD_SUPPORTS_PLUGINS
7189 /* Don't check format of files claimed by plugin. */
7190 if (file->flags.claimed)
7191 continue;
7192 #endif /* BFD_SUPPORTS_PLUGINS */
7193 input_bfd = file->the_bfd;
7194 compatible
7195 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
7196 command_line.accept_unknown_input_arch);
7197
7198 /* In general it is not possible to perform a relocatable
7199 link between differing object formats when the input
7200 file has relocations, because the relocations in the
7201 input format may not have equivalent representations in
7202 the output format (and besides BFD does not translate
7203 relocs for other link purposes than a final link). */
7204 if (!file->flags.just_syms
7205 && (bfd_link_relocatable (&link_info)
7206 || link_info.emitrelocations)
7207 && (compatible == NULL
7208 || (bfd_get_flavour (input_bfd)
7209 != bfd_get_flavour (link_info.output_bfd)))
7210 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
7211 {
7212 einfo (_("%F%P: relocatable linking with relocations from"
7213 " format %s (%pB) to format %s (%pB) is not supported\n"),
7214 bfd_get_target (input_bfd), input_bfd,
7215 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
7216 /* einfo with %F exits. */
7217 }
7218
7219 if (compatible == NULL)
7220 {
7221 if (command_line.warn_mismatch)
7222 einfo (_("%X%P: %s architecture of input file `%pB'"
7223 " is incompatible with %s output\n"),
7224 bfd_printable_name (input_bfd), input_bfd,
7225 bfd_printable_name (link_info.output_bfd));
7226 }
7227
7228 /* If the input bfd has no contents, it shouldn't set the
7229 private data of the output bfd. */
7230 else if (!file->flags.just_syms
7231 && ((input_bfd->flags & DYNAMIC) != 0
7232 || bfd_count_sections (input_bfd) != 0))
7233 {
7234 bfd_error_handler_type pfn = NULL;
7235
7236 /* If we aren't supposed to warn about mismatched input
7237 files, temporarily set the BFD error handler to a
7238 function which will do nothing. We still want to call
7239 bfd_merge_private_bfd_data, since it may set up
7240 information which is needed in the output file. */
7241 if (!command_line.warn_mismatch)
7242 pfn = bfd_set_error_handler (ignore_bfd_errors);
7243 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
7244 {
7245 if (command_line.warn_mismatch)
7246 einfo (_("%X%P: failed to merge target specific data"
7247 " of file %pB\n"), input_bfd);
7248 }
7249 if (!command_line.warn_mismatch)
7250 bfd_set_error_handler (pfn);
7251 }
7252 }
7253 }
7254
7255 /* Look through all the global common symbols and attach them to the
7256 correct section. The -sort-common command line switch may be used
7257 to roughly sort the entries by alignment. */
7258
7259 static void
7260 lang_common (void)
7261 {
7262 if (link_info.inhibit_common_definition)
7263 return;
7264 if (bfd_link_relocatable (&link_info)
7265 && !command_line.force_common_definition)
7266 return;
7267
7268 if (!config.sort_common)
7269 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
7270 else
7271 {
7272 unsigned int power;
7273
7274 if (config.sort_common == sort_descending)
7275 {
7276 for (power = 4; power > 0; power--)
7277 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7278
7279 power = 0;
7280 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7281 }
7282 else
7283 {
7284 for (power = 0; power <= 4; power++)
7285 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7286
7287 power = (unsigned int) -1;
7288 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
7289 }
7290 }
7291 }
7292
7293 /* Place one common symbol in the correct section. */
7294
7295 static bool
7296 lang_one_common (struct bfd_link_hash_entry *h, void *info)
7297 {
7298 unsigned int power_of_two;
7299 bfd_vma size;
7300 asection *section;
7301
7302 if (h->type != bfd_link_hash_common)
7303 return true;
7304
7305 size = h->u.c.size;
7306 power_of_two = h->u.c.p->alignment_power;
7307
7308 if (config.sort_common == sort_descending
7309 && power_of_two < *(unsigned int *) info)
7310 return true;
7311 else if (config.sort_common == sort_ascending
7312 && power_of_two > *(unsigned int *) info)
7313 return true;
7314
7315 section = h->u.c.p->section;
7316 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
7317 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
7318 h->root.string);
7319
7320 if (config.map_file != NULL)
7321 {
7322 static bool header_printed;
7323 int len;
7324 char *name;
7325 char buf[32];
7326
7327 if (!header_printed)
7328 {
7329 minfo (_("\nAllocating common symbols\n"));
7330 minfo (_("Common symbol size file\n\n"));
7331 header_printed = true;
7332 }
7333
7334 name = bfd_demangle (link_info.output_bfd, h->root.string,
7335 DMGL_ANSI | DMGL_PARAMS);
7336 if (name == NULL)
7337 {
7338 minfo ("%s", h->root.string);
7339 len = strlen (h->root.string);
7340 }
7341 else
7342 {
7343 minfo ("%s", name);
7344 len = strlen (name);
7345 free (name);
7346 }
7347
7348 if (len >= 19)
7349 {
7350 print_nl ();
7351 len = 0;
7352 }
7353
7354 sprintf (buf, "%" PRIx64, (uint64_t) size);
7355 fprintf (config.map_file, "%*s0x%-16s", 20 - len, "", buf);
7356
7357 minfo ("%pB\n", section->owner);
7358 }
7359
7360 return true;
7361 }
7362
7363 /* Handle a single orphan section S, placing the orphan into an appropriate
7364 output section. The effects of the --orphan-handling command line
7365 option are handled here. */
7366
7367 static void
7368 ldlang_place_orphan (asection *s)
7369 {
7370 if (config.orphan_handling == orphan_handling_discard)
7371 {
7372 lang_output_section_statement_type *os;
7373 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0, 1);
7374 if (os->addr_tree == NULL
7375 && (bfd_link_relocatable (&link_info)
7376 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7377 os->addr_tree = exp_intop (0);
7378 lang_add_section (&os->children, s, NULL, NULL, os);
7379 }
7380 else
7381 {
7382 lang_output_section_statement_type *os;
7383 const char *name = s->name;
7384 int constraint = 0;
7385
7386 if (config.orphan_handling == orphan_handling_error)
7387 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
7388 s, s->owner);
7389
7390 if (config.unique_orphan_sections || unique_section_p (s, NULL))
7391 constraint = SPECIAL;
7392
7393 os = ldemul_place_orphan (s, name, constraint);
7394 if (os == NULL)
7395 {
7396 os = lang_output_section_statement_lookup (name, constraint, 1);
7397 if (os->addr_tree == NULL
7398 && (bfd_link_relocatable (&link_info)
7399 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
7400 os->addr_tree = exp_intop (0);
7401 lang_add_section (&os->children, s, NULL, NULL, os);
7402 }
7403
7404 if (config.orphan_handling == orphan_handling_warn)
7405 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
7406 "placed in section `%s'\n"),
7407 s, s->owner, os->name);
7408 }
7409 }
7410
7411 /* Run through the input files and ensure that every input section has
7412 somewhere to go. If one is found without a destination then create
7413 an input request and place it into the statement tree. */
7414
7415 static void
7416 lang_place_orphans (void)
7417 {
7418 LANG_FOR_EACH_INPUT_STATEMENT (file)
7419 {
7420 asection *s;
7421
7422 for (s = file->the_bfd->sections; s != NULL; s = s->next)
7423 {
7424 if (s->output_section == NULL)
7425 {
7426 /* This section of the file is not attached, root
7427 around for a sensible place for it to go. */
7428
7429 if (file->flags.just_syms)
7430 bfd_link_just_syms (file->the_bfd, s, &link_info);
7431 else if (lang_discard_section_p (s))
7432 s->output_section = bfd_abs_section_ptr;
7433 else if (strcmp (s->name, "COMMON") == 0)
7434 {
7435 /* This is a lonely common section which must have
7436 come from an archive. We attach to the section
7437 with the wildcard. */
7438 if (!bfd_link_relocatable (&link_info)
7439 || command_line.force_common_definition)
7440 {
7441 if (default_common_section == NULL)
7442 default_common_section
7443 = lang_output_section_statement_lookup (".bss", 0, 1);
7444 lang_add_section (&default_common_section->children, s,
7445 NULL, NULL, default_common_section);
7446 }
7447 }
7448 else
7449 ldlang_place_orphan (s);
7450 }
7451 }
7452 }
7453 }
7454
7455 void
7456 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
7457 {
7458 flagword *ptr_flags;
7459
7460 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7461
7462 while (*flags)
7463 {
7464 switch (*flags)
7465 {
7466 /* PR 17900: An exclamation mark in the attributes reverses
7467 the sense of any of the attributes that follow. */
7468 case '!':
7469 invert = !invert;
7470 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
7471 break;
7472
7473 case 'A': case 'a':
7474 *ptr_flags |= SEC_ALLOC;
7475 break;
7476
7477 case 'R': case 'r':
7478 *ptr_flags |= SEC_READONLY;
7479 break;
7480
7481 case 'W': case 'w':
7482 *ptr_flags |= SEC_DATA;
7483 break;
7484
7485 case 'X': case 'x':
7486 *ptr_flags |= SEC_CODE;
7487 break;
7488
7489 case 'L': case 'l':
7490 case 'I': case 'i':
7491 *ptr_flags |= SEC_LOAD;
7492 break;
7493
7494 default:
7495 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
7496 *flags, *flags);
7497 break;
7498 }
7499 flags++;
7500 }
7501 }
7502
7503 /* Call a function on each real input file. This function will be
7504 called on an archive, but not on the elements. */
7505
7506 void
7507 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
7508 {
7509 lang_input_statement_type *f;
7510
7511 for (f = (void *) input_file_chain.head;
7512 f != NULL;
7513 f = f->next_real_file)
7514 if (f->flags.real)
7515 func (f);
7516 }
7517
7518 /* Call a function on each real file. The function will be called on
7519 all the elements of an archive which are included in the link, but
7520 will not be called on the archive file itself. */
7521
7522 void
7523 lang_for_each_file (void (*func) (lang_input_statement_type *))
7524 {
7525 LANG_FOR_EACH_INPUT_STATEMENT (f)
7526 {
7527 if (f->flags.real)
7528 func (f);
7529 }
7530 }
7531
7532 void
7533 ldlang_add_file (lang_input_statement_type *entry)
7534 {
7535 lang_statement_append (&file_chain, entry, &entry->next);
7536
7537 /* The BFD linker needs to have a list of all input BFDs involved in
7538 a link. */
7539 ASSERT (link_info.input_bfds_tail != &entry->the_bfd->link.next
7540 && entry->the_bfd->link.next == NULL);
