unix.c (buf_write): Return early if there is nothing to write.
[gcc.git] / libgfortran / io / list_read.c
1 /* Copyright (C) 2002-2017 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist input contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27
28 #include "io.h"
29 #include "fbuf.h"
30 #include "unix.h"
31 #include <string.h>
32 #include <ctype.h>
33
34 typedef unsigned char uchar;
35
36
37 /* List directed input. Several parsing subroutines are practically
38 reimplemented from formatted input, the reason being that there are
39 all kinds of small differences between formatted and list directed
40 parsing. */
41
42
43 /* Subroutines for reading characters from the input. Because a
44 repeat count is ambiguous with an integer, we have to read the
45 whole digit string before seeing if there is a '*' which signals
46 the repeat count. Since we can have a lot of potential leading
47 zeros, we have to be able to back up by arbitrary amount. Because
48 the input might not be seekable, we have to buffer the data
49 ourselves. */
50
51 #define CASE_DIGITS case '0': case '1': case '2': case '3': case '4': \
52 case '5': case '6': case '7': case '8': case '9'
53
54 #define CASE_SEPARATORS /* Fall through. */ \
55 case ' ': case ',': case '/': case '\n': \
56 case '\t': case '\r': case ';'
57
58 /* This macro assumes that we're operating on a variable. */
59
60 #define is_separator(c) (c == '/' || c == ',' || c == '\n' || c == ' ' \
61 || c == '\t' || c == '\r' || c == ';' || \
62 (dtp->u.p.namelist_mode && c == '!'))
63
64 /* Maximum repeat count. Less than ten times the maximum signed int32. */
65
66 #define MAX_REPEAT 200000000
67
68
69 #define MSGLEN 100
70
71
72 /* Wrappers for calling the current worker functions. */
73
74 #define next_char(dtp) ((dtp)->u.p.current_unit->next_char_fn_ptr (dtp))
75 #define push_char(dtp, c) ((dtp)->u.p.current_unit->push_char_fn_ptr (dtp, c))
76
77 /* Worker function to save a default KIND=1 character to a string
78 buffer, enlarging it as necessary. */
79
80 static void
81 push_char_default (st_parameter_dt *dtp, int c)
82 {
83
84
85 if (dtp->u.p.saved_string == NULL)
86 {
87 /* Plain malloc should suffice here, zeroing not needed? */
88 dtp->u.p.saved_string = xcalloc (SCRATCH_SIZE, 1);
89 dtp->u.p.saved_length = SCRATCH_SIZE;
90 dtp->u.p.saved_used = 0;
91 }
92
93 if (dtp->u.p.saved_used >= dtp->u.p.saved_length)
94 {
95 dtp->u.p.saved_length = 2 * dtp->u.p.saved_length;
96 dtp->u.p.saved_string =
97 xrealloc (dtp->u.p.saved_string, dtp->u.p.saved_length);
98 }
99
100 dtp->u.p.saved_string[dtp->u.p.saved_used++] = (char) c;
101 }
102
103
104 /* Worker function to save a KIND=4 character to a string buffer,
105 enlarging the buffer as necessary. */
106 static void
107 push_char4 (st_parameter_dt *dtp, int c)
108 {
109 gfc_char4_t *p = (gfc_char4_t *) dtp->u.p.saved_string;
110
111 if (p == NULL)
112 {
113 dtp->u.p.saved_string = xcalloc (SCRATCH_SIZE, sizeof (gfc_char4_t));
114 dtp->u.p.saved_length = SCRATCH_SIZE;
115 dtp->u.p.saved_used = 0;
116 p = (gfc_char4_t *) dtp->u.p.saved_string;
117 }
118
119 if (dtp->u.p.saved_used >= dtp->u.p.saved_length)
120 {
121 dtp->u.p.saved_length = 2 * dtp->u.p.saved_length;
122 dtp->u.p.saved_string =
123 xrealloc (dtp->u.p.saved_string,
124 dtp->u.p.saved_length * sizeof (gfc_char4_t));
125 p = (gfc_char4_t *) dtp->u.p.saved_string;
126 }
127
128 p[dtp->u.p.saved_used++] = c;
129 }
130
131
132 /* Free the input buffer if necessary. */
133
134 static void
135 free_saved (st_parameter_dt *dtp)
136 {
137 if (dtp->u.p.saved_string == NULL)
138 return;
139
140 free (dtp->u.p.saved_string);
141
142 dtp->u.p.saved_string = NULL;
143 dtp->u.p.saved_used = 0;
144 }
145
146
147 /* Free the line buffer if necessary. */
148
149 static void
150 free_line (st_parameter_dt *dtp)
151 {
152 dtp->u.p.line_buffer_pos = 0;
153 dtp->u.p.line_buffer_enabled = 0;
154
155 if (dtp->u.p.line_buffer == NULL)
156 return;
157
158 free (dtp->u.p.line_buffer);
159 dtp->u.p.line_buffer = NULL;
160 }
161
162
163 /* Unget saves the last character so when reading the next character,
164 we need to check to see if there is a character waiting. Similar,
165 if the line buffer is being used to read_logical, check it too. */
166
167 static int
168 check_buffers (st_parameter_dt *dtp)
169 {
170 int c;
171
172 c = '\0';
173 if (dtp->u.p.current_unit->last_char != EOF - 1)
174 {
175 dtp->u.p.at_eol = 0;
176 c = dtp->u.p.current_unit->last_char;
177 dtp->u.p.current_unit->last_char = EOF - 1;
178 goto done;
179 }
180
181 /* Read from line_buffer if enabled. */
182
183 if (dtp->u.p.line_buffer_enabled)
184 {
185 dtp->u.p.at_eol = 0;
186
187 c = dtp->u.p.line_buffer[dtp->u.p.line_buffer_pos];
188 if (c != '\0' && dtp->u.p.line_buffer_pos < 64)
189 {
190 dtp->u.p.line_buffer[dtp->u.p.line_buffer_pos] = '\0';
191 dtp->u.p.line_buffer_pos++;
192 goto done;
193 }
194
195 dtp->u.p.line_buffer_pos = 0;
196 dtp->u.p.line_buffer_enabled = 0;
197 }
198
199 done:
200 dtp->u.p.at_eol = (c == '\n' || c == '\r' || c == EOF);
201 return c;
202 }
203
204
205 /* Worker function for default character encoded file. */
206 static int
207 next_char_default (st_parameter_dt *dtp)
208 {
209 int c;
210
211 /* Always check the unget and line buffer first. */
212 if ((c = check_buffers (dtp)))
213 return c;
214
215 c = fbuf_getc (dtp->u.p.current_unit);
216 if (c != EOF && is_stream_io (dtp))
217 dtp->u.p.current_unit->strm_pos++;
218
219 dtp->u.p.at_eol = (c == '\n' || c == EOF);
220 return c;
221 }
222
223
224 /* Worker function for internal and array I/O units. */
225 static int
226 next_char_internal (st_parameter_dt *dtp)
227 {
228 ssize_t length;
229 gfc_offset record;
230 int c;
231
232 /* Always check the unget and line buffer first. */
233 if ((c = check_buffers (dtp)))
234 return c;
235
236 /* Handle the end-of-record and end-of-file conditions for
237 internal array unit. */
238 if (is_array_io (dtp))
239 {
240 if (dtp->u.p.at_eof)
241 return EOF;
242
243 /* Check for "end-of-record" condition. */
244 if (dtp->u.p.current_unit->bytes_left == 0)
245 {
246 int finished;
247
248 c = '\n';
249 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
250 &finished);
251
252 /* Check for "end-of-file" condition. */
253 if (finished)
254 {
255 dtp->u.p.at_eof = 1;
256 goto done;
257 }
258
259 record *= dtp->u.p.current_unit->recl;
260 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
261 return EOF;
262
263 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
264 goto done;
265 }
266 }
267
268 /* Get the next character and handle end-of-record conditions. */
269
270 if (is_char4_unit(dtp)) /* Check for kind=4 internal unit. */
271 length = sread (dtp->u.p.current_unit->s, &c, 1);
272 else
273 {
274 char cc;
275 length = sread (dtp->u.p.current_unit->s, &cc, 1);
276 c = cc;
277 }
278
279 if (unlikely (length < 0))
280 {
281 generate_error (&dtp->common, LIBERROR_OS, NULL);
282 return '\0';
283 }
284
285 if (is_array_io (dtp))
286 {
287 /* Check whether we hit EOF. */
288 if (unlikely (length == 0))
289 {
290 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
291 return '\0';
292 }
293 dtp->u.p.current_unit->bytes_left--;
294 }
295 else
296 {
297 if (dtp->u.p.at_eof)
298 return EOF;
299 if (length == 0)
300 {
301 c = '\n';
302 dtp->u.p.at_eof = 1;
303 }
304 }
305
306 done:
307 dtp->u.p.at_eol = (c == '\n' || c == EOF);
308 return c;
309 }
310
311
312 /* Worker function for UTF encoded files. */
313 static int
314 next_char_utf8 (st_parameter_dt *dtp)
315 {
316 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x02, 0x01 };
317 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
318 int i, nb;
319 gfc_char4_t c;
320
321 /* Always check the unget and line buffer first. */
322 if (!(c = check_buffers (dtp)))
323 c = fbuf_getc (dtp->u.p.current_unit);
324
325 if (c < 0x80)
326 goto utf_done;
327
328 /* The number of leading 1-bits in the first byte indicates how many
329 bytes follow. */
330 for (nb = 2; nb < 7; nb++)
331 if ((c & ~masks[nb-1]) == patns[nb-1])
332 goto found;
333 goto invalid;
334
335 found:
336 c = (c & masks[nb-1]);
337
338 /* Decode the bytes read. */
339 for (i = 1; i < nb; i++)
340 {
341 gfc_char4_t n = fbuf_getc (dtp->u.p.current_unit);
342 if ((n & 0xC0) != 0x80)
343 goto invalid;
344 c = ((c << 6) + (n & 0x3F));
345 }
346
347 /* Make sure the shortest possible encoding was used. */
348 if (c <= 0x7F && nb > 1) goto invalid;
349 if (c <= 0x7FF && nb > 2) goto invalid;
350 if (c <= 0xFFFF && nb > 3) goto invalid;
351 if (c <= 0x1FFFFF && nb > 4) goto invalid;
352 if (c <= 0x3FFFFFF && nb > 5) goto invalid;
353
354 /* Make sure the character is valid. */
355 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF))
356 goto invalid;
357
358 utf_done:
359 dtp->u.p.at_eol = (c == '\n' || c == (gfc_char4_t) EOF);
360 return (int) c;
361
362 invalid:
363 generate_error (&dtp->common, LIBERROR_READ_VALUE, "Invalid UTF-8 encoding");
364 return (gfc_char4_t) '?';
365 }
366
367 /* Push a character back onto the input. */
368
369 static void
370 unget_char (st_parameter_dt *dtp, int c)
371 {
372 dtp->u.p.current_unit->last_char = c;
373 }
374
375
376 /* Skip over spaces in the input. Returns the nonspace character that
377 terminated the eating and also places it back on the input. */
378
379 static int
380 eat_spaces (st_parameter_dt *dtp)
381 {
382 int c;
383
384 /* If internal character array IO, peak ahead and seek past spaces.
