f07cb61c42aa2bc7a7164eebfe0d8437ad69cd23
[binutils-gdb.git] / libctf / ctf-serialize.c
1 /* CTF dict creation.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <assert.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <zlib.h>
25
26 #include <elf.h>
27 #include "elf-bfd.h"
28
29 /* Symtypetab sections. */
30
31 /* Symtypetab emission flags. */
32
33 #define CTF_SYMTYPETAB_EMIT_FUNCTION 0x1
34 #define CTF_SYMTYPETAB_EMIT_PAD 0x2
35 #define CTF_SYMTYPETAB_FORCE_INDEXED 0x4
36
37 /* Properties of symtypetab emission, shared by symtypetab section
38 sizing and symtypetab emission itself. */
39
40 typedef struct emit_symtypetab_state
41 {
42 /* True if linker-reported symbols are being filtered out. symfp is set if
43 this is true: otherwise, indexing is forced and the symflags indicate as
44 much. */
45 int filter_syms;
46
47 /* True if symbols are being sorted. */
48 int sort_syms;
49
50 /* Flags for symtypetab emission. */
51 int symflags;
52
53 /* The dict to which the linker has reported symbols. */
54 ctf_dict_t *symfp;
55
56 /* The maximum number of objects seen. */
57 size_t maxobjt;
58
59 /* The maximum number of func info entris seen. */
60 size_t maxfunc;
61 } emit_symtypetab_state_t;
62
63 /* Determine if a symbol is "skippable" and should never appear in the
64 symtypetab sections. */
65
66 int
67 ctf_symtab_skippable (ctf_link_sym_t *sym)
68 {
69 /* Never skip symbols whose name is not yet known. */
70 if (sym->st_nameidx_set)
71 return 0;
72
73 return (sym->st_name == NULL || sym->st_name[0] == 0
74 || sym->st_shndx == SHN_UNDEF
75 || strcmp (sym->st_name, "_START_") == 0
76 || strcmp (sym->st_name, "_END_") == 0
77 || (sym->st_type == STT_OBJECT && sym->st_shndx == SHN_EXTABS
78 && sym->st_value == 0));
79 }
80
81 /* Get the number of symbols in a symbol hash, the count of symbols, the maximum
82 seen, the eventual size, without any padding elements, of the func/data and
83 (if generated) index sections, and the size of accumulated padding elements.
84 The linker-reported set of symbols is found in SYMFP: it may be NULL if
85 symbol filtering is not desired, in which case CTF_SYMTYPETAB_FORCE_INDEXED
86 will always be set in the flags.
87
88 Also figure out if any symbols need to be moved to the variable section, and
89 add them (if not already present). */
90
91 _libctf_nonnull_ ((1,3,4,5,6,7,8))
92 static int
93 symtypetab_density (ctf_dict_t *fp, ctf_dict_t *symfp, ctf_dynhash_t *symhash,
94 size_t *count, size_t *max, size_t *unpadsize,
95 size_t *padsize, size_t *idxsize, int flags)
96 {
97 ctf_next_t *i = NULL;
98 const void *name;
99 const void *ctf_sym;
100 ctf_dynhash_t *linker_known = NULL;
101 int err;
102 int beyond_max = 0;
103
104 *count = 0;
105 *max = 0;
106 *unpadsize = 0;
107 *idxsize = 0;
108 *padsize = 0;
109
110 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
111 {
112 /* Make a dynhash citing only symbols reported by the linker of the
113 appropriate type, then traverse all potential-symbols we know the types
114 of, removing them from linker_known as we go. Once this is done, the
115 only symbols remaining in linker_known are symbols we don't know the
116 types of: we must emit pads for those symbols that are below the
117 maximum symbol we will emit (any beyond that are simply skipped).
118
119 If there are none, this symtypetab will be empty: just report that. */
120
121 if (!symfp->ctf_dynsyms)
122 return 0;
123
124 if ((linker_known = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
125 NULL, NULL)) == NULL)
126 return (ctf_set_errno (fp, ENOMEM));
127
128 while ((err = ctf_dynhash_cnext (symfp->ctf_dynsyms, &i,
129 &name, &ctf_sym)) == 0)
130 {
131 ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;
132
133 if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
134 && sym->st_type != STT_FUNC)
135 || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
136 && sym->st_type != STT_OBJECT))
137 continue;
138
139 if (ctf_symtab_skippable (sym))
140 continue;
141
142 /* This should only be true briefly before all the names are
143 finalized, long before we get this far. */
144 if (!ctf_assert (fp, !sym->st_nameidx_set))
145 return -1; /* errno is set for us. */
146
147 if (ctf_dynhash_cinsert (linker_known, name, ctf_sym) < 0)
148 {
149 ctf_dynhash_destroy (linker_known);
150 return (ctf_set_errno (fp, ENOMEM));
151 }
152 }
153 if (err != ECTF_NEXT_END)
154 {
155 ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols during "
156 "serialization"));
157 ctf_dynhash_destroy (linker_known);
158 return (ctf_set_errno (fp, err));
159 }
160 }
161
162 while ((err = ctf_dynhash_cnext (symhash, &i, &name, NULL)) == 0)
163 {
164 ctf_link_sym_t *sym;
165
166 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
167 {
168 /* Linker did not report symbol in symtab. Remove it from the
169 set of known data symbols and continue. */
170 if ((sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, name)) == NULL)
171 {
172 ctf_dynhash_remove (symhash, name);
173 continue;
174 }
175
176 /* We don't remove skippable symbols from the symhash because we don't
177 want them to be migrated into variables. */
178 if (ctf_symtab_skippable (sym))
179 continue;
180
181 if ((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
182 && sym->st_type != STT_FUNC)
183 {
184 ctf_err_warn (fp, 1, 0, _("symbol %s (%x) added to CTF as a "
185 "function but is of type %x. "
186 "The symbol type lookup tables "
187 "are probably corrupted"),
188 sym->st_name, sym->st_symidx, sym->st_type);
189 ctf_dynhash_remove (symhash, name);
190 continue;
191 }
192 else if (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
193 && sym->st_type != STT_OBJECT)
194 {
195 ctf_err_warn (fp, 1, 0, _("symbol %s (%x) added to CTF as a "
196 "data object but is of type %x. "
197 "The symbol type lookup tables "
198 "are probably corrupted"),
199 sym->st_name, sym->st_symidx, sym->st_type);
200 ctf_dynhash_remove (symhash, name);
201 continue;
202 }
203
204 ctf_dynhash_remove (linker_known, name);
205 }
206 *unpadsize += sizeof (uint32_t);
207 (*count)++;
208
209 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
210 {
211 if (*max < sym->st_symidx)
212 *max = sym->st_symidx;
213 }
214 else
215 (*max)++;
216 }
217 if (err != ECTF_NEXT_END)
218 {
219 ctf_err_warn (fp, 0, err, _("iterating over CTF symtypetab during "
220 "serialization"));
221 ctf_dynhash_destroy (linker_known);
222 return (ctf_set_errno (fp, err));
223 }
224
225 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
226 {
227 while ((err = ctf_dynhash_cnext (linker_known, &i, NULL, &ctf_sym)) == 0)
228 {