7541 ASSERT (entry->the_bfd != link_info.output_bfd);
7542
7543 *link_info.input_bfds_tail = entry->the_bfd;
7544 link_info.input_bfds_tail = &entry->the_bfd->link.next;
7545 bfd_set_usrdata (entry->the_bfd, entry);
7546 bfd_set_gp_size (entry->the_bfd, g_switch_value);
7547
7548 /* Look through the sections and check for any which should not be
7549 included in the link. We need to do this now, so that we can
7550 notice when the backend linker tries to report multiple
7551 definition errors for symbols which are in sections we aren't
7552 going to link. FIXME: It might be better to entirely ignore
7553 symbols which are defined in sections which are going to be
7554 discarded. This would require modifying the backend linker for
7555 each backend which might set the SEC_LINK_ONCE flag. If we do
7556 this, we should probably handle SEC_EXCLUDE in the same way. */
7557
7558 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
7559 }
7560
7561 void
7562 lang_add_output (const char *name, int from_script)
7563 {
7564 /* Make -o on command line override OUTPUT in script. */
7565 if (!had_output_filename || !from_script)
7566 {
7567 output_filename = name;
7568 had_output_filename = true;
7569 }
7570 }
7571
7572 lang_output_section_statement_type *
7573 lang_enter_output_section_statement (const char *output_section_statement_name,
7574 etree_type *address_exp,
7575 enum section_type sectype,
7576 etree_type *sectype_value,
7577 etree_type *align,
7578 etree_type *subalign,
7579 etree_type *ebase,
7580 int constraint,
7581 int align_with_input)
7582 {
7583 lang_output_section_statement_type *os;
7584
7585 os = lang_output_section_statement_lookup (output_section_statement_name,
7586 constraint, 2);
7587 current_section = os;
7588
7589 if (os->addr_tree == NULL)
7590 {
7591 os->addr_tree = address_exp;
7592 }
7593 os->sectype = sectype;
7594 if (sectype == type_section || sectype == typed_readonly_section)
7595 os->sectype_value = sectype_value;
7596 else if (sectype == noload_section)
7597 os->flags = SEC_NEVER_LOAD;
7598 else
7599 os->flags = SEC_NO_FLAGS;
7600 os->block_value = 1;
7601
7602 /* Make next things chain into subchain of this. */
7603 push_stat_ptr (&os->children);
7604
7605 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
7606 if (os->align_lma_with_input && align != NULL)
7607 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
7608 NULL);
7609
7610 os->subsection_alignment = subalign;
7611 os->section_alignment = align;
7612
7613 os->load_base = ebase;
7614 return os;
7615 }
7616
7617 void
7618 lang_final (void)
7619 {
7620 lang_output_statement_type *new_stmt;
7621
7622 new_stmt = new_stat (lang_output_statement, stat_ptr);
7623 new_stmt->name = output_filename;
7624 }
7625
7626 /* Reset the current counters in the regions. */
7627
7628 void
7629 lang_reset_memory_regions (void)
7630 {
7631 lang_memory_region_type *p = lang_memory_region_list;
7632 asection *o;
7633 lang_output_section_statement_type *os;
7634
7635 for (p = lang_memory_region_list; p != NULL; p = p->next)
7636 {
7637 p->current = p->origin;
7638 p->last_os = NULL;
7639 }
7640
7641 for (os = (void *) lang_os_list.head;
7642 os != NULL;
7643 os = os->next)
7644 {
7645 os->processed_vma = false;
7646 os->processed_lma = false;
7647 }
7648
7649 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
7650 {
7651 /* Save the last size for possible use by bfd_relax_section. */
7652 o->rawsize = o->size;
7653 if (!(o->flags & SEC_FIXED_SIZE))
7654 o->size = 0;
7655 }
7656 }
7657
7658 /* Worker for lang_gc_sections_1. */
7659
7660 static void
7661 gc_section_callback (lang_wild_statement_type *ptr,
7662 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7663 asection *section,
7664 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7665 void *data ATTRIBUTE_UNUSED)
7666 {
7667 /* If the wild pattern was marked KEEP, the member sections
7668 should be as well. */
7669 if (ptr->keep_sections)
7670 section->flags |= SEC_KEEP;
7671 }
7672
7673 /* Iterate over sections marking them against GC. */
7674
7675 static void
7676 lang_gc_sections_1 (lang_statement_union_type *s)
7677 {
7678 for (; s != NULL; s = s->header.next)
7679 {
7680 switch (s->header.type)
7681 {
7682 case lang_wild_statement_enum:
7683 walk_wild (&s->wild_statement, gc_section_callback, NULL);
7684 break;
7685 case lang_constructors_statement_enum:
7686 lang_gc_sections_1 (constructor_list.head);
7687 break;
7688 case lang_output_section_statement_enum:
7689 lang_gc_sections_1 (s->output_section_statement.children.head);
7690 break;
7691 case lang_group_statement_enum:
7692 lang_gc_sections_1 (s->group_statement.children.head);
7693 break;
7694 default:
7695 break;
7696 }
7697 }
7698 }
7699
7700 static void
7701 lang_gc_sections (void)
7702 {
7703 /* Keep all sections so marked in the link script. */
7704 lang_gc_sections_1 (statement_list.head);
7705
7706 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7707 the special case of .stabstr debug info. (See bfd/stabs.c)
7708 Twiddle the flag here, to simplify later linker code. */
7709 if (bfd_link_relocatable (&link_info))
7710 {
7711 LANG_FOR_EACH_INPUT_STATEMENT (f)
7712 {
7713 asection *sec;
7714 #if BFD_SUPPORTS_PLUGINS
7715 if (f->flags.claimed)
7716 continue;
7717 #endif
7718 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7719 if ((sec->flags & SEC_DEBUGGING) == 0
7720 || strcmp (sec->name, ".stabstr") != 0)
7721 sec->flags &= ~SEC_EXCLUDE;
7722 }
7723 }
7724
7725 if (link_info.gc_sections)
7726 bfd_gc_sections (link_info.output_bfd, &link_info);
7727 }
7728
7729 /* Worker for lang_find_relro_sections_1. */
7730
7731 static void
7732 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7733 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7734 asection *section,
7735 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7736 void *data)
7737 {
7738 /* Discarded, excluded and ignored sections effectively have zero
7739 size. */
7740 if (section->output_section != NULL
7741 && section->output_section->owner == link_info.output_bfd
7742 && (section->output_section->flags & SEC_EXCLUDE) == 0
7743 && !IGNORE_SECTION (section)
7744 && section->size != 0)
7745 {
7746 bool *has_relro_section = (bool *) data;
7747 *has_relro_section = true;
7748 }
7749 }
7750
7751 /* Iterate over sections for relro sections. */
7752
7753 static void
7754 lang_find_relro_sections_1 (lang_statement_union_type *s,
7755 bool *has_relro_section)
7756 {
7757 if (*has_relro_section)
7758 return;
7759
7760 for (; s != NULL; s = s->header.next)
7761 {
7762 if (s == expld.dataseg.relro_end_stat)
7763 break;
7764
7765 switch (s->header.type)
7766 {
7767 case lang_wild_statement_enum:
7768 walk_wild (&s->wild_statement,
7769 find_relro_section_callback,
7770 has_relro_section);
7771 break;
7772 case lang_constructors_statement_enum:
7773 lang_find_relro_sections_1 (constructor_list.head,
7774 has_relro_section);
7775 break;
7776 case lang_output_section_statement_enum:
7777 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7778 has_relro_section);
7779 break;
7780 case lang_group_statement_enum:
7781 lang_find_relro_sections_1 (s->group_statement.children.head,
7782 has_relro_section);
7783 break;
7784 default:
7785 break;
7786 }
7787 }
7788 }
7789
7790 static void
7791 lang_find_relro_sections (void)
7792 {
7793 bool has_relro_section = false;
7794
7795 /* Check all sections in the link script. */
7796
7797 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7798 &has_relro_section);
7799
7800 if (!has_relro_section)
7801 link_info.relro = false;
7802 }
7803
7804 /* Relax all sections until bfd_relax_section gives up. */
7805
7806 void
7807 lang_relax_sections (bool need_layout)
7808 {
7809 /* NB: Also enable relaxation to layout sections for DT_RELR. */
7810 if (RELAXATION_ENABLED || link_info.enable_dt_relr)
7811 {
7812 /* We may need more than one relaxation pass. */
7813 int i = link_info.relax_pass;
7814
7815 /* The backend can use it to determine the current pass. */
7816 link_info.relax_pass = 0;
7817
7818 while (i--)
7819 {
7820 /* Keep relaxing until bfd_relax_section gives up. */
7821 bool relax_again;
7822
7823 link_info.relax_trip = -1;
7824 do
7825 {
7826 link_info.relax_trip++;
7827
7828 /* Note: pe-dll.c does something like this also. If you find
7829 you need to change this code, you probably need to change
7830 pe-dll.c also. DJ */
7831
7832 /* Do all the assignments with our current guesses as to
7833 section sizes. */
7834 lang_do_assignments (lang_assigning_phase_enum);
7835
7836 /* We must do this after lang_do_assignments, because it uses
7837 size. */
7838 lang_reset_memory_regions ();
7839
7840 /* Perform another relax pass - this time we know where the
7841 globals are, so can make a better guess. */
7842 relax_again = false;
7843 lang_size_sections (&relax_again, false);
7844 }
7845 while (relax_again);
7846
7847 link_info.relax_pass++;
7848 }
7849 need_layout = true;
7850 }
7851
7852 if (need_layout)
7853 {
7854 /* Final extra sizing to report errors. */
7855 lang_do_assignments (lang_assigning_phase_enum);
7856 lang_reset_memory_regions ();
7857 lang_size_sections (NULL, true);
7858 }
7859 }
7860
7861 #if BFD_SUPPORTS_PLUGINS
7862 /* Find the insert point for the plugin's replacement files. We
7863 place them after the first claimed real object file, or if the
7864 first claimed object is an archive member, after the last real
7865 object file immediately preceding the archive. In the event
7866 no objects have been claimed at all, we return the first dummy
7867 object file on the list as the insert point; that works, but
7868 the callee must be careful when relinking the file_chain as it
7869 is not actually on that chain, only the statement_list and the
7870 input_file list; in that case, the replacement files must be
7871 inserted at the head of the file_chain. */
7872
7873 static lang_input_statement_type *
7874 find_replacements_insert_point (bool *before)
7875 {
7876 lang_input_statement_type *claim1, *lastobject;
7877 lastobject = (void *) input_file_chain.head;
7878 for (claim1 = (void *) file_chain.head;
7879 claim1 != NULL;
7880 claim1 = claim1->next)
7881 {
7882 if (claim1->flags.claimed)
7883 {
7884 *before = claim1->flags.claim_archive;
7885 return claim1->flags.claim_archive ? lastobject : claim1;
