libctf: eliminate dtd_u, part 5: structs / unions
[binutils-gdb.git] / libctf / ctf-create.c
1 /* CTF dict creation.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <sys/param.h>
22 #include <string.h>
23 #include <unistd.h>
24
25 #ifndef EOVERFLOW
26 #define EOVERFLOW ERANGE
27 #endif
28
29 #ifndef roundup
30 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
31 #endif
32
33 /* The initial size of a dynamic type's vlen in members. Arbitrary: the bigger
34 this is, the less allocation needs to be done for small structure
35 initialization, and the more memory is wasted for small structures during CTF
36 construction. No effect on generated CTF or ctf_open()ed CTF. */
37 #define INITIAL_VLEN 16
38
39 /* Make sure the ptrtab has enough space for at least one more type.
40
41 We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
42 at a time. */
43
44 static int
45 ctf_grow_ptrtab (ctf_dict_t *fp)
46 {
47 size_t new_ptrtab_len = fp->ctf_ptrtab_len;
48
49 /* We allocate one more ptrtab entry than we need, for the initial zero,
50 plus one because the caller will probably allocate a new type. */
51
52 if (fp->ctf_ptrtab == NULL)
53 new_ptrtab_len = 1024;
54 else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
55 new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;
56
57 if (new_ptrtab_len != fp->ctf_ptrtab_len)
58 {
59 uint32_t *new_ptrtab;
60
61 if ((new_ptrtab = realloc (fp->ctf_ptrtab,
62 new_ptrtab_len * sizeof (uint32_t))) == NULL)
63 return (ctf_set_errno (fp, ENOMEM));
64
65 fp->ctf_ptrtab = new_ptrtab;
66 memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
67 (new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
68 fp->ctf_ptrtab_len = new_ptrtab_len;
69 }
70 return 0;
71 }
72
73 /* Make sure a vlen has enough space: expand it otherwise. Unlike the ptrtab,
74 which grows quite slowly, the vlen grows in big jumps because it is quite
75 expensive to expand: the caller has to scan the old vlen for string refs
76 first and remove them, then re-add them afterwards. The initial size is
77 more or less arbitrary. */
78 static int
79 ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vlen)
80 {
81 unsigned char *old = dtd->dtd_vlen;
82
83 if (dtd->dtd_vlen_alloc > vlen)
84 return 0;
85
86 if ((dtd->dtd_vlen = realloc (dtd->dtd_vlen,
87 dtd->dtd_vlen_alloc * 2)) == NULL)
88 {
89 dtd->dtd_vlen = old;
90 return (ctf_set_errno (fp, ENOMEM));
91 }
92 memset (dtd->dtd_vlen + dtd->dtd_vlen_alloc, 0, dtd->dtd_vlen_alloc);
93 dtd->dtd_vlen_alloc *= 2;
94 return 0;
95 }
96
97 /* To create an empty CTF dict, we just declare a zeroed header and call
98 ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new dict r/w and
99 initialize the dynamic members. We start assigning type IDs at 1 because
100 type ID 0 is used as a sentinel and a not-found indicator. */
101
102 ctf_dict_t *
103 ctf_create (int *errp)
104 {
105 static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } };
106
107 ctf_dynhash_t *dthash;
108 ctf_dynhash_t *dvhash;
109 ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
110 ctf_dynhash_t *objthash = NULL, *funchash = NULL;
111 ctf_sect_t cts;
112 ctf_dict_t *fp;
113
114 libctf_init_debug();
115 dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
116 NULL, NULL);
117 if (dthash == NULL)
118 {
119 ctf_set_open_errno (errp, EAGAIN);
120 goto err;
121 }
122
123 dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
124 NULL, NULL);
125 if (dvhash == NULL)
126 {
127 ctf_set_open_errno (errp, EAGAIN);
128 goto err_dt;
129 }
130
131 structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
132 NULL, NULL);
133 unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
134 NULL, NULL);
135 enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
136 NULL, NULL);
137 names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
138 NULL, NULL);
139 objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
140 free, NULL);
141 funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
142 free, NULL);
143 if (!structs || !unions || !enums || !names)
144 {
145 ctf_set_open_errno (errp, EAGAIN);
146 goto err_dv;
147 }
148
149 cts.cts_name = _CTF_SECTION;
150 cts.cts_data = &hdr;
151 cts.cts_size = sizeof (hdr);
152 cts.cts_entsize = 1;
153
154 if ((fp = ctf_bufopen_internal (&cts, NULL, NULL, NULL, 1, errp)) == NULL)
155 goto err_dv;
156
157 fp->ctf_structs.ctn_writable = structs;
158 fp->ctf_unions.ctn_writable = unions;
159 fp->ctf_enums.ctn_writable = enums;
160 fp->ctf_names.ctn_writable = names;
161 fp->ctf_objthash = objthash;
162 fp->ctf_funchash = funchash;
163 fp->ctf_dthash = dthash;
164 fp->ctf_dvhash = dvhash;
165 fp->ctf_dtoldid = 0;
166 fp->ctf_snapshots = 1;
167 fp->ctf_snapshot_lu = 0;
168 fp->ctf_flags |= LCTF_DIRTY;
169
170 ctf_set_ctl_hashes (fp);
171 ctf_setmodel (fp, CTF_MODEL_NATIVE);
172 if (ctf_grow_ptrtab (fp) < 0)
173 {
174 ctf_set_open_errno (errp, ctf_errno (fp));
175 ctf_dict_close (fp);
176 return NULL;
177 }
178
179 return fp;
180
181 err_dv:
182 ctf_dynhash_destroy (structs);
183 ctf_dynhash_destroy (unions);
184 ctf_dynhash_destroy (enums);
185 ctf_dynhash_destroy (names);
186 ctf_dynhash_destroy (objthash);
187 ctf_dynhash_destroy (funchash);
188 ctf_dynhash_destroy (dvhash);
189 err_dt:
190 ctf_dynhash_destroy (dthash);
191 err:
192 return NULL;
193 }
194
195 /* Compatibility: just update the threshold for ctf_discard. */
196 int
197 ctf_update (ctf_dict_t *fp)
198 {
199 if (!(fp->ctf_flags & LCTF_RDWR))
200 return (ctf_set_errno (fp, ECTF_RDONLY));
201
202 fp->ctf_dtoldid = fp->ctf_typemax;
203 return 0;
204 }
205
206 ctf_names_t *
207 ctf_name_table (ctf_dict_t *fp, int kind)
208 {
209 switch (kind)
210 {
211 case CTF_K_STRUCT:
212 return &fp->ctf_structs;
213 case CTF_K_UNION:
214 return &fp->ctf_unions;
215 case CTF_K_ENUM:
216 return &fp->ctf_enums;
217 default:
218 return &fp->ctf_names;
219 }
220 }
221
222 int
223 ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
224 {
225 const char *name;
226 if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
227 dtd) < 0)
228 {
229 ctf_set_errno (fp, ENOMEM);
230 return -1;
231 }
232
233 if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
234 && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
235 {
236 if (ctf_dynhash_insert (ctf_name_table (fp, kind)->ctn_writable,
237 (char *) name, (void *) (uintptr_t)
238 dtd->dtd_type) < 0)
239 {
240 ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
241 dtd->dtd_type);
242 ctf_set_errno (fp, ENOMEM);
243 return -1;
244 }
245 }
246 ctf_list_append (&fp->ctf_dtdefs, dtd);
247 return 0;
248 }
249
250 void
251 ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
252 {
253 int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
254 size_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
255 int name_kind = kind;
256 const char *name;
257
258 ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
259
260 switch (kind)
261 {
262 case CTF_K_STRUCT:
263 case CTF_K_UNION:
264 {
265 ctf_lmember_t *memb = (ctf_lmember_t *) dtd->dtd_vlen;
266 size_t i;
267
268 for (i = 0; i < vlen; i++)
269 ctf_str_remove_ref (fp, ctf_strraw (fp, memb[i].ctlm_name),
270 &memb[i].ctlm_name);