229 ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;
230
231 if (sym->st_symidx > *max)
232 beyond_max++;
233 }
234 if (err != ECTF_NEXT_END)
235 {
236 ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols "
237 "during CTF serialization"));
238 ctf_dynhash_destroy (linker_known);
239 return (ctf_set_errno (fp, err));
240 }
241 }
242
243 *idxsize = *count * sizeof (uint32_t);
244 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
245 *padsize = (ctf_dynhash_elements (linker_known) - beyond_max) * sizeof (uint32_t);
246
247 ctf_dynhash_destroy (linker_known);
248 return 0;
249 }
250
251 /* Emit an objt or func symtypetab into DP in a particular order defined by an
252 array of ctf_link_sym_t or symbol names passed in. The index has NIDX
253 elements in it: unindexed output would terminate at symbol OUTMAX and is in
254 any case no larger than SIZE bytes. Some index elements are expected to be
255 skipped: see symtypetab_density. The linker-reported set of symbols (if any)
256 is found in SYMFP. */
257 static int
258 emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
259 ctf_link_sym_t **idx, const char **nameidx, uint32_t nidx,
260 uint32_t outmax, int size, int flags)
261 {
262 uint32_t i;
263 uint32_t *dpp = dp;
264 ctf_dynhash_t *symhash;
265
266 ctf_dprintf ("Emitting table of size %i, outmax %u, %u symtypetab entries, "
267 "flags %i\n", size, outmax, nidx, flags);
268
269 /* Empty table? Nothing to do. */
270 if (size == 0)
271 return 0;
272
273 if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
274 symhash = fp->ctf_funchash;
275 else
276 symhash = fp->ctf_objthash;
277
278 for (i = 0; i < nidx; i++)
279 {
280 const char *sym_name;
281 void *type;
282
283 /* If we have a linker-reported set of symbols, we may be given that set
284 to work from, or a set of symbol names. In both cases we want to look
285 at the corresponding linker-reported symbol (if any). */
286 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
287 {
288 ctf_link_sym_t *this_link_sym;
289
290 if (idx)
291 this_link_sym = idx[i];
292 else
293 this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, nameidx[i]);
294
295 /* Unreported symbol number. No pad, no nothing. */
296 if (!this_link_sym)
297 continue;
298
299 /* Symbol of the wrong type, or skippable? This symbol is not in this
300 table. */
301 if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
302 && this_link_sym->st_type != STT_FUNC)
303 || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
304 && this_link_sym->st_type != STT_OBJECT))
305 continue;
306
307 if (ctf_symtab_skippable (this_link_sym))
308 continue;
309
310 sym_name = this_link_sym->st_name;
311
312 /* Linker reports symbol of a different type to the symbol we actually
313 added? Skip the symbol. No pad, since the symbol doesn't actually
314 belong in this table at all. (Warned about in
315 symtypetab_density.) */
316 if ((this_link_sym->st_type == STT_FUNC)
317 && (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
318 continue;
319
320 if ((this_link_sym->st_type == STT_OBJECT)
321 && (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
322 continue;
323 }
324 else
325 sym_name = nameidx[i];
326
327 /* Symbol in index but no type set? Silently skip and (optionally)
328 pad. (In force-indexed mode, this is also where we track symbols of
329 the wrong type for this round of insertion.) */
330 if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
331 {
332 if (flags & CTF_SYMTYPETAB_EMIT_PAD)
333 *dpp++ = 0;
334 continue;
335 }
336
337 if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) < size))
338 return -1; /* errno is set for us. */
339
340 *dpp++ = (ctf_id_t) (uintptr_t) type;
341
342 /* When emitting unindexed output, all later symbols are pads: stop
343 early. */
344 if ((flags & CTF_SYMTYPETAB_EMIT_PAD) && idx[i]->st_symidx == outmax)
345 break;
346 }
347
348 return 0;
349 }
350
351 /* Emit an objt or func symtypetab index into DP in a paticular order defined by
352 an array of symbol names passed in. Stop at NIDX. The linker-reported set
353 of symbols (if any) is found in SYMFP. */
354 static int
355 emit_symtypetab_index (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
356 const char **idx, uint32_t nidx, int size, int flags)
357 {
358 uint32_t i;
359 uint32_t *dpp = dp;
360 ctf_dynhash_t *symhash;
361
362 ctf_dprintf ("Emitting index of size %i, %u entries reported by linker, "
363 "flags %i\n", size, nidx, flags);
364
365 /* Empty table? Nothing to do. */
366 if (size == 0)
367 return 0;
368
369 if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
370 symhash = fp->ctf_funchash;
371 else
372 symhash = fp->ctf_objthash;
373
374 /* Indexes should always be unpadded. */
375 if (!ctf_assert (fp, !(flags & CTF_SYMTYPETAB_EMIT_PAD)))
376 return -1; /* errno is set for us. */
377
378 for (i = 0; i < nidx; i++)
379 {
380 const char *sym_name;
381 void *type;
382
383 if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
384 {
385 ctf_link_sym_t *this_link_sym;
386
387 this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, idx[i]);
388
389 /* This is an index: unreported symbols should never appear in it. */
390 if (!ctf_assert (fp, this_link_sym != NULL))
391 return -1; /* errno is set for us. */
392
393 /* Symbol of the wrong type, or skippable? This symbol is not in this
394 table. */
395 if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
396 && this_link_sym->st_type != STT_FUNC)
397 || (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
398 && this_link_sym->st_type != STT_OBJECT))
399 continue;
400
401 if (ctf_symtab_skippable (this_link_sym))
402 continue;
403
404 sym_name = this_link_sym->st_name;
405
406 /* Linker reports symbol of a different type to the symbol we actually
407 added? Skip the symbol. */
408 if ((this_link_sym->st_type == STT_FUNC)
409 && (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
410 continue;
411
412 if ((this_link_sym->st_type == STT_OBJECT)
413 && (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
414 continue;
415 }
416 else
417 sym_name = idx[i];
418
419 /* Symbol in index and reported by linker, but no type set? Silently skip
420 and (optionally) pad. (In force-indexed mode, this is also where we
421 track symbols of the wrong type for this round of insertion.) */
422 if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
423 continue;
424
425 ctf_str_add_ref (fp, sym_name, dpp++);
426
427 if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) <= size))
428 return -1; /* errno is set for us. */
429 }
430
431 return 0;
432 }
433
434 /* Delete data symbols that have been assigned names from the variable section.
