trans-array.c (gfc_trans_array_constructor, [...]): Rename the former to the later.
[gcc.git] / libgfortran / intrinsics / reshape_generic.c
1 /* Generic implementation of the RESHAPE intrinsic
2 Copyright 2002, 2006, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Ligbfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <string.h>
29 #include <assert.h>
30
31 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
32 typedef GFC_ARRAY_DESCRIPTOR(GFC_MAX_DIMENSIONS, char) parray;
33
34 static void
35 reshape_internal (parray *ret, parray *source, shape_type *shape,
36 parray *pad, shape_type *order, index_type size)
37 {
38 /* r.* indicates the return array. */
39 index_type rcount[GFC_MAX_DIMENSIONS];
40 index_type rextent[GFC_MAX_DIMENSIONS];
41 index_type rstride[GFC_MAX_DIMENSIONS];
42 index_type rstride0;
43 index_type rdim;
44 index_type rsize;
45 index_type rs;
46 index_type rex;
47 char * restrict rptr;
48 /* s.* indicates the source array. */
49 index_type scount[GFC_MAX_DIMENSIONS];
50 index_type sextent[GFC_MAX_DIMENSIONS];
51 index_type sstride[GFC_MAX_DIMENSIONS];
52 index_type sstride0;
53 index_type sdim;
54 index_type ssize;
55 const char *sptr;
56 /* p.* indicates the pad array. */
57 index_type pcount[GFC_MAX_DIMENSIONS];
58 index_type pextent[GFC_MAX_DIMENSIONS];
59 index_type pstride[GFC_MAX_DIMENSIONS];
60 index_type pdim;
61 index_type psize;
62 const char *pptr;
63
64 const char *src;
65 int n;
66 int dim;
67 int sempty, pempty, shape_empty;
68 index_type shape_data[GFC_MAX_DIMENSIONS];
69
70 rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
71 if (rdim != GFC_DESCRIPTOR_RANK(ret))
72 runtime_error("rank of return array incorrect in RESHAPE intrinsic");
73
74 shape_empty = 0;
75
76 for (n = 0; n < rdim; n++)
77 {
78 shape_data[n] = shape->data[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
79 if (shape_data[n] <= 0)
80 {
81 shape_data[n] = 0;
82 shape_empty = 1;
83 }
84 }
85
86 if (ret->data == NULL)
87 {
88 index_type alloc_size;
89
90 rs = 1;
91 for (n = 0; n < rdim; n++)
92 {
93 rex = shape_data[n];
94
95 GFC_DIMENSION_SET(ret->dim[n],0,rex - 1,rs);
96
97 rs *= rex;
98 }
99 ret->offset = 0;
100
101 if (unlikely (rs < 1))
102 alloc_size = 1;
103 else
104 alloc_size = rs * size;
105
106 ret->data = internal_malloc_size (alloc_size);
107
108 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
109 }
110
111 if (shape_empty)
112 return;
113
114 if (pad)
115 {
116 pdim = GFC_DESCRIPTOR_RANK (pad);
117 psize = 1;
118 pempty = 0;
119 for (n = 0; n < pdim; n++)
120 {
121 pcount[n] = 0;
122 pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
123 pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
124 if (pextent[n] <= 0)
125 {
126 pempty = 1;
127 pextent[n] = 0;
128 }
129
130 if (psize == pstride[n])
131 psize *= pextent[n];
132 else
133 psize = 0;
134 }
135 pptr = pad->data;
136 }
137 else
138 {
139 pdim = 0;
140 psize = 1;
141 pempty = 1;
142 pptr = NULL;
143 }
144
145 if (unlikely (compile_options.bounds_check))
146 {
147 index_type ret_extent, source_extent;
148
149 rs = 1;
150 for (n = 0; n < rdim; n++)
151 {
152 rs *= shape_data[n];
153 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
154 if (ret_extent != shape_data[n])
155 runtime_error("Incorrect extent in return value of RESHAPE"
156 " intrinsic in dimension %ld: is %ld,"
157 " should be %ld", (long int) n+1,
158 (long int) ret_extent, (long int) shape_data[n]);
159 }
160
161 source_extent = 1;
162 sdim = GFC_DESCRIPTOR_RANK (source);
163 for (n = 0; n < sdim; n++)
164 {
165 index_type se;
166 se = GFC_DESCRIPTOR_EXTENT(source,n);
167 source_extent *= se > 0 ? se : 0;
168 }
169
170 if (rs > source_extent && (!pad || pempty))
171 runtime_error("Incorrect size in SOURCE argument to RESHAPE"
172 " intrinsic: is %ld, should be %ld",
173 (long int) source_extent, (long int) rs);
174
175 if (order)
176 {
177 int seen[GFC_MAX_DIMENSIONS];
178 index_type v;
179
180 for (n = 0; n < rdim; n++)
181 seen[n] = 0;
182
183 for (n = 0; n < rdim; n++)
184 {
185 v = order->data[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
186
187 if (v < 0 || v >= rdim)
188 runtime_error("Value %ld out of range in ORDER argument"
189 " to RESHAPE intrinsic", (long int) v + 1);
190
191 if (seen[v] != 0)
192 runtime_error("Duplicate value %ld in ORDER argument to"
193 " RESHAPE intrinsic", (long int) v + 1);
194
195 seen[v] = 1;
196 }
197 }
198 }
199
200 rsize = 1;
201 for (n = 0; n < rdim; n++)
202 {
203 if (order)
204 dim = order->data[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
205 else
206 dim = n;
207