7886 }
7887 /* Update lastobject if this is a real object file. */
7888 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7889 lastobject = claim1;
7890 }
7891 /* No files were claimed by the plugin. Choose the last object
7892 file found on the list (maybe the first, dummy entry) as the
7893 insert point. */
7894 *before = false;
7895 return lastobject;
7896 }
7897
7898 /* Find where to insert ADD, an archive element or shared library
7899 added during a rescan. */
7900
7901 static lang_input_statement_type **
7902 find_rescan_insertion (lang_input_statement_type *add)
7903 {
7904 bfd *add_bfd = add->the_bfd;
7905 lang_input_statement_type *f;
7906 lang_input_statement_type *last_loaded = NULL;
7907 lang_input_statement_type *before = NULL;
7908 lang_input_statement_type **iter = NULL;
7909
7910 if (add_bfd->my_archive != NULL)
7911 add_bfd = add_bfd->my_archive;
7912
7913 /* First look through the input file chain, to find an object file
7914 before the one we've rescanned. Normal object files always
7915 appear on both the input file chain and the file chain, so this
7916 lets us get quickly to somewhere near the correct place on the
7917 file chain if it is full of archive elements. Archives don't
7918 appear on the file chain, but if an element has been extracted
7919 then their input_statement->next points at it. */
7920 for (f = (void *) input_file_chain.head;
7921 f != NULL;
7922 f = f->next_real_file)
7923 {
7924 if (f->the_bfd == add_bfd)
7925 {
7926 before = last_loaded;
7927 if (f->next != NULL)
7928 return &f->next->next;
7929 }
7930 if (f->the_bfd != NULL && f->next != NULL)
7931 last_loaded = f;
7932 }
7933
7934 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7935 *iter != NULL;
7936 iter = &(*iter)->next)
7937 if (!(*iter)->flags.claim_archive
7938 && (*iter)->the_bfd->my_archive == NULL)
7939 break;
7940
7941 return iter;
7942 }
7943
7944 /* Insert SRCLIST into DESTLIST after given element by chaining
7945 on FIELD as the next-pointer. (Counterintuitively does not need
7946 a pointer to the actual after-node itself, just its chain field.) */
7947
7948 static void
7949 lang_list_insert_after (lang_statement_list_type *destlist,
7950 lang_statement_list_type *srclist,
7951 lang_statement_union_type **field)
7952 {
7953 *(srclist->tail) = *field;
7954 *field = srclist->head;
7955 if (destlist->tail == field)
7956 destlist->tail = srclist->tail;
7957 }
7958
7959 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7960 was taken as a copy of it and leave them in ORIGLIST. */
7961
7962 static void
7963 lang_list_remove_tail (lang_statement_list_type *destlist,
7964 lang_statement_list_type *origlist)
7965 {
7966 union lang_statement_union **savetail;
7967 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7968 ASSERT (origlist->head == destlist->head);
7969 savetail = origlist->tail;
7970 origlist->head = *(savetail);
7971 origlist->tail = destlist->tail;
7972 destlist->tail = savetail;
7973 *savetail = NULL;
7974 }
7975
7976 static lang_statement_union_type **
7977 find_next_input_statement (lang_statement_union_type **s)
7978 {
7979 for ( ; *s; s = &(*s)->header.next)
7980 {
7981 lang_statement_union_type **t;
7982 switch ((*s)->header.type)
7983 {
7984 case lang_input_statement_enum:
7985 return s;
7986 case lang_wild_statement_enum:
7987 t = &(*s)->wild_statement.children.head;
7988 break;
7989 case lang_group_statement_enum:
7990 t = &(*s)->group_statement.children.head;
7991 break;
7992 case lang_output_section_statement_enum:
7993 t = &(*s)->output_section_statement.children.head;
7994 break;
7995 default:
7996 continue;
7997 }
7998 t = find_next_input_statement (t);
7999 if (*t)
8000 return t;
8001 }
8002 return s;
8003 }
8004 #endif /* BFD_SUPPORTS_PLUGINS */
8005
8006 /* Add NAME to the list of garbage collection entry points. */
8007
8008 void
8009 lang_add_gc_name (const char *name)
8010 {
8011 struct bfd_sym_chain *sym;
8012
8013 if (name == NULL)
8014 return;
8015
8016 sym = stat_alloc (sizeof (*sym));
8017
8018 sym->next = link_info.gc_sym_list;
8019 sym->name = name;
8020 link_info.gc_sym_list = sym;
8021 }
8022
8023 /* Check relocations. */
8024
8025 static void
8026 lang_check_relocs (void)
8027 {
8028 if (link_info.check_relocs_after_open_input)
8029 {
8030 bfd *abfd;
8031
8032 for (abfd = link_info.input_bfds;
8033 abfd != (bfd *) NULL; abfd = abfd->link.next)
8034 if (!bfd_link_check_relocs (abfd, &link_info))
8035 {
8036 /* No object output, fail return. */
8037 config.make_executable = false;
8038 /* Note: we do not abort the loop, but rather
8039 continue the scan in case there are other
8040 bad relocations to report. */
8041 }
8042 }
8043 }
8044
8045 /* Look through all output sections looking for places where we can
8046 propagate forward the lma region. */
8047
8048 static void
8049 lang_propagate_lma_regions (void)
8050 {
8051 lang_output_section_statement_type *os;
8052
8053 for (os = (void *) lang_os_list.head;
8054 os != NULL;
8055 os = os->next)
8056 {
8057 if (os->prev != NULL
8058 && os->lma_region == NULL
8059 && os->load_base == NULL
8060 && os->addr_tree == NULL
8061 && os->region == os->prev->region)
8062 os->lma_region = os->prev->lma_region;
8063 }
8064 }
8065
8066 static void
8067 warn_non_contiguous_discards (void)
8068 {
8069 LANG_FOR_EACH_INPUT_STATEMENT (file)
8070 {
8071 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
8072 || file->flags.just_syms)
8073 continue;
8074
8075 for (asection *s = file->the_bfd->sections; s != NULL; s = s->next)
8076 if (s->output_section == NULL
8077 && (s->flags & SEC_LINKER_CREATED) == 0)
8078 einfo (_("%P: warning: --enable-non-contiguous-regions "
8079 "discards section `%pA' from `%pB'\n"),
8080 s, file->the_bfd);
8081 }
8082 }
8083
8084 static void
8085 reset_one_wild (lang_statement_union_type *statement)
8086 {
8087 if (statement->header.type == lang_wild_statement_enum)
8088 {
8089 lang_wild_statement_type *stmt = &statement->wild_statement;
8090 lang_list_init (&stmt->matching_sections);
8091 }
8092 }
8093
8094 static void
8095 reset_resolved_wilds (void)
8096 {
8097 lang_for_each_statement (reset_one_wild);
8098 }
8099
8100 void
8101 lang_process (void)
8102 {
8103 /* Finalize dynamic list. */
8104 if (link_info.dynamic_list)
8105 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
8106
8107 current_target = default_target;
8108
8109 /* Open the output file. */
8110 lang_for_each_statement (ldlang_open_output);
8111 init_opb (NULL);
8112
8113 ldemul_create_output_section_statements ();
8114
8115 /* Add to the hash table all undefineds on the command line. */
8116 lang_place_undefineds ();
8117
8118 if (!bfd_section_already_linked_table_init ())
8119 einfo (_("%F%P: can not create hash table: %E\n"));
8120
8121 /* A first pass through the memory regions ensures that if any region
8122 references a symbol for its origin or length then this symbol will be
8123 added to the symbol table. Having these symbols in the symbol table
8124 means that when we call open_input_bfds PROVIDE statements will
8125 trigger to provide any needed symbols. The regions origins and
8126 lengths are not assigned as a result of this call. */
8127 lang_do_memory_regions (false);
8128
8129 /* Create a bfd for each input file. */
8130 current_target = default_target;
8131 lang_statement_iteration++;
8132 open_input_bfds (statement_list.head, NULL, OPEN_BFD_NORMAL);
8133
8134 /* Now that open_input_bfds has processed assignments and provide
8135 statements we can give values to symbolic origin/length now. */
8136 lang_do_memory_regions (true);
8137
8138 ldemul_before_plugin_all_symbols_read ();
8139
8140 #if BFD_SUPPORTS_PLUGINS
8141 if (link_info.lto_plugin_active)
8142 {
8143 lang_statement_list_type added;
8144 lang_statement_list_type files, inputfiles;
8145
8146 /* Now all files are read, let the plugin(s) decide if there
8147 are any more to be added to the link before we call the
8148 emulation's after_open hook. We create a private list of
8149 input statements for this purpose, which we will eventually
8150 insert into the global statement list after the first claimed
8151 file. */
8152 added = *stat_ptr;
8153 /* We need to manipulate all three chains in synchrony. */
8154 files = file_chain;
8155 inputfiles = input_file_chain;
8156 if (plugin_call_all_symbols_read ())
8157 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
8158 plugin_error_plugin ());
8159 link_info.lto_all_symbols_read = true;
8160 /* Open any newly added files, updating the file chains. */
8161 plugin_undefs = link_info.hash->undefs_tail;
8162 lang_output_section_statement_type *last_os = NULL;
8163 if (lang_os_list.head != NULL)
8164 last_os = ((lang_output_section_statement_type *)
8165 ((char *) lang_os_list.tail
8166 - offsetof (lang_output_section_statement_type, next)));
8167 open_input_bfds (*added.tail, last_os, OPEN_BFD_NORMAL);
8168 if (plugin_undefs == link_info.hash->undefs_tail)
8169 plugin_undefs = NULL;
8170 /* Restore the global list pointer now they have all been added. */
8171 lang_list_remove_tail (stat_ptr, &added);
8172 /* And detach the fresh ends of the file lists. */
8173 lang_list_remove_tail (&file_chain, &files);
8174 lang_list_remove_tail (&input_file_chain, &inputfiles);
8175 /* Were any new files added? */
8176 if (added.head != NULL)
8177 {
8178 /* If so, we will insert them into the statement list immediately
8179 after the first input file that was claimed by the plugin,
8180 unless that file was an archive in which case it is inserted
8181 immediately before. */
8182 bool before;
8183 lang_statement_union_type **prev;
8184 plugin_insert = find_replacements_insert_point (&before);
8185 /* If a plugin adds input files without having claimed any, we
8186 don't really have a good idea where to place them. Just putting
8187 them at the start or end of the list is liable to leave them
8188 outside the crtbegin...crtend range. */
8189 ASSERT (plugin_insert != NULL);
8190 /* Splice the new statement list into the old one. */
8191 prev = &plugin_insert->header.next;
8192 if (before)
8193 {
8194 prev = find_next_input_statement (prev);
8195 if (*prev != (void *) plugin_insert->next_real_file)
8196 {
8197 /* We didn't find the expected input statement.