435 Must be called from within ctf_serialize, because that is the only place
436 you can safely delete variables without messing up ctf_rollback. */
437
438 static int
439 symtypetab_delete_nonstatic_vars (ctf_dict_t *fp, ctf_dict_t *symfp)
440 {
441 ctf_dvdef_t *dvd, *nvd;
442 ctf_id_t type;
443
444 for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
445 {
446 nvd = ctf_list_next (dvd);
447
448 if (((type = (ctf_id_t) (uintptr_t)
449 ctf_dynhash_lookup (fp->ctf_objthash, dvd->dvd_name)) > 0)
450 && ctf_dynhash_lookup (symfp->ctf_dynsyms, dvd->dvd_name) != NULL
451 && type == dvd->dvd_type)
452 ctf_dvd_delete (fp, dvd);
453 }
454
455 return 0;
456 }
457
458 /* Figure out the sizes of the symtypetab sections, their indexed state,
459 etc. */
460 static int
461 ctf_symtypetab_sect_sizes (ctf_dict_t *fp, emit_symtypetab_state_t *s,
462 ctf_header_t *hdr, size_t *objt_size,
463 size_t *func_size, size_t *objtidx_size,
464 size_t *funcidx_size)
465 {
466 size_t nfuncs, nobjts;
467 size_t objt_unpadsize, func_unpadsize, objt_padsize, func_padsize;
468
469 /* If doing a writeout as part of linking, and the link flags request it,
470 filter out reported symbols from the variable section, and filter out all
471 other symbols from the symtypetab sections. (If we are not linking, the
472 symbols are sorted; if we are linking, don't bother sorting if we are not
473 filtering out reported symbols: this is almost certaily an ld -r and only
474 the linker is likely to consume these symtypetabs again. The linker
475 doesn't care what order the symtypetab entries is in, since it only
476 iterates over symbols and does not use the ctf_lookup_by_symbol* API.) */
477
478 s->sort_syms = 1;
479 if (fp->ctf_flags & LCTF_LINKING)
480 {
481 s->filter_syms = !(fp->ctf_link_flags & CTF_LINK_NO_FILTER_REPORTED_SYMS);
482 if (!s->filter_syms)
483 s->sort_syms = 0;
484 }
485
486 /* Find the dict to which the linker has reported symbols, if any. */
487
488 if (s->filter_syms)
489 {
490 if (!fp->ctf_dynsyms && fp->ctf_parent && fp->ctf_parent->ctf_dynsyms)
491 s->symfp = fp->ctf_parent;
492 else
493 s->symfp = fp;
494 }
495
496 /* If not filtering, keep all potential symbols in an unsorted, indexed
497 dict. */
498 if (!s->filter_syms)
499 s->symflags = CTF_SYMTYPETAB_FORCE_INDEXED;
500 else
501 hdr->cth_flags |= CTF_F_IDXSORTED;
502
503 if (!ctf_assert (fp, (s->filter_syms && s->symfp)
504 || (!s->filter_syms && !s->symfp
505 && ((s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED) != 0))))
506 return -1;
507
508 /* Work out the sizes of the object and function sections, and work out the
509 number of pad (unassigned) symbols in each, and the overall size of the
510 sections. */
511
512 if (symtypetab_density (fp, s->symfp, fp->ctf_objthash, &nobjts, &s->maxobjt,
513 &objt_unpadsize, &objt_padsize, objtidx_size,
514 s->symflags) < 0)
515 return -1; /* errno is set for us. */
516
517 ctf_dprintf ("Object symtypetab: %i objects, max %i, unpadded size %i, "
518 "%i bytes of pads, index size %i\n", (int) nobjts,
519 (int) s->maxobjt, (int) objt_unpadsize, (int) objt_padsize,
520 (int) *objtidx_size);
521
522 if (symtypetab_density (fp, s->symfp, fp->ctf_funchash, &nfuncs, &s->maxfunc,
523 &func_unpadsize, &func_padsize, funcidx_size,
524 s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
525 return -1; /* errno is set for us. */
526
527 ctf_dprintf ("Function symtypetab: %i functions, max %i, unpadded size %i, "
528 "%i bytes of pads, index size %i\n", (int) nfuncs,
529 (int) s->maxfunc, (int) func_unpadsize, (int) func_padsize,
530 (int) *funcidx_size);
531
532 /* It is worth indexing each section if it would save space to do so, due to
533 reducing the number of pads sufficiently. A pad is the same size as a
534 single index entry: but index sections compress relatively poorly compared
535 to constant pads, so it takes a lot of contiguous padding to equal one
536 index section entry. It would be nice to be able to *verify* whether we
537 would save space after compression rather than guessing, but this seems
538 difficult, since it would require complete reserialization. Regardless, if
539 the linker has not reported any symbols (e.g. if this is not a final link
540 but just an ld -r), we must emit things in indexed fashion just as the
541 compiler does. */
542
543 *objt_size = objt_unpadsize;
544 if (!(s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
545 && ((objt_padsize + objt_unpadsize) * CTF_INDEX_PAD_THRESHOLD
546 > objt_padsize))
547 {
548 *objt_size += objt_padsize;
549 *objtidx_size = 0;
550 }
551
552 *func_size = func_unpadsize;
553 if (!(s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
554 && ((func_padsize + func_unpadsize) * CTF_INDEX_PAD_THRESHOLD
555 > func_padsize))
556 {
557 *func_size += func_padsize;
558 *funcidx_size = 0;
559 }
560
561 /* If we are filtering symbols out, those symbols that the linker has not
562 reported have now been removed from the ctf_objthash and ctf_funchash.
