aa4bdec70d434a17f93d347fa7a97a0728696d18
[gcc.git] / libgfortran / generated / reshape_r4.c
1 /* Implementation of the RESHAPE
2 Copyright 2002, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34
35
36 #if defined (HAVE_GFC_REAL_4)
37
38 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
39
40
41 extern void reshape_r4 (gfc_array_r4 * const restrict,
42 gfc_array_r4 * const restrict,
43 shape_type * const restrict,
44 gfc_array_r4 * const restrict,
45 shape_type * const restrict);
46 export_proto(reshape_r4);
47
48 void
49 reshape_r4 (gfc_array_r4 * const restrict ret,
50 gfc_array_r4 * const restrict source,
51 shape_type * const restrict shape,
52 gfc_array_r4 * const restrict pad,
53 shape_type * const restrict order)
54 {
55 /* r.* indicates the return array. */
56 index_type rcount[GFC_MAX_DIMENSIONS];
57 index_type rextent[GFC_MAX_DIMENSIONS];
58 index_type rstride[GFC_MAX_DIMENSIONS];
59 index_type rstride0;
60 index_type rdim;
61 index_type rsize;
62 index_type rs;
63 index_type rex;
64 GFC_REAL_4 *rptr;
65 /* s.* indicates the source array. */
66 index_type scount[GFC_MAX_DIMENSIONS];
67 index_type sextent[GFC_MAX_DIMENSIONS];
68 index_type sstride[GFC_MAX_DIMENSIONS];
69 index_type sstride0;
70 index_type sdim;
71 index_type ssize;
72 const GFC_REAL_4 *sptr;
73 /* p.* indicates the pad array. */
74 index_type pcount[GFC_MAX_DIMENSIONS];
75 index_type pextent[GFC_MAX_DIMENSIONS];
76 index_type pstride[GFC_MAX_DIMENSIONS];
77 index_type pdim;
78 index_type psize;
79 const GFC_REAL_4 *pptr;
80
81 const GFC_REAL_4 *src;
82 int n;
83 int dim;
84 int sempty, pempty, shape_empty;
85 index_type shape_data[GFC_MAX_DIMENSIONS];
86
87 rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1;
88 if (rdim != GFC_DESCRIPTOR_RANK(ret))
89 runtime_error("rank of return array incorrect in RESHAPE intrinsic");
90
91 shape_empty = 0;
92
93 for (n = 0; n < rdim; n++)
94 {
95 shape_data[n] = shape->data[n * shape->dim[0].stride];
96 if (shape_data[n] <= 0)
97 {
98 shape_data[n] = 0;
99 shape_empty = 1;
100 }
101 }
102
103 if (ret->data == NULL)
104 {
105 rs = 1;
106 for (n = 0; n < rdim; n++)
107 {
108 ret->dim[n].lbound = 0;
109 rex = shape_data[n];
110 ret->dim[n].ubound = rex - 1;
111 ret->dim[n].stride = rs;
112 rs *= rex;
113 }
114 ret->offset = 0;
115 ret->data = internal_malloc_size ( rs * sizeof (GFC_REAL_4));
116 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
117 }
118
119 if (shape_empty)
120 return;
121
122 if (unlikely (compile_options.bounds_check))
123 {
124 index_type ret_extent, source_extent;
125
126 rs = 1;
127 for (n = 0; n < rdim; n++)
128 {
129 rs *= shape_data[n];
130 ret_extent = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
131 if (ret_extent != shape_data[n])
132 runtime_error("Incorrect extent in return value of RESHAPE"
133 " intrinsic in dimension %ld: is %ld,"
134 " should be %ld", (long int) n+1,
135 (long int) ret_extent, (long int) shape_data[n]);
136 }
137
138 source_extent = 1;
139 sdim = GFC_DESCRIPTOR_RANK (source);
140 for (n = 0; n < sdim; n++)
141 {
142 index_type se;
143 se = source->dim[n].ubound + 1 - source->dim[0].lbound;
144 source_extent *= se > 0 ? se : 0;
145 }
146
147 if (rs < source_extent || (rs > source_extent && !pad))
148 runtime_error("Incorrect size in SOURCE argument to RESHAPE"
149 " intrinsic: is %ld, should be %ld",
150 (long int) source_extent, (long int) rs);
151
152 if (order)
153 {
154 int seen[GFC_MAX_DIMENSIONS];
155 index_type v;
156
157 for (n = 0; n < rdim; n++)
158 seen[n] = 0;
159
160 for (n = 0; n < rdim; n++)
161 {
162 v = order->data[n * order->dim[0].stride] - 1;
163
164 if (v < 0 || v >= rdim)
165 runtime_error("Value %ld out of range in ORDER argument"
166 " to RESHAPE intrinsic", (long int) v + 1);
167
168 if (seen[v] != 0)
169 runtime_error("Duplicate value %ld in ORDER argument to"
170 " RESHAPE intrinsic", (long int) v + 1);
171
