re PR libfortran/32972 (performance of pack/unpack)
[gcc.git] / libgfortran / generated / product_i1.c
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
35
36
37 #if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_1)
38
39
40 extern void product_i1 (gfc_array_i1 * const restrict,
41 gfc_array_i1 * const restrict, const index_type * const restrict);
42 export_proto(product_i1);
43
44 void
45 product_i1 (gfc_array_i1 * const restrict retarray,
46 gfc_array_i1 * const restrict array,
47 const index_type * const restrict pdim)
48 {
49 index_type count[GFC_MAX_DIMENSIONS];
50 index_type extent[GFC_MAX_DIMENSIONS];
51 index_type sstride[GFC_MAX_DIMENSIONS];
52 index_type dstride[GFC_MAX_DIMENSIONS];
53 const GFC_INTEGER_1 * restrict base;
54 GFC_INTEGER_1 * restrict dest;
55 index_type rank;
56 index_type n;
57 index_type len;
58 index_type delta;
59 index_type dim;
60
61 /* Make dim zero based to avoid confusion. */
62 dim = (*pdim) - 1;
63 rank = GFC_DESCRIPTOR_RANK (array) - 1;
64
65 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
66 delta = array->dim[dim].stride;
67
68 for (n = 0; n < dim; n++)
69 {
70 sstride[n] = array->dim[n].stride;
71 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
72
73 if (extent[n] < 0)
74 extent[n] = 0;
75 }
76 for (n = dim; n < rank; n++)
77 {
78 sstride[n] = array->dim[n + 1].stride;
79 extent[n] =
80 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
81
82 if (extent[n] < 0)
83 extent[n] = 0;
84 }
85
86 if (retarray->data == NULL)
87 {
88 size_t alloc_size;
89
90 for (n = 0; n < rank; n++)
91 {
92 retarray->dim[n].lbound = 0;
93 retarray->dim[n].ubound = extent[n]-1;
94 if (n == 0)
95 retarray->dim[n].stride = 1;
96 else
97 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
98 }
99
100 retarray->offset = 0;
101 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
102
103 alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
104 * extent[rank-1];
105
106 if (alloc_size == 0)
107 {
108 /* Make sure we have a zero-sized array. */
109 retarray->dim[0].lbound = 0;
110 retarray->dim[0].ubound = -1;
111 return;
112 }
113 else
114 retarray->data = internal_malloc_size (alloc_size);
115 }
116 else
117 {
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect");
120 }
121
122 for (n = 0; n < rank; n++)
123 {
124 count[n] = 0;
125 dstride[n] = retarray->dim[n].stride;
126 if (extent[n] <= 0)
127 len = 0;
128 }
129
130 base = array->data;
131 dest = retarray->data;
132
133 while (base)
134 {
135 const GFC_INTEGER_1 * restrict src;
136 GFC_INTEGER_1 result;
137 src = base;
138 {
139
140 result = 1;
141 if (len <= 0)
142 *dest = 1;
143 else
144 {
145 for (n = 0; n < len; n++, src += delta)
146 {
147
148 result *= *src;
149 }
150 *dest = result;
151 }
152 }
153 /* Advance to the next element. */
154 count[0]++;
155 base += sstride[0];
156 dest += dstride[0];
157 n = 0;
158 while (count[n] == extent[n])
159 {
160 /* When we get to the end of a dimension, reset it and increment
161 the next dimension. */
162 count[n] = 0;
163 /* We could precalculate these products, but this is a less
164 frequently used path so probably not worth it. */
165 base -= sstride[n] * extent[n];
166 dest -= dstride[n] * extent[n];
167 n++;
168 if (n == rank)
169 {
170 /* Break out of the look. */
171 base = NULL;
172 break;
173 }
174 else
175 {
176 count[n]++;
177 base += sstride[n];
178 dest += dstride[n];
179 }
180 }
181 }
182 }
183
184
185 extern void mproduct_i1 (gfc_array_i1 * const restrict,
186 gfc_array_i1 * const restrict, const index_type * const restrict,
187 gfc_array_l1 * const restrict);
188 export_proto(mproduct_i1);
189
190 void
191 mproduct_i1 (gfc_array_i1 * const restrict retarray,
192 gfc_array_i1 * const restrict array,
193 const index_type * const restrict pdim,
194 gfc_array_l1 * const restrict mask)
195 {
196 index_type count[GFC_MAX_DIMENSIONS];
197 index_type extent[GFC_MAX_DIMENSIONS];
198 index_type sstride[GFC_MAX_DIMENSIONS];
199 index_type dstride[GFC_MAX_DIMENSIONS];
200 index_type mstride[GFC_MAX_DIMENSIONS];
201 GFC_INTEGER_1 * restrict dest;
202 const GFC_INTEGER_1 * restrict base;
203 const GFC_LOGICAL_1 * restrict mbase;
204 int rank;
205 int dim;
206 index_type n;
207 index_type len;
208 index_type delta;
209 index_type mdelta;
210 int mask_kind;
211
212 dim = (*pdim) - 1;
213 rank = GFC_DESCRIPTOR_RANK (array) - 1;
214
215 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
216 if (len <= 0)
217 return;
218