271 }
272 break;
273 case CTF_K_ENUM:
274 {
275 ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen;
276 size_t i;
277
278 for (i = 0; i < vlen; i++)
279 ctf_str_remove_ref (fp, ctf_strraw (fp, en[i].cte_name),
280 &en[i].cte_name);
281 }
282 break;
283 case CTF_K_FORWARD:
284 name_kind = dtd->dtd_data.ctt_type;
285 break;
286 }
287 free (dtd->dtd_vlen);
288 dtd->dtd_vlen_alloc = 0;
289
290 if (dtd->dtd_data.ctt_name
291 && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
292 && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
293 {
294 ctf_dynhash_remove (ctf_name_table (fp, name_kind)->ctn_writable,
295 name);
296 ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
297 }
298
299 ctf_list_delete (&fp->ctf_dtdefs, dtd);
300 free (dtd);
301 }
302
303 ctf_dtdef_t *
304 ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
305 {
306 return (ctf_dtdef_t *)
307 ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
308 }
309
310 ctf_dtdef_t *
311 ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id)
312 {
313 ctf_id_t idx;
314
315 if (!(fp->ctf_flags & LCTF_RDWR))
316 return NULL;
317
318 if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
319 fp = fp->ctf_parent;
320
321 idx = LCTF_TYPE_TO_INDEX(fp, id);
322
323 if ((unsigned long) idx <= fp->ctf_typemax)
324 return ctf_dtd_lookup (fp, id);
325 return NULL;
326 }
327
328 int
329 ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd)
330 {
331 if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0)
332 {
333 ctf_set_errno (fp, ENOMEM);
334 return -1;
335 }
336 ctf_list_append (&fp->ctf_dvdefs, dvd);
337 return 0;
338 }
339
340 void
341 ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd)
342 {
343 ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name);
344 free (dvd->dvd_name);
345
346 ctf_list_delete (&fp->ctf_dvdefs, dvd);
347 free (dvd);
348 }
349
350 ctf_dvdef_t *
351 ctf_dvd_lookup (const ctf_dict_t *fp, const char *name)
352 {
353 return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name);
354 }
355
356 /* Discard all of the dynamic type definitions and variable definitions that
357 have been added to the dict since the last call to ctf_update(). We locate
358 such types by scanning the dtd list and deleting elements that have type IDs
359 greater than ctf_dtoldid, which is set by ctf_update(), above, and by
360 scanning the variable list and deleting elements that have update IDs equal
361 to the current value of the last-update snapshot count (indicating that they
362 were added after the most recent call to ctf_update()). */
363 int
364 ctf_discard (ctf_dict_t *fp)
365 {
366 ctf_snapshot_id_t last_update =
367 { fp->ctf_dtoldid,
368 fp->ctf_snapshot_lu + 1 };
369
370 /* Update required? */
371 if (!(fp->ctf_flags & LCTF_DIRTY))
372 return 0;
373
374 return (ctf_rollback (fp, last_update));
375 }
376
377 ctf_snapshot_id_t
378 ctf_snapshot (ctf_dict_t *fp)
379 {
380 ctf_snapshot_id_t snapid;
381 snapid.dtd_id = fp->ctf_typemax;
382 snapid.snapshot_id = fp->ctf_snapshots++;
383 return snapid;
384 }
385
386 /* Like ctf_discard(), only discards everything after a particular ID. */
387 int
388 ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
389 {
390 ctf_dtdef_t *dtd, *ntd;
391 ctf_dvdef_t *dvd, *nvd;
392
393 if (!(fp->ctf_flags & LCTF_RDWR))
394 return (ctf_set_errno (fp, ECTF_RDONLY));
395
396 if (fp->ctf_snapshot_lu >= id.snapshot_id)
397 return (ctf_set_errno (fp, ECTF_OVERROLLBACK));
398
399 for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
400 {
401 int kind;
402 const char *name;
403
404 ntd = ctf_list_next (dtd);
405
406 if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id)
407 continue;
408
409 kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
410 if (kind == CTF_K_FORWARD)
411 kind = dtd->dtd_data.ctt_type;
412
413 if (dtd->dtd_data.ctt_name
414 && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
415 && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
416 {
417 ctf_dynhash_remove (ctf_name_table (fp, kind)->ctn_writable,
418 name);
419 ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
420 }
421
422 ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
423 ctf_dtd_delete (fp, dtd);
424 }
425
426 for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
427 {
428 nvd = ctf_list_next (dvd);
429
430 if (dvd->dvd_snapshots <= id.snapshot_id)
431 continue;
432
433 ctf_dvd_delete (fp, dvd);
434 }
435
436 fp->ctf_typemax = id.dtd_id;
437 fp->ctf_snapshots = id.snapshot_id;
438
439 if (fp->ctf_snapshots == fp->ctf_snapshot_lu)
440 fp->ctf_flags &= ~LCTF_DIRTY;
441
442 return 0;
443 }
444
445 /* Note: vlen is the amount of space *allocated* for the vlen. It may well not
446 be the amount of space used (yet): the space used is declared in per-kind
447 fashion in the dtd_data's info word. */
448 static ctf_id_t
449 ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
450 size_t vlen, ctf_dtdef_t **rp)
451 {
452 ctf_dtdef_t *dtd;
453 ctf_id_t type;
454
455 if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
456 return (ctf_set_errno (fp, EINVAL));
457
458 if (!(fp->ctf_flags & LCTF_RDWR))
459 return (ctf_set_errno (fp, ECTF_RDONLY));
460
461 if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE)
462 return (ctf_set_errno (fp, ECTF_FULL));
463
464 if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1))
465 return (ctf_set_errno (fp, ECTF_FULL));
466
467 /* Make sure ptrtab always grows to be big enough for all types. */
468 if (ctf_grow_ptrtab (fp) < 0)
469 return CTF_ERR; /* errno is set for us. */
470
471 if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL)
472 return (ctf_set_errno (fp, EAGAIN));
473
474 dtd->dtd_vlen_alloc = vlen;
475 if (vlen > 0)
476 {
477 if ((dtd->dtd_vlen = calloc (1, vlen)) == NULL)
478 goto oom;
479 }
480 else
481 dtd->dtd_vlen = NULL;
482
483 type = ++fp->ctf_typemax;
484 type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD));
485
486 dtd->dtd_data.ctt_name = ctf_str_add_pending (fp, name,
487 &dtd->dtd_data.ctt_name);
488 dtd->dtd_type = type;
489
490 if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0')
491 goto oom;
492
493 if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
494 goto err; /* errno is set for us. */
495
496 fp->ctf_flags |= LCTF_DIRTY;
497
498 *rp = dtd;
499 return type;
500
501 oom:
502 ctf_set_errno (fp, EAGAIN);
503 err:
504 free (dtd->dtd_vlen);
505 free (dtd);
506 return CTF_ERR;
507 }
508
509 /* When encoding integer sizes, we want to convert a byte count in the range
510 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
511 is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */
512 static size_t
513 clp2 (size_t x)
514 {
515 x--;
516
517 x |= (x >> 1);
518 x |= (x >> 2);
519 x |= (x >> 4);
520 x |= (x >> 8);
521 x |= (x >> 16);
522
523 return (x + 1);
524 }
525
526 ctf_id_t
527 ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
528 const char *name, const ctf_encoding_t *ep, uint32_t kind)
529 {
530 ctf_dtdef_t *dtd;
531 ctf_id_t type;
532 uint32_t encoding;
533
534 if (ep == NULL)
535 return (ctf_set_errno (fp, EINVAL));
536
537 if (name == NULL || name[0] == '\0')
538 return (ctf_set_errno (fp, ECTF_NONAME));
539
