re PR libfortran/19308 (I/O library should support more real and integer kinds)
[gcc.git] / libgfortran / generated / product_r16.c
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
35
36
37 #if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_REAL_16)
38
39
40 extern void product_r16 (gfc_array_r16 *, gfc_array_r16 *, index_type *);
41 export_proto(product_r16);
42
43 void
44 product_r16 (gfc_array_r16 *retarray, gfc_array_r16 *array, index_type *pdim)
45 {
46 index_type count[GFC_MAX_DIMENSIONS];
47 index_type extent[GFC_MAX_DIMENSIONS];
48 index_type sstride[GFC_MAX_DIMENSIONS];
49 index_type dstride[GFC_MAX_DIMENSIONS];
50 GFC_REAL_16 *base;
51 GFC_REAL_16 *dest;
52 index_type rank;
53 index_type n;
54 index_type len;
55 index_type delta;
56 index_type dim;
57
58 /* Make dim zero based to avoid confusion. */
59 dim = (*pdim) - 1;
60 rank = GFC_DESCRIPTOR_RANK (array) - 1;
61
62 /* TODO: It should be a front end job to correctly set the strides. */
63
64 if (array->dim[0].stride == 0)
65 array->dim[0].stride = 1;
66
67 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
68 delta = array->dim[dim].stride;
69
70 for (n = 0; n < dim; n++)
71 {
72 sstride[n] = array->dim[n].stride;
73 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
74 }
75 for (n = dim; n < rank; n++)
76 {
77 sstride[n] = array->dim[n + 1].stride;
78 extent[n] =
79 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
80 }
81
82 if (retarray->data == NULL)
83 {
84 for (n = 0; n < rank; n++)
85 {
86 retarray->dim[n].lbound = 0;
87 retarray->dim[n].ubound = extent[n]-1;
88 if (n == 0)
89 retarray->dim[n].stride = 1;
90 else
91 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
92 }
93
94 retarray->data
95 = internal_malloc_size (sizeof (GFC_REAL_16)
96 * retarray->dim[rank-1].stride
97 * extent[rank-1]);
98 retarray->offset = 0;
99 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
100 }
101 else
102 {
103 if (retarray->dim[0].stride == 0)
104 retarray->dim[0].stride = 1;
105
106 if (rank != GFC_DESCRIPTOR_RANK (retarray))
107 runtime_error ("rank of return array incorrect");
108 }
109
110 for (n = 0; n < rank; n++)
111 {
112 count[n] = 0;
113 dstride[n] = retarray->dim[n].stride;
114 if (extent[n] <= 0)
115 len = 0;
116 }
117
118 base = array->data;
119 dest = retarray->data;
120
121 while (base)
122 {
123 GFC_REAL_16 *src;
124 GFC_REAL_16 result;
125 src = base;
126 {
127
128 result = 1;
129 if (len <= 0)
130 *dest = 1;
131 else
132 {
133 for (n = 0; n < len; n++, src += delta)
134 {
135
136 result *= *src;
137 }
138 *dest = result;
139 }
140 }
141 /* Advance to the next element. */
142 count[0]++;
143 base += sstride[0];
144 dest += dstride[0];
145 n = 0;
146 while (count[n] == extent[n])
147 {
148 /* When we get to the end of a dimension, reset it and increment
149 the next dimension. */
150 count[n] = 0;
151 /* We could precalculate these products, but this is a less
152 frequently used path so proabably not worth it. */
153 base -= sstride[n] * extent[n];
154 dest -= dstride[n] * extent[n];
155 n++;
156 if (n == rank)
157 {
158 /* Break out of the look. */
159 base = NULL;
160 break;
161 }
162 else
163 {
164 count[n]++;
165 base += sstride[n];
166 dest += dstride[n];
167 }
168 }
169 }
170 }
171
172
173 extern void mproduct_r16 (gfc_array_r16 *, gfc_array_r16 *, index_type *,
174 gfc_array_l4 *);
175 export_proto(mproduct_r16);
176
177 void
178 mproduct_r16 (gfc_array_r16 * retarray, gfc_array_r16 * array,
179 index_type *pdim, gfc_array_l4 * mask)
180 {
181 index_type count[GFC_MAX_DIMENSIONS];