563 Delete entries from the variable section that duplicate newly-added data
564 symbols. There's no need to migrate new ones in, because the compiler
565 always emits both a variable and a data symbol simultaneously, and
566 filtering only happens at final link time. */
567
568 if (s->filter_syms && s->symfp->ctf_dynsyms &&
569 symtypetab_delete_nonstatic_vars (fp, s->symfp) < 0)
570 return -1;
571
572 return 0;
573 }
574
575 static int
576 ctf_emit_symtypetab_sects (ctf_dict_t *fp, emit_symtypetab_state_t *s,
577 unsigned char **tptr, size_t objt_size,
578 size_t func_size, size_t objtidx_size,
579 size_t funcidx_size)
580 {
581 unsigned char *t = *tptr;
582 size_t nsymtypes = 0;
583 const char **sym_name_order = NULL;
584 int err;
585
586 /* Sort the linker's symbols into name order if need be. */
587
588 if ((objtidx_size != 0) || (funcidx_size != 0))
589 {
590 ctf_next_t *i = NULL;
591 void *symname;
592 const char **walk;
593
594 if (s->filter_syms)
595 {
596 if (s->symfp->ctf_dynsyms)
597 nsymtypes = ctf_dynhash_elements (s->symfp->ctf_dynsyms);
598 else
599 nsymtypes = 0;
600 }
601 else
602 nsymtypes = ctf_dynhash_elements (fp->ctf_objthash)
603 + ctf_dynhash_elements (fp->ctf_funchash);
604
605 if ((sym_name_order = calloc (nsymtypes, sizeof (const char *))) == NULL)
606 goto oom;
607
608 walk = sym_name_order;
609
610 if (s->filter_syms)
611 {
612 if (s->symfp->ctf_dynsyms)
613 {
614 while ((err = ctf_dynhash_next_sorted (s->symfp->ctf_dynsyms, &i,
615 &symname, NULL,
616 ctf_dynhash_sort_by_name,
617 NULL)) == 0)
618 *walk++ = (const char *) symname;
619 if (err != ECTF_NEXT_END)
620 goto symerr;
621 }
622 }
623 else
624 {
625 ctf_hash_sort_f sort_fun = NULL;
626
627 /* Since we partition the set of symbols back into objt and func,
628 we can sort the two independently without harm. */
629 if (s->sort_syms)
630 sort_fun = ctf_dynhash_sort_by_name;
631
632 while ((err = ctf_dynhash_next_sorted (fp->ctf_objthash, &i, &symname,
633 NULL, sort_fun, NULL)) == 0)
634 *walk++ = (const char *) symname;
635 if (err != ECTF_NEXT_END)
636 goto symerr;
637
638 while ((err = ctf_dynhash_next_sorted (fp->ctf_funchash, &i, &symname,
639 NULL, sort_fun, NULL)) == 0)
640 *walk++ = (const char *) symname;
641 if (err != ECTF_NEXT_END)
642 goto symerr;
643 }
644 }
645
646 /* Emit the object and function sections, and if necessary their indexes.
647 Emission is done in symtab order if there is no index, and in index
648 (name) order otherwise. */
649
650 if ((objtidx_size == 0) && s->symfp && s->symfp->ctf_dynsymidx)
651 {
652 ctf_dprintf ("Emitting unindexed objt symtypetab\n");
653 if (emit_symtypetab (fp, s->symfp, (uint32_t *) t,
654 s->symfp->ctf_dynsymidx, NULL,
655 s->symfp->ctf_dynsymmax + 1, s->maxobjt,
656 objt_size, s->symflags | CTF_SYMTYPETAB_EMIT_PAD) < 0)
657 goto err; /* errno is set for us. */
658 }
659 else
660 {
661 ctf_dprintf ("Emitting indexed objt symtypetab\n");
662 if (emit_symtypetab (fp, s->symfp, (uint32_t *) t, NULL,
663 sym_name_order, nsymtypes, s->maxobjt,
664 objt_size, s->symflags) < 0)
665 goto err; /* errno is set for us. */
666 }
667
668 t += objt_size;
669
670 if ((funcidx_size == 0) && s->symfp && s->symfp->ctf_dynsymidx)
671 {
672 ctf_dprintf ("Emitting unindexed func symtypetab\n");
673 if (emit_symtypetab (fp, s->symfp, (uint32_t *) t,
674 s->symfp->ctf_dynsymidx, NULL,
675 s->symfp->ctf_dynsymmax + 1, s->maxfunc,
676 func_size, s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION
677 | CTF_SYMTYPETAB_EMIT_PAD) < 0)
678 goto err; /* errno is set for us. */
679 }
680 else
681 {
682 ctf_dprintf ("Emitting indexed func symtypetab\n");
683 if (emit_symtypetab (fp, s->symfp, (uint32_t *) t, NULL, sym_name_order,
684 nsymtypes, s->maxfunc, func_size,
685 s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
686 goto err; /* errno is set for us. */
687 }
688
689 t += func_size;
690
691 if (objtidx_size > 0)
692 if (emit_symtypetab_index (fp, s->symfp, (uint32_t *) t, sym_name_order,
693 nsymtypes, objtidx_size, s->symflags) < 0)
694 goto err;
695
696 t += objtidx_size;
697
698 if (funcidx_size > 0)
699 if (emit_symtypetab_index (fp, s->symfp, (uint32_t *) t, sym_name_order,
700 nsymtypes, funcidx_size,
701 s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
702 goto err;
703
704 t += funcidx_size;
705 free (sym_name_order);
706 *tptr = t;
707
708 return 0;
709
710 oom:
711 ctf_set_errno (fp, EAGAIN);
712 goto err;
713 symerr:
714 ctf_err_warn (fp, 0, err, _("error serializing symtypetabs"));
715 err:
716 free (sym_name_order);
717 return -1;
718 }
719
720 /* Type section. */
721
722 static unsigned char *
723 ctf_copy_smembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
724 {
725 ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
726 ctf_member_t ctm;
727
728 for (; dmd != NULL; dmd = ctf_list_next (dmd))
729 {
730 ctf_member_t *copied;
731
732 ctm.ctm_name = 0;
733 ctm.ctm_type = (uint32_t) dmd->dmd_type;
734 ctm.ctm_offset = (uint32_t) dmd->dmd_offset;
735
736 memcpy (t, &ctm, sizeof (ctm));
737 copied = (ctf_member_t *) t;
738 if (dmd->dmd_name)
739 ctf_str_add_ref (fp, dmd->dmd_name, &copied->ctm_name);
740
741 t += sizeof (ctm);
742 }
743
744 return t;
745 }
746
747 static unsigned char *
748 ctf_copy_lmembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
749 {
750 ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
751 ctf_lmember_t ctlm;
752
753 for (; dmd != NULL; dmd = ctf_list_next (dmd))
754 {
755 ctf_lmember_t *copied;
756
757 ctlm.ctlm_name = 0;