540 if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT))
541 return -1; /* errno is set for us. */
542
543 if ((type = ctf_add_generic (fp, flag, name, kind, sizeof (uint32_t),
544 &dtd)) == CTF_ERR)
545 return CTF_ERR; /* errno is set for us. */
546
547 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
548 dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
549 / CHAR_BIT);
550 switch (kind)
551 {
552 case CTF_K_INTEGER:
553 encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
554 break;
555 case CTF_K_FLOAT:
556 encoding = CTF_FP_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
557 break;
558 }
559 memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding));
560
561 return type;
562 }
563
564 ctf_id_t
565 ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
566 {
567 ctf_dtdef_t *dtd;
568 ctf_id_t type;
569 ctf_dict_t *tmp = fp;
570 int child = fp->ctf_flags & LCTF_CHILD;
571
572 if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
573 return (ctf_set_errno (fp, EINVAL));
574
575 if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
576 return CTF_ERR; /* errno is set for us. */
577
578 if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR)
579 return CTF_ERR; /* errno is set for us. */
580
581 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
582 dtd->dtd_data.ctt_type = (uint32_t) ref;
583
584 if (kind != CTF_K_POINTER)
585 return type;
586
587 /* If we are adding a pointer, update the ptrtab, pointing at this type from
588 the type it points to. Note that ctf_typemax is at this point one higher
589 than we want to check against, because it's just been incremented for the
590 addition of this type. The pptrtab is lazily-updated as needed, so is not
591 touched here. */
592
593 uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type);
594 uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref);
595
596 if (LCTF_TYPE_ISCHILD (fp, ref) == child
597 && ref_idx < fp->ctf_typemax)
598 fp->ctf_ptrtab[ref_idx] = type_idx;
599
600 return type;
601 }
602
603 ctf_id_t
604 ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
605 const ctf_encoding_t *ep)
606 {
607 ctf_dtdef_t *dtd;
608 ctf_slice_t slice;
609 ctf_id_t resolved_ref = ref;
610 ctf_id_t type;
611 int kind;
612 const ctf_type_t *tp;
613 ctf_dict_t *tmp = fp;
614
615 if (ep == NULL)
616 return (ctf_set_errno (fp, EINVAL));
617
618 if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
619 return (ctf_set_errno (fp, ECTF_SLICEOVERFLOW));
620
621 if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
622 return (ctf_set_errno (fp, EINVAL));
623
624 if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
625 return CTF_ERR; /* errno is set for us. */
626
627 /* Make sure we ultimately point to an integral type. We also allow slices to
628 point to the unimplemented type, for now, because the compiler can emit
629 such slices, though they're not very much use. */
630
631 resolved_ref = ctf_type_resolve_unsliced (tmp, ref);
632 kind = ctf_type_kind_unsliced (tmp, resolved_ref);
633
634 if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
635 (kind != CTF_K_ENUM)
636 && (ref != 0))
637 return (ctf_set_errno (fp, ECTF_NOTINTFP));
638
639 if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE,
640 sizeof (ctf_slice_t), &dtd)) == CTF_ERR)
641 return CTF_ERR; /* errno is set for us. */
642
643 memset (&slice, 0, sizeof (ctf_slice_t));
644
645 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
646 dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
647 / CHAR_BIT);
648 slice.cts_type = (uint32_t) ref;
649 slice.cts_bits = ep->cte_bits;
650 slice.cts_offset = ep->cte_offset;
651 memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t));
652
653 return type;
654 }
655
656 ctf_id_t
657 ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
658 const char *name, const ctf_encoding_t *ep)
659 {
660 return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
661 }
662
663 ctf_id_t
664 ctf_add_float (ctf_dict_t *fp, uint32_t flag,
665 const char *name, const ctf_encoding_t *ep)
666 {
667 return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
668 }
669
670 ctf_id_t
671 ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
672 {
673 return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
674 }
675
676 ctf_id_t
677 ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
678 {
679 ctf_dtdef_t *dtd;
680 ctf_array_t cta;
681 ctf_id_t type;
682 ctf_dict_t *tmp = fp;
683
684 if (arp == NULL)
685 return (ctf_set_errno (fp, EINVAL));
686
687 if (arp->ctr_contents != 0
688 && ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
689 return CTF_ERR; /* errno is set for us. */
690
691 tmp = fp;
692 if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
693 return CTF_ERR; /* errno is set for us. */
694
695 if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD)
696 {
697 ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
698 _("ctf_add_array: index type %lx is incomplete"),
699 arp->ctr_contents);
700 return (ctf_set_errno (fp, ECTF_INCOMPLETE));
701 }
702
703 if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY,
704 sizeof (ctf_array_t), &dtd)) == CTF_ERR)
705 return CTF_ERR; /* errno is set for us. */
706
707 memset (&cta, 0, sizeof (ctf_array_t));
708
709 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
710 dtd->dtd_data.ctt_size = 0;
711 cta.cta_contents = (uint32_t) arp->ctr_contents;
712 cta.cta_index = (uint32_t) arp->ctr_index;
713 cta.cta_nelems = arp->ctr_nelems;
714 memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t));
715
716 return type;
717 }
718
719 int
720 ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
721 {
722 ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
723 ctf_array_t *vlen;
724
725 if (!(fp->ctf_flags & LCTF_RDWR))
726 return (ctf_set_errno (fp, ECTF_RDONLY));
727
728 if (dtd == NULL
729 || LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
730 return (ctf_set_errno (fp, ECTF_BADID));
731
732 vlen = (ctf_array_t *) dtd->dtd_vlen;
733 fp->ctf_flags |= LCTF_DIRTY;
734 vlen->cta_contents = (uint32_t) arp->ctr_contents;
735 vlen->cta_index = (uint32_t) arp->ctr_index;
736 vlen->cta_nelems = arp->ctr_nelems;
737
738 return 0;
739 }
740
741 ctf_id_t
742 ctf_add_function (ctf_dict_t *fp, uint32_t flag,
743 const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
744 {
745 ctf_dtdef_t *dtd;
746 ctf_id_t type;
747 uint32_t vlen;
748 uint32_t *vdat;
749 ctf_dict_t *tmp = fp;
750 size_t initial_vlen;
751 size_t i;
752
753 if (!(fp->ctf_flags & LCTF_RDWR))
754 return (ctf_set_errno (fp, ECTF_RDONLY));
755
756 if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
757 || (ctc->ctc_argc != 0 && argv == NULL))
758 return (ctf_set_errno (fp, EINVAL));
759
760 vlen = ctc->ctc_argc;
761 if (ctc->ctc_flags & CTF_FUNC_VARARG)
762 vlen++; /* Add trailing zero to indicate varargs (see below). */
763
764 if (ctc->ctc_return != 0
765 && ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL)
766 return CTF_ERR; /* errno is set for us. */
767
768 if (vlen > CTF_MAX_VLEN)
769 return (ctf_set_errno (fp, EOVERFLOW));
770
771 /* One word extra allocated for padding for 4-byte alignment if need be.