385 This is an optimization unique to character arrays with large
386 character lengths (PR38199). This code eliminates numerous calls
387 to next_character. */
388 if (is_array_io (dtp) && (dtp->u.p.current_unit->last_char == EOF - 1))
389 {
390 gfc_offset offset = stell (dtp->u.p.current_unit->s);
391 gfc_offset i;
392
393 if (is_char4_unit(dtp)) /* kind=4 */
394 {
395 for (i = 0; i < dtp->u.p.current_unit->bytes_left; i++)
396 {
397 if (dtp->internal_unit[(offset + i) * sizeof (gfc_char4_t)]
398 != (gfc_char4_t)' ')
399 break;
400 }
401 }
402 else
403 {
404 for (i = 0; i < dtp->u.p.current_unit->bytes_left; i++)
405 {
406 if (dtp->internal_unit[offset + i] != ' ')
407 break;
408 }
409 }
410
411 if (i != 0)
412 {
413 sseek (dtp->u.p.current_unit->s, offset + i, SEEK_SET);
414 dtp->u.p.current_unit->bytes_left -= i;
415 }
416 }
417
418 /* Now skip spaces, EOF and EOL are handled in next_char. */
419 do
420 c = next_char (dtp);
421 while (c != EOF && (c == ' ' || c == '\r' || c == '\t'));
422
423 unget_char (dtp, c);
424 return c;
425 }
426
427
428 /* This function reads characters through to the end of the current
429 line and just ignores them. Returns 0 for success and LIBERROR_END
430 if it hit EOF. */
431
432 static int
433 eat_line (st_parameter_dt *dtp)
434 {
435 int c;
436
437 do
438 c = next_char (dtp);
439 while (c != EOF && c != '\n');
440 if (c == EOF)
441 return LIBERROR_END;
442 return 0;
443 }
444
445
446 /* Skip over a separator. Technically, we don't always eat the whole
447 separator. This is because if we've processed the last input item,
448 then a separator is unnecessary. Plus the fact that operating
449 systems usually deliver console input on a line basis.
450
451 The upshot is that if we see a newline as part of reading a
452 separator, we stop reading. If there are more input items, we
453 continue reading the separator with finish_separator() which takes
454 care of the fact that we may or may not have seen a comma as part
455 of the separator.
456
457 Returns 0 for success, and non-zero error code otherwise. */
458
459 static int
460 eat_separator (st_parameter_dt *dtp)
461 {
462 int c, n;
463 int err = 0;
464
465 eat_spaces (dtp);
466 dtp->u.p.comma_flag = 0;
467
468 if ((c = next_char (dtp)) == EOF)
469 return LIBERROR_END;
470 switch (c)
471 {
472 case ',':
473 if (dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
474 {
475 unget_char (dtp, c);
476 break;
477 }
478 /* Fall through. */
479 case ';':
480 dtp->u.p.comma_flag = 1;
481 eat_spaces (dtp);
482 break;
483
484 case '/':
485 dtp->u.p.input_complete = 1;
486 break;
487
488 case '\r':
489 if ((n = next_char(dtp)) == EOF)
490 return LIBERROR_END;
491 if (n != '\n')
492 {
493 unget_char (dtp, n);
494 break;
495 }
496 /* Fall through. */
497 case '\n':
498 dtp->u.p.at_eol = 1;
499 if (dtp->u.p.namelist_mode)
500 {
501 do
502 {
503 if ((c = next_char (dtp)) == EOF)
504 return LIBERROR_END;
505 if (c == '!')
506 {
507 err = eat_line (dtp);
508 if (err)
509 return err;
510 c = '\n';
511 }
512 }
513 while (c == '\n' || c == '\r' || c == ' ' || c == '\t');
514 unget_char (dtp, c);
515 }
516 break;
517
518 case '!':
519 /* Eat a namelist comment. */
520 if (dtp->u.p.namelist_mode)
521 {
522 err = eat_line (dtp);
523 if (err)
524 return err;
525
526 break;
527 }
528
529 /* Fall Through... */
530
531 default:
532 unget_char (dtp, c);
533 break;
534 }
535 return err;
536 }
537
538
539 /* Finish processing a separator that was interrupted by a newline.
540 If we're here, then another data item is present, so we finish what
541 we started on the previous line. Return 0 on success, error code
542 on failure. */
543
544 static int
545 finish_separator (st_parameter_dt *dtp)
546 {
547 int c;
548 int err = LIBERROR_OK;
549
550 restart:
551 eat_spaces (dtp);
552
553 if ((c = next_char (dtp)) == EOF)
554 return LIBERROR_END;
555 switch (c)
556 {
557 case ',':
558 if (dtp->u.p.comma_flag)
559 unget_char (dtp, c);
560 else
561 {
562 if ((c = eat_spaces (dtp)) == EOF)
563 return LIBERROR_END;
564 if (c == '\n' || c == '\r')
565 goto restart;
566 }
567
568 break;
569
570 case '/':
571 dtp->u.p.input_complete = 1;
572 if (!dtp->u.p.namelist_mode)
573 return err;
574 break;
575
576 case '\n':
577 case '\r':
578 goto restart;
579
580 case '!':
581 if (dtp->u.p.namelist_mode)
582 {
583 err = eat_line (dtp);
584 if (err)
585 return err;
586 goto restart;
587 }
588 /* Fall through. */
589 default:
590 unget_char (dtp, c);
591 break;
592 }
593 return err;
594 }
595
596
597 /* This function is needed to catch bad conversions so that namelist can
598 attempt to see if dtp->u.p.saved_string contains a new object name rather
599 than a bad value. */
600
601 static int
602 nml_bad_return (st_parameter_dt *dtp, char c)
603 {
604 if (dtp->u.p.namelist_mode)
605 {
606 dtp->u.p.nml_read_error = 1;
607 unget_char (dtp, c);
608 return 1;
609 }
610 return 0;
611 }
612
613 /* Convert an unsigned string to an integer. The length value is -1
614 if we are working on a repeat count. Returns nonzero if we have a
615 range problem. As a side effect, frees the dtp->u.p.saved_string. */
616
617 static int
618 convert_integer (st_parameter_dt *dtp, int length, int negative)
619 {
620 char c, *buffer, message[MSGLEN];
621 int m;
622 GFC_UINTEGER_LARGEST v, max, max10;
623 GFC_INTEGER_LARGEST value;
624
625 buffer = dtp->u.p.saved_string;
626 v = 0;
627
628 if (length == -1)
629 max = MAX_REPEAT;
630 else
631 {
632 max = si_max (length);
633 if (negative)
634 max++;
635 }
636 max10 = max / 10;
637
638 for (;;)
639 {
640 c = *buffer++;
641 if (c == '\0')
642 break;
643 c -= '0';
644
645 if (v > max10)
646 goto overflow;
647 v = 10 * v;
648
649 if (v > max - c)
650 goto overflow;
651 v += c;
652 }
653
654 m = 0;
655
656 if (length != -1)
657 {
658 if (negative)
659 value = -v;
660 else
661 value = v;
662 set_integer (dtp->u.p.value, value, length);
663 }
664 else
665 {
666 dtp->u.p.repeat_count = v;
667
668 if (dtp->u.p.repeat_count == 0)
669 {
670 snprintf (message, MSGLEN, "Zero repeat count in item %d of list input",
671 dtp->u.p.item_count);
672
673 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
674 m = 1;
675 }
676 }
677
678 free_saved (dtp);
679 return m;
680
681 overflow:
682 if (length == -1)
683 snprintf (message, MSGLEN, "Repeat count overflow in item %d of list input",
684 dtp->u.p.item_count);
685 else
686 snprintf (message, MSGLEN, "Integer overflow while reading item %d",
687 dtp->u.p.item_count);
688
689 free_saved (dtp);
690 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
691
692 return 1;
693 }
694
695
696 /* Parse a repeat count for logical and complex values which cannot
697 begin with a digit. Returns nonzero if we are done, zero if we
698 should continue on. */
699
700 static int
701 parse_repeat (st_parameter_dt *dtp)
702 {
703 char message[MSGLEN];
704 int c, repeat;
705
706 if ((c = next_char (dtp)) == EOF)
707 goto bad_repeat;
708 switch (c)
709 {
710 CASE_DIGITS:
711 repeat = c - '0';
712 break;
713
714 CASE_SEPARATORS:
715 unget_char (dtp, c);
716 eat_separator (dtp);
717 return 1;
718
719 default:
720 unget_char (dtp, c);
721 return 0;
722 }
723
724 for (;;)
725 {
726 c = next_char (dtp);
727 switch (c)
728 {
729 CASE_DIGITS:
730 repeat = 10 * repeat + c - '0';
731
732 if (repeat > MAX_REPEAT)
733 {
734 snprintf (message, MSGLEN,
735 "Repeat count overflow in item %d of list input",
736 dtp->u.p.item_count);
737
738 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
739 return 1;
740 }
741
742 break;
743
744 case '*':
745 if (repeat == 0)
746 {
747 snprintf (message, MSGLEN,
748 "Zero repeat count in item %d of list input",
749 dtp->u.p.item_count);
750
751 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
752 return 1;
753 }
754
755 goto done;
756
757 default:
758 goto bad_repeat;
759 }
760 }
761
762 done:
763 dtp->u.p.repeat_count = repeat;
764 return 0;
765
766 bad_repeat:
767
768 free_saved (dtp);
769 if (c == EOF)
770 {
771 free_line (dtp);
772 hit_eof (dtp);
773 return 1;
774 }
775 else
776 eat_line (dtp);
777 snprintf (message, MSGLEN, "Bad repeat count in item %d of list input",
778 dtp->u.p.item_count);
779 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
780 return 1;
781 }
782
783
784 /* To read a logical we have to look ahead in the input stream to make sure
785 there is not an equal sign indicating a variable name. To do this we use
786 line_buffer to point to a temporary buffer, pushing characters there for
787 possible later reading. */
788
789 static void
790 l_push_char (st_parameter_dt *dtp, char c)
791 {
792 if (dtp->u.p.line_buffer == NULL)
793 dtp->u.p.line_buffer = xcalloc (SCRATCH_SIZE, 1);
794
795 dtp->u.p.line_buffer[dtp->u.p.line_buffer_pos++] = c;
796 }
797
798
799 /* Read a logical character on the input. */
800
801 static void
802 read_logical (st_parameter_dt *dtp, int length)
803 {
804 char message[MSGLEN];
805 int c, i, v;
806
807 if (parse_repeat (dtp))
808 return;
809
810 c = tolower (next_char (dtp));
811 l_push_char (dtp, c);
812 switch (c)
813 {
814 case 't':
815 v = 1;
816 c = next_char (dtp);