8198 Fall back to adding after plugin_insert. */
8199 prev = &plugin_insert->header.next;
8200 }
8201 }
8202 lang_list_insert_after (stat_ptr, &added, prev);
8203 /* Likewise for the file chains. */
8204 lang_list_insert_after (&input_file_chain, &inputfiles,
8205 (void *) &plugin_insert->next_real_file);
8206 /* We must be careful when relinking file_chain; we may need to
8207 insert the new files at the head of the list if the insert
8208 point chosen is the dummy first input file. */
8209 if (plugin_insert->filename)
8210 lang_list_insert_after (&file_chain, &files,
8211 (void *) &plugin_insert->next);
8212 else
8213 lang_list_insert_after (&file_chain, &files, &file_chain.head);
8214
8215 /* Rescan archives in case new undefined symbols have appeared. */
8216 files = file_chain;
8217 lang_statement_iteration++;
8218 open_input_bfds (statement_list.head, NULL, OPEN_BFD_RESCAN);
8219 lang_list_remove_tail (&file_chain, &files);
8220 while (files.head != NULL)
8221 {
8222 lang_input_statement_type **insert;
8223 lang_input_statement_type **iter, *temp;
8224 bfd *my_arch;
8225
8226 insert = find_rescan_insertion (&files.head->input_statement);
8227 /* All elements from an archive can be added at once. */
8228 iter = &files.head->input_statement.next;
8229 my_arch = files.head->input_statement.the_bfd->my_archive;
8230 if (my_arch != NULL)
8231 for (; *iter != NULL; iter = &(*iter)->next)
8232 if ((*iter)->the_bfd->my_archive != my_arch)
8233 break;
8234 temp = *insert;
8235 *insert = &files.head->input_statement;
8236 files.head = (lang_statement_union_type *) *iter;
8237 *iter = temp;
8238 if (file_chain.tail == (lang_statement_union_type **) insert)
8239 file_chain.tail = (lang_statement_union_type **) iter;
8240 if (my_arch != NULL)
8241 {
8242 lang_input_statement_type *parent = bfd_usrdata (my_arch);
8243 if (parent != NULL)
8244 parent->next = (lang_input_statement_type *)
8245 ((char *) iter
8246 - offsetof (lang_input_statement_type, next));
8247 }
8248 }
8249 }
8250 }
8251 #endif /* BFD_SUPPORTS_PLUGINS */
8252
8253 struct bfd_sym_chain **sym = &link_info.gc_sym_list;
8254 while (*sym)
8255 sym = &(*sym)->next;
8256
8257 *sym = &entry_symbol;
8258
8259 if (entry_symbol.name == NULL)
8260 {
8261 *sym = ldlang_undef_chain_list_head;
8262
8263 /* entry_symbol is normally initialised by an ENTRY definition in the
8264 linker script or the -e command line option. But if neither of
8265 these have been used, the target specific backend may still have
8266 provided an entry symbol via a call to lang_default_entry().
8267 Unfortunately this value will not be processed until lang_end()
8268 is called, long after this function has finished. So detect this
8269 case here and add the target's entry symbol to the list of starting
8270 points for garbage collection resolution. */
8271 lang_add_gc_name (entry_symbol_default);
8272 }
8273
8274 lang_add_gc_name (link_info.init_function);
8275 lang_add_gc_name (link_info.fini_function);
8276
8277 ldemul_after_open ();
8278 if (config.map_file != NULL)
8279 lang_print_asneeded ();
8280
8281 ldlang_open_ctf ();
8282
8283 bfd_section_already_linked_table_free ();
8284
8285 /* Make sure that we're not mixing architectures. We call this
8286 after all the input files have been opened, but before we do any
8287 other processing, so that any operations merge_private_bfd_data
8288 does on the output file will be known during the rest of the
8289 link. */
8290 lang_check ();
8291
8292 /* Handle .exports instead of a version script if we're told to do so. */
8293 if (command_line.version_exports_section)
8294 lang_do_version_exports_section ();
8295
8296 /* Build all sets based on the information gathered from the input
8297 files. */
8298 ldctor_build_sets ();
8299
8300 lang_symbol_tweaks ();
8301
8302 /* PR 13683: We must rerun the assignments prior to running garbage
8303 collection in order to make sure that all symbol aliases are resolved. */
8304 lang_do_assignments (lang_mark_phase_enum);
8305 expld.phase = lang_first_phase_enum;
8306
8307 /* Size up the common data. */
8308 lang_common ();
8309
8310 if (0)
8311 debug_prefix_tree ();
8312
8313 resolve_wilds ();
8314
8315 /* Remove unreferenced sections if asked to. */
8316 lang_gc_sections ();
8317
8318 lang_mark_undefineds ();
8319
8320 /* Check relocations. */
8321 lang_check_relocs ();
8322
8323 ldemul_after_check_relocs ();
8324
8325 /* There might have been new sections created (e.g. as result of
8326 checking relocs to need a .got, or suchlike), so to properly order
8327 them into our lists of matching sections reset them here. */
8328 reset_resolved_wilds ();
8329 resolve_wilds ();
8330
8331 /* Update wild statements in case the user gave --sort-section.
8332 Note how the option might have come after the linker script and
8333 so couldn't have been set when the wild statements were created. */
8334 update_wild_statements (statement_list.head);
8335
8336 /* Run through the contours of the script and attach input sections
8337 to the correct output sections. */
8338 lang_statement_iteration++;
8339 map_input_to_output_sections (statement_list.head, NULL, NULL);
8340
8341 /* Start at the statement immediately after the special abs_section
8342 output statement, so that it isn't reordered. */
8343 process_insert_statements (&lang_os_list.head->header.next);
8344
8345 ldemul_before_place_orphans ();
8346
8347 /* Find any sections not attached explicitly and handle them. */
8348 lang_place_orphans ();
8349
8350 if (!bfd_link_relocatable (&link_info))
8351 {
8352 asection *found;
8353
8354 /* Merge SEC_MERGE sections. This has to be done after GC of
8355 sections, so that GCed sections are not merged, but before
8356 assigning dynamic symbols, since removing whole input sections
8357 is hard then. */
8358 bfd_merge_sections (link_info.output_bfd, &link_info);
8359
8360 /* Look for a text section and set the readonly attribute in it. */
8361 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
8362
8363 if (found != NULL)
8364 {
8365 if (config.text_read_only)
8366 found->flags |= SEC_READONLY;
8367 else
8368 found->flags &= ~SEC_READONLY;
8369 }
8370 }
8371
8372 /* Merge together CTF sections. After this, only the symtab-dependent
8373 function and data object sections need adjustment. */
8374 lang_merge_ctf ();
8375
8376 /* Emit the CTF, iff the emulation doesn't need to do late emission after
8377 examining things laid out late, like the strtab. */
8378 lang_write_ctf (0);
8379
8380 /* Copy forward lma regions for output sections in same lma region. */
8381 lang_propagate_lma_regions ();
8382
8383 /* Defining __start/__stop symbols early for --gc-sections to work
8384 around a glibc build problem can result in these symbols being
8385 defined when they should not be. Fix them now. */
8386 if (config.build_constructors)
8387 lang_undef_start_stop ();
8388
8389 /* Define .startof./.sizeof. symbols with preliminary values before
8390 dynamic symbols are created. */
8391 if (!bfd_link_relocatable (&link_info))
8392 lang_init_startof_sizeof ();
8393
8394 /* Do anything special before sizing sections. This is where ELF
8395 and other back-ends size dynamic sections. */
8396 ldemul_before_allocation ();
8397
8398 /* We must record the program headers before we try to fix the
8399 section positions, since they will affect SIZEOF_HEADERS. */
8400 lang_record_phdrs ();
8401
8402 /* Check relro sections. */
8403 if (link_info.relro && !bfd_link_relocatable (&link_info))
8404 lang_find_relro_sections ();
8405
8406 /* Size up the sections. */
8407 lang_size_sections (NULL, !RELAXATION_ENABLED);
8408
8409 /* See if anything special should be done now we know how big
8410 everything is. This is where relaxation is done. */
8411 ldemul_after_allocation ();
8412
8413 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
8414 lang_finalize_start_stop ();
8415
8416 /* Do all the assignments again, to report errors. Assignment
8417 statements are processed multiple times, updating symbols; In
8418 open_input_bfds, lang_do_assignments, and lang_size_sections.