772 Not reflected in vlen: we don't want to copy anything into it, and
773 it's in addition to (e.g.) the trailing 0 indicating varargs. */
774
775 initial_vlen = (sizeof (uint32_t) * (vlen + (vlen & 1)));
776 if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION,
777 initial_vlen, &dtd)) == CTF_ERR)
778 return CTF_ERR; /* errno is set for us. */
779
780 vdat = (uint32_t *) dtd->dtd_vlen;
781
782 for (i = 0; i < ctc->ctc_argc; i++)
783 {
784 tmp = fp;
785 if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL)
786 return CTF_ERR; /* errno is set for us. */
787 vdat[i] = (uint32_t) argv[i];
788 }
789
790 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen);
791 dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return;
792
793 if (ctc->ctc_flags & CTF_FUNC_VARARG)
794 vdat[vlen - 1] = 0; /* Add trailing zero to indicate varargs. */
795
796 return type;
797 }
798
799 ctf_id_t
800 ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
801 size_t size)
802 {
803 ctf_dtdef_t *dtd;
804 ctf_id_t type = 0;
805 size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;
806
807 /* Promote root-visible forwards to structs. */
808 if (name != NULL)
809 type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name);
810
811 if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
812 dtd = ctf_dtd_lookup (fp, type);
813 else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT,
814 initial_vlen, &dtd)) == CTF_ERR)
815 return CTF_ERR; /* errno is set for us. */
816
817 /* Forwards won't have any vlen yet. */
818 if (dtd->dtd_vlen_alloc == 0)
819 {
820 if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
821 return (ctf_set_errno (fp, ENOMEM));
822 dtd->dtd_vlen_alloc = initial_vlen;
823 }
824
825 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0);
826 dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
827 dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
828 dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
829
830 return type;
831 }
832
833 ctf_id_t
834 ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
835 {
836 return (ctf_add_struct_sized (fp, flag, name, 0));
837 }
838
839 ctf_id_t
840 ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
841 size_t size)
842 {
843 ctf_dtdef_t *dtd;
844 ctf_id_t type = 0;
845 size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;
846
847 /* Promote root-visible forwards to unions. */
848 if (name != NULL)
849 type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name);
850
851 if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
852 dtd = ctf_dtd_lookup (fp, type);
853 else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION,
854 initial_vlen, &dtd)) == CTF_ERR)
855 return CTF_ERR; /* errno is set for us */
856
857 /* Forwards won't have any vlen yet. */
858 if (dtd->dtd_vlen_alloc == 0)
859 {
860 if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
861 return (ctf_set_errno (fp, ENOMEM));
862 dtd->dtd_vlen_alloc = initial_vlen;
863 }
864
865 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0);
866 dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
867 dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
868 dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
869
870 return type;
871 }
872
873 ctf_id_t
874 ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
875 {
876 return (ctf_add_union_sized (fp, flag, name, 0));
877 }
878
879 ctf_id_t
880 ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
881 {
882 ctf_dtdef_t *dtd;
883 ctf_id_t type = 0;
884 size_t initial_vlen = sizeof (ctf_enum_t) * INITIAL_VLEN;
885
886 /* Promote root-visible forwards to enums. */
887 if (name != NULL)
888 type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
889
890 if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
891 dtd = ctf_dtd_lookup (fp, type);
892 else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM,
893 initial_vlen, &dtd)) == CTF_ERR)
894 return CTF_ERR; /* errno is set for us. */
895
896 /* Forwards won't have any vlen yet. */
897 if (dtd->dtd_vlen_alloc == 0)
898 {
899 if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
900 return (ctf_set_errno (fp, ENOMEM));
901 dtd->dtd_vlen_alloc = initial_vlen;
902 }
903
904 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0);
905 dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;
906
907 return type;
908 }
909
910 ctf_id_t
911 ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
912 const ctf_encoding_t *ep)
913 {
914 ctf_id_t type = 0;
915
916 /* First, create the enum if need be, using most of the same machinery as
917 ctf_add_enum(), to ensure that we do not allow things past that are not
918 enums or forwards to them. (This includes other slices: you cannot slice a
919 slice, which would be a useless thing to do anyway.) */
920
921 if (name != NULL)
922 type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
923
924 if (type != 0)
925 {
926 if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
927 (ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM))
928 return (ctf_set_errno (fp, ECTF_NOTINTFP));
929 }
930 else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR)
931 return CTF_ERR; /* errno is set for us. */
932
933 /* Now attach a suitable slice to it. */
934
935 return ctf_add_slice (fp, flag, type, ep);
936 }
937
938 ctf_id_t
939 ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
940 uint32_t kind)
941 {
942 ctf_dtdef_t *dtd;
943 ctf_id_t type = 0;
944
945 if (!ctf_forwardable_kind (kind))
946 return (ctf_set_errno (fp, ECTF_NOTSUE));
947
948 if (name == NULL || name[0] == '\0')
949 return (ctf_set_errno (fp, ECTF_NONAME));
950
951 /* If the type is already defined or exists as a forward tag, just
952 return the ctf_id_t of the existing definition. */
953
954 type = ctf_lookup_by_rawname (fp, kind, name);
955
956 if (type)
957 return type;
958
959 if ((type = ctf_add_generic (fp, flag, name, kind, 0, &dtd)) == CTF_ERR)
960 return CTF_ERR; /* errno is set for us. */
961
962 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0);
963 dtd->dtd_data.ctt_type = kind;
964
965 return type;
966 }
967
968 ctf_id_t
969 ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
970 ctf_id_t ref)
971 {
972 ctf_dtdef_t *dtd;
973 ctf_id_t type;
974 ctf_dict_t *tmp = fp;
975
976 if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
977 return (ctf_set_errno (fp, EINVAL));
978
979 if (name == NULL || name[0] == '\0')
980 return (ctf_set_errno (fp, ECTF_NONAME));
981
982 if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
983 return CTF_ERR; /* errno is set for us. */
984
985 if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0,
986 &dtd)) == CTF_ERR)
987 return CTF_ERR; /* errno is set for us. */
988
989 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
990 dtd->dtd_data.ctt_type = (uint32_t) ref;
991
992 return type;
993 }
994
995 ctf_id_t