817 l_push_char (dtp, c);
818
819 if (!is_separator(c) && c != EOF)
820 goto possible_name;
821
822 unget_char (dtp, c);
823 break;
824 case 'f':
825 v = 0;
826 c = next_char (dtp);
827 l_push_char (dtp, c);
828
829 if (!is_separator(c) && c != EOF)
830 goto possible_name;
831
832 unget_char (dtp, c);
833 break;
834
835 case '.':
836 c = tolower (next_char (dtp));
837 switch (c)
838 {
839 case 't':
840 v = 1;
841 break;
842 case 'f':
843 v = 0;
844 break;
845 default:
846 goto bad_logical;
847 }
848
849 break;
850
851 case '!':
852 if (!dtp->u.p.namelist_mode)
853 goto bad_logical;
854
855 CASE_SEPARATORS:
856 case EOF:
857 unget_char (dtp, c);
858 eat_separator (dtp);
859 return; /* Null value. */
860
861 default:
862 /* Save the character in case it is the beginning
863 of the next object name. */
864 unget_char (dtp, c);
865 goto bad_logical;
866 }
867
868 dtp->u.p.saved_type = BT_LOGICAL;
869 dtp->u.p.saved_length = length;
870
871 /* Eat trailing garbage. */
872 do
873 c = next_char (dtp);
874 while (c != EOF && !is_separator (c));
875
876 unget_char (dtp, c);
877 eat_separator (dtp);
878 set_integer ((int *) dtp->u.p.value, v, length);
879 free_line (dtp);
880
881 return;
882
883 possible_name:
884
885 for(i = 0; i < 63; i++)
886 {
887 c = next_char (dtp);
888 if (is_separator(c))
889 {
890 /* All done if this is not a namelist read. */
891 if (!dtp->u.p.namelist_mode)
892 goto logical_done;
893
894 unget_char (dtp, c);
895 eat_separator (dtp);
896 c = next_char (dtp);
897 if (c != '=')
898 {
899 unget_char (dtp, c);
900 goto logical_done;
901 }
902 }
903
904 l_push_char (dtp, c);
905 if (c == '=')
906 {
907 dtp->u.p.nml_read_error = 1;
908 dtp->u.p.line_buffer_enabled = 1;
909 dtp->u.p.line_buffer_pos = 0;
910 return;
911 }
912
913 }
914
915 bad_logical:
916
917 if (nml_bad_return (dtp, c))
918 {
919 free_line (dtp);
920 return;
921 }
922
923
924 free_saved (dtp);
925 if (c == EOF)
926 {
927 free_line (dtp);
928 hit_eof (dtp);
929 return;
930 }
931 else if (c != '\n')
932 eat_line (dtp);
933 snprintf (message, MSGLEN, "Bad logical value while reading item %d",
934 dtp->u.p.item_count);
935 free_line (dtp);
936 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
937 return;
938
939 logical_done:
940
941 dtp->u.p.saved_type = BT_LOGICAL;
942 dtp->u.p.saved_length = length;
943 set_integer ((int *) dtp->u.p.value, v, length);
944 free_saved (dtp);
945 free_line (dtp);
946 }
947
948
949 /* Reading integers is tricky because we can actually be reading a
950 repeat count. We have to store the characters in a buffer because
951 we could be reading an integer that is larger than the default int
952 used for repeat counts. */
953
954 static void
955 read_integer (st_parameter_dt *dtp, int length)
956 {
957 char message[MSGLEN];
958 int c, negative;
959
960 negative = 0;
961
962 c = next_char (dtp);
963 switch (c)
964 {
965 case '-':
966 negative = 1;
967 /* Fall through... */
968
969 case '+':
970 if ((c = next_char (dtp)) == EOF)
971 goto bad_integer;
972 goto get_integer;
973
974 case '!':
975 if (!dtp->u.p.namelist_mode)
976 goto bad_integer;
977
978 CASE_SEPARATORS: /* Single null. */
979 unget_char (dtp, c);
980 eat_separator (dtp);
981 return;
982
983 CASE_DIGITS:
984 push_char (dtp, c);
985 break;
986
987 default:
988 goto bad_integer;
989 }
990
991 /* Take care of what may be a repeat count. */
992
993 for (;;)
994 {
995 c = next_char (dtp);
996 switch (c)
997 {
998 CASE_DIGITS:
999 push_char (dtp, c);
1000 break;
1001
1002 case '*':
1003 push_char (dtp, '\0');
1004 goto repeat;
1005
1006 case '!':
1007 if (!dtp->u.p.namelist_mode)
1008 goto bad_integer;
1009
1010 CASE_SEPARATORS: /* Not a repeat count. */
1011 case EOF:
1012 goto done;
1013
1014 default:
1015 goto bad_integer;
1016 }
1017 }
1018
1019 repeat:
1020 if (convert_integer (dtp, -1, 0))
1021 return;
1022
1023 /* Get the real integer. */
1024
1025 if ((c = next_char (dtp)) == EOF)
1026 goto bad_integer;
1027 switch (c)
1028 {
1029 CASE_DIGITS:
1030 break;
1031
1032 case '!':
1033 if (!dtp->u.p.namelist_mode)
1034 goto bad_integer;
1035
1036 CASE_SEPARATORS:
1037 unget_char (dtp, c);
1038 eat_separator (dtp);
1039 return;
1040
1041 case '-':
1042 negative = 1;
1043 /* Fall through... */
1044
1045 case '+':
1046 c = next_char (dtp);
1047 break;
1048 }
1049
1050 get_integer:
1051 if (!isdigit (c))
1052 goto bad_integer;
1053 push_char (dtp, c);
1054
1055 for (;;)
1056 {
1057 c = next_char (dtp);
1058 switch (c)
1059 {
1060 CASE_DIGITS:
1061 push_char (dtp, c);
1062 break;
1063
1064 case '!':
1065 if (!dtp->u.p.namelist_mode)
1066 goto bad_integer;
1067
1068 CASE_SEPARATORS:
1069 case EOF:
1070 goto done;
1071
1072 default:
1073 goto bad_integer;
1074 }
1075 }
1076
1077 bad_integer:
1078
1079 if (nml_bad_return (dtp, c))
1080 return;
1081
1082 free_saved (dtp);
1083 if (c == EOF)
1084 {
1085 free_line (dtp);
1086 hit_eof (dtp);
1087 return;
1088 }
1089 else if (c != '\n')
1090 eat_line (dtp);
1091
1092 snprintf (message, MSGLEN, "Bad integer for item %d in list input",
1093 dtp->u.p.item_count);
1094 free_line (dtp);
1095 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1096
1097 return;
1098
1099 done:
1100 unget_char (dtp, c);
1101 eat_separator (dtp);
1102
1103 push_char (dtp, '\0');
1104 if (convert_integer (dtp, length, negative))
1105 {
1106 free_saved (dtp);
1107 return;
1108 }
1109
1110 free_saved (dtp);
1111 dtp->u.p.saved_type = BT_INTEGER;
1112 }
1113
1114
1115 /* Read a character variable. */
1116
1117 static void
1118 read_character (st_parameter_dt *dtp, int length __attribute__ ((unused)))
1119 {
1120 char quote, message[MSGLEN];
1121 int c;
1122
1123 quote = ' '; /* Space means no quote character. */
1124
1125 if ((c = next_char (dtp)) == EOF)
1126 goto eof;
1127 switch (c)
1128 {
1129 CASE_DIGITS:
1130 push_char (dtp, c);
1131 break;
1132
1133 CASE_SEPARATORS:
1134 case EOF:
1135 unget_char (dtp, c); /* NULL value. */
1136 eat_separator (dtp);
1137 return;
1138
1139 case '"':
1140 case '\'':
1141 quote = c;
1142 goto get_string;
1143
1144 default:
1145 if (dtp->u.p.namelist_mode)
1146 {
1147 unget_char (dtp, c);
1148 return;
1149 }
1150 push_char (dtp, c);
1151 goto get_string;
1152 }
1153
1154 /* Deal with a possible repeat count. */
1155
1156 for (;;)
1157 {
1158 c = next_char (dtp);
1159 switch (c)
1160 {
1161 CASE_DIGITS:
1162 push_char (dtp, c);
1163 break;
1164
1165 CASE_SEPARATORS:
1166 case EOF:
1167 unget_char (dtp, c);
1168 goto done; /* String was only digits! */
1169
1170 case '*':
1171 push_char (dtp, '\0');
1172 goto got_repeat;
1173
1174 default:
1175 push_char (dtp, c);
1176 goto get_string; /* Not a repeat count after all. */
1177 }
1178 }
1179
1180 got_repeat:
1181 if (convert_integer (dtp, -1, 0))
1182 return;
1183
1184 /* Now get the real string. */
1185
1186 if ((c = next_char (dtp)) == EOF)
1187 goto eof;
1188 switch (c)
1189 {
1190 CASE_SEPARATORS:
1191 unget_char (dtp, c); /* Repeated NULL values. */
1192 eat_separator (dtp);
1193 return;
1194
1195 case '"':
1196 case '\'':
1197 quote = c;
1198 break;
1199
1200 default:
1201 push_char (dtp, c);
1202 break;
1203 }
1204
1205 get_string:
1206
1207 for (;;)
1208 {
1209 if ((c = next_char (dtp)) == EOF)
1210 goto done_eof;
1211 switch (c)
1212 {
1213 case '"':
1214 case '\'':
1215 if (c != quote)
1216 {
1217 push_char (dtp, c);
1218 break;
1219 }
1220
1221 /* See if we have a doubled quote character or the end of
1222 the string. */
1223
1224 if ((c = next_char (dtp)) == EOF)
1225 goto done_eof;
1226 if (c == quote)
1227 {
1228 push_char (dtp, quote);
1229 break;
1230 }
1231
1232 unget_char (dtp, c);
1233 goto done;
1234
1235 CASE_SEPARATORS:
1236 if (quote == ' ')
1237 {
1238 unget_char (dtp, c);
1239 goto done;
1240 }
1241
1242 if (c != '\n' && c != '\r')
1243 push_char (dtp, c);
1244 break;
1245
1246 default:
1247 push_char (dtp, c);
1248 break;
1249 }
1250 }
1251
1252 /* At this point, we have to have a separator, or else the string is
1253 invalid. */
1254 done:
1255 c = next_char (dtp);
1256 done_eof:
1257 if (is_separator (c) || c == EOF)
1258 {
1259 unget_char (dtp, c);
1260 eat_separator (dtp);
1261 dtp->u.p.saved_type = BT_CHARACTER;
1262 }
1263 else
1264 {
1265 free_saved (dtp);
1266 snprintf (message, MSGLEN, "Invalid string input in item %d",
1267 dtp->u.p.item_count);
1268 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1269 }
1270 free_line (dtp);
1271 return;
1272
1273 eof:
1274 free_saved (dtp);
1275 free_line (dtp);
1276 hit_eof (dtp);
1277 }
1278
1279
1280 /* Parse a component of a complex constant or a real number that we
1281 are sure is already there. This is a straight real number parser. */
1282
1283 static int
1284 parse_real (st_parameter_dt *dtp, void *buffer, int length)
1285 {
1286 char message[MSGLEN];
1287 int c, m, seen_dp;
1288
1289 if ((c = next_char (dtp)) == EOF)
1290 goto bad;
1291
1292 if (c == '-' || c == '+')
1293 {
1294 push_char (dtp, c);
1295 if ((c = next_char (dtp)) == EOF)
1296 goto bad;
1297 }
1298
1299 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1300 c = '.';
1301
1302 if (!isdigit (c) && c != '.')