8419 Since lang_relax_sections calls lang_do_assignments, symbols are
8420 also updated in ldemul_after_allocation. */
8421 lang_do_assignments (lang_final_phase_enum);
8422
8423 ldemul_finish ();
8424
8425 /* Convert absolute symbols to section relative. */
8426 ldexp_finalize_syms ();
8427
8428 /* Make sure that the section addresses make sense. */
8429 if (command_line.check_section_addresses)
8430 lang_check_section_addresses ();
8431
8432 if (link_info.non_contiguous_regions
8433 && link_info.non_contiguous_regions_warnings)
8434 warn_non_contiguous_discards ();
8435
8436 /* Check any required symbols are known. */
8437 ldlang_check_require_defined_symbols ();
8438
8439 lang_end ();
8440 }
8441
8442 void
8443 lang_add_version_string (void)
8444 {
8445 if (! enable_linker_version)
8446 return;
8447
8448 const char * str = "GNU ld ";
8449 int len = strlen (str);
8450 int i;
8451
8452 for (i = 0 ; i < len ; i++)
8453 lang_add_data (BYTE, exp_intop (str[i]));
8454
8455 str = BFD_VERSION_STRING;
8456 len = strlen (str);
8457
8458 for (i = 0 ; i < len ; i++)
8459 lang_add_data (BYTE, exp_intop (str[i]));
8460
8461 lang_add_data (BYTE, exp_intop ('\0'));
8462 }
8463
8464 /* EXPORTED TO YACC */
8465
8466 void
8467 lang_add_wild (struct wildcard_spec *filespec,
8468 struct wildcard_list *section_list,
8469 bool keep_sections)
8470 {
8471 struct wildcard_list *curr, *next;
8472 lang_wild_statement_type *new_stmt;
8473 bool any_specs_sorted = false;
8474
8475 /* Reverse the list as the parser puts it back to front. */
8476 for (curr = section_list, section_list = NULL;
8477 curr != NULL;
8478 section_list = curr, curr = next)
8479 {
8480 if (curr->spec.sorted != none && curr->spec.sorted != by_none)
8481 any_specs_sorted = true;
8482 next = curr->next;
8483 curr->next = section_list;
8484 }
8485
8486 if (filespec != NULL && filespec->name != NULL)
8487 {
8488 if (strcmp (filespec->name, "*") == 0)
8489 filespec->name = NULL;
8490 else if (!wildcardp (filespec->name))
8491 lang_has_input_file = true;
8492 }
8493
8494 new_stmt = new_stat (lang_wild_statement, stat_ptr);
8495 new_stmt->filename = NULL;
8496 new_stmt->filenames_sorted = false;
8497 new_stmt->any_specs_sorted = any_specs_sorted;
8498 new_stmt->section_flag_list = NULL;
8499 new_stmt->exclude_name_list = NULL;
8500 if (filespec != NULL)
8501 {
8502 new_stmt->filename = filespec->name;
8503 new_stmt->filenames_sorted = filespec->sorted == by_name;
8504 new_stmt->section_flag_list = filespec->section_flag_list;
8505 new_stmt->exclude_name_list = filespec->exclude_name_list;
8506 }
8507 new_stmt->section_list = section_list;
8508 new_stmt->keep_sections = keep_sections;
8509 lang_list_init (&new_stmt->children);
8510 lang_list_init (&new_stmt->matching_sections);
8511 analyze_walk_wild_section_handler (new_stmt);
8512 if (0)
8513 {
8514 printf ("wild %s(", new_stmt->filename ? new_stmt->filename : "*");
8515 for (curr = new_stmt->section_list; curr; curr = curr->next)
8516 printf ("%s ", curr->spec.name ? curr->spec.name : "*");
8517 printf (")\n");
8518 }
8519 }
8520
8521 void
8522 lang_section_start (const char *name, etree_type *address,
8523 const segment_type *segment)
8524 {
8525 lang_address_statement_type *ad;
8526
8527 ad = new_stat (lang_address_statement, stat_ptr);
8528 ad->section_name = name;
8529 ad->address = address;
8530 ad->segment = segment;
8531 }
8532
8533 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
8534 because of a -e argument on the command line, or zero if this is
8535 called by ENTRY in a linker script. Command line arguments take
8536 precedence. */
8537
8538 void
8539 lang_add_entry (const char *name, bool cmdline)
8540 {
8541 if (entry_symbol.name == NULL
8542 || cmdline
8543 || !entry_from_cmdline)
8544 {
8545 entry_symbol.name = name;
8546 entry_from_cmdline = cmdline;
8547 }
8548 }
8549
8550 /* Set the default start symbol to NAME. .em files should use this,
8551 not lang_add_entry, to override the use of "start" if neither the
8552 linker script nor the command line specifies an entry point. NAME
8553 must be permanently allocated. */
8554 void
8555 lang_default_entry (const char *name)
8556 {
8557 entry_symbol_default = name;
8558 }
8559
8560 void
8561 lang_add_target (const char *name)
8562 {
8563 lang_target_statement_type *new_stmt;
8564
8565 new_stmt = new_stat (lang_target_statement, stat_ptr);
8566 new_stmt->target = name;
8567 }
8568
8569 void
8570 lang_add_map (const char *name)
8571 {
8572 while (*name)
8573 {
8574 switch (*name)
8575 {
8576 case 'F':
8577 map_option_f = true;
8578 break;
8579 }
8580 name++;
8581 }
8582 }
8583
8584 void
8585 lang_add_fill (fill_type *fill)
8586 {
8587 lang_fill_statement_type *new_stmt;
8588
8589 new_stmt = new_stat (lang_fill_statement, stat_ptr);
8590 new_stmt->fill = fill;
8591 }
8592
8593 void
8594 lang_add_data (int type, union etree_union *exp)
8595 {
8596 lang_data_statement_type *new_stmt;
8597
8598 new_stmt = new_stat (lang_data_statement, stat_ptr);
8599 new_stmt->exp = exp;
8600 new_stmt->type = type;
8601 }
8602
8603 void
8604 lang_add_string (const char *s)
8605 {
8606 bfd_vma len = strlen (s);
8607 bfd_vma i;
8608 bool escape = false;
8609
8610 /* Add byte expressions until end of string. */
8611 for (i = 0 ; i < len; i++)
8612 {
8613 char c = *s++;
8614
8615 if (escape)
8616 {
8617 switch (c)
8618 {
8619 default:
8620 /* Ignore the escape. */
8621 break;
8622
8623 case 'n': c = '\n'; break;
8624 case 'r': c = '\r'; break;
8625 case 't': c = '\t'; break;
8626
8627 case '0':
8628 case '1':
8629 case '2':
8630 case '3':
8631 case '4':
8632 case '5':
8633 case '6':
8634 case '7':
8635 /* We have an octal number. */
8636 {
8637 unsigned int value = c - '0';
8638
8639 c = *s;
8640 if ((c >= '0') && (c <= '7'))
8641 {
8642 value <<= 3;
8643 value += (c - '0');
8644 i++;
8645 s++;
8646
8647 c = *s;
8648 if ((c >= '0') && (c <= '7'))
8649 {
8650 value <<= 3;
8651 value += (c - '0');
8652 i++;
8653 s++;
8654 }
8655 }
8656
8657 if (value > 0xff)
8658 {
8659 /* octal: \777 is treated as '\077' + '7' */
8660 value >>= 3;
8661 i--;
8662 s--;
8663 }
8664
8665 c = value;
8666 }
8667 break;
8668 }
8669
8670 lang_add_data (BYTE, exp_intop (c));
8671 escape = false;
8672 }
8673 else
8674 {
8675 if (c == '\\')
8676 escape = true;
8677 else
8678 lang_add_data (BYTE, exp_intop (c));
8679 }
8680 }
8681
8682 /* Remeber to terminate the string. */
8683 lang_add_data (BYTE, exp_intop (0));
8684 }
8685
8686 /* Create a new reloc statement. RELOC is the BFD relocation type to
8687 generate. HOWTO is the corresponding howto structure (we could
8688 look this up, but the caller has already done so). SECTION is the
8689 section to generate a reloc against, or NAME is the name of the
8690 symbol to generate a reloc against. Exactly one of SECTION and
8691 NAME must be NULL. ADDEND is an expression for the addend. */
8692
8693 void
8694 lang_add_reloc (bfd_reloc_code_real_type reloc,
8695 reloc_howto_type *howto,
8696 asection *section,
8697 const char *name,
8698 union etree_union *addend)
8699 {
8700 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
8701
8702 p->reloc = reloc;
8703 p->howto = howto;
8704 p->section = section;
8705 p->name = name;
8706 p->addend_exp = addend;
8707
8708 p->addend_value = 0;
8709 p->output_section = NULL;
8710 p->output_offset = 0;
8711 }
8712
8713 lang_assignment_statement_type *
8714 lang_add_assignment (etree_type *exp)
8715 {
8716 lang_assignment_statement_type *new_stmt;
8717
8718 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
8719 new_stmt->exp = exp;
8720 return new_stmt;
8721 }
8722
8723 void
8724 lang_add_attribute (enum statement_enum attribute)
8725 {
8726 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
8727 }
8728
8729 void
8730 lang_startup (const char *name)
8731 {
8732 if (first_file->filename != NULL)
8733 {
8734 einfo (_("%F%P: multiple STARTUP files\n"));
8735 }
8736 first_file->filename = name;
8737 first_file->local_sym_name = name;
8738 first_file->flags.real = true;
8739 }
8740
8741 void
8742 lang_float (bool maybe)
8743 {
8744 lang_float_flag = maybe;
8745 }
8746
8747
8748 /* Work out the load- and run-time regions from a script statement, and
8749 store them in *LMA_REGION and *REGION respectively.
8750
8751 MEMSPEC is the name of the run-time region, or the value of
8752 DEFAULT_MEMORY_REGION if the statement didn't specify one.
8753 LMA_MEMSPEC is the name of the load-time region, or null if the
8754 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
8755 had an explicit load address.