996 ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
997 {
998 return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
999 }
1000
1001 ctf_id_t
1002 ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
1003 {
1004 return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
1005 }
1006
1007 ctf_id_t
1008 ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
1009 {
1010 return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
1011 }
1012
1013 int
1014 ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
1015 int value)
1016 {
1017 ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid);
1018 unsigned char *old_vlen;
1019 ctf_enum_t *en;
1020 size_t i;
1021
1022 uint32_t kind, vlen, root;
1023
1024 if (name == NULL)
1025 return (ctf_set_errno (fp, EINVAL));
1026
1027 if (!(fp->ctf_flags & LCTF_RDWR))
1028 return (ctf_set_errno (fp, ECTF_RDONLY));
1029
1030 if (dtd == NULL)
1031 return (ctf_set_errno (fp, ECTF_BADID));
1032
1033 kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
1034 root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
1035 vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
1036
1037 if (kind != CTF_K_ENUM)
1038 return (ctf_set_errno (fp, ECTF_NOTENUM));
1039
1040 if (vlen == CTF_MAX_VLEN)
1041 return (ctf_set_errno (fp, ECTF_DTFULL));
1042
1043 old_vlen = dtd->dtd_vlen;
1044 if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0)
1045 return -1; /* errno is set for us. */
1046 en = (ctf_enum_t *) dtd->dtd_vlen;
1047
1048 if (dtd->dtd_vlen != old_vlen)
1049 {
1050 ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen;
1051
1052 /* Remove pending refs in the old vlen region and reapply them. */
1053
1054 for (i = 0; i < vlen; i++)
1055 ctf_str_move_pending (fp, &en[i].cte_name, move);
1056 }
1057
1058 for (i = 0; i < vlen; i++)
1059 if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0)
1060 return (ctf_set_errno (fp, ECTF_DUPLICATE));
1061
1062 en[i].cte_name = ctf_str_add_pending (fp, name, &en[i].cte_name);
1063 en[i].cte_value = value;
1064
1065 if (en[i].cte_name == 0 && name != NULL && name[0] != '\0')
1066 return -1; /* errno is set for us. */
1067
1068 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
1069
1070 fp->ctf_flags |= LCTF_DIRTY;
1071
1072 return 0;
1073 }
1074
1075 int
1076 ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
1077 ctf_id_t type, unsigned long bit_offset)
1078 {
1079 ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid);
1080
1081 ssize_t msize, malign, ssize;
1082 uint32_t kind, vlen, root;
1083 size_t i;
1084 int is_incomplete = 0;
1085 unsigned char *old_vlen;
1086 ctf_lmember_t *memb;
1087
1088 if (!(fp->ctf_flags & LCTF_RDWR))
1089 return (ctf_set_errno (fp, ECTF_RDONLY));
1090
1091 if (dtd == NULL)
1092 return (ctf_set_errno (fp, ECTF_BADID));
1093
1094 if (name != NULL && name[0] == '\0')
1095 name = NULL;
1096
1097 kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
1098 root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
1099 vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
1100
1101 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
1102 return (ctf_set_errno (fp, ECTF_NOTSOU));
1103
1104 if (vlen == CTF_MAX_VLEN)
1105 return (ctf_set_errno (fp, ECTF_DTFULL));
1106
1107 old_vlen = dtd->dtd_vlen;
1108 if (ctf_grow_vlen (fp, dtd, sizeof (ctf_lmember_t) * (vlen + 1)) < 0)
1109 return -1; /* errno is set for us. */
1110 memb = (ctf_lmember_t *) dtd->dtd_vlen;
1111
1112 if (dtd->dtd_vlen != old_vlen)
1113 {
1114 ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen;
1115
1116 /* Remove pending refs in the old vlen region and reapply them. */
1117
1118 for (i = 0; i < vlen; i++)
1119 ctf_str_move_pending (fp, &memb[i].ctlm_name, move);
1120 }
1121
1122 if (name != NULL)
1123 {
1124 for (i = 0; i < vlen; i++)
1125 if (strcmp (ctf_strptr (fp, memb[i].ctlm_name), name) == 0)
1126 return (ctf_set_errno (fp, ECTF_DUPLICATE));
1127 }
1128
1129 if ((msize = ctf_type_size (fp, type)) < 0 ||
1130 (malign = ctf_type_align (fp, type)) < 0)
1131 {
1132 /* The unimplemented type, and any type that resolves to it, has no size
1133 and no alignment: it can correspond to any number of compiler-inserted
1134 types. We allow incomplete types through since they are routinely
1135 added to the ends of structures, and can even be added elsewhere in
1136 structures by the deduplicator. They are assumed to be zero-size with
1137 no alignment: this is often wrong, but problems can be avoided in this
1138 case by explicitly specifying the size of the structure via the _sized
1139 functions. The deduplicator always does this. */
1140
1141 msize = 0;
1142 malign = 0;
1143 if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
1144 ctf_set_errno (fp, 0);
1145 else if (ctf_errno (fp) == ECTF_INCOMPLETE)
1146 is_incomplete = 1;
1147 else
1148 return -1; /* errno is set for us. */
1149 }
1150
1151 memb[vlen].ctlm_name = ctf_str_add_pending (fp, name, &memb[vlen].ctlm_name);
1152 memb[vlen].ctlm_type = type;
1153 if (memb[vlen].ctlm_name == 0 && name != NULL && name[0] != '\0')
1154 return -1; /* errno is set for us. */
1155
1156 if (kind == CTF_K_STRUCT && vlen != 0)
1157 {
1158 if (bit_offset == (unsigned long) - 1)
1159 {
1160 /* Natural alignment. */
1161
1162 ctf_id_t ltype = ctf_type_resolve (fp, memb[vlen - 1].ctlm_type);
1163 size_t off = CTF_LMEM_OFFSET(&memb[vlen - 1]);
1164
1165 ctf_encoding_t linfo;
1166 ssize_t lsize;
1167
1168 /* Propagate any error from ctf_type_resolve. If the last member was
1169 of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we
1170 cannot insert right after such a member without explicit offset
1171 specification, because its alignment and size is not known. */
1172 if (ltype == CTF_ERR)
1173 return -1; /* errno is set for us. */
1174
1175 if (is_incomplete)
1176 {
1177 ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
1178 _("ctf_add_member_offset: cannot add member %s of "
1179 "incomplete type %lx to struct %lx without "
1180 "specifying explicit offset\n"),
1181 name ? name : _("(unnamed member)"), type, souid);
1182 return (ctf_set_errno (fp, ECTF_INCOMPLETE));
1183 }
1184
1185 if (ctf_type_encoding (fp, ltype, &linfo) == 0)
1186 off += linfo.cte_bits;
1187 else if ((lsize = ctf_type_size (fp, ltype)) > 0)
1188 off += lsize * CHAR_BIT;
1189 else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE)
1190 {
1191 const char *lname = ctf_strraw (fp, memb[vlen - 1].ctlm_name);
1192
1193 ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
1194 _("ctf_add_member_offset: cannot add member %s of "
1195 "type %lx to struct %lx without specifying "
1196 "explicit offset after member %s of type %lx, "
1197 "which is an incomplete type\n"),
1198 name ? name : _("(unnamed member)"), type, souid,
1199 lname ? lname : _("(unnamed member)"), ltype);
1200 return -1; /* errno is set for us. */
1201 }
1202
1203 /* Round up the offset of the end of the last member to