1303 {
1304 if (c == 'i' || c == 'I' || c == 'n' || c == 'N')
1305 goto inf_nan;
1306 else
1307 goto bad;
1308 }
1309
1310 push_char (dtp, c);
1311
1312 seen_dp = (c == '.') ? 1 : 0;
1313
1314 for (;;)
1315 {
1316 if ((c = next_char (dtp)) == EOF)
1317 goto bad;
1318 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1319 c = '.';
1320 switch (c)
1321 {
1322 CASE_DIGITS:
1323 push_char (dtp, c);
1324 break;
1325
1326 case '.':
1327 if (seen_dp)
1328 goto bad;
1329
1330 seen_dp = 1;
1331 push_char (dtp, c);
1332 break;
1333
1334 case 'e':
1335 case 'E':
1336 case 'd':
1337 case 'D':
1338 case 'q':
1339 case 'Q':
1340 push_char (dtp, 'e');
1341 goto exp1;
1342
1343 case '-':
1344 case '+':
1345 push_char (dtp, 'e');
1346 push_char (dtp, c);
1347 if ((c = next_char (dtp)) == EOF)
1348 goto bad;
1349 goto exp2;
1350
1351 case '!':
1352 if (!dtp->u.p.namelist_mode)
1353 goto bad;
1354
1355 CASE_SEPARATORS:
1356 case EOF:
1357 goto done;
1358
1359 default:
1360 goto done;
1361 }
1362 }
1363
1364 exp1:
1365 if ((c = next_char (dtp)) == EOF)
1366 goto bad;
1367 if (c != '-' && c != '+')
1368 push_char (dtp, '+');
1369 else
1370 {
1371 push_char (dtp, c);
1372 c = next_char (dtp);
1373 }
1374
1375 exp2:
1376 if (!isdigit (c))
1377 {
1378 /* Extension: allow default exponent of 0 when omitted. */
1379 if (dtp->common.flags & IOPARM_DT_DEFAULT_EXP)
1380 {
1381 push_char (dtp, '0');
1382 goto done;
1383 }
1384 else
1385 goto bad_exponent;
1386 }
1387
1388 push_char (dtp, c);
1389
1390 for (;;)
1391 {
1392 if ((c = next_char (dtp)) == EOF)
1393 goto bad;
1394 switch (c)
1395 {
1396 CASE_DIGITS:
1397 push_char (dtp, c);
1398 break;
1399
1400 case '!':
1401 if (!dtp->u.p.namelist_mode)
1402 goto bad;
1403
1404 CASE_SEPARATORS:
1405 case EOF:
1406 unget_char (dtp, c);
1407 goto done;
1408
1409 default:
1410 goto done;
1411 }
1412 }
1413
1414 done:
1415 unget_char (dtp, c);
1416 push_char (dtp, '\0');
1417
1418 m = convert_real (dtp, buffer, dtp->u.p.saved_string, length);
1419 free_saved (dtp);
1420
1421 return m;
1422
1423 done_infnan:
1424 unget_char (dtp, c);
1425 push_char (dtp, '\0');
1426
1427 m = convert_infnan (dtp, buffer, dtp->u.p.saved_string, length);
1428 free_saved (dtp);
1429
1430 return m;
1431
1432 inf_nan:
1433 /* Match INF and Infinity. */
1434 if ((c == 'i' || c == 'I')
1435 && ((c = next_char (dtp)) == 'n' || c == 'N')
1436 && ((c = next_char (dtp)) == 'f' || c == 'F'))
1437 {
1438 c = next_char (dtp);
1439 if ((c != 'i' && c != 'I')
1440 || ((c == 'i' || c == 'I')
1441 && ((c = next_char (dtp)) == 'n' || c == 'N')
1442 && ((c = next_char (dtp)) == 'i' || c == 'I')
1443 && ((c = next_char (dtp)) == 't' || c == 'T')
1444 && ((c = next_char (dtp)) == 'y' || c == 'Y')
1445 && (c = next_char (dtp))))
1446 {
1447 if (is_separator (c) || (c == EOF))
1448 unget_char (dtp, c);
1449 push_char (dtp, 'i');
1450 push_char (dtp, 'n');
1451 push_char (dtp, 'f');
1452 goto done_infnan;
1453 }
1454 } /* Match NaN. */
1455 else if (((c = next_char (dtp)) == 'a' || c == 'A')
1456 && ((c = next_char (dtp)) == 'n' || c == 'N')
1457 && (c = next_char (dtp)))
1458 {
1459 if (is_separator (c) || (c == EOF))
1460 unget_char (dtp, c);
1461 push_char (dtp, 'n');
1462 push_char (dtp, 'a');
1463 push_char (dtp, 'n');
1464
1465 /* Match "NAN(alphanum)". */
1466 if (c == '(')
1467 {
1468 for ( ; c != ')'; c = next_char (dtp))
1469 if (is_separator (c))
1470 goto bad;
1471
1472 c = next_char (dtp);
1473 if (is_separator (c) || (c == EOF))
1474 unget_char (dtp, c);
1475 }
1476 goto done_infnan;
1477 }
1478
1479 bad:
1480
1481 if (nml_bad_return (dtp, c))
1482 return 0;
1483
1484 bad_exponent:
1485
1486 free_saved (dtp);
1487 if (c == EOF)
1488 {
1489 free_line (dtp);
1490 hit_eof (dtp);
1491 return 1;
1492 }
1493 else if (c != '\n')
1494 eat_line (dtp);
1495
1496 snprintf (message, MSGLEN, "Bad complex floating point "
1497 "number for item %d", dtp->u.p.item_count);
1498 free_line (dtp);
1499 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1500
1501 return 1;
1502 }
1503
1504
1505 /* Reading a complex number is straightforward because we can tell
1506 what it is right away. */
1507
1508 static void
1509 read_complex (st_parameter_dt *dtp, void *dest, int kind, size_t size)
1510 {
1511 char message[MSGLEN];
1512 int c;
1513
1514 if (parse_repeat (dtp))
1515 return;
1516
1517 c = next_char (dtp);
1518 switch (c)
1519 {
1520 case '(':
1521 break;
1522
1523 case '!':
1524 if (!dtp->u.p.namelist_mode)
1525 goto bad_complex;
1526
1527 CASE_SEPARATORS:
1528 case EOF:
1529 unget_char (dtp, c);
1530 eat_separator (dtp);
1531 return;
1532
1533 default:
1534 goto bad_complex;
1535 }
1536
1537 eol_1:
1538 eat_spaces (dtp);
1539 c = next_char (dtp);
1540 if (c == '\n' || c== '\r')
1541 goto eol_1;
1542 else
1543 unget_char (dtp, c);
1544
1545 if (parse_real (dtp, dest, kind))
1546 return;
1547
1548 eol_2:
1549 eat_spaces (dtp);
1550 c = next_char (dtp);
1551 if (c == '\n' || c== '\r')
1552 goto eol_2;
1553 else
1554 unget_char (dtp, c);
1555
1556 if (next_char (dtp)
1557 != (dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';'))
1558 goto bad_complex;
1559
1560 eol_3:
1561 eat_spaces (dtp);
1562 c = next_char (dtp);
1563 if (c == '\n' || c== '\r')
1564 goto eol_3;
1565 else
1566 unget_char (dtp, c);
1567
1568 if (parse_real (dtp, dest + size / 2, kind))
1569 return;
1570
1571 eol_4:
1572 eat_spaces (dtp);
1573 c = next_char (dtp);
1574 if (c == '\n' || c== '\r')
1575 goto eol_4;
1576 else
1577 unget_char (dtp, c);
1578
1579 if (next_char (dtp) != ')')
1580 goto bad_complex;
1581
1582 c = next_char (dtp);
1583 if (!is_separator (c) && (c != EOF))
1584 goto bad_complex;
1585
1586 unget_char (dtp, c);
1587 eat_separator (dtp);
1588
1589 free_saved (dtp);
1590 dtp->u.p.saved_type = BT_COMPLEX;
1591 return;
1592
1593 bad_complex:
1594
1595 if (nml_bad_return (dtp, c))
1596 return;
1597
1598 free_saved (dtp);
1599 if (c == EOF)
1600 {
1601 free_line (dtp);
1602 hit_eof (dtp);
1603 return;
1604 }
1605 else if (c != '\n')
1606 eat_line (dtp);
1607
1608 snprintf (message, MSGLEN, "Bad complex value in item %d of list input",
1609 dtp->u.p.item_count);
1610 free_line (dtp);
1611 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
1612 }
1613
1614
1615 /* Parse a real number with a possible repeat count. */
1616
1617 static void
1618 read_real (st_parameter_dt *dtp, void *dest, int length)
1619 {
1620 char message[MSGLEN];
1621 int c;
1622 int seen_dp;
1623 int is_inf;
1624
1625 seen_dp = 0;
1626
1627 c = next_char (dtp);
1628 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1629 c = '.';
1630 switch (c)
1631 {
1632 CASE_DIGITS:
1633 push_char (dtp, c);
1634 break;
1635
1636 case '.':
1637 push_char (dtp, c);
1638 seen_dp = 1;
1639 break;
1640
1641 case '+':
1642 case '-':
1643 goto got_sign;
1644
1645 case '!':
1646 if (!dtp->u.p.namelist_mode)
1647 goto bad_real;
1648
1649 CASE_SEPARATORS:
1650 unget_char (dtp, c); /* Single null. */
1651 eat_separator (dtp);
1652 return;
1653
1654 case 'i':
1655 case 'I':
1656 case 'n':
1657 case 'N':
1658 goto inf_nan;
1659
1660 default:
1661 goto bad_real;
1662 }
1663
1664 /* Get the digit string that might be a repeat count. */
1665
1666 for (;;)
1667 {
1668 c = next_char (dtp);
1669 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1670 c = '.';