758 ctlm.ctlm_type = (uint32_t) dmd->dmd_type;
759 ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (dmd->dmd_offset);
760 ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (dmd->dmd_offset);
761
762 memcpy (t, &ctlm, sizeof (ctlm));
763 copied = (ctf_lmember_t *) t;
764 if (dmd->dmd_name)
765 ctf_str_add_ref (fp, dmd->dmd_name, &copied->ctlm_name);
766
767 t += sizeof (ctlm);
768 }
769
770 return t;
771 }
772
773 static unsigned char *
774 ctf_copy_emembers (ctf_dict_t *fp, ctf_dtdef_t *dtd, unsigned char *t)
775 {
776 ctf_dmdef_t *dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
777 ctf_enum_t cte;
778
779 for (; dmd != NULL; dmd = ctf_list_next (dmd))
780 {
781 ctf_enum_t *copied;
782
783 cte.cte_value = dmd->dmd_value;
784 memcpy (t, &cte, sizeof (cte));
785 copied = (ctf_enum_t *) t;
786 ctf_str_add_ref (fp, dmd->dmd_name, &copied->cte_name);
787 t += sizeof (cte);
788 }
789
790 return t;
791 }
792
793 /* Iterate through the dynamic type definition list and compute the
794 size of the CTF type section. */
795
796 static size_t
797 ctf_type_sect_size (ctf_dict_t *fp)
798 {
799 ctf_dtdef_t *dtd;
800 size_t type_size;
801
802 for (type_size = 0, dtd = ctf_list_next (&fp->ctf_dtdefs);
803 dtd != NULL; dtd = ctf_list_next (dtd))
804 {
805 uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
806 uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
807
808 if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
809 type_size += sizeof (ctf_stype_t);
810 else
811 type_size += sizeof (ctf_type_t);
812
813 switch (kind)
814 {
815 case CTF_K_INTEGER:
816 case CTF_K_FLOAT:
817 type_size += sizeof (uint32_t);
818 break;
819 case CTF_K_ARRAY:
820 type_size += sizeof (ctf_array_t);
821 break;
822 case CTF_K_SLICE:
823 type_size += sizeof (ctf_slice_t);
824 break;
825 case CTF_K_FUNCTION:
826 type_size += sizeof (uint32_t) * (vlen + (vlen & 1));
827 break;
828 case CTF_K_STRUCT:
829 case CTF_K_UNION:
830 if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
831 type_size += sizeof (ctf_member_t) * vlen;
832 else
833 type_size += sizeof (ctf_lmember_t) * vlen;
834 break;
835 case CTF_K_ENUM:
836 type_size += sizeof (ctf_enum_t) * vlen;
837 break;
838 }
839 }
840
841 return type_size;
842 }
843
844 /* Take a final lap through the dynamic type definition list and copy the
845 appropriate type records to the output buffer, noting down the strings as
846 we go. */
847
848 static void
849 ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
850 {
851 unsigned char *t = *tptr;
852 ctf_dtdef_t *dtd;
853
854 for (dtd = ctf_list_next (&fp->ctf_dtdefs);
855 dtd != NULL; dtd = ctf_list_next (dtd))
856 {
857 uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
858 uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
859
860 ctf_array_t cta;
861 size_t len;
862 ctf_stype_t *copied;
863 const char *name;
864
865 if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT)
866 len = sizeof (ctf_stype_t);
867 else
868 len = sizeof (ctf_type_t);
869
870 memcpy (t, &dtd->dtd_data, len);
871 copied = (ctf_stype_t *) t; /* name is at the start: constant offset. */
872 if (copied->ctt_name
873 && (name = ctf_strraw (fp, copied->ctt_name)) != NULL)
874 ctf_str_add_ref (fp, name, &copied->ctt_name);
875 t += len;
876
877 switch (kind)
878 {
879 case CTF_K_INTEGER:
880 case CTF_K_FLOAT:
881 memcpy (t, dtd->dtd_vlen, sizeof (uint32_t));
882 t += sizeof (uint32_t);
883 break;
884
885 case CTF_K_SLICE:
886 memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_slice));
887 t += sizeof (struct ctf_slice);
888 break;
889
890 case CTF_K_ARRAY:
891 cta.cta_contents = (uint32_t) dtd->dtd_u.dtu_arr.ctr_contents;
892 cta.cta_index = (uint32_t) dtd->dtd_u.dtu_arr.ctr_index;
893 cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems;
894 memcpy (t, &cta, sizeof (cta));
895 t += sizeof (cta);
896 break;
897
898 case CTF_K_FUNCTION:
899 {
900 uint32_t *argv = (uint32_t *) (uintptr_t) t;
901 uint32_t argc;
902
903 for (argc = 0; argc < vlen; argc++)
904 *argv++ = dtd->dtd_u.dtu_argv[argc];
905
906 if (vlen & 1)
907 *argv++ = 0; /* Pad to 4-byte boundary. */
908
909 t = (unsigned char *) argv;
910 break;
911 }
912
913 case CTF_K_STRUCT:
914 case CTF_K_UNION:
915 if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH)
916 t = ctf_copy_smembers (fp, dtd, t);
917 else
918 t = ctf_copy_lmembers (fp, dtd, t);
919 break;
920
921 case CTF_K_ENUM:
922 t = ctf_copy_emembers (fp, dtd, t);
923 break;
924 }
925 }
926
927 *tptr = t;
928 }
929
930 /* Variable section. */
931
932 /* Sort a newly-constructed static variable array. */
933
934 typedef struct ctf_sort_var_arg_cb
935 {
936 ctf_dict_t *fp;
937 ctf_strs_t *strtab;
938 } ctf_sort_var_arg_cb_t;
939
940 static int
941 ctf_sort_var (const void *one_, const void *two_, void *arg_)
942 {
943 const ctf_varent_t *one = one_;
944 const ctf_varent_t *two = two_;
945 ctf_sort_var_arg_cb_t *arg = arg_;
946
947 return (strcmp (ctf_strraw_explicit (arg->fp, one->ctv_name, arg->strtab),
948 ctf_strraw_explicit (arg->fp, two->ctv_name, arg->strtab)));
949 }
950
951 /* Overall serialization. */
952
953 /* If the specified CTF dict is writable and has been modified, reload this dict
954 with the updated type definitions, ready for serialization. In order to make
955 this code and the rest of libctf as simple as possible, we perform updates by
956 taking the dynamic type definitions and creating an in-memory CTF dict
957 containing the definitions, and then call ctf_simple_open_internal() on it.