1204 the next byte boundary, convert 'off' to bytes, and
1205 then round it up again to the next multiple of the
1206 alignment required by the new member. Finally,
1207 convert back to bits and store the result in
1208 dmd_offset. Technically we could do more efficient
1209 packing if the new member is a bit-field, but we're
1210 the "compiler" and ANSI says we can do as we choose. */
1211
1212 off = roundup (off, CHAR_BIT) / CHAR_BIT;
1213 off = roundup (off, MAX (malign, 1));
1214 memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (off * CHAR_BIT);
1215 memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (off * CHAR_BIT);
1216 ssize = off + msize;
1217 }
1218 else
1219 {
1220 /* Specified offset in bits. */
1221
1222 memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (bit_offset);
1223 memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (bit_offset);
1224 ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
1225 ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize);
1226 }
1227 }
1228 else
1229 {
1230 memb[vlen].ctlm_offsethi = 0;
1231 memb[vlen].ctlm_offsetlo = 0;
1232 ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
1233 ssize = MAX (ssize, msize);
1234 }
1235
1236 dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
1237 dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize);
1238 dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize);
1239 dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
1240
1241 fp->ctf_flags |= LCTF_DIRTY;
1242 return 0;
1243 }
1244
1245 int
1246 ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
1247 ctf_id_t type, unsigned long bit_offset,
1248 const ctf_encoding_t encoding)
1249 {
1250 ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
1251 int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
1252 int otype = type;
1253
1254 if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
1255 return (ctf_set_errno (fp, ECTF_NOTINTFP));
1256
1257 if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
1258 return -1; /* errno is set for us. */
1259
1260 return ctf_add_member_offset (fp, souid, name, type, bit_offset);
1261 }
1262
1263 int
1264 ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
1265 ctf_id_t type)
1266 {
1267 return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
1268 }
1269
1270 int
1271 ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
1272 {
1273 ctf_dvdef_t *dvd;
1274 ctf_dict_t *tmp = fp;
1275
1276 if (!(fp->ctf_flags & LCTF_RDWR))
1277 return (ctf_set_errno (fp, ECTF_RDONLY));
1278
1279 if (ctf_dvd_lookup (fp, name) != NULL)
1280 return (ctf_set_errno (fp, ECTF_DUPLICATE));
1281
1282 if (ctf_lookup_by_id (&tmp, ref) == NULL)
1283 return -1; /* errno is set for us. */
1284
1285 /* Make sure this type is representable. */
1286 if ((ctf_type_resolve (fp, ref) == CTF_ERR)
1287 && (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
1288 return -1;
1289
1290 if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL)
1291 return (ctf_set_errno (fp, EAGAIN));
1292
1293 if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL)
1294 {
1295 free (dvd);
1296 return (ctf_set_errno (fp, EAGAIN));
1297 }
1298 dvd->dvd_type = ref;
1299 dvd->dvd_snapshots = fp->ctf_snapshots;
1300
1301 if (ctf_dvd_insert (fp, dvd) < 0)
1302 {
1303 free (dvd->dvd_name);
1304 free (dvd);
1305 return -1; /* errno is set for us. */
1306 }
1307
1308 fp->ctf_flags |= LCTF_DIRTY;
1309 return 0;
1310 }
1311
1312 int
1313 ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
1314 {
1315 ctf_dict_t *tmp = fp;
1316 char *dupname;
1317 ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;
1318
1319 if (!(fp->ctf_flags & LCTF_RDWR))
1320 return (ctf_set_errno (fp, ECTF_RDONLY));
1321
1322 if (ctf_dynhash_lookup (fp->ctf_objthash, name) != NULL ||
1323 ctf_dynhash_lookup (fp->ctf_funchash, name) != NULL)
1324 return (ctf_set_errno (fp, ECTF_DUPLICATE));
1325
1326 if (ctf_lookup_by_id (&tmp, id) == NULL)
1327 return -1; /* errno is set for us. */
1328
1329 if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
1330 return (ctf_set_errno (fp, ECTF_NOTFUNC));
1331
1332 if ((dupname = strdup (name)) == NULL)
1333 return (ctf_set_errno (fp, ENOMEM));
1334
1335 if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
1336 {
1337 free (dupname);
1338 return (ctf_set_errno (fp, ENOMEM));
1339 }
1340 return 0;
1341 }
1342
1343 int
1344 ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
1345 {
1346 return (ctf_add_funcobjt_sym (fp, 0, name, id));
1347 }
1348
1349 int
1350 ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
1351 {
1352 return (ctf_add_funcobjt_sym (fp, 1, name, id));
1353 }
1354
1355 typedef struct ctf_bundle
1356 {
1357 ctf_dict_t *ctb_dict; /* CTF dict handle. */
1358 ctf_id_t ctb_type; /* CTF type identifier. */
1359 ctf_dtdef_t *ctb_dtd; /* CTF dynamic type definition (if any). */
1360 } ctf_bundle_t;
1361
1362 static int
1363 enumcmp (const char *name, int value, void *arg)
1364 {
1365 ctf_bundle_t *ctb = arg;
1366 int bvalue;
1367
1368 if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
1369 {
1370 ctf_err_warn (ctb->ctb_dict, 0, 0,
1371 _("conflict due to enum %s iteration error"), name);
1372 return 1;
1373 }
1374 if (value != bvalue)
1375 {
1376 ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
1377 _("conflict due to enum value change: %i versus %i"),
1378 value, bvalue);
1379 return 1;
1380 }
1381 return 0;
1382 }
1383
1384 static int
1385 enumadd (const char *name, int value, void *arg)
1386 {
1387 ctf_bundle_t *ctb = arg;
1388
1389 return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
1390 name, value) < 0);
1391 }
1392
1393 static int
1394 membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
1395 void *arg)
1396 {
1397 ctf_bundle_t *ctb = arg;
1398 ctf_membinfo_t ctm;
1399
1400 /* Don't check nameless members (e.g. anonymous structs/unions) against each
1401 other. */
1402 if (name[0] == 0)
1403 return 0;
1404
1405 if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
1406 {
1407 ctf_err_warn (ctb->ctb_dict, 0, 0,
1408 _("conflict due to struct member %s iteration error"),
1409 name);
1410 return 1;
1411 }
1412 if (ctm.ctm_offset != offset)
1413 {
1414 ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
1415 _("conflict due to struct member %s offset change: "
1416 "%lx versus %lx"),
1417 name, ctm.ctm_offset, offset);
1418 return 1;
1419 }
1420 return 0;
1421 }
1422
1423 /* Record the correspondence between a source and ctf_add_type()-added
1424 destination type: both types are translated into parent type IDs if need be,
1425 so they relate to the actual dictionary they are in. Outside controlled
1426 circumstances (like linking) it is probably not useful to do more than
1427 compare these pointers, since there is nothing stopping the user closing the
1428 source dict whenever they want to.