1671 switch (c)
1672 {
1673 CASE_DIGITS:
1674 push_char (dtp, c);
1675 break;
1676
1677 case '.':
1678 if (seen_dp)
1679 goto bad_real;
1680
1681 seen_dp = 1;
1682 push_char (dtp, c);
1683 goto real_loop;
1684
1685 case 'E':
1686 case 'e':
1687 case 'D':
1688 case 'd':
1689 case 'Q':
1690 case 'q':
1691 goto exp1;
1692
1693 case '+':
1694 case '-':
1695 push_char (dtp, 'e');
1696 push_char (dtp, c);
1697 c = next_char (dtp);
1698 goto exp2;
1699
1700 case '*':
1701 push_char (dtp, '\0');
1702 goto got_repeat;
1703
1704 case '!':
1705 if (!dtp->u.p.namelist_mode)
1706 goto bad_real;
1707
1708 CASE_SEPARATORS:
1709 case EOF:
1710 if (c != '\n' && c != ',' && c != '\r' && c != ';')
1711 unget_char (dtp, c);
1712 goto done;
1713
1714 default:
1715 goto bad_real;
1716 }
1717 }
1718
1719 got_repeat:
1720 if (convert_integer (dtp, -1, 0))
1721 return;
1722
1723 /* Now get the number itself. */
1724
1725 if ((c = next_char (dtp)) == EOF)
1726 goto bad_real;
1727 if (is_separator (c))
1728 { /* Repeated null value. */
1729 unget_char (dtp, c);
1730 eat_separator (dtp);
1731 return;
1732 }
1733
1734 if (c != '-' && c != '+')
1735 push_char (dtp, '+');
1736 else
1737 {
1738 got_sign:
1739 push_char (dtp, c);
1740 if ((c = next_char (dtp)) == EOF)
1741 goto bad_real;
1742 }
1743
1744 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1745 c = '.';
1746
1747 if (!isdigit (c) && c != '.')
1748 {
1749 if (c == 'i' || c == 'I' || c == 'n' || c == 'N')
1750 goto inf_nan;
1751 else
1752 goto bad_real;
1753 }
1754
1755 if (c == '.')
1756 {
1757 if (seen_dp)
1758 goto bad_real;
1759 else
1760 seen_dp = 1;
1761 }
1762
1763 push_char (dtp, c);
1764
1765 real_loop:
1766 for (;;)
1767 {
1768 c = next_char (dtp);
1769 if (c == ',' && dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA)
1770 c = '.';
1771 switch (c)
1772 {
1773 CASE_DIGITS:
1774 push_char (dtp, c);
1775 break;
1776
1777 case '!':
1778 if (!dtp->u.p.namelist_mode)
1779 goto bad_real;
1780
1781 CASE_SEPARATORS:
1782 case EOF:
1783 goto done;
1784
1785 case '.':
1786 if (seen_dp)
1787 goto bad_real;
1788
1789 seen_dp = 1;
1790 push_char (dtp, c);
1791 break;
1792
1793 case 'E':
1794 case 'e':
1795 case 'D':
1796 case 'd':
1797 case 'Q':
1798 case 'q':
1799 goto exp1;
1800
1801 case '+':
1802 case '-':
1803 push_char (dtp, 'e');
1804 push_char (dtp, c);
1805 c = next_char (dtp);
1806 goto exp2;
1807
1808 default:
1809 goto bad_real;
1810 }
1811 }
1812
1813 exp1:
1814 push_char (dtp, 'e');
1815
1816 if ((c = next_char (dtp)) == EOF)
1817 goto bad_real;
1818 if (c != '+' && c != '-')
1819 push_char (dtp, '+');
1820 else
1821 {
1822 push_char (dtp, c);
1823 c = next_char (dtp);
1824 }
1825
1826 exp2:
1827 if (!isdigit (c))
1828 {
1829 /* Extension: allow default exponent of 0 when omitted. */
1830 if (dtp->common.flags & IOPARM_DT_DEFAULT_EXP)
1831 {
1832 push_char (dtp, '0');
1833 goto done;
1834 }
1835 else
1836 goto bad_exponent;
1837 }
1838
1839 push_char (dtp, c);
1840
1841 for (;;)
1842 {
1843 c = next_char (dtp);
1844
1845 switch (c)
1846 {
1847 CASE_DIGITS:
1848 push_char (dtp, c);
1849 break;
1850
1851 case '!':
1852 if (!dtp->u.p.namelist_mode)
1853 goto bad_real;
1854
1855 CASE_SEPARATORS:
1856 case EOF:
1857 goto done;
1858
1859 default:
1860 goto bad_real;
1861 }
1862 }
1863
1864 done:
1865 unget_char (dtp, c);
1866 eat_separator (dtp);
1867 push_char (dtp, '\0');
1868 if (convert_real (dtp, dest, dtp->u.p.saved_string, length))
1869 {
1870 free_saved (dtp);
1871 return;
1872 }
1873
1874 free_saved (dtp);
1875 dtp->u.p.saved_type = BT_REAL;
1876 return;
1877
1878 inf_nan:
1879 l_push_char (dtp, c);
1880 is_inf = 0;
1881
1882 /* Match INF and Infinity. */
1883 if (c == 'i' || c == 'I')
1884 {
1885 c = next_char (dtp);
1886 l_push_char (dtp, c);
1887 if (c != 'n' && c != 'N')
1888 goto unwind;
1889 c = next_char (dtp);
1890 l_push_char (dtp, c);
1891 if (c != 'f' && c != 'F')
1892 goto unwind;
1893 c = next_char (dtp);
1894 l_push_char (dtp, c);
1895 if (!is_separator (c) && (c != EOF))
1896 {
1897 if (c != 'i' && c != 'I')
1898 goto unwind;
1899 c = next_char (dtp);
1900 l_push_char (dtp, c);
1901 if (c != 'n' && c != 'N')
1902 goto unwind;
1903 c = next_char (dtp);
1904 l_push_char (dtp, c);
1905 if (c != 'i' && c != 'I')
1906 goto unwind;
1907 c = next_char (dtp);
1908 l_push_char (dtp, c);
1909 if (c != 't' && c != 'T')
1910 goto unwind;
1911 c = next_char (dtp);
1912 l_push_char (dtp, c);
1913 if (c != 'y' && c != 'Y')
1914 goto unwind;
1915 c = next_char (dtp);
1916 l_push_char (dtp, c);
1917 }
1918 is_inf = 1;
1919 } /* Match NaN. */
1920 else
1921 {
1922 c = next_char (dtp);
1923 l_push_char (dtp, c);
1924 if (c != 'a' && c != 'A')
1925 goto unwind;
1926 c = next_char (dtp);
1927 l_push_char (dtp, c);
1928 if (c != 'n' && c != 'N')
1929 goto unwind;
1930 c = next_char (dtp);
1931 l_push_char (dtp, c);
1932
1933 /* Match NAN(alphanum). */
1934 if (c == '(')
1935 {
1936 for (c = next_char (dtp); c != ')'; c = next_char (dtp))
1937 if (is_separator (c))
1938 goto unwind;
1939 else
1940 l_push_char (dtp, c);
1941
1942 l_push_char (dtp, ')');
1943 c = next_char (dtp);
1944 l_push_char (dtp, c);
1945 }
1946 }
1947
1948 if (!is_separator (c) && (c != EOF))
1949 goto unwind;
1950
1951 if (dtp->u.p.namelist_mode)
1952 {
1953 if (c == ' ' || c =='\n' || c == '\r')
1954 {
1955 do
1956 {
1957 if ((c = next_char (dtp)) == EOF)
1958 goto bad_real;
1959 }
1960 while (c == ' ' || c =='\n' || c == '\r');
1961
1962 l_push_char (dtp, c);
1963
1964 if (c == '=')
1965 goto unwind;
1966 }
1967 }
1968
1969 if (is_inf)
1970 {
1971 push_char (dtp, 'i');
1972 push_char (dtp, 'n');
1973 push_char (dtp, 'f');
1974 }
1975 else
1976 {
1977 push_char (dtp, 'n');
1978 push_char (dtp, 'a');
1979 push_char (dtp, 'n');
1980 }
1981
1982 free_line (dtp);
1983 unget_char (dtp, c);
1984 eat_separator (dtp);
1985 push_char (dtp, '\0');
1986 if (convert_infnan (dtp, dest, dtp->u.p.saved_string, length))
1987 return;
1988
1989 free_saved (dtp);
1990 dtp->u.p.saved_type = BT_REAL;
1991 return;
1992
1993 unwind:
1994 if (dtp->u.p.namelist_mode)
1995 {
1996 dtp->u.p.nml_read_error = 1;
1997 dtp->u.p.line_buffer_enabled = 1;
1998 dtp->u.p.line_buffer_pos = 0;
1999 return;
2000 }
2001
2002 bad_real:
2003
2004 if (nml_bad_return (dtp, c))
2005 return;
2006
2007 bad_exponent:
2008
2009 free_saved (dtp);
2010 if (c == EOF)
2011 {
2012 free_line (dtp);
2013 hit_eof (dtp);
2014 return;
2015 }
2016 else if (c != '\n')
2017 eat_line (dtp);
2018
2019 snprintf (message, MSGLEN, "Bad real number in item %d of list input",
2020 dtp->u.p.item_count);
2021 free_line (dtp);
2022 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
2023 }
2024
2025
2026 /* Check the current type against the saved type to make sure they are
2027 compatible. Returns nonzero if incompatible. */
2028
2029 static int
2030 check_type (st_parameter_dt *dtp, bt type, int kind)
2031 {
2032 char message[MSGLEN];
2033
2034 if (dtp->u.p.saved_type != BT_UNKNOWN && dtp->u.p.saved_type != type)
2035 {
2036 snprintf (message, MSGLEN, "Read type %s where %s was expected for item %d",
2037 type_name (dtp->u.p.saved_type), type_name (type),
2038 dtp->u.p.item_count);
2039 free_line (dtp);
2040 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
2041 return 1;
2042 }
2043