172 seen[v] = 1;
173 }
174 }
175 }
176
177 rsize = 1;
178 for (n = 0; n < rdim; n++)
179 {
180 if (order)
181 dim = order->data[n * order->dim[0].stride] - 1;
182 else
183 dim = n;
184
185 rcount[n] = 0;
186 rstride[n] = ret->dim[dim].stride;
187 rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound;
188 if (rextent[n] < 0)
189 rextent[n] = 0;
190
191 if (rextent[n] != shape_data[dim])
192 runtime_error ("shape and target do not conform");
193
194 if (rsize == rstride[n])
195 rsize *= rextent[n];
196 else
197 rsize = 0;
198 if (rextent[n] <= 0)
199 return;
200 }
201
202 sdim = GFC_DESCRIPTOR_RANK (source);
203 ssize = 1;
204 sempty = 0;
205 for (n = 0; n < sdim; n++)
206 {
207 scount[n] = 0;
208 sstride[n] = source->dim[n].stride;
209 sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
210 if (sextent[n] <= 0)
211 {
212 sempty = 1;
213 sextent[n] = 0;
214 }
215
216 if (ssize == sstride[n])
217 ssize *= sextent[n];
218 else
219 ssize = 0;
220 }
221
222 if (pad)
223 {
224 pdim = GFC_DESCRIPTOR_RANK (pad);
225 psize = 1;
226 pempty = 0;
227 for (n = 0; n < pdim; n++)
228 {
229 pcount[n] = 0;
230 pstride[n] = pad->dim[n].stride;
231 pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound;
232 if (pextent[n] <= 0)
233 {
234 pempty = 1;
235 pextent[n] = 0;
236 }
237
238 if (psize == pstride[n])
239 psize *= pextent[n];
240 else
241 psize = 0;
242 }
243 pptr = pad->data;
244 }
245 else
246 {
247 pdim = 0;
248 psize = 1;
249 pempty = 1;
250 pptr = NULL;
251 }
252
253 if (rsize != 0 && ssize != 0 && psize != 0)
254 {
255 rsize *= sizeof (GFC_REAL_4);
256 ssize *= sizeof (GFC_REAL_4);
257 psize *= sizeof (GFC_REAL_4);
258 reshape_packed ((char *)ret->data, rsize, (char *)source->data,
259 ssize, pad ? (char *)pad->data : NULL, psize);
260 return;
261 }
262 rptr = ret->data;
263 src = sptr = source->data;
264 rstride0 = rstride[0];
265 sstride0 = sstride[0];
266
267 if (sempty && pempty)
268 abort ();
269
270 if (sempty)
271 {
272 /* Pretend we are using the pad array the first time around, too. */
273 src = pptr;
274 sptr = pptr;
275 sdim = pdim;
276 for (dim = 0; dim < pdim; dim++)
277 {
278 scount[dim] = pcount[dim];
279 sextent[dim] = pextent[dim];
280 sstride[dim] = pstride[dim];
281 sstride0 = pstride[0];
282 }
283 }
284
285 while (rptr)
286 {
287 /* Select between the source and pad arrays. */
288 *rptr = *src;
289 /* Advance to the next element. */
290 rptr += rstride0;
291 src += sstride0;
292 rcount[0]++;
293 scount[0]++;
294
295 /* Advance to the next destination element. */
296 n = 0;
297 while (rcount[n] == rextent[n])
298 {
299 /* When we get to the end of a dimension, reset it and increment
300 the next dimension. */
301 rcount[n] = 0;
302 /* We could precalculate these products, but this is a less
303 frequently used path so probably not worth it. */
304 rptr -= rstride[n] * rextent[n];
305 n++;
306 if (n == rdim)
307 {
308 /* Break out of the loop. */
309 rptr = NULL;
310 break;
311 }
312 else
313 {
314 rcount[n]++;
315 rptr += rstride[n];
316 }
317 }
318 /* Advance to the next source element. */
319 n = 0;
320 while (scount[n] == sextent[n])
321 {
322 /* When we get to the end of a dimension, reset it and increment
323 the next dimension. */
324 scount[n] = 0;
325 /* We could precalculate these products, but this is a less
326 frequently used path so probably not worth it. */
327 src -= sstride[n] * sextent[n];
328 n++;
329 if (n == sdim)
330 {
331 if (sptr && pad)
332 {
333 /* Switch to the pad array. */
334 sptr = NULL;
335 sdim = pdim;
336 for (dim = 0; dim < pdim; dim++)
337 {
338 scount[dim] = pcount[dim];
339 sextent[dim] = pextent[dim];
340 sstride[dim] = pstride[dim];
341 sstride0 = sstride[0];
342 }
343 }
344 /* We now start again from the beginning of the pad array. */
345 src = pptr;
346 break;
347 }
348 else
349 {
350 scount[n]++;
351 src += sstride[n];
352 }
353 }
354 }
355 }
356
357 #endif