1429
1430 Our OOM handling here is just to not do anything, because this is called deep
1431 enough in the call stack that doing anything useful is painfully difficult:
1432 the worst consequence if we do OOM is a bit of type duplication anyway. */
1433
1434 static void
1435 ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,
1436 ctf_dict_t *dst_fp, ctf_id_t dst_type)
1437 {
1438 if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
1439 src_fp = src_fp->ctf_parent;
1440
1441 src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
1442
1443 if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent)
1444 dst_fp = dst_fp->ctf_parent;
1445
1446 dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type);
1447
1448 if (dst_fp->ctf_link_type_mapping == NULL)
1449 {
1450 ctf_hash_fun f = ctf_hash_type_key;
1451 ctf_hash_eq_fun e = ctf_hash_eq_type_key;
1452
1453 if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free,
1454 NULL)) == NULL)
1455 return;
1456 }
1457
1458 ctf_link_type_key_t *key;
1459 key = calloc (1, sizeof (struct ctf_link_type_key));
1460 if (!key)
1461 return;
1462
1463 key->cltk_fp = src_fp;
1464 key->cltk_idx = src_type;
1465
1466 /* No OOM checking needed, because if this doesn't work the worst we'll do is
1467 add a few more duplicate types (which will probably run out of memory
1468 anyway). */
1469 ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key,
1470 (void *) (uintptr_t) dst_type);
1471 }
1472
1473 /* Look up a type mapping: return 0 if none. The DST_FP is modified to point to
1474 the parent if need be. The ID returned is from the dst_fp's perspective. */
1475 static ctf_id_t
1476 ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp)
1477 {
1478 ctf_link_type_key_t key;
1479 ctf_dict_t *target_fp = *dst_fp;
1480 ctf_id_t dst_type = 0;
1481
1482 if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
1483 src_fp = src_fp->ctf_parent;
1484
1485 src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
1486 key.cltk_fp = src_fp;
1487 key.cltk_idx = src_type;
1488
1489 if (target_fp->ctf_link_type_mapping)
1490 dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
1491 &key);
1492
1493 if (dst_type != 0)
1494 {
1495 dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
1496 target_fp->ctf_parent != NULL);
1497 *dst_fp = target_fp;
1498 return dst_type;
1499 }
1500
1501 if (target_fp->ctf_parent)
1502 target_fp = target_fp->ctf_parent;
1503 else
1504 return 0;
1505
1506 if (target_fp->ctf_link_type_mapping)
1507 dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
1508 &key);
1509
1510 if (dst_type)
1511 dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
1512 target_fp->ctf_parent != NULL);
1513
1514 *dst_fp = target_fp;
1515 return dst_type;
1516 }
1517
1518 /* The ctf_add_type routine is used to copy a type from a source CTF dictionary
1519 to a dynamic destination dictionary. This routine operates recursively by
1520 following the source type's links and embedded member types. If the
1521 destination dict already contains a named type which has the same attributes,
1522 then we succeed and return this type but no changes occur. */
1523 static ctf_id_t
1524 ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
1525 ctf_dict_t *proc_tracking_fp)
1526 {
1527 ctf_id_t dst_type = CTF_ERR;
1528 uint32_t dst_kind = CTF_K_UNKNOWN;
1529 ctf_dict_t *tmp_fp = dst_fp;
1530 ctf_id_t tmp;
1531
1532 const char *name;
1533 uint32_t kind, forward_kind, flag, vlen;
1534
1535 const ctf_type_t *src_tp, *dst_tp;
1536 ctf_bundle_t src, dst;
1537 ctf_encoding_t src_en, dst_en;
1538 ctf_arinfo_t src_ar, dst_ar;
1539
1540 ctf_funcinfo_t ctc;
1541
1542 ctf_id_t orig_src_type = src_type;
1543
1544 if (!(dst_fp->ctf_flags & LCTF_RDWR))
1545 return (ctf_set_errno (dst_fp, ECTF_RDONLY));
1546
1547 if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL)
1548 return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
1549
1550 if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR)
1551 && (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
1552 return (ctf_set_errno (dst_fp, ECTF_NONREPRESENTABLE));
1553
1554 name = ctf_strptr (src_fp, src_tp->ctt_name);
1555 kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info);
1556 flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info);
1557 vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info);
1558
1559 /* If this is a type we are currently in the middle of adding, hand it
1560 straight back. (This lets us handle self-referential structures without
1561 considering forwards and empty structures the same as their completed
1562 forms.) */
1563
1564 tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);
1565
1566 if (tmp != 0)
1567 {
1568 if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
1569 (void *) (uintptr_t) src_type))
1570 return tmp;
1571
1572 /* If this type has already been added from this dictionary, and is the
1573 same kind and (if a struct or union) has the same number of members,
1574 hand it straight back. */
1575
1576 if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
1577 {
1578 if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
1579 || kind == CTF_K_ENUM)
1580 {
1581 if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL)
1582 if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info))
1583 return tmp;
1584 }
1585 else
1586 return tmp;
1587 }
1588 }
1589
1590 forward_kind = kind;
1591 if (kind == CTF_K_FORWARD)
1592 forward_kind = src_tp->ctt_type;
1593
1594 /* If the source type has a name and is a root type (visible at the top-level
1595 scope), lookup the name in the destination dictionary and verify that it is
1596 of the same kind before we do anything else. */
1597
1598 if ((flag & CTF_ADD_ROOT) && name[0] != '\0'
1599 && (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
1600 {
1601 dst_type = tmp;
1602 dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
1603 }
1604
1605 /* If an identically named dst_type exists, fail with ECTF_CONFLICT
1606 unless dst_type is a forward declaration and src_type is a struct,
1607 union, or enum (i.e. the definition of the previous forward decl).
1608
1609 We also allow addition in the opposite order (addition of a forward when a
1610 struct, union, or enum already exists), which is a NOP and returns the
1611 already-present struct, union, or enum. */
1612
1613 if (dst_type != CTF_ERR && dst_kind != kind)
1614 {
1615 if (kind == CTF_K_FORWARD
1616 && (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
1617 || dst_kind == CTF_K_UNION))
1618 {
1619 ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
1620 return dst_type;
1621 }
1622
1623 if (dst_kind != CTF_K_FORWARD
1624 || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
1625 && kind != CTF_K_UNION))
1626 {
1627 ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
1628 _("ctf_add_type: conflict for type %s: "
1629 "kinds differ, new: %i; old (ID %lx): %i"),
1630 name, kind, dst_type, dst_kind);
1631 return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
1632 }
1633 }
1634
1635 /* We take special action for an integer, float, or slice since it is
1636 described not only by its name but also its encoding. For integers,
1637 bit-fields exploit this degeneracy. */
1638
1639 if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
1640 {
1641 if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
1642 return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
1643
1644 if (dst_type != CTF_ERR)
1645 {
1646 ctf_dict_t *fp = dst_fp;
1647
1648 if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL)
1649 return CTF_ERR;
1650
1651 if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
1652 return CTF_ERR; /* errno set for us. */
1653
1654 if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT)
1655 {
1656 /* The type that we found in the hash is also root-visible. If
1657 the two types match then use the existing one; otherwise,
1658 declare a conflict. Note: slices are not certain to match
1659 even if there is no conflict: we must check the contained type
1660 too. */
1661
1662 if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
1663 {
1664 if (kind != CTF_K_SLICE)
1665 {
1666 ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
1667 return dst_type;
1668 }
1669 }
1670 else
1671 {
1672 return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
1673 }
1674 }
1675 else
1676 {
1677 /* We found a non-root-visible type in the hash. If its encoding
1678 is the same, we can reuse it, unless it is a slice. */
1679
1680 if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
1681 {
1682 if (kind != CTF_K_SLICE)
1683 {
1684 ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
1685 return dst_type;
1686 }
1687 }
1688 }
1689 }
1690 }
1691
1692 src.ctb_dict = src_fp;
1693 src.ctb_type = src_type;