2044 if (dtp->u.p.saved_type == BT_UNKNOWN || dtp->u.p.saved_type == BT_CHARACTER)
2045 return 0;
2046
2047 if ((type != BT_COMPLEX && dtp->u.p.saved_length != kind)
2048 || (type == BT_COMPLEX && dtp->u.p.saved_length != kind*2))
2049 {
2050 snprintf (message, MSGLEN,
2051 "Read kind %d %s where kind %d is required for item %d",
2052 type == BT_COMPLEX ? dtp->u.p.saved_length / 2
2053 : dtp->u.p.saved_length,
2054 type_name (dtp->u.p.saved_type), kind,
2055 dtp->u.p.item_count);
2056 free_line (dtp);
2057 generate_error (&dtp->common, LIBERROR_READ_VALUE, message);
2058 return 1;
2059 }
2060
2061 return 0;
2062 }
2063
2064
2065 /* Initialize the function pointers to select the correct versions of
2066 next_char and push_char depending on what we are doing. */
2067
2068 static void
2069 set_workers (st_parameter_dt *dtp)
2070 {
2071 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
2072 {
2073 dtp->u.p.current_unit->next_char_fn_ptr = &next_char_utf8;
2074 dtp->u.p.current_unit->push_char_fn_ptr = &push_char4;
2075 }
2076 else if (is_internal_unit (dtp))
2077 {
2078 dtp->u.p.current_unit->next_char_fn_ptr = &next_char_internal;
2079 dtp->u.p.current_unit->push_char_fn_ptr = &push_char_default;
2080 }
2081 else
2082 {
2083 dtp->u.p.current_unit->next_char_fn_ptr = &next_char_default;
2084 dtp->u.p.current_unit->push_char_fn_ptr = &push_char_default;
2085 }
2086
2087 }
2088
2089 /* Top level data transfer subroutine for list reads. Because we have
2090 to deal with repeat counts, the data item is always saved after
2091 reading, usually in the dtp->u.p.value[] array. If a repeat count is
2092 greater than one, we copy the data item multiple times. */
2093
2094 static int
2095 list_formatted_read_scalar (st_parameter_dt *dtp, bt type, void *p,
2096 int kind, size_t size)
2097 {
2098 gfc_char4_t *q, *r;
2099 int c, i, m;
2100 int err = 0;
2101
2102 dtp->u.p.namelist_mode = 0;
2103
2104 /* Set the next_char and push_char worker functions. */
2105 set_workers (dtp);
2106
2107 if (dtp->u.p.first_item)
2108 {
2109 dtp->u.p.first_item = 0;
2110 dtp->u.p.input_complete = 0;
2111 dtp->u.p.repeat_count = 1;
2112 dtp->u.p.at_eol = 0;
2113
2114 if ((c = eat_spaces (dtp)) == EOF)
2115 {
2116 err = LIBERROR_END;
2117 goto cleanup;
2118 }
2119 if (is_separator (c))
2120 {
2121 /* Found a null value. */
2122 dtp->u.p.repeat_count = 0;
2123 eat_separator (dtp);
2124
2125 /* Set end-of-line flag. */
2126 if (c == '\n' || c == '\r')
2127 {
2128 dtp->u.p.at_eol = 1;
2129 if (finish_separator (dtp) == LIBERROR_END)
2130 {
2131 err = LIBERROR_END;
2132 goto cleanup;
2133 }
2134 }
2135 else
2136 goto cleanup;
2137 }
2138 }
2139 else
2140 {
2141 if (dtp->u.p.repeat_count > 0)
2142 {
2143 if (check_type (dtp, type, kind))
2144 return err;
2145 goto set_value;
2146 }
2147
2148 if (dtp->u.p.input_complete)
2149 goto cleanup;
2150
2151 if (dtp->u.p.at_eol)
2152 finish_separator (dtp);
2153 else
2154 {
2155 eat_spaces (dtp);
2156 /* Trailing spaces prior to end of line. */
2157 if (dtp->u.p.at_eol)
2158 finish_separator (dtp);
2159 }
2160
2161 dtp->u.p.saved_type = BT_UNKNOWN;
2162 dtp->u.p.repeat_count = 1;
2163 }
2164
2165 switch (type)
2166 {
2167 case BT_INTEGER:
2168 read_integer (dtp, kind);
2169 break;
2170 case BT_LOGICAL:
2171 read_logical (dtp, kind);
2172 break;
2173 case BT_CHARACTER:
2174 read_character (dtp, kind);
2175 break;
2176 case BT_REAL:
2177 read_real (dtp, p, kind);
2178 /* Copy value back to temporary if needed. */
2179 if (dtp->u.p.repeat_count > 0)
2180 memcpy (dtp->u.p.value, p, size);
2181 break;
2182 case BT_COMPLEX:
2183 read_complex (dtp, p, kind, size);
2184 /* Copy value back to temporary if needed. */
2185 if (dtp->u.p.repeat_count > 0)
2186 memcpy (dtp->u.p.value, p, size);
2187 break;
2188 case BT_CLASS:
2189 {
2190 int unit = dtp->u.p.current_unit->unit_number;
2191 char iotype[] = "LISTDIRECTED";
2192 gfc_charlen_type iotype_len = 12;
2193 char tmp_iomsg[IOMSG_LEN] = "";
2194 char *child_iomsg;
2195 gfc_charlen_type child_iomsg_len;
2196 int noiostat;
2197 int *child_iostat = NULL;
2198 gfc_array_i4 vlist;
2199
2200 GFC_DESCRIPTOR_DATA(&vlist) = NULL;
2201 GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0);
2202
2203 /* Set iostat, intent(out). */
2204 noiostat = 0;
2205 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
2206 dtp->common.iostat : &noiostat;
2207
2208 /* Set iomsge, intent(inout). */
2209 if (dtp->common.flags & IOPARM_HAS_IOMSG)
2210 {
2211 child_iomsg = dtp->common.iomsg;
2212 child_iomsg_len = dtp->common.iomsg_len;
2213 }
2214 else
2215 {
2216 child_iomsg = tmp_iomsg;
2217 child_iomsg_len = IOMSG_LEN;
2218 }
2219
2220 /* Call the user defined formatted READ procedure. */
2221 dtp->u.p.current_unit->child_dtio++;
2222 dtp->u.p.fdtio_ptr (p, &unit, iotype, &vlist,
2223 child_iostat, child_iomsg,
2224 iotype_len, child_iomsg_len);
2225 dtp->u.p.child_saved_iostat = *child_iostat;
2226 dtp->u.p.current_unit->child_dtio--;
2227 }
2228 break;
2229 default:
2230 internal_error (&dtp->common, "Bad type for list read");
2231 }
2232
2233 if (dtp->u.p.saved_type != BT_CHARACTER && dtp->u.p.saved_type != BT_UNKNOWN)
2234 dtp->u.p.saved_length = size;
2235
2236 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2237 goto cleanup;
2238
2239 set_value:
2240 switch (dtp->u.p.saved_type)
2241 {
2242 case BT_COMPLEX:
2243 case BT_REAL:
2244 if (dtp->u.p.repeat_count > 0)
2245 memcpy (p, dtp->u.p.value, size);
2246 break;
2247
2248 case BT_INTEGER:
2249 case BT_LOGICAL:
2250 memcpy (p, dtp->u.p.value, size);
2251 break;
2252
2253 case BT_CHARACTER:
2254 if (dtp->u.p.saved_string)
2255 {
2256 m = ((int) size < dtp->u.p.saved_used)
2257 ? (int) size : dtp->u.p.saved_used;
2258
2259 q = (gfc_char4_t *) p;
2260 r = (gfc_char4_t *) dtp->u.p.saved_string;
2261 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
2262 for (i = 0; i < m; i++)
2263 *q++ = *r++;
2264 else
2265 {
2266 if (kind == 1)
2267 memcpy (p, dtp->u.p.saved_string, m);
2268 else
2269 for (i = 0; i < m; i++)
2270 *q++ = *r++;
2271 }
2272 }
2273 else
2274 /* Just delimiters encountered, nothing to copy but SPACE. */
2275 m = 0;
2276
2277 if (m < (int) size)
2278 {
2279 if (kind == 1)
2280 memset (((char *) p) + m, ' ', size - m);
2281 else
2282 {
2283 q = (gfc_char4_t *) p;
2284 for (i = m; i < (int) size; i++)
2285 q[i] = (unsigned char) ' ';
2286 }
2287 }
2288 break;
2289
2290 case BT_UNKNOWN:
2291 break;
2292
2293 default:
2294 internal_error (&dtp->common, "Bad type for list read");
2295 }
2296
2297 if (--dtp->u.p.repeat_count <= 0)
2298 free_saved (dtp);
2299
2300 cleanup:
2301 /* err may have been set above from finish_separator, so if it is set
2302 trigger the hit_eof. The hit_eof will set bits in common.flags. */
2303 if (err == LIBERROR_END)
2304 {
2305 free_line (dtp);
2306 hit_eof (dtp);
2307 }
2308 /* Now we check common.flags for any errors that could have occurred in
2309 a READ elsewhere such as in read_integer. */
2310 err = dtp->common.flags & IOPARM_LIBRETURN_MASK;
2311 fbuf_flush_list (dtp->u.p.current_unit, LIST_READING);
2312 return err;
2313 }
2314
2315
2316 void
2317 list_formatted_read (st_parameter_dt *dtp, bt type, void *p, int kind,
2318 size_t size, size_t nelems)
2319 {
2320 size_t elem;
2321 char *tmp;
2322 size_t stride = type == BT_CHARACTER ?