182 index_type extent[GFC_MAX_DIMENSIONS];
183 index_type sstride[GFC_MAX_DIMENSIONS];
184 index_type dstride[GFC_MAX_DIMENSIONS];
185 index_type mstride[GFC_MAX_DIMENSIONS];
186 GFC_REAL_16 *dest;
187 GFC_REAL_16 *base;
188 GFC_LOGICAL_4 *mbase;
189 int rank;
190 int dim;
191 index_type n;
192 index_type len;
193 index_type delta;
194 index_type mdelta;
195
196 dim = (*pdim) - 1;
197 rank = GFC_DESCRIPTOR_RANK (array) - 1;
198
199 /* TODO: It should be a front end job to correctly set the strides. */
200
201 if (array->dim[0].stride == 0)
202 array->dim[0].stride = 1;
203
204 if (mask->dim[0].stride == 0)
205 mask->dim[0].stride = 1;
206
207 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
208 if (len <= 0)
209 return;
210 delta = array->dim[dim].stride;
211 mdelta = mask->dim[dim].stride;
212
213 for (n = 0; n < dim; n++)
214 {
215 sstride[n] = array->dim[n].stride;
216 mstride[n] = mask->dim[n].stride;
217 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
218 }
219 for (n = dim; n < rank; n++)
220 {
221 sstride[n] = array->dim[n + 1].stride;
222 mstride[n] = mask->dim[n + 1].stride;
223 extent[n] =
224 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
225 }
226
227 if (retarray->data == NULL)
228 {
229 for (n = 0; n < rank; n++)
230 {
231 retarray->dim[n].lbound = 0;
232 retarray->dim[n].ubound = extent[n]-1;
233 if (n == 0)
234 retarray->dim[n].stride = 1;
235 else
236 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
237 }
238
239 retarray->data
240 = internal_malloc_size (sizeof (GFC_REAL_16)
241 * retarray->dim[rank-1].stride
242 * extent[rank-1]);
243 retarray->offset = 0;
244 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
245 }
246 else
247 {
248 if (retarray->dim[0].stride == 0)
249 retarray->dim[0].stride = 1;
250
251 if (rank != GFC_DESCRIPTOR_RANK (retarray))
252 runtime_error ("rank of return array incorrect");
253 }
254
255 for (n = 0; n < rank; n++)
256 {
257 count[n] = 0;
258 dstride[n] = retarray->dim[n].stride;
259 if (extent[n] <= 0)
260 return;
261 }
262
263 dest = retarray->data;
264 base = array->data;
265 mbase = mask->data;
266
267 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
268 {
269 /* This allows the same loop to be used for all logical types. */
270 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
271 for (n = 0; n < rank; n++)
272 mstride[n] <<= 1;
273 mdelta <<= 1;
274 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
275 }
276
277 while (base)
278 {
279 GFC_REAL_16 *src;
280 GFC_LOGICAL_4 *msrc;
281 GFC_REAL_16 result;
282 src = base;
283 msrc = mbase;
284 {
285
286 result = 1;
287 if (len <= 0)
288 *dest = 1;
289 else
290 {
291 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
292 {
293
294 if (*msrc)
295 result *= *src;
296 }
297 *dest = result;
298 }
299 }
300 /* Advance to the next element. */
301 count[0]++;
302 base += sstride[0];
303 mbase += mstride[0];
304 dest += dstride[0];
305 n = 0;
306 while (count[n] == extent[n])
307 {
308 /* When we get to the end of a dimension, reset it and increment
309 the next dimension. */
310 count[n] = 0;
311 /* We could precalculate these products, but this is a less
312 frequently used path so proabably not worth it. */
313 base -= sstride[n] * extent[n];
314 mbase -= mstride[n] * extent[n];
315 dest -= dstride[n] * extent[n];
316 n++;
317 if (n == rank)
318 {
319 /* Break out of the look. */
320 base = NULL;
321 break;
322 }
323 else
324 {
325 count[n]++;
326 base += sstride[n];
327 mbase += mstride[n];
328 dest += dstride[n];
329 }
330 }
331 }
332 }
333
334 #endif