1694 src.ctb_dtd = NULL;
1695
1696 dst.ctb_dict = dst_fp;
1697 dst.ctb_type = dst_type;
1698 dst.ctb_dtd = NULL;
1699
1700 /* Now perform kind-specific processing. If dst_type is CTF_ERR, then we add
1701 a new type with the same properties as src_type to dst_fp. If dst_type is
1702 not CTF_ERR, then we verify that dst_type has the same attributes as
1703 src_type. We recurse for embedded references. Before we start, we note
1704 that we are processing this type, to prevent infinite recursion: we do not
1705 re-process any type that appears in this list. The list is emptied
1706 wholesale at the end of processing everything in this recursive stack. */
1707
1708 if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
1709 (void *) (uintptr_t) src_type, (void *) 1) < 0)
1710 return ctf_set_errno (dst_fp, ENOMEM);
1711
1712 switch (kind)
1713 {
1714 case CTF_K_INTEGER:
1715 /* If we found a match we will have either returned it or declared a
1716 conflict. */
1717 dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
1718 break;
1719
1720 case CTF_K_FLOAT:
1721 /* If we found a match we will have either returned it or declared a
1722 conflict. */
1723 dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
1724 break;
1725
1726 case CTF_K_SLICE:
1727 /* We have checked for conflicting encodings: now try to add the
1728 contained type. */
1729 src_type = ctf_type_reference (src_fp, src_type);
1730 src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
1731 proc_tracking_fp);
1732
1733 if (src_type == CTF_ERR)
1734 return CTF_ERR; /* errno is set for us. */
1735
1736 dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
1737 break;
1738
1739 case CTF_K_POINTER:
1740 case CTF_K_VOLATILE:
1741 case CTF_K_CONST:
1742 case CTF_K_RESTRICT:
1743 src_type = ctf_type_reference (src_fp, src_type);
1744 src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
1745 proc_tracking_fp);
1746
1747 if (src_type == CTF_ERR)
1748 return CTF_ERR; /* errno is set for us. */
1749
1750 dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
1751 break;
1752
1753 case CTF_K_ARRAY:
1754 if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
1755 return (ctf_set_errno (dst_fp, ctf_errno (src_fp)));
1756
1757 src_ar.ctr_contents =
1758 ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
1759 proc_tracking_fp);
1760 src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
1761 src_ar.ctr_index,
1762 proc_tracking_fp);
1763 src_ar.ctr_nelems = src_ar.ctr_nelems;
1764
1765 if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
1766 return CTF_ERR; /* errno is set for us. */
1767
1768 if (dst_type != CTF_ERR)
1769 {
1770 if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
1771 return CTF_ERR; /* errno is set for us. */
1772
1773 if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
1774 {
1775 ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
1776 _("conflict for type %s against ID %lx: array info "
1777 "differs, old %lx/%lx/%x; new: %lx/%lx/%x"),
1778 name, dst_type, src_ar.ctr_contents,
1779 src_ar.ctr_index, src_ar.ctr_nelems,
1780 dst_ar.ctr_contents, dst_ar.ctr_index,
1781 dst_ar.ctr_nelems);
1782 return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
1783 }
1784 }
1785 else
1786 dst_type = ctf_add_array (dst_fp, flag, &src_ar);
1787 break;
1788
1789 case CTF_K_FUNCTION:
1790 ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
1791 src_tp->ctt_type,
1792 proc_tracking_fp);
1793 ctc.ctc_argc = 0;
1794 ctc.ctc_flags = 0;
1795
1796 if (ctc.ctc_return == CTF_ERR)
1797 return CTF_ERR; /* errno is set for us. */
1798
1799 dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL);
1800 break;
1801
1802 case CTF_K_STRUCT:
1803 case CTF_K_UNION:
1804 {
1805 ctf_next_t *i = NULL;
1806 ssize_t offset;
1807 const char *membname;
1808 ctf_id_t src_membtype;
1809
1810 /* Technically to match a struct or union we need to check both
1811 ways (src members vs. dst, dst members vs. src) but we make
1812 this more optimal by only checking src vs. dst and comparing
1813 the total size of the structure (which we must do anyway)
1814 which covers the possibility of dst members not in src.
1815 This optimization can be defeated for unions, but is so
1816 pathological as to render it irrelevant for our purposes. */
1817
1818 if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
1819 && dst_kind != CTF_K_FORWARD)
1820 {
1821 if (ctf_type_size (src_fp, src_type) !=
1822 ctf_type_size (dst_fp, dst_type))
1823 {
1824 ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
1825 _("conflict for type %s against ID %lx: union "
1826 "size differs, old %li, new %li"), name,
1827 dst_type, (long) ctf_type_size (src_fp, src_type),
1828 (long) ctf_type_size (dst_fp, dst_type));
1829 return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
1830 }
1831
1832 if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
1833 {
1834 ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
1835 _("conflict for type %s against ID %lx: members "
1836 "differ, see above"), name, dst_type);
1837 return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
1838 }
1839
1840 break;
1841 }
1842
1843 dst_type = ctf_add_struct_sized (dst_fp, flag, name,
1844 ctf_type_size (src_fp, src_type));
1845 if (dst_type == CTF_ERR)
1846 return CTF_ERR; /* errno is set for us. */
1847
1848 /* Pre-emptively add this struct to the type mapping so that
1849 structures that refer to themselves work. */
1850 ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
1851
1852 while ((offset = ctf_member_next (src_fp, src_type, &i, &membname,
1853 &src_membtype, 0)) >= 0)
1854 {
1855 ctf_dict_t *dst = dst_fp;
1856 ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst);
1857
1858 if (dst_membtype == 0)
1859 {
1860 dst_membtype = ctf_add_type_internal (dst_fp, src_fp,
1861 src_membtype,
1862 proc_tracking_fp);
1863 if (dst_membtype == CTF_ERR)
1864 {
1865 if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
1866 {
1867 ctf_next_destroy (i);
1868 break;
1869 }
1870 }
1871 }
1872
1873 if (ctf_add_member_offset (dst_fp, dst_type, membname,
1874 dst_membtype, offset) < 0)
1875 {
1876 ctf_next_destroy (i);
1877 break;
1878 }
1879 }
1880 if (ctf_errno (src_fp) != ECTF_NEXT_END)
1881 return CTF_ERR; /* errno is set for us. */
1882 break;
1883 }
1884
1885 case CTF_K_ENUM:
1886 if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
1887 && dst_kind != CTF_K_FORWARD)
1888 {
1889 if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
1890 || ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
1891 {
1892 ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
1893 _("conflict for enum %s against ID %lx: members "
1894 "differ, see above"), name, dst_type);
1895 return (ctf_set_errno (dst_fp, ECTF_CONFLICT));
1896 }
1897 }
1898 else
1899 {
1900 dst_type = ctf_add_enum (dst_fp, flag, name);
1901 if ((dst.ctb_type = dst_type) == CTF_ERR
1902 || ctf_enum_iter (src_fp, src_type, enumadd, &dst))
1903 return CTF_ERR; /* errno is set for us */
1904 }
1905 break;
1906
1907 case CTF_K_FORWARD:
1908 if (dst_type == CTF_ERR)
1909 dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
1910 break;
1911
1912 case CTF_K_TYPEDEF:
1913 src_type = ctf_type_reference (src_fp, src_type);
1914 src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
1915 proc_tracking_fp);
1916
1917 if (src_type == CTF_ERR)
1918 return CTF_ERR; /* errno is set for us. */
1919
1920 /* If dst_type is not CTF_ERR at this point, we should check if
1921 ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
1922 ECTF_CONFLICT. However, this causes problems with bitness typedefs
1923 that vary based on things like if 32-bit then pid_t is int otherwise
1924 long. We therefore omit this check and assume that if the identically
1925 named typedef already exists in dst_fp, it is correct or
1926 equivalent. */
1927
1928 if (dst_type == CTF_ERR)
1929 dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);
1930
1931 break;
1932
1933 default:
1934 return (ctf_set_errno (dst_fp, ECTF_CORRUPT));
1935 }
1936
1937 if (dst_type != CTF_ERR)
1938 ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
1939 return dst_type;
1940 }
1941
1942 ctf_id_t
1943 ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
1944 {
1945 ctf_id_t id;
1946
1947 if (!src_fp->ctf_add_processing)
1948 src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
1949 ctf_hash_eq_integer,
1950 NULL, NULL);
1951
1952 /* We store the hash on the source, because it contains only source type IDs:
1953 but callers will invariably expect errors to appear on the dest. */
1954 if (!src_fp->ctf_add_processing)
1955 return (ctf_set_errno (dst_fp, ENOMEM));
1956
1957 id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
1958 ctf_dynhash_empty (src_fp->ctf_add_processing);
1959
1960 return id;
1961 }