2323 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
2324 int err;
2325
2326 tmp = (char *) p;
2327
2328 /* Big loop over all the elements. */
2329 for (elem = 0; elem < nelems; elem++)
2330 {
2331 dtp->u.p.item_count++;
2332 err = list_formatted_read_scalar (dtp, type, tmp + stride*elem,
2333 kind, size);
2334 if (err)
2335 break;
2336 }
2337 }
2338
2339
2340 /* Finish a list read. */
2341
2342 void
2343 finish_list_read (st_parameter_dt *dtp)
2344 {
2345 free_saved (dtp);
2346
2347 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
2348
2349 if (dtp->u.p.at_eol)
2350 {
2351 dtp->u.p.at_eol = 0;
2352 return;
2353 }
2354
2355 if (!is_internal_unit (dtp))
2356 {
2357 int c;
2358
2359 /* Set the next_char and push_char worker functions. */
2360 set_workers (dtp);
2361
2362 if (likely (dtp->u.p.child_saved_iostat == LIBERROR_OK))
2363 {
2364 c = next_char (dtp);
2365 if (c == EOF)
2366 {
2367 free_line (dtp);
2368 hit_eof (dtp);
2369 return;
2370 }
2371 if (c != '\n')
2372 eat_line (dtp);
2373 }
2374 }
2375
2376 free_line (dtp);
2377
2378 }
2379
2380 /* NAMELIST INPUT
2381
2382 void namelist_read (st_parameter_dt *dtp)
2383 calls:
2384 static void nml_match_name (char *name, int len)
2385 static int nml_query (st_parameter_dt *dtp)
2386 static int nml_get_obj_data (st_parameter_dt *dtp,
2387 namelist_info **prev_nl, char *, size_t)
2388 calls:
2389 static void nml_untouch_nodes (st_parameter_dt *dtp)
2390 static namelist_info *find_nml_node (st_parameter_dt *dtp,
2391 char *var_name)
2392 static int nml_parse_qualifier(descriptor_dimension *ad,
2393 array_loop_spec *ls, int rank, char *)
2394 static void nml_touch_nodes (namelist_info *nl)
2395 static int nml_read_obj (namelist_info *nl, index_type offset,
2396 namelist_info **prev_nl, char *, size_t,
2397 index_type clow, index_type chigh)
2398 calls:
2399 -itself- */
2400
2401 /* Inputs a rank-dimensional qualifier, which can contain
2402 singlets, doublets, triplets or ':' with the standard meanings. */
2403
2404 static bool
2405 nml_parse_qualifier (st_parameter_dt *dtp, descriptor_dimension *ad,
2406 array_loop_spec *ls, int rank, bt nml_elem_type,
2407 char *parse_err_msg, size_t parse_err_msg_size,
2408 int *parsed_rank)
2409 {
2410 int dim;
2411 int indx;
2412 int neg;
2413 int null_flag;
2414 int is_array_section, is_char;
2415 int c;
2416
2417 is_char = 0;
2418 is_array_section = 0;
2419 dtp->u.p.expanded_read = 0;
2420
2421 /* See if this is a character substring qualifier we are looking for. */
2422 if (rank == -1)
2423 {
2424 rank = 1;
2425 is_char = 1;
2426 }
2427
2428 /* The next character in the stream should be the '('. */
2429
2430 if ((c = next_char (dtp)) == EOF)
2431 goto err_ret;
2432
2433 /* Process the qualifier, by dimension and triplet. */
2434
2435 for (dim=0; dim < rank; dim++ )
2436 {
2437 for (indx=0; indx<3; indx++)
2438 {
2439 free_saved (dtp);
2440 eat_spaces (dtp);
2441 neg = 0;
2442
2443 /* Process a potential sign. */
2444 if ((c = next_char (dtp)) == EOF)
2445 goto err_ret;
2446 switch (c)
2447 {
2448 case '-':
2449 neg = 1;
2450 break;
2451
2452 case '+':
2453 break;
2454
2455 default:
2456 unget_char (dtp, c);
2457 break;
2458 }
2459
2460 /* Process characters up to the next ':' , ',' or ')'. */
2461 for (;;)
2462 {
2463 c = next_char (dtp);
2464 switch (c)
2465 {
2466 case EOF:
2467 goto err_ret;
2468
2469 case ':':
2470 is_array_section = 1;
2471 break;
2472
2473 case ',': case ')':
2474 if ((c==',' && dim == rank -1)
2475 || (c==')' && dim < rank -1))
2476 {
2477 if (is_char)
2478 snprintf (parse_err_msg, parse_err_msg_size,
2479 "Bad substring qualifier");
2480 else
2481 snprintf (parse_err_msg, parse_err_msg_size,
2482 "Bad number of index fields");
2483 goto err_ret;
2484 }
2485 break;
2486
2487 CASE_DIGITS:
2488 push_char (dtp, c);
2489 continue;
2490
2491 case ' ': case '\t': case '\r': case '\n':
2492 eat_spaces (dtp);
2493 break;
2494
2495 default:
2496 if (is_char)
2497 snprintf (parse_err_msg, parse_err_msg_size,
2498 "Bad character in substring qualifier");
2499 else
2500 snprintf (parse_err_msg, parse_err_msg_size,
2501 "Bad character in index");
2502 goto err_ret;
2503 }
2504
2505 if ((c == ',' || c == ')') && indx == 0
2506 && dtp->u.p.saved_string == 0)
2507 {
2508 if (is_char)
2509 snprintf (parse_err_msg, parse_err_msg_size,
2510 "Null substring qualifier");
2511 else
2512 snprintf (parse_err_msg, parse_err_msg_size,
2513 "Null index field");
2514 goto err_ret;
2515 }
2516
2517 if ((c == ':' && indx == 1 && dtp->u.p.saved_string == 0)
2518 || (indx == 2 && dtp->u.p.saved_string == 0))
2519 {
2520 if (is_char)
2521 snprintf (parse_err_msg, parse_err_msg_size,
2522 "Bad substring qualifier");
2523 else
2524 snprintf (parse_err_msg, parse_err_msg_size,
2525 "Bad index triplet");
2526 goto err_ret;
2527 }
2528
2529 if (is_char && !is_array_section)
2530 {
2531 snprintf (parse_err_msg, parse_err_msg_size,
2532 "Missing colon in substring qualifier");
2533 goto err_ret;
2534 }
2535
2536 /* If '( : ? )' or '( ? : )' break and flag read failure. */
2537 null_flag = 0;
2538 if ((c == ':' && indx == 0 && dtp->u.p.saved_string == 0)
2539 || (indx==1 && dtp->u.p.saved_string == 0))
2540 {
2541 null_flag = 1;
2542 break;
2543 }
2544
2545 /* Now read the index. */
2546 if (convert_integer (dtp, sizeof(index_type), neg))
2547 {
2548 if (is_char)
2549 snprintf (parse_err_msg, parse_err_msg_size,
2550 "Bad integer substring qualifier");
2551 else
2552 snprintf (parse_err_msg, parse_err_msg_size,
2553 "Bad integer in index");
2554 goto err_ret;
2555 }
2556 break;
2557 }
2558
2559 /* Feed the index values to the triplet arrays. */
2560 if (!null_flag)
2561 {
2562 if (indx == 0)
2563 memcpy (&ls[dim].start, dtp->u.p.value, sizeof(index_type));
2564 if (indx == 1)
2565 memcpy (&ls[dim].end, dtp->u.p.value, sizeof(index_type));
2566 if (indx == 2)
2567 memcpy (&ls[dim].step, dtp->u.p.value, sizeof(index_type));
2568 }
2569
2570 /* Singlet or doublet indices. */
2571 if (c==',' || c==')')
2572 {
2573 if (indx == 0)
2574 {
2575 memcpy (&ls[dim].start, dtp->u.p.value, sizeof(index_type));
2576
2577 /* If -std=f95/2003 or an array section is specified,
2578 do not allow excess data to be processed. */
2579 if (is_array_section == 1
2580 || !(compile_options.allow_std & GFC_STD_GNU)
2581 || nml_elem_type == BT_DERIVED)
2582 ls[dim].end = ls[dim].start;
2583 else
2584 dtp->u.p.expanded_read = 1;
2585 }
2586
2587 /* Check for non-zero rank. */
2588 if (is_array_section == 1 && ls[dim].start != ls[dim].end)
2589 *parsed_rank = 1;
2590
2591 break;
2592 }
2593 }
2594
2595 if (is_array_section == 1 && dtp->u.p.expanded_read == 1)
2596 {
2597 int i;
2598 dtp->u.p.expanded_read = 0;
2599 for (i = 0; i < dim; i++)
2600 ls[i].end = ls[i].start;
2601 }
2602
2603 /* Check the values of the triplet indices. */
2604 if ((ls[dim].start > GFC_DIMENSION_UBOUND(ad[dim]))
2605 || (ls[dim].start < GFC_DIMENSION_LBOUND(ad[dim]))
2606 || (ls[dim].end > GFC_DIMENSION_UBOUND(ad[dim]))
2607 || (ls[dim].end < GFC_DIMENSION_LBOUND(ad[dim])))
2608 {
2609 if (is_char)
2610 snprintf (parse_err_msg, parse_err_msg_size,
2611 "Substring out of range");
2612 else
2613 snprintf (parse_err_msg, parse_err_msg_size,
2614 "Index %d out of range", dim + 1);
2615 goto err_ret;
2616 }
2617
2618 if (((ls[dim].end - ls[dim].start ) * ls[dim].step < 0)
2619 || (ls[dim].step == 0))
2620 {
2621 snprintf (parse_err_msg, parse_err_msg_size,
2622 "Bad range in index %d", dim + 1);
2623 goto err_ret;
2624 }
2625
2626 /* Initialise the loop index counter. */
2627 ls[dim].idx = ls[dim].start;
2628 }
2629 eat_spaces (dtp);
2630 return true;
2631
2632 err_ret:
2633
2634 /* The EOF error message is issued by hit_eof. Return true so that the
2635 caller does not use parse_err_msg and parse_err_msg_size to generate
2636 an unrelated error message. */
2637 if (c == EOF)
2638 {
2639 hit_eof (dtp);
2640 dtp->u.p.input_complete = 1;
2641 return true;
2642 }
2643 return false;
2644 }
2645
2646
2647 static bool
2648 extended_look_ahead (char *p, char *q)
2649 {
2650 char *r, *s;
2651
2652 /* Scan ahead to find a '%' in the p string. */
2653 for(r = p, s = q; *r && *s; s++)
2654 if ((*s == '%' || *s == '+') && strcmp (r + 1, s + 1) == 0)
2655 return true;
2656 return false;
2657 }
2658
2659
2660 static bool
2661 strcmp_extended_type (char *p, char *q)
2662 {
2663 char *r, *s;
2664
2665 for (r = p, s = q; *r && *s; r++, s++)
2666 {
2667 if (*r != *s)
2668 {
2669 if (*r == '%' && *s == '+' && extended_look_ahead (r, s))
2670 return true;
2671 break;
2672 }
2673 }
2674 return false;
2675 }
2676
2677
2678 static namelist_info *
2679 find_nml_node (st_parameter_dt *dtp, char *var_name)
2680 {
2681 namelist_info *t = dtp->u.p.ionml;
2682 while (t != NULL)
2683 {
2684 if (strcmp (var_name, t->var_name) == 0)
2685 {
2686 t->touched = 1;
2687 return t;
2688 }
2689 if (strcmp_extended_type (var_name, t->var_name))
2690 {
2691 t->touched = 1;
2692 return t;
2693 }
2694 t = t->next;
2695 }
2696 return NULL;
2697 }
2698
2699 /* Visits all the components of a derived type that have
2700 not explicitly been identified in the namelist input.