219 mbase = mask->data;
220
221 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
222
223 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
224 #ifdef HAVE_GFC_LOGICAL_16
225 || mask_kind == 16
226 #endif
227 )
228 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
229 else
230 runtime_error ("Funny sized logical array");
231
232 delta = array->dim[dim].stride;
233 mdelta = mask->dim[dim].stride * mask_kind;
234
235 for (n = 0; n < dim; n++)
236 {
237 sstride[n] = array->dim[n].stride;
238 mstride[n] = mask->dim[n].stride * mask_kind;
239 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
240
241 if (extent[n] < 0)
242 extent[n] = 0;
243
244 }
245 for (n = dim; n < rank; n++)
246 {
247 sstride[n] = array->dim[n + 1].stride;
248 mstride[n] = mask->dim[n + 1].stride * mask_kind;
249 extent[n] =
250 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
251
252 if (extent[n] < 0)
253 extent[n] = 0;
254 }
255
256 if (retarray->data == NULL)
257 {
258 size_t alloc_size;
259
260 for (n = 0; n < rank; n++)
261 {
262 retarray->dim[n].lbound = 0;
263 retarray->dim[n].ubound = extent[n]-1;
264 if (n == 0)
265 retarray->dim[n].stride = 1;
266 else
267 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
268 }
269
270 alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
271 * extent[rank-1];
272
273 retarray->offset = 0;
274 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
275
276 if (alloc_size == 0)
277 {
278 /* Make sure we have a zero-sized array. */
279 retarray->dim[0].lbound = 0;
280 retarray->dim[0].ubound = -1;
281 return;
282 }
283 else
284 retarray->data = internal_malloc_size (alloc_size);
285
286 }
287 else
288 {
289 if (rank != GFC_DESCRIPTOR_RANK (retarray))
290 runtime_error ("rank of return array incorrect");
291 }
292
293 for (n = 0; n < rank; n++)
294 {
295 count[n] = 0;
296 dstride[n] = retarray->dim[n].stride;
297 if (extent[n] <= 0)
298 return;
299 }
300
301 dest = retarray->data;
302 base = array->data;
303
304 while (base)
305 {
306 const GFC_INTEGER_1 * restrict src;
307 const GFC_LOGICAL_1 * restrict msrc;
308 GFC_INTEGER_1 result;
309 src = base;
310 msrc = mbase;
311 {
312
313 result = 1;
314 if (len <= 0)
315 *dest = 1;
316 else
317 {
318 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
319 {
320
321 if (*msrc)
322 result *= *src;
323 }
324 *dest = result;
325 }
326 }
327 /* Advance to the next element. */
328 count[0]++;
329 base += sstride[0];
330 mbase += mstride[0];
331 dest += dstride[0];
332 n = 0;
333 while (count[n] == extent[n])
334 {
335 /* When we get to the end of a dimension, reset it and increment
336 the next dimension. */
337 count[n] = 0;
338 /* We could precalculate these products, but this is a less
339 frequently used path so probably not worth it. */
340 base -= sstride[n] * extent[n];
341 mbase -= mstride[n] * extent[n];
342 dest -= dstride[n] * extent[n];
343 n++;
344 if (n == rank)
345 {
346 /* Break out of the look. */
347 base = NULL;
348 break;
349 }
350 else
351 {
352 count[n]++;
353 base += sstride[n];
354 mbase += mstride[n];
355 dest += dstride[n];
356 }
357 }
358 }
359 }
360
361
362 extern void sproduct_i1 (gfc_array_i1 * const restrict,
363 gfc_array_i1 * const restrict, const index_type * const restrict,
364 GFC_LOGICAL_4 *);
365 export_proto(sproduct_i1);
366
367 void
368 sproduct_i1 (gfc_array_i1 * const restrict retarray,
369 gfc_array_i1 * const restrict array,
370 const index_type * const restrict pdim,
371 GFC_LOGICAL_4 * mask)
372 {
373 index_type rank;
374 index_type n;
375 index_type dstride;
376 GFC_INTEGER_1 *dest;
377
378 if (*mask)
379 {
380 product_i1 (retarray, array, pdim);
381 return;
382 }
383 rank = GFC_DESCRIPTOR_RANK (array);
384 if (rank <= 0)
385 runtime_error ("Rank of array needs to be > 0");
386
387 if (retarray->data == NULL)
388 {
389 retarray->dim[0].lbound = 0;
390 retarray->dim[0].ubound = rank-1;
391 retarray->dim[0].stride = 1;
392 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
393 retarray->offset = 0;
394 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
395 }
396 else
397 {
398 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
399 runtime_error ("rank of return array does not equal 1");
400
401 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
402 runtime_error ("dimension of return array incorrect");
403 }
404
405 dstride = retarray->dim[0].stride;
406 dest = retarray->data;
407
408 for (n = 0; n < rank; n++)
409 dest[n * dstride] = 1 ;
410 }
411
412 #endif