8756
8757 It is an error to specify both a load region and a load address. */
8758
8759 static void
8760 lang_get_regions (lang_memory_region_type **region,
8761 lang_memory_region_type **lma_region,
8762 const char *memspec,
8763 const char *lma_memspec,
8764 bool have_lma,
8765 bool have_vma)
8766 {
8767 *lma_region = lang_memory_region_lookup (lma_memspec, false);
8768
8769 /* If no runtime region or VMA has been specified, but the load region
8770 has been specified, then use the load region for the runtime region
8771 as well. */
8772 if (lma_memspec != NULL
8773 && !have_vma
8774 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
8775 *region = *lma_region;
8776 else
8777 *region = lang_memory_region_lookup (memspec, false);
8778
8779 if (have_lma && lma_memspec != 0)
8780 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
8781 NULL);
8782 }
8783
8784 void
8785 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
8786 lang_output_section_phdr_list *phdrs,
8787 const char *lma_memspec)
8788 {
8789 lang_get_regions (&current_section->region,
8790 &current_section->lma_region,
8791 memspec, lma_memspec,
8792 current_section->load_base != NULL,
8793 current_section->addr_tree != NULL);
8794
8795 current_section->fill = fill;
8796 current_section->phdrs = phdrs;
8797 pop_stat_ptr ();
8798 }
8799
8800 /* Set the output format type. -oformat overrides scripts. */
8801
8802 void
8803 lang_add_output_format (const char *format,
8804 const char *big,
8805 const char *little,
8806 int from_script)
8807 {
8808 if (output_target == NULL || !from_script)
8809 {
8810 if (command_line.endian == ENDIAN_BIG
8811 && big != NULL)
8812 format = big;
8813 else if (command_line.endian == ENDIAN_LITTLE
8814 && little != NULL)
8815 format = little;
8816
8817 output_target = format;
8818 }
8819 }
8820
8821 void
8822 lang_add_insert (const char *where, int is_before)
8823 {
8824 lang_insert_statement_type *new_stmt;
8825
8826 new_stmt = new_stat (lang_insert_statement, stat_ptr);
8827 new_stmt->where = where;
8828 new_stmt->is_before = is_before;
8829 saved_script_handle = previous_script_handle;
8830 }
8831
8832 /* Enter a group. This creates a new lang_group_statement, and sets
8833 stat_ptr to build new statements within the group. */
8834
8835 void
8836 lang_enter_group (void)
8837 {
8838 lang_group_statement_type *g;
8839
8840 g = new_stat (lang_group_statement, stat_ptr);
8841 lang_list_init (&g->children);
8842 push_stat_ptr (&g->children);
8843 }
8844
8845 /* Leave a group. This just resets stat_ptr to start writing to the
8846 regular list of statements again. Note that this will not work if
8847 groups can occur inside anything else which can adjust stat_ptr,
8848 but currently they can't. */
8849
8850 void
8851 lang_leave_group (void)
8852 {
8853 pop_stat_ptr ();
8854 }
8855
8856 /* Add a new program header. This is called for each entry in a PHDRS
8857 command in a linker script. */
8858
8859 void
8860 lang_new_phdr (const char *name,
8861 etree_type *type,
8862 bool filehdr,
8863 bool phdrs,
8864 etree_type *at,
8865 etree_type *flags)
8866 {
8867 struct lang_phdr *n, **pp;
8868 bool hdrs;
8869
8870 n = stat_alloc (sizeof (struct lang_phdr));
8871 n->next = NULL;
8872 n->name = name;
8873 n->type = exp_get_vma (type, NULL, 0, "program header type");
8874 n->filehdr = filehdr;
8875 n->phdrs = phdrs;
8876 n->at = at;
8877 n->flags = flags;
8878
8879 hdrs = n->type == 1 && (phdrs || filehdr);
8880
8881 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
8882 if (hdrs
8883 && (*pp)->type == 1
8884 && !((*pp)->filehdr || (*pp)->phdrs))
8885 {
8886 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
8887 " when prior PT_LOAD headers lack them\n"), NULL);
8888 hdrs = false;
8889 }
8890
8891 *pp = n;
8892 }
8893
8894 /* Record the program header information in the output BFD. FIXME: We
8895 should not be calling an ELF specific function here. */
8896
8897 static void
8898 lang_record_phdrs (void)
8899 {
8900 unsigned int alc;
8901 asection **secs;
8902 lang_output_section_phdr_list *last;
8903 struct lang_phdr *l;
8904 lang_output_section_statement_type *os;
8905
8906 alc = 10;
8907 secs = (asection **) xmalloc (alc * sizeof (asection *));
8908 last = NULL;
8909
8910 for (l = lang_phdr_list; l != NULL; l = l->next)
8911 {
8912 unsigned int c;
8913 flagword flags;
8914 bfd_vma at;
8915
8916 c = 0;
8917 for (os = (void *) lang_os_list.head;
8918 os != NULL;
8919 os = os->next)
8920 {
8921 lang_output_section_phdr_list *pl;
8922
8923 if (os->constraint < 0)
8924 continue;
8925
8926 pl = os->phdrs;
8927 if (pl != NULL)
8928 last = pl;
8929 else
8930 {
8931 if (os->sectype == noload_section
8932 || os->bfd_section == NULL
8933 || (os->bfd_section->flags & SEC_ALLOC) == 0)
8934 continue;
8935
8936 /* Don't add orphans to PT_INTERP header. */
8937 if (l->type == 3)
8938 continue;
8939
8940 if (last == NULL)
8941 {
8942 lang_output_section_statement_type *tmp_os;
8943
8944 /* If we have not run across a section with a program
8945 header assigned to it yet, then scan forwards to find
8946 one. This prevents inconsistencies in the linker's
8947 behaviour when a script has specified just a single
8948 header and there are sections in that script which are
8949 not assigned to it, and which occur before the first
8950 use of that header. See here for more details:
8951 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8952 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8953 if (tmp_os->phdrs)
8954 {
8955 last = tmp_os->phdrs;
8956 break;
8957 }
8958 if (last == NULL)
8959 einfo (_("%F%P: no sections assigned to phdrs\n"));
8960 }
8961 pl = last;
8962 }
8963
8964 if (os->bfd_section == NULL)
8965 continue;
8966
8967 for (; pl != NULL; pl = pl->next)
8968 {
8969 if (strcmp (pl->name, l->name) == 0)
8970 {
8971 if (c >= alc)
8972 {
8973 alc *= 2;
8974 secs = (asection **) xrealloc (secs,
8975 alc * sizeof (asection *));
8976 }
8977 secs[c] = os->bfd_section;
8978 ++c;
8979 pl->used = true;
8980 }
8981 }
8982 }
8983
8984 if (l->flags == NULL)
8985 flags = 0;
8986 else
8987 flags = exp_get_vma (l->flags, NULL, 0, "phdr flags");
8988
8989 if (l->at == NULL)
8990 at = 0;
8991 else
8992 at = exp_get_vma (l->at, NULL, 0, "phdr load address");
8993
8994 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8995 l->flags != NULL, flags, l->at != NULL,
8996 at, l->filehdr, l->phdrs, c, secs))
8997 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8998 }
8999
9000 free (secs);
9001
9002 /* Make sure all the phdr assignments succeeded. */
9003 for (os = (void *) lang_os_list.head;
9004 os != NULL;
9005 os = os->next)
9006 {
9007 lang_output_section_phdr_list *pl;
9008
9009 if (os->constraint < 0
9010 || os->bfd_section == NULL)
9011 continue;
9012
9013 for (pl = os->phdrs;
9014 pl != NULL;
9015 pl = pl->next)
9016 if (!pl->used && strcmp (pl->name, "NONE") != 0)
9017 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
9018 os->name, pl->name);
9019 }
9020 }
9021
9022 /* Record a list of sections which may not be cross referenced. */
9023
9024 void
9025 lang_add_nocrossref (lang_nocrossref_type *l)
9026 {
9027 struct lang_nocrossrefs *n;
9028
9029 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
9030 n->next = nocrossref_list;
9031 n->list = l;
9032 n->onlyfirst = false;
9033 nocrossref_list = n;
9034
9035 /* Set notice_all so that we get informed about all symbols. */
9036 link_info.notice_all = true;
9037 }
9038
9039 /* Record a section that cannot be referenced from a list of sections. */
9040
9041 void
9042 lang_add_nocrossref_to (lang_nocrossref_type *l)
9043 {
9044 lang_add_nocrossref (l);
9045 nocrossref_list->onlyfirst = true;
9046 }
9047 \f
9048 /* Overlay handling. We handle overlays with some static variables. */
9049
9050 /* The overlay virtual address. */
9051 static etree_type *overlay_vma;
9052 /* And subsection alignment. */
9053 static etree_type *overlay_subalign;
9054
9055 /* An expression for the maximum section size seen so far. */
9056 static etree_type *overlay_max;
9057
9058 /* A list of all the sections in this overlay. */
9059
9060 struct overlay_list {
9061 struct overlay_list *next;
9062 lang_output_section_statement_type *os;
9063 };
9064
9065 static struct overlay_list *overlay_list;
9066
9067 /* Start handling an overlay. */
9068
9069 void
9070 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
9071 {
9072 /* The grammar should prevent nested overlays from occurring. */
9073 ASSERT (overlay_vma == NULL
9074 && overlay_subalign == NULL
9075 && overlay_max == NULL);
9076
9077 overlay_vma = vma_expr;
9078 overlay_subalign = subalign;
9079 }
9080
9081 /* Start a section in an overlay. We handle this by calling
9082 lang_enter_output_section_statement with the correct VMA.
9083 lang_leave_overlay sets up the LMA and memory regions. */
9084
9085 void
9086 lang_enter_overlay_section (const char *name)
9087 {
9088 struct overlay_list *n;
9089 etree_type *size;
9090
9091 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
9092 0, 0, overlay_subalign, 0, 0, 0);
9093
9094 /* If this is the first section, then base the VMA of future
9095 sections on this one. This will work correctly even if `.' is
9096 used in the addresses. */
9097 if (overlay_list == NULL)
9098 overlay_vma = exp_nameop (ADDR, name);
9099
9100 /* Remember the section. */
9101 n = (struct overlay_list *) xmalloc (sizeof *n);
9102 n->os = current_section;
9103 n->next = overlay_list;
9104 overlay_list = n;
9105
9106 size = exp_nameop (SIZEOF, name);
9107
9108 /* Arrange to work out the maximum section end address. */
9109 if (overlay_max == NULL)
9110 overlay_max = size;
9111 else
9112 overlay_max = exp_binop (MAX_K, overlay_max, size);
9113 }
9114
9115 /* Finish a section in an overlay. There isn't any special to do
9116 here. */
9117
9118 void
9119 lang_leave_overlay_section (fill_type *fill,
9120 lang_output_section_phdr_list *phdrs)
9121 {
9122 const char *name;
9123 char *clean, *s2;
9124 const char *s1;
9125 char *buf;
9126
9127 name = current_section->name;
9128
9129 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
9130 region and that no load-time region has been specified. It doesn't
9131 really matter what we say here, since lang_leave_overlay will
9132 override it. */
9133 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
9134
9135 /* Define the magic symbols. */
9136
9137 clean = (char *) xmalloc (strlen (name) + 1);
9138 s2 = clean;
9139 for (s1 = name; *s1 != '\0'; s1++)
9140 if (ISALNUM (*s1) || *s1 == '_')
9141 *s2++ = *s1;
9142 *s2 = '\0';
9143
9144 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
9145 sprintf (buf, "__load_start_%s", clean);
9146 lang_add_assignment (exp_provide (buf,
9147 exp_nameop (LOADADDR, name),
9148 false));
9149
9150 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
9151 sprintf (buf, "__load_stop_%s", clean);
9152 lang_add_assignment (exp_provide (buf,
9153 exp_binop ('+',
9154 exp_nameop (LOADADDR, name),
9155 exp_nameop (SIZEOF, name)),
9156 false));
9157
9158 free (clean);
9159 }
9160
9161 /* Finish an overlay. If there are any overlay wide settings, this
9162 looks through all the sections in the overlay and sets them. */
9163
9164 void
9165 lang_leave_overlay (etree_type *lma_expr,
9166 int nocrossrefs,
9167 fill_type *fill,
9168 const char *memspec,
9169 lang_output_section_phdr_list *phdrs,
9170 const char *lma_memspec)
9171 {
9172 lang_memory_region_type *region;
9173 lang_memory_region_type *lma_region;
9174 struct overlay_list *l;
9175 lang_nocrossref_type *nocrossref;
9176
9177 lang_get_regions (&region, &lma_region,
9178 memspec, lma_memspec,
9179 lma_expr != NULL, false);
9180
9181 nocrossref = NULL;
9182
9183 /* After setting the size of the last section, set '.' to end of the
9184 overlay region. */
9185 if (overlay_list != NULL)
9186 {
9187 overlay_list->os->update_dot = 1;
9188 overlay_list->os->update_dot_tree
9189 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), false);
9190 }
9191
9192 l = overlay_list;
9193 while (l != NULL)
9194 {
9195 struct overlay_list *next;
9196
9197 if (fill != NULL && l->os->fill == NULL)
9198 l->os->fill = fill;
9199
9200 l->os->region = region;
9201 l->os->lma_region = lma_region;
9202
9203 /* The first section has the load address specified in the
9204 OVERLAY statement. The rest are worked out from that.
9205 The base address is not needed (and should be null) if
9206 an LMA region was specified. */
9207 if (l->next == 0)
9208 {
9209 l->os->load_base = lma_expr;
9210 l->os->sectype = first_overlay_section;
9211 }
9212 if (phdrs != NULL && l->os->phdrs == NULL)
9213 l->os->phdrs = phdrs;
9214
9215 if (nocrossrefs)
9216 {
9217 lang_nocrossref_type *nc;
9218
9219 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
9220 nc->name = l->os->name;
9221 nc->next = nocrossref;
9222 nocrossref = nc;
9223 }
9224
9225 next = l->next;
9226 free (l);
9227 l = next;
9228 }
9229
9230 if (nocrossref != NULL)
9231 lang_add_nocrossref (nocrossref);
9232
9233 overlay_vma = NULL;
9234 overlay_list = NULL;
9235 overlay_max = NULL;
9236 overlay_subalign = NULL;
9237 }
9238 \f
9239 /* Version handling. This is only useful for ELF. */
9240
9241 /* If PREV is NULL, return first version pattern matching particular symbol.