958 We perform one extra trick here for the benefit of callers and to keep our
959 code simple: ctf_simple_open_internal() will return a new ctf_dict_t, but we
960 want to keep the fp constant for the caller, so after
961 ctf_simple_open_internal() returns, we use memcpy to swap the interior of the
962 old and new ctf_dict_t's, and then free the old. */
963 int
964 ctf_serialize (ctf_dict_t *fp)
965 {
966 ctf_dict_t ofp, *nfp;
967 ctf_header_t hdr, *hdrp;
968 ctf_dvdef_t *dvd;
969 ctf_varent_t *dvarents;
970 ctf_strs_writable_t strtab;
971 int err;
972
973 unsigned char *t;
974 unsigned long i;
975 size_t buf_size, type_size, objt_size, func_size;
976 size_t funcidx_size, objtidx_size;
977 size_t nvars;
978 unsigned char *buf = NULL, *newbuf;
979
980 emit_symtypetab_state_t symstate;
981 memset (&symstate, 0, sizeof (emit_symtypetab_state_t));
982
983 if (!(fp->ctf_flags & LCTF_RDWR))
984 return (ctf_set_errno (fp, ECTF_RDONLY));
985
986 /* Update required? */
987 if (!(fp->ctf_flags & LCTF_DIRTY))
988 return 0;
989
990 /* Fill in an initial CTF header. We will leave the label, object,
991 and function sections empty and only output a header, type section,
992 and string table. The type section begins at a 4-byte aligned
993 boundary past the CTF header itself (at relative offset zero). The flag
994 indicating a new-style function info section (an array of CTF_K_FUNCTION
995 type IDs in the types section) is flipped on. */
996
997 memset (&hdr, 0, sizeof (hdr));
998 hdr.cth_magic = CTF_MAGIC;
999 hdr.cth_version = CTF_VERSION;
1000
1001 /* This is a new-format func info section, and the symtab and strtab come out
1002 of the dynsym and dynstr these days. */
1003 hdr.cth_flags = (CTF_F_NEWFUNCINFO | CTF_F_DYNSTR);
1004
1005 if (ctf_symtypetab_sect_sizes (fp, &symstate, &hdr, &objt_size, &func_size,
1006 &objtidx_size, &funcidx_size) < 0)
1007 return -1; /* errno is set for us. */
1008
1009 for (nvars = 0, dvd = ctf_list_next (&fp->ctf_dvdefs);
1010 dvd != NULL; dvd = ctf_list_next (dvd), nvars++);
1011
1012 type_size = ctf_type_sect_size (fp);
1013
1014 /* Compute the size of the CTF buffer we need, sans only the string table,
1015 then allocate a new buffer and memcpy the finished header to the start of
1016 the buffer. (We will adjust this later with strtab length info.) */
1017
1018 hdr.cth_lbloff = hdr.cth_objtoff = 0;
1019 hdr.cth_funcoff = hdr.cth_objtoff + objt_size;
1020 hdr.cth_objtidxoff = hdr.cth_funcoff + func_size;
1021 hdr.cth_funcidxoff = hdr.cth_objtidxoff + objtidx_size;
1022 hdr.cth_varoff = hdr.cth_funcidxoff + funcidx_size;
1023 hdr.cth_typeoff = hdr.cth_varoff + (nvars * sizeof (ctf_varent_t));
1024 hdr.cth_stroff = hdr.cth_typeoff + type_size;
1025 hdr.cth_strlen = 0;
1026
1027 buf_size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;
1028
1029 if ((buf = malloc (buf_size)) == NULL)
1030 return (ctf_set_errno (fp, EAGAIN));
1031
1032 memcpy (buf, &hdr, sizeof (ctf_header_t));
1033 t = (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_objtoff;
1034
1035 hdrp = (ctf_header_t *) buf;
1036 if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parname != NULL))
1037 ctf_str_add_ref (fp, fp->ctf_parname, &hdrp->cth_parname);
1038 if (fp->ctf_cuname != NULL)
1039 ctf_str_add_ref (fp, fp->ctf_cuname, &hdrp->cth_cuname);
1040
1041 if (ctf_emit_symtypetab_sects (fp, &symstate, &t, objt_size, func_size,
1042 objtidx_size, funcidx_size) < 0)
1043 goto err;
1044
1045 assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_varoff);
1046
1047 /* Work over the variable list, translating everything into ctf_varent_t's and
1048 prepping the string table. */
1049
1050 dvarents = (ctf_varent_t *) t;
1051 for (i = 0, dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL;
1052 dvd = ctf_list_next (dvd), i++)
1053 {
1054 ctf_varent_t *var = &dvarents[i];
1055
1056 ctf_str_add_ref (fp, dvd->dvd_name, &var->ctv_name);
1057 var->ctv_type = (uint32_t) dvd->dvd_type;
1058 }
1059 assert (i == nvars);
1060
1061 t += sizeof (ctf_varent_t) * nvars;
1062
1063 assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_typeoff);
1064
1065 ctf_emit_type_sect (fp, &t);
1066
1067 assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_stroff);
1068
1069 /* Construct the final string table and fill out all the string refs with the
1070 final offsets. Then purge the refs list, because we're about to move this
1071 strtab onto the end of the buf, invalidating all the offsets. */
1072 strtab = ctf_str_write_strtab (fp);
1073 ctf_str_purge_refs (fp);
1074
1075 if (strtab.cts_strs == NULL)
1076 goto oom;
1077
1078 /* Now the string table is constructed, we can sort the buffer of
1079 ctf_varent_t's. */
1080 ctf_sort_var_arg_cb_t sort_var_arg = { fp, (ctf_strs_t *) &strtab };
1081 ctf_qsort_r (dvarents, nvars, sizeof (ctf_varent_t), ctf_sort_var,
1082 &sort_var_arg);
1083
1084 if ((newbuf = ctf_realloc (fp, buf, buf_size + strtab.cts_len)) == NULL)
1085 {
1086 free (strtab.cts_strs);
1087 goto oom;
1088 }
1089 buf = newbuf;
1090 memcpy (buf + buf_size, strtab.cts_strs, strtab.cts_len);
