acinclude.m4 (LIBGFOR_CHECK_ATTRIBUTE_VISIBILITY): New.
[gcc.git] / libgfortran / generated / minloc0_4_r4.c
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include <limits.h>
27 #include "libgfortran.h"
28
29
30
31 extern void __minloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array);
32 export_proto_np(__minloc0_4_r4);
33
34 void
35 __minloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array)
36 {
37 index_type count[GFC_MAX_DIMENSIONS];
38 index_type extent[GFC_MAX_DIMENSIONS];
39 index_type sstride[GFC_MAX_DIMENSIONS];
40 index_type dstride;
41 GFC_REAL_4 *base;
42 GFC_INTEGER_4 *dest;
43 index_type rank;
44 index_type n;
45
46 rank = GFC_DESCRIPTOR_RANK (array);
47 assert (rank > 0);
48 assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
49 assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
50 if (array->dim[0].stride == 0)
51 array->dim[0].stride = 1;
52 if (retarray->dim[0].stride == 0)
53 retarray->dim[0].stride = 1;
54
55 dstride = retarray->dim[0].stride;
56 dest = retarray->data;
57 for (n = 0; n < rank; n++)
58 {
59 sstride[n] = array->dim[n].stride;
60 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
61 count[n] = 0;
62 if (extent[n] <= 0)
63 {
64 /* Set the return value. */
65 for (n = 0; n < rank; n++)
66 dest[n * dstride] = 0;
67 return;
68 }
69 }
70
71 base = array->data;
72
73 /* Initialize the return value. */
74 for (n = 0; n < rank; n++)
75 dest[n * dstride] = 1;
76 {
77
78 GFC_REAL_4 minval;
79
80 minval = GFC_REAL_4_HUGE;
81
82 while (base)
83 {
84 {
85 /* Implementation start. */
86
87 if (*base < minval)
88 {
89 minval = *base;
90 for (n = 0; n < rank; n++)
91 dest[n * dstride] = count[n] + 1;
92 }
93 /* Implementation end. */
94 }
95 /* Advance to the next element. */
96 count[0]++;
97 base += sstride[0];
98 n = 0;
99 while (count[n] == extent[n])
100 {
101 /* When we get to the end of a dimension, reset it and increment
102 the next dimension. */
103 count[n] = 0;
104 /* We could precalculate these products, but this is a less
105 frequently used path so proabably not worth it. */
106 base -= sstride[n] * extent[n];
107 n++;
108 if (n == rank)
109 {
110 /* Break out of the loop. */
111 base = NULL;
112 break;
113 }
114 else
115 {
116 count[n]++;
117 base += sstride[n];
118 }
119 }
120 }
121 }
122 }
123
124
125 extern void __mminloc0_4_r4 (gfc_array_i4 *, gfc_array_r4 *, gfc_array_l4 *);
126 export_proto_np(__mminloc0_4_r4);
127
128 void
129 __mminloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array, gfc_array_l4 * mask)
130 {
131 index_type count[GFC_MAX_DIMENSIONS];
132 index_type extent[GFC_MAX_DIMENSIONS];
133 index_type sstride[GFC_MAX_DIMENSIONS];
134 index_type mstride[GFC_MAX_DIMENSIONS];
135 index_type dstride;
136 GFC_INTEGER_4 *dest;
137 GFC_REAL_4 *base;
138 GFC_LOGICAL_4 *mbase;
139 int rank;
140 index_type n;
141
142 rank = GFC_DESCRIPTOR_RANK (array);
143 assert (rank > 0);
144 assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
145 assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
146 assert (GFC_DESCRIPTOR_RANK (mask) == rank);
147
148 if (array->dim[0].stride == 0)
149 array->dim[0].stride = 1;
150 if (retarray->dim[0].stride == 0)
151 retarray->dim[0].stride = 1;
152 if (retarray->dim[0].stride == 0)
153 retarray->dim[0].stride = 1;
154
155 dstride = retarray->dim[0].stride;
156 dest = retarray->data;
157 for (n = 0; n < rank; n++)
158 {
159 sstride[n] = array->dim[n].stride;
160 mstride[n] = mask->dim[n].stride;
161 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
162 count[n] = 0;
163 if (extent[n] <= 0)
164 {
165 /* Set the return value. */
166 for (n = 0; n < rank; n++)
167 dest[n * dstride] = 0;
168 return;
169 }
170 }
171
172 base = array->data;
173 mbase = mask->data;
174
175 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
176 {
177 /* This allows the same loop to be used for all logical types. */
178 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
179 for (n = 0; n < rank; n++)
180 mstride[n] <<= 1;
181 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
182 }
183
184
185 /* Initialize the return value. */
186 for (n = 0; n < rank; n++)
187 dest[n * dstride] = 1;
188 {
189
190 GFC_REAL_4 minval;
191
192 minval = GFC_REAL_4_HUGE;
193
194 while (base)
195 {
196 {
197 /* Implementation start. */
198
199 if (*mbase && *base < minval)
200 {
201 minval = *base;
202 for (n = 0; n < rank; n++)
203 dest[n * dstride] = count[n] + 1;
204 }
205 /* Implementation end. */
206 }
207 /* Advance to the next element. */
208 count[0]++;
209 base += sstride[0];
210 mbase += mstride[0];
211 n = 0;
212 while (count[n] == extent[n])
213 {
214 /* When we get to the end of a dimension, reset it and increment
215 the next dimension. */
216 count[n] = 0;
217 /* We could precalculate these products, but this is a less
218 frequently used path so proabably not worth it. */
219 base -= sstride[n] * extent[n];
220 mbase -= mstride[n] * extent[n];
221 n++;
222 if (n == rank)
223 {
224 /* Break out of the loop. */
225 base = NULL;
226 break;
227 }
228 else
229 {
230 count[n]++;
231 base += sstride[n];
232 mbase += mstride[n];
233 }
234 }
235 }
236 }
237 }