9242 If PREV is non-NULL, return first version pattern matching particular
9243 symbol after PREV (previously returned by lang_vers_match). */
9244
9245 static struct bfd_elf_version_expr *
9246 lang_vers_match (struct bfd_elf_version_expr_head *head,
9247 struct bfd_elf_version_expr *prev,
9248 const char *sym)
9249 {
9250 const char *c_sym;
9251 const char *cxx_sym = sym;
9252 const char *java_sym = sym;
9253 struct bfd_elf_version_expr *expr = NULL;
9254 enum demangling_styles curr_style;
9255
9256 curr_style = CURRENT_DEMANGLING_STYLE;
9257 cplus_demangle_set_style (no_demangling);
9258 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
9259 if (!c_sym)
9260 c_sym = sym;
9261 cplus_demangle_set_style (curr_style);
9262
9263 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
9264 {
9265 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
9266 DMGL_PARAMS | DMGL_ANSI);
9267 if (!cxx_sym)
9268 cxx_sym = sym;
9269 }
9270 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9271 {
9272 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
9273 if (!java_sym)
9274 java_sym = sym;
9275 }
9276
9277 if (head->htab && (prev == NULL || prev->literal))
9278 {
9279 struct bfd_elf_version_expr e;
9280
9281 switch (prev ? prev->mask : 0)
9282 {
9283 case 0:
9284 if (head->mask & BFD_ELF_VERSION_C_TYPE)
9285 {
9286 e.pattern = c_sym;
9287 expr = (struct bfd_elf_version_expr *)
9288 htab_find ((htab_t) head->htab, &e);
9289 while (expr && strcmp (expr->pattern, c_sym) == 0)
9290 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
9291 goto out_ret;
9292 else
9293 expr = expr->next;
9294 }
9295 /* Fallthrough */
9296 case BFD_ELF_VERSION_C_TYPE:
9297 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
9298 {
9299 e.pattern = cxx_sym;
9300 expr = (struct bfd_elf_version_expr *)
9301 htab_find ((htab_t) head->htab, &e);
9302 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
9303 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9304 goto out_ret;
9305 else
9306 expr = expr->next;
9307 }
9308 /* Fallthrough */
9309 case BFD_ELF_VERSION_CXX_TYPE:
9310 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
9311 {
9312 e.pattern = java_sym;
9313 expr = (struct bfd_elf_version_expr *)
9314 htab_find ((htab_t) head->htab, &e);
9315 while (expr && strcmp (expr->pattern, java_sym) == 0)
9316 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9317 goto out_ret;
9318 else
9319 expr = expr->next;
9320 }
9321 /* Fallthrough */
9322 default:
9323 break;
9324 }
9325 }
9326
9327 /* Finally, try the wildcards. */
9328 if (prev == NULL || prev->literal)
9329 expr = head->remaining;
9330 else
9331 expr = prev->next;
9332 for (; expr; expr = expr->next)
9333 {
9334 const char *s;
9335
9336 if (!expr->pattern)
9337 continue;
9338
9339 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
9340 break;
9341
9342 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
9343 s = java_sym;
9344 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
9345 s = cxx_sym;
9346 else
9347 s = c_sym;
9348 if (fnmatch (expr->pattern, s, 0) == 0)
9349 break;
9350 }
9351
9352 out_ret:
9353 if (c_sym != sym)
9354 free ((char *) c_sym);
9355 if (cxx_sym != sym)
9356 free ((char *) cxx_sym);
9357 if (java_sym != sym)
9358 free ((char *) java_sym);
9359 return expr;
9360 }
9361
9362 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
9363 return a pointer to the symbol name with any backslash quotes removed. */
9364
9365 static const char *
9366 realsymbol (const char *pattern)
9367 {
9368 const char *p;
9369 bool changed = false, backslash = false;
9370 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
9371
9372 for (p = pattern, s = symbol; *p != '\0'; ++p)
9373 {
9374 /* It is a glob pattern only if there is no preceding
9375 backslash. */
9376 if (backslash)
9377 {
9378 /* Remove the preceding backslash. */
9379 *(s - 1) = *p;
9380 backslash = false;
9381 changed = true;
9382 }
9383 else
9384 {
9385 if (*p == '?' || *p == '*' || *p == '[')
9386 {
9387 free (symbol);
9388 return NULL;
9389 }
9390
9391 *s++ = *p;
9392 backslash = *p == '\\';
9393 }
9394 }
9395
9396 if (changed)
9397 {
9398 *s = '\0';
9399 return symbol;
9400 }
9401 else
9402 {
9403 free (symbol);
9404 return pattern;
9405 }
9406 }
9407
9408 /* This is called for each variable name or match expression. NEW_NAME is
9409 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
9410 pattern to be matched against symbol names. */
9411
9412 struct bfd_elf_version_expr *
9413 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
9414 const char *new_name,
9415 const char *lang,
9416 bool literal_p)
9417 {
9418 struct bfd_elf_version_expr *ret;
9419
9420 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
9421 ret->next = orig;
9422 ret->symver = 0;
9423 ret->script = 0;
9424 ret->literal = true;
9425 ret->pattern = literal_p ? new_name : realsymbol (new_name);
9426 if (ret->pattern == NULL)
9427 {
9428 ret->pattern = new_name;
9429 ret->literal = false;
9430 }
9431
9432 if (lang == NULL || strcasecmp (lang, "C") == 0)
9433 ret->mask = BFD_ELF_VERSION_C_TYPE;
9434 else if (strcasecmp (lang, "C++") == 0)
9435 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
9436 else if (strcasecmp (lang, "Java") == 0)
9437 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
9438 else
9439 {
9440 einfo (_("%X%P: unknown language `%s' in version information\n"),
9441 lang);
9442 ret->mask = BFD_ELF_VERSION_C_TYPE;
9443 }
9444
9445 return ldemul_new_vers_pattern (ret);
9446 }
9447
9448 /* This is called for each set of variable names and match
9449 expressions. */
9450
9451 struct bfd_elf_version_tree *
9452 lang_new_vers_node (struct bfd_elf_version_expr *globals,
9453 struct bfd_elf_version_expr *locals)
9454 {
9455 struct bfd_elf_version_tree *ret;
9456
9457 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
9458 ret->globals.list = globals;
9459 ret->locals.list = locals;
9460 ret->match = lang_vers_match;
9461 ret->name_indx = (unsigned int) -1;
9462 return ret;
9463 }
9464
9465 /* This static variable keeps track of version indices. */
9466
9467 static int version_index;
9468
9469 static hashval_t
9470 version_expr_head_hash (const void *p)
9471 {
9472 const struct bfd_elf_version_expr *e =
9473 (const struct bfd_elf_version_expr *) p;
9474
9475 return htab_hash_string (e->pattern);
9476 }
9477
9478 static int
9479 version_expr_head_eq (const void *p1, const void *p2)
9480 {
9481 const struct bfd_elf_version_expr *e1 =
9482 (const struct bfd_elf_version_expr *) p1;
9483 const struct bfd_elf_version_expr *e2 =
9484 (const struct bfd_elf_version_expr *) p2;
9485
9486 return strcmp (e1->pattern, e2->pattern) == 0;
9487 }
9488
9489 static void
9490 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
9491 {
9492 size_t count = 0;
9493 struct bfd_elf_version_expr *e, *next;
9494 struct bfd_elf_version_expr **list_loc, **remaining_loc;
9495
9496 for (e = head->list; e; e = e->next)
9497 {
9498 if (e->literal)
9499 count++;
9500 head->mask |= e->mask;
9501 }
9502
9503 if (count)
9504 {
9505 head->htab = htab_create (count * 2, version_expr_head_hash,
9506 version_expr_head_eq, NULL);
9507 list_loc = &head->list;
9508 remaining_loc = &head->remaining;
9509 for (e = head->list; e; e = next)
9510 {
9511 next = e->next;
9512 if (!e->literal)
9513 {
9514 *remaining_loc = e;
9515 remaining_loc = &e->next;
9516 }
9517 else
9518 {
9519 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
9520
9521 if (*loc)
9522 {
9523 struct bfd_elf_version_expr *e1, *last;
9524
9525 e1 = (struct bfd_elf_version_expr *) *loc;
9526 last = NULL;
9527 do
9528 {
9529 if (e1->mask == e->mask)
9530 {
9531 last = NULL;
9532 break;
9533 }
9534 last = e1;
9535 e1 = e1->next;
9536 }
9537 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
9538
9539 if (last == NULL)
9540 {
9541 /* This is a duplicate. */
9542 /* FIXME: Memory leak. Sometimes pattern is not
9543 xmalloced alone, but in larger chunk of memory. */
9544 /* free (e->pattern); */
9545 free (e);
9546 }
9547 else
9548 {
9549 e->next = last->next;
9550 last->next = e;
9551 }
9552 }
9553 else
9554 {
9555 *loc = e;
9556 *list_loc = e;
9557 list_loc = &e->next;
9558 }
9559 }
9560 }
9561 *remaining_loc = NULL;
9562 *list_loc = head->remaining;
9563 }
9564 else
9565 head->remaining = head->list;
9566 }
9567
9568 /* This is called when we know the name and dependencies of the
9569 version. */
9570
9571 void
9572 lang_register_vers_node (const char *name,
9573 struct bfd_elf_version_tree *version,
9574 struct bfd_elf_version_deps *deps)
9575 {
9576 struct bfd_elf_version_tree *t, **pp;
9577 struct bfd_elf_version_expr *e1;
9578
9579 if (name == NULL)
9580 name = "";
9581
9582 if (link_info.version_info != NULL
9583 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
9584 {
9585 einfo (_("%X%P: anonymous version tag cannot be combined"
9586 " with other version tags\n"));
9587 free (version);
9588 return;
9589 }
9590
9591 /* Make sure this node has a unique name. */
9592 for (t = link_info.version_info; t != NULL; t = t->next)