1091 hdrp = (ctf_header_t *) buf;
1092 hdrp->cth_strlen = strtab.cts_len;
1093 buf_size += hdrp->cth_strlen;
1094 free (strtab.cts_strs);
1095
1096 /* Finally, we are ready to ctf_simple_open() the new dict. If this is
1097 successful, we then switch nfp and fp and free the old dict. */
1098
1099 if ((nfp = ctf_simple_open_internal ((char *) buf, buf_size, NULL, 0,
1100 0, NULL, 0, fp->ctf_syn_ext_strtab,
1101 1, &err)) == NULL)
1102 {
1103 free (buf);
1104 return (ctf_set_errno (fp, err));
1105 }
1106
1107 (void) ctf_setmodel (nfp, ctf_getmodel (fp));
1108
1109 nfp->ctf_parent = fp->ctf_parent;
1110 nfp->ctf_parent_unreffed = fp->ctf_parent_unreffed;
1111 nfp->ctf_refcnt = fp->ctf_refcnt;
1112 nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY;
1113 if (nfp->ctf_dynbase == NULL)
1114 nfp->ctf_dynbase = buf; /* Make sure buf is freed on close. */
1115 nfp->ctf_dthash = fp->ctf_dthash;
1116 nfp->ctf_dtdefs = fp->ctf_dtdefs;
1117 nfp->ctf_dvhash = fp->ctf_dvhash;
1118 nfp->ctf_dvdefs = fp->ctf_dvdefs;
1119 nfp->ctf_dtoldid = fp->ctf_dtoldid;
1120 nfp->ctf_add_processing = fp->ctf_add_processing;
1121 nfp->ctf_snapshots = fp->ctf_snapshots + 1;
1122 nfp->ctf_specific = fp->ctf_specific;
1123 nfp->ctf_nfuncidx = fp->ctf_nfuncidx;
1124 nfp->ctf_nobjtidx = fp->ctf_nobjtidx;
1125 nfp->ctf_objthash = fp->ctf_objthash;
1126 nfp->ctf_funchash = fp->ctf_funchash;
1127 nfp->ctf_dynsyms = fp->ctf_dynsyms;
1128 nfp->ctf_ptrtab = fp->ctf_ptrtab;
1129 nfp->ctf_pptrtab = fp->ctf_pptrtab;
1130 nfp->ctf_dynsymidx = fp->ctf_dynsymidx;
1131 nfp->ctf_dynsymmax = fp->ctf_dynsymmax;
1132 nfp->ctf_ptrtab_len = fp->ctf_ptrtab_len;
1133 nfp->ctf_pptrtab_len = fp->ctf_pptrtab_len;
1134 nfp->ctf_link_inputs = fp->ctf_link_inputs;
1135 nfp->ctf_link_outputs = fp->ctf_link_outputs;
1136 nfp->ctf_errs_warnings = fp->ctf_errs_warnings;
1137 nfp->ctf_funcidx_names = fp->ctf_funcidx_names;
1138 nfp->ctf_objtidx_names = fp->ctf_objtidx_names;
1139 nfp->ctf_funcidx_sxlate = fp->ctf_funcidx_sxlate;
1140 nfp->ctf_objtidx_sxlate = fp->ctf_objtidx_sxlate;
1141 nfp->ctf_str_prov_offset = fp->ctf_str_prov_offset;
1142 nfp->ctf_syn_ext_strtab = fp->ctf_syn_ext_strtab;
1143 nfp->ctf_pptrtab_typemax = fp->ctf_pptrtab_typemax;
1144 nfp->ctf_in_flight_dynsyms = fp->ctf_in_flight_dynsyms;
1145 nfp->ctf_link_in_cu_mapping = fp->ctf_link_in_cu_mapping;
1146 nfp->ctf_link_out_cu_mapping = fp->ctf_link_out_cu_mapping;
1147 nfp->ctf_link_type_mapping = fp->ctf_link_type_mapping;
1148 nfp->ctf_link_memb_name_changer = fp->ctf_link_memb_name_changer;
1149 nfp->ctf_link_memb_name_changer_arg = fp->ctf_link_memb_name_changer_arg;
1150 nfp->ctf_link_variable_filter = fp->ctf_link_variable_filter;
1151 nfp->ctf_link_variable_filter_arg = fp->ctf_link_variable_filter_arg;
1152 nfp->ctf_symsect_little_endian = fp->ctf_symsect_little_endian;
1153 nfp->ctf_link_flags = fp->ctf_link_flags;
1154 nfp->ctf_dedup_atoms = fp->ctf_dedup_atoms;
1155 nfp->ctf_dedup_atoms_alloc = fp->ctf_dedup_atoms_alloc;
1156 memcpy (&nfp->ctf_dedup, &fp->ctf_dedup, sizeof (fp->ctf_dedup));
1157
1158 nfp->ctf_snapshot_lu = fp->ctf_snapshots;
1159
1160 memcpy (&nfp->ctf_lookups, fp->ctf_lookups, sizeof (fp->ctf_lookups));
1161 nfp->ctf_structs = fp->ctf_structs;
1162 nfp->ctf_unions = fp->ctf_unions;
1163 nfp->ctf_enums = fp->ctf_enums;
1164 nfp->ctf_names = fp->ctf_names;
1165
1166 fp->ctf_dthash = NULL;
1167 ctf_str_free_atoms (nfp);
1168 nfp->ctf_str_atoms = fp->ctf_str_atoms;
1169 nfp->ctf_prov_strtab = fp->ctf_prov_strtab;
1170 fp->ctf_str_atoms = NULL;
1171 fp->ctf_prov_strtab = NULL;
1172 memset (&fp->ctf_dtdefs, 0, sizeof (ctf_list_t));
1173 memset (&fp->ctf_errs_warnings, 0, sizeof (ctf_list_t));
1174 fp->ctf_add_processing = NULL;
1175 fp->ctf_ptrtab = NULL;
1176 fp->ctf_pptrtab = NULL;
1177 fp->ctf_funcidx_names = NULL;
1178 fp->ctf_objtidx_names = NULL;
1179 fp->ctf_funcidx_sxlate = NULL;
1180 fp->ctf_objtidx_sxlate = NULL;
1181 fp->ctf_objthash = NULL;
1182 fp->ctf_funchash = NULL;
1183 fp->ctf_dynsyms = NULL;
1184 fp->ctf_dynsymidx = NULL;
1185 fp->ctf_link_inputs = NULL;
1186 fp->ctf_link_outputs = NULL;
1187 fp->ctf_syn_ext_strtab = NULL;
1188 fp->ctf_link_in_cu_mapping = NULL;
1189 fp->ctf_link_out_cu_mapping = NULL;
1190 fp->ctf_link_type_mapping = NULL;
1191 fp->ctf_dedup_atoms = NULL;
1192 fp->ctf_dedup_atoms_alloc = NULL;
1193 fp->ctf_parent_unreffed = 1;
1194
1195 fp->ctf_dvhash = NULL;
1196 memset (&fp->ctf_dvdefs, 0, sizeof (ctf_list_t));
1197 memset (fp->ctf_lookups, 0, sizeof (fp->ctf_lookups));
1198 memset (&fp->ctf_in_flight_dynsyms, 0, sizeof (fp->ctf_in_flight_dynsyms));
1199 memset (&fp->ctf_dedup, 0, sizeof (fp->ctf_dedup));
1200 fp->ctf_structs.ctn_writable = NULL;
1201 fp->ctf_unions.ctn_writable = NULL;
1202 fp->ctf_enums.ctn_writable = NULL;
1203 fp->ctf_names.ctn_writable = NULL;
1204
1205 memcpy (&ofp, fp, sizeof (ctf_dict_t));
1206 memcpy (fp, nfp, sizeof (ctf_dict_t));
1207 memcpy (nfp, &ofp, sizeof (ctf_dict_t));
1208
1209 nfp->ctf_refcnt = 1; /* Force nfp to be freed. */
1210 ctf_dict_close (nfp);
1211
1212 return 0;
1213
1214 oom:
1215 free (buf);