208 rcount[n] = 0;
209 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
210 rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
211
212 if (rextent[n] != shape_data[dim])
213 runtime_error ("shape and target do not conform");
214
215 if (rsize == rstride[n])
216 rsize *= rextent[n];
217 else
218 rsize = 0;
219 if (rextent[n] <= 0)
220 return;
221 }
222
223 sdim = GFC_DESCRIPTOR_RANK (source);
224 ssize = 1;
225 sempty = 0;
226 for (n = 0; n < sdim; n++)
227 {
228 scount[n] = 0;
229 sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
230 sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
231 if (sextent[n] <= 0)
232 {
233 sempty = 1;
234 sextent[n] = 0;
235 }
236
237 if (ssize == sstride[n])
238 ssize *= sextent[n];
239 else
240 ssize = 0;
241 }
242
243 if (rsize != 0 && ssize != 0 && psize != 0)
244 {
245 rsize *= size;
246 ssize *= size;
247 psize *= size;
248 reshape_packed (ret->data, rsize, source->data, ssize,
249 pad ? pad->data : NULL, psize);
250 return;
251 }
252 rptr = ret->data;
253 src = sptr = source->data;
254 rstride0 = rstride[0] * size;
255 sstride0 = sstride[0] * size;
256
257 if (sempty && pempty)
258 abort ();
259
260 if (sempty)
261 {
262 /* Pretend we are using the pad array the first time around, too. */
263 src = pptr;
264 sptr = pptr;
265 sdim = pdim;
266 for (dim = 0; dim < pdim; dim++)
267 {
268 scount[dim] = pcount[dim];
269 sextent[dim] = pextent[dim];
270 sstride[dim] = pstride[dim];
271 sstride0 = pstride[0] * size;
272 }
273 }
274
275 while (rptr)
276 {
277 /* Select between the source and pad arrays. */
278 memcpy(rptr, src, size);
279 /* Advance to the next element. */
280 rptr += rstride0;
281 src += sstride0;
282 rcount[0]++;
283 scount[0]++;
284
285 /* Advance to the next destination element. */
286 n = 0;
287 while (rcount[n] == rextent[n])
288 {
289 /* When we get to the end of a dimension, reset it and increment
290 the next dimension. */
291 rcount[n] = 0;
292 /* We could precalculate these products, but this is a less
293 frequently used path so probably not worth it. */
294 rptr -= rstride[n] * rextent[n] * size;
295 n++;
296 if (n == rdim)
297 {
298 /* Break out of the loop. */
299 rptr = NULL;
300 break;
301 }
302 else
303 {
304 rcount[n]++;
305 rptr += rstride[n] * size;
306 }
307 }
308
309 /* Advance to the next source element. */
310 n = 0;
311 while (scount[n] == sextent[n])
312 {
313 /* When we get to the end of a dimension, reset it and increment
314 the next dimension. */
315 scount[n] = 0;
316 /* We could precalculate these products, but this is a less
317 frequently used path so probably not worth it. */
318 src -= sstride[n] * sextent[n] * size;
319 n++;
320 if (n == sdim)
321 {
322 if (sptr && pad)
323 {
324 /* Switch to the pad array. */
325 sptr = NULL;
326 sdim = pdim;
327 for (dim = 0; dim < pdim; dim++)
328 {
329 scount[dim] = pcount[dim];
330 sextent[dim] = pextent[dim];
331 sstride[dim] = pstride[dim];
332 sstride0 = sstride[0] * size;
333 }
334 }
335 /* We now start again from the beginning of the pad array. */
336 src = pptr;
337 break;
338 }
339 else
340 {
341 scount[n]++;
342 src += sstride[n] * size;
343 }
344 }
345 }
346 }
347
348 extern void reshape (parray *, parray *, shape_type *, parray *, shape_type *);
349 export_proto(reshape);
350
351 void
352 reshape (parray *ret, parray *source, shape_type *shape, parray *pad,
353 shape_type *order)
354 {
355 reshape_internal (ret, source, shape, pad, order,
356 GFC_DESCRIPTOR_SIZE (source));
357 }
358
359
360 extern void reshape_char (parray *, gfc_charlen_type, parray *, shape_type *,
361 parray *, shape_type *, gfc_charlen_type,
362 gfc_charlen_type);
363 export_proto(reshape_char);
364
365 void
366 reshape_char (parray *ret, gfc_charlen_type ret_length __attribute__((unused)),
367 parray *source, shape_type *shape, parray *pad,
368 shape_type *order, gfc_charlen_type source_length,
369 gfc_charlen_type pad_length __attribute__((unused)))
370 {
371 reshape_internal (ret, source, shape, pad, order, source_length);
372 }
373
374
375 extern void reshape_char4 (parray *, gfc_charlen_type, parray *, shape_type *,
376 parray *, shape_type *, gfc_charlen_type,
377 gfc_charlen_type);
378 export_proto(reshape_char4);
379
380 void
381 reshape_char4 (parray *ret, gfc_charlen_type ret_length __attribute__((unused)),
382 parray *source, shape_type *shape, parray *pad,
383 shape_type *order, gfc_charlen_type source_length,
384 gfc_charlen_type pad_length __attribute__((unused)))
385 {
386 reshape_internal (ret, source, shape, pad, order,
387 source_length * sizeof (gfc_char4_t));
388 }