9593 if (strcmp (t->name, name) == 0)
9594 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
9595
9596 lang_finalize_version_expr_head (&version->globals);
9597 lang_finalize_version_expr_head (&version->locals);
9598
9599 /* Check the global and local match names, and make sure there
9600 aren't any duplicates. */
9601
9602 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
9603 {
9604 for (t = link_info.version_info; t != NULL; t = t->next)
9605 {
9606 struct bfd_elf_version_expr *e2;
9607
9608 if (t->locals.htab && e1->literal)
9609 {
9610 e2 = (struct bfd_elf_version_expr *)
9611 htab_find ((htab_t) t->locals.htab, e1);
9612 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9613 {
9614 if (e1->mask == e2->mask)
9615 einfo (_("%X%P: duplicate expression `%s'"
9616 " in version information\n"), e1->pattern);
9617 e2 = e2->next;
9618 }
9619 }
9620 else if (!e1->literal)
9621 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
9622 if (strcmp (e1->pattern, e2->pattern) == 0
9623 && e1->mask == e2->mask)
9624 einfo (_("%X%P: duplicate expression `%s'"
9625 " in version information\n"), e1->pattern);
9626 }
9627 }
9628
9629 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
9630 {
9631 for (t = link_info.version_info; t != NULL; t = t->next)
9632 {
9633 struct bfd_elf_version_expr *e2;
9634
9635 if (t->globals.htab && e1->literal)
9636 {
9637 e2 = (struct bfd_elf_version_expr *)
9638 htab_find ((htab_t) t->globals.htab, e1);
9639 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
9640 {
9641 if (e1->mask == e2->mask)
9642 einfo (_("%X%P: duplicate expression `%s'"
9643 " in version information\n"),
9644 e1->pattern);
9645 e2 = e2->next;
9646 }
9647 }
9648 else if (!e1->literal)
9649 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
9650 if (strcmp (e1->pattern, e2->pattern) == 0
9651 && e1->mask == e2->mask)
9652 einfo (_("%X%P: duplicate expression `%s'"
9653 " in version information\n"), e1->pattern);
9654 }
9655 }
9656
9657 version->deps = deps;
9658 version->name = name;
9659 if (name[0] != '\0')
9660 {
9661 ++version_index;
9662 version->vernum = version_index;
9663 }
9664 else
9665 version->vernum = 0;
9666
9667 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
9668 ;
9669 *pp = version;
9670 }
9671
9672 /* This is called when we see a version dependency. */
9673
9674 struct bfd_elf_version_deps *
9675 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
9676 {
9677 struct bfd_elf_version_deps *ret;
9678 struct bfd_elf_version_tree *t;
9679
9680 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
9681 ret->next = list;
9682
9683 for (t = link_info.version_info; t != NULL; t = t->next)
9684 {
9685 if (strcmp (t->name, name) == 0)
9686 {
9687 ret->version_needed = t;
9688 return ret;
9689 }
9690 }
9691
9692 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
9693
9694 ret->version_needed = NULL;
9695 return ret;
9696 }
9697
9698 static void
9699 lang_do_version_exports_section (void)
9700 {
9701 struct bfd_elf_version_expr *greg = NULL, *lreg;
9702
9703 LANG_FOR_EACH_INPUT_STATEMENT (is)
9704 {
9705 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
9706 char *contents, *p;
9707 bfd_size_type len;
9708
9709 if (sec == NULL)
9710 continue;
9711
9712 len = sec->size;
9713 contents = (char *) xmalloc (len);
9714 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
9715 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
9716
9717 p = contents;
9718 while (p < contents + len)
9719 {
9720 greg = lang_new_vers_pattern (greg, p, NULL, false);
9721 p = strchr (p, '\0') + 1;
9722 }
9723
9724 /* Do not free the contents, as we used them creating the regex. */
9725
9726 /* Do not include this section in the link. */
9727 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
9728 }
9729
9730 lreg = lang_new_vers_pattern (NULL, "*", NULL, false);
9731 lang_register_vers_node (command_line.version_exports_section,
9732 lang_new_vers_node (greg, lreg), NULL);
9733 }
9734
9735 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec. This is initially
9736 called with UPDATE_REGIONS_P set to FALSE, in this case no errors are
9737 thrown, however, references to symbols in the origin and length fields
9738 will be pushed into the symbol table, this allows PROVIDE statements to
9739 then provide these symbols. This function is called a second time with
9740 UPDATE_REGIONS_P set to TRUE, this time the we update the actual region
9741 data structures, and throw errors if missing symbols are encountered. */
9742
9743 static void
9744 lang_do_memory_regions (bool update_regions_p)
9745 {
9746 lang_memory_region_type *r = lang_memory_region_list;
9747
9748 for (; r != NULL; r = r->next)
9749 {
9750 if (r->origin_exp)
9751 {
9752 exp_fold_tree_no_dot (r->origin_exp, NULL);
9753 if (update_regions_p)
9754 {
9755 if (expld.result.valid_p)
9756 {
9757 r->origin = expld.result.value;
9758 r->current = r->origin;
9759 }
9760 else
9761 einfo (_("%P: invalid origin for memory region %s\n"),
9762 r->name_list.name);
9763 }
9764 }
9765 if (r->length_exp)
9766 {
9767 exp_fold_tree_no_dot (r->length_exp, NULL);
9768 if (update_regions_p)
9769 {
9770 if (expld.result.valid_p)
9771 r->length = expld.result.value;
9772 else
9773 einfo (_("%P: invalid length for memory region %s\n"),
9774 r->name_list.name);
9775 }
9776 }
9777 }
9778 }
9779
9780 void
9781 lang_add_unique (const char *name)
9782 {
9783 struct unique_sections *ent;
9784
9785 for (ent = unique_section_list; ent; ent = ent->next)
9786 if (strcmp (ent->name, name) == 0)
9787 return;
9788
9789 ent = (struct unique_sections *) xmalloc (sizeof *ent);
9790 ent->name = xstrdup (name);
9791 ent->next = unique_section_list;
9792 unique_section_list = ent;
9793 }
9794
9795 /* Append the list of dynamic symbols to the existing one. */
9796
9797 void
9798 lang_append_dynamic_list (struct bfd_elf_dynamic_list **list_p,
9799 struct bfd_elf_version_expr *dynamic)
9800 {
9801 if (*list_p)
9802 {
9803 struct bfd_elf_version_expr *tail;
9804 for (tail = dynamic; tail->next != NULL; tail = tail->next)
9805 ;
9806 tail->next = (*list_p)->head.list;
9807 (*list_p)->head.list = dynamic;
9808 }
9809 else
9810 {
9811 struct bfd_elf_dynamic_list *d;
9812
9813 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
9814 d->head.list = dynamic;
9815 d->match = lang_vers_match;
9816 *list_p = d;
9817 }
9818 }
9819
9820 /* Append the list of C++ typeinfo dynamic symbols to the existing
9821 one. */
9822
9823 void
9824 lang_append_dynamic_list_cpp_typeinfo (void)
9825 {
9826 const char *symbols[] =
9827 {
9828 "typeinfo name for*",
9829 "typeinfo for*"
9830 };
9831 struct bfd_elf_version_expr *dynamic = NULL;
9832 unsigned int i;
9833
9834 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9835 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9836 false);
9837
9838 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9839 }
9840
9841 /* Append the list of C++ operator new and delete dynamic symbols to the
9842 existing one. */
9843
9844 void
9845 lang_append_dynamic_list_cpp_new (void)
9846 {
9847 const char *symbols[] =
9848 {
9849 "operator new*",
9850 "operator delete*"
9851 };
9852 struct bfd_elf_version_expr *dynamic = NULL;
9853 unsigned int i;
9854
9855 for (i = 0; i < ARRAY_SIZE (symbols); i++)
9856 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
9857 false);
9858
9859 lang_append_dynamic_list (&link_info.dynamic_list, dynamic);
9860 }
9861
9862 /* Scan a space and/or comma separated string of features. */
9863
9864 void
9865 lang_ld_feature (char *str)
9866 {
9867 char *p, *q;
9868
9869 p = str;
9870 while (*p)
9871 {
9872 char sep;
9873 while (*p == ',' || ISSPACE (*p))
9874 ++p;
9875 if (!*p)
9876 break;
9877 q = p + 1;
9878 while (*q && *q != ',' && !ISSPACE (*q))
9879 ++q;
9880 sep = *q;
9881 *q = 0;
9882 if (strcasecmp (p, "SANE_EXPR") == 0)
9883 config.sane_expr = true;
9884 else
9885 einfo (_("%X%P: unknown feature `%s'\n"), p);
9886 *q = sep;
9887 p = q;
9888 }
9889 }
9890
9891 /* Pretty print memory amount. */
9892
9893 static void
9894 lang_print_memory_size (uint64_t sz)
9895 {
9896 if ((sz & 0x3fffffff) == 0)
9897 printf ("%10" PRIu64 " GB", sz >> 30);
9898 else if ((sz & 0xfffff) == 0)
9899 printf ("%10" PRIu64 " MB", sz >> 20);
9900 else if ((sz & 0x3ff) == 0)
9901 printf ("%10" PRIu64 " KB", sz >> 10);
9902 else
9903 printf (" %10" PRIu64 " B", sz);
9904 }
9905
9906 /* Implement --print-memory-usage: disply per region memory usage. */
9907
9908 void
9909 lang_print_memory_usage (void)
9910 {
9911 lang_memory_region_type *r;
9912
9913 printf ("Memory region Used Size Region Size %%age Used\n");
9914 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
9915 {
9916 bfd_vma used_length = r->current - r->origin;
9917
9918 printf ("%16s: ",r->name_list.name);
9919 lang_print_memory_size (used_length);
9920 lang_print_memory_size (r->length);
9921
9922 if (r->length != 0)
9923 {
9924 double percent = used_length * 100.0 / r->length;
9925 printf (" %6.2f%%", percent);
9926 }
9927 printf ("\n");
9928 }
9929 }