1216 return (ctf_set_errno (fp, EAGAIN));
1217 err:
1218 free (buf);
1219 return -1; /* errno is set for us. */
1220 }
1221
1222 /* File writing. */
1223
1224 /* Write the compressed CTF data stream to the specified gzFile descriptor. */
1225 int
1226 ctf_gzwrite (ctf_dict_t *fp, gzFile fd)
1227 {
1228 const unsigned char *buf;
1229 ssize_t resid;
1230 ssize_t len;
1231
1232 resid = sizeof (ctf_header_t);
1233 buf = (unsigned char *) fp->ctf_header;
1234 while (resid != 0)
1235 {
1236 if ((len = gzwrite (fd, buf, resid)) <= 0)
1237 return (ctf_set_errno (fp, errno));
1238 resid -= len;
1239 buf += len;
1240 }
1241
1242 resid = fp->ctf_size;
1243 buf = fp->ctf_buf;
1244 while (resid != 0)
1245 {
1246 if ((len = gzwrite (fd, buf, resid)) <= 0)
1247 return (ctf_set_errno (fp, errno));
1248 resid -= len;
1249 buf += len;
1250 }
1251
1252 return 0;
1253 }
1254
1255 /* Compress the specified CTF data stream and write it to the specified file
1256 descriptor. */
1257 int
1258 ctf_compress_write (ctf_dict_t *fp, int fd)
1259 {
1260 unsigned char *buf;
1261 unsigned char *bp;
1262 ctf_header_t h;
1263 ctf_header_t *hp = &h;
1264 ssize_t header_len = sizeof (ctf_header_t);
1265 ssize_t compress_len;
1266 ssize_t len;
1267 int rc;
1268 int err = 0;
1269
1270 if (ctf_serialize (fp) < 0)
1271 return -1; /* errno is set for us. */
1272
1273 memcpy (hp, fp->ctf_header, header_len);
1274 hp->cth_flags |= CTF_F_COMPRESS;
1275 compress_len = compressBound (fp->ctf_size);
1276
1277 if ((buf = malloc (compress_len)) == NULL)
1278 {
1279 ctf_err_warn (fp, 0, 0, _("ctf_compress_write: cannot allocate %li bytes"),
1280 (unsigned long) compress_len);
1281 return (ctf_set_errno (fp, ECTF_ZALLOC));
1282 }
1283
1284 if ((rc = compress (buf, (uLongf *) &compress_len,
1285 fp->ctf_buf, fp->ctf_size)) != Z_OK)
1286 {
1287 err = ctf_set_errno (fp, ECTF_COMPRESS);
1288 ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
1289 goto ret;
1290 }
1291
1292 while (header_len > 0)
1293 {
1294 if ((len = write (fd, hp, header_len)) < 0)
1295 {
1296 err = ctf_set_errno (fp, errno);
1297 ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing header"));
1298 goto ret;
1299 }
1300 header_len -= len;
1301 hp += len;
1302 }
1303
1304 bp = buf;
1305 while (compress_len > 0)
1306 {
1307 if ((len = write (fd, bp, compress_len)) < 0)
1308 {
1309 err = ctf_set_errno (fp, errno);
1310 ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing"));
1311 goto ret;
1312 }
1313 compress_len -= len;
1314 bp += len;
1315 }
1316
1317 ret:
1318 free (buf);
1319 return err;
1320 }
1321
1322 /* Optionally compress the specified CTF data stream and return it as a new
1323 dynamically-allocated string. */
1324 unsigned char *
1325 ctf_write_mem (ctf_dict_t *fp, size_t *size, size_t threshold)
1326 {
1327 unsigned char *buf;
1328 unsigned char *bp;
1329 ctf_header_t *hp;
1330 ssize_t header_len = sizeof (ctf_header_t);
1331 ssize_t compress_len;
1332 int rc;
1333
1334 if (ctf_serialize (fp) < 0)
1335 return NULL; /* errno is set for us. */
1336
1337 compress_len = compressBound (fp->ctf_size);
1338 if (fp->ctf_size < threshold)
1339 compress_len = fp->ctf_size;
1340 if ((buf = malloc (compress_len
1341 + sizeof (struct ctf_header))) == NULL)
1342 {
1343 ctf_set_errno (fp, ENOMEM);
1344 ctf_err_warn (fp, 0, 0, _("ctf_write_mem: cannot allocate %li bytes"),
1345 (unsigned long) (compress_len + sizeof (struct ctf_header)));
1346 return NULL;
1347 }
1348
1349 hp = (ctf_header_t *) buf;
1350 memcpy (hp, fp->ctf_header, header_len);
1351 bp = buf + sizeof (struct ctf_header);
1352 *size = sizeof (struct ctf_header);
1353
1354 if (fp->ctf_size < threshold)
1355 {
1356 hp->cth_flags &= ~CTF_F_COMPRESS;
1357 memcpy (bp, fp->ctf_buf, fp->ctf_size);
1358 *size += fp->ctf_size;
1359 }
1360 else
1361 {
1362 hp->cth_flags |= CTF_F_COMPRESS;
1363 if ((rc = compress (bp, (uLongf *) &compress_len,
1364 fp->ctf_buf, fp->ctf_size)) != Z_OK)
1365 {
1366 ctf_set_errno (fp, ECTF_COMPRESS);
1367 ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
1368 free (buf);
1369 return NULL;
1370 }
1371 *size += compress_len;
1372 }
1373 return buf;
1374 }
1375
1376 /* Write the uncompressed CTF data stream to the specified file descriptor. */
1377 int
1378 ctf_write (ctf_dict_t *fp, int fd)
1379 {
1380 const unsigned char *buf;
1381 ssize_t resid;
1382 ssize_t len;
1383
1384 if (ctf_serialize (fp) < 0)
1385 return -1; /* errno is set for us. */
1386
1387 resid = sizeof (ctf_header_t);
1388 buf = (unsigned char *) fp->ctf_header;
1389 while (resid != 0)
1390 {
1391 if ((len = write (fd, buf, resid)) <= 0)
1392 {
1393 ctf_err_warn (fp, 0, errno, _("ctf_write: error writing header"));
1394 return (ctf_set_errno (fp, errno));
1395 }
1396 resid -= len;
1397 buf += len;
1398 }
1399
1400 resid = fp->ctf_size;
1401 buf = fp->ctf_buf;
1402 while (resid != 0)
1403 {
1404 if ((len = write (fd, buf, resid)) <= 0)
1405 {
1406 ctf_err_warn (fp, 0, errno, _("ctf_write: error writing"));
1407 return (ctf_set_errno (fp, errno));
1408 }
1409 resid -= len;
1410 buf += len;
1411 }
1412
1413 return 0;
1414 }