2701 touched is set and the loop specification initialised
2702 to default values */
2703
2704 static void
2705 nml_touch_nodes (namelist_info *nl)
2706 {
2707 index_type len = strlen (nl->var_name) + 1;
2708 int dim;
2709 char *ext_name = xmalloc (len + 1);
2710 memcpy (ext_name, nl->var_name, len-1);
2711 memcpy (ext_name + len - 1, "%", 2);
2712 for (nl = nl->next; nl; nl = nl->next)
2713 {
2714 if (strncmp (nl->var_name, ext_name, len) == 0)
2715 {
2716 nl->touched = 1;
2717 for (dim=0; dim < nl->var_rank; dim++)
2718 {
2719 nl->ls[dim].step = 1;
2720 nl->ls[dim].end = GFC_DESCRIPTOR_UBOUND(nl,dim);
2721 nl->ls[dim].start = GFC_DESCRIPTOR_LBOUND(nl,dim);
2722 nl->ls[dim].idx = nl->ls[dim].start;
2723 }
2724 }
2725 else
2726 break;
2727 }
2728 free (ext_name);
2729 return;
2730 }
2731
2732 /* Resets touched for the entire list of nml_nodes, ready for a
2733 new object. */
2734
2735 static void
2736 nml_untouch_nodes (st_parameter_dt *dtp)
2737 {
2738 namelist_info *t;
2739 for (t = dtp->u.p.ionml; t; t = t->next)
2740 t->touched = 0;
2741 return;
2742 }
2743
2744 /* Attempts to input name to namelist name. Returns
2745 dtp->u.p.nml_read_error = 1 on no match. */
2746
2747 static void
2748 nml_match_name (st_parameter_dt *dtp, const char *name, index_type len)
2749 {
2750 index_type i;
2751 int c;
2752
2753 dtp->u.p.nml_read_error = 0;
2754 for (i = 0; i < len; i++)
2755 {
2756 c = next_char (dtp);
2757 if (c == EOF || (tolower (c) != tolower (name[i])))
2758 {
2759 dtp->u.p.nml_read_error = 1;
2760 break;
2761 }
2762 }
2763 }
2764
2765 /* If the namelist read is from stdin, output the current state of the
2766 namelist to stdout. This is used to implement the non-standard query
2767 features, ? and =?. If c == '=' the full namelist is printed. Otherwise
2768 the names alone are printed. */
2769
2770 static void
2771 nml_query (st_parameter_dt *dtp, char c)
2772 {
2773 gfc_unit *temp_unit;
2774 namelist_info *nl;
2775 index_type len;
2776 char *p;
2777 #ifdef HAVE_CRLF
2778 static const index_type endlen = 2;
2779 static const char endl[] = "\r\n";
2780 static const char nmlend[] = "&end\r\n";
2781 #else
2782 static const index_type endlen = 1;
2783 static const char endl[] = "\n";
2784 static const char nmlend[] = "&end\n";
2785 #endif
2786
2787 if (dtp->u.p.current_unit->unit_number != options.stdin_unit)
2788 return;
2789
2790 /* Store the current unit and transfer to stdout. */
2791
2792 temp_unit = dtp->u.p.current_unit;
2793 dtp->u.p.current_unit = find_unit (options.stdout_unit);
2794
2795 if (dtp->u.p.current_unit)
2796 {
2797 dtp->u.p.mode = WRITING;
2798 next_record (dtp, 0);
2799
2800 /* Write the namelist in its entirety. */
2801
2802 if (c == '=')
2803 namelist_write (dtp);
2804
2805 /* Or write the list of names. */
2806
2807 else
2808 {
2809 /* "&namelist_name\n" */
2810
2811 len = dtp->namelist_name_len;
2812 p = write_block (dtp, len - 1 + endlen);
2813 if (!p)
2814 goto query_return;
2815 memcpy (p, "&", 1);
2816 memcpy ((char*)(p + 1), dtp->namelist_name, len);
2817 memcpy ((char*)(p + len + 1), &endl, endlen);
2818 for (nl = dtp->u.p.ionml; nl; nl = nl->next)
2819 {
2820 /* " var_name\n" */
2821
2822 len = strlen (nl->var_name);
2823 p = write_block (dtp, len + endlen);
2824 if (!p)
2825 goto query_return;
2826 memcpy (p, " ", 1);
2827 memcpy ((char*)(p + 1), nl->var_name, len);
2828 memcpy ((char*)(p + len + 1), &endl, endlen);
2829 }
2830
2831 /* "&end\n" */
2832
2833 p = write_block (dtp, endlen + 4);
2834 if (!p)
2835 goto query_return;
2836 memcpy (p, &nmlend, endlen + 4);
2837 }
2838
2839 /* Flush the stream to force immediate output. */
2840
2841 fbuf_flush (dtp->u.p.current_unit, WRITING);
2842 sflush (dtp->u.p.current_unit->s);
2843 unlock_unit (dtp->u.p.current_unit);
2844 }
2845
2846 query_return:
2847
2848 /* Restore the current unit. */
2849
2850 dtp->u.p.current_unit = temp_unit;
2851 dtp->u.p.mode = READING;
2852 return;
2853 }
2854
2855 /* Reads and stores the input for the namelist object nl. For an array,
2856 the function loops over the ranges defined by the loop specification.
2857 This default to all the data or to the specification from a qualifier.
2858 nml_read_obj recursively calls itself to read derived types. It visits
2859 all its own components but only reads data for those that were touched
2860 when the name was parsed. If a read error is encountered, an attempt is
2861 made to return to read a new object name because the standard allows too
2862 little data to be available. On the other hand, too much data is an
2863 error. */
2864
2865 static bool
2866 nml_read_obj (st_parameter_dt *dtp, namelist_info *nl, index_type offset,
2867 namelist_info **pprev_nl, char *nml_err_msg,
2868 size_t nml_err_msg_size, index_type clow, index_type chigh)
2869 {
2870 namelist_info *cmp;
2871 char *obj_name;
2872 int nml_carry;
2873 int len;
2874 int dim;
2875 index_type dlen;
2876 index_type m;
2877 size_t obj_name_len;
2878 void *pdata;
2879 gfc_class list_obj;
2880
2881 /* If we have encountered a previous read error or this object has not been
2882 touched in name parsing, just return. */
2883 if (dtp->u.p.nml_read_error || !nl->touched)
2884 return true;
2885
2886 dtp->u.p.item_count++; /* Used in error messages. */
2887 dtp->u.p.repeat_count = 0;
2888 eat_spaces (dtp);
2889
2890 len = nl->len;
2891 switch (nl->type)
2892 {
2893 case BT_INTEGER:
2894 case BT_LOGICAL:
2895 dlen = len;
2896 break;
2897
2898 case BT_REAL:
2899 dlen = size_from_real_kind (len);
2900 break;
2901
2902 case BT_COMPLEX:
2903 dlen = size_from_complex_kind (len);
2904 break;
2905
2906 case BT_CHARACTER:
2907 dlen = chigh ? (chigh - clow + 1) : nl->string_length;
2908 break;
2909
2910 default:
2911 dlen = 0;
2912 }
2913
2914 do
2915 {
2916 /* Update the pointer to the data, using the current index vector */
2917
2918 if ((nl->type == BT_DERIVED || nl->type == BT_CLASS)
2919 && nl->dtio_sub != NULL)
2920 {
2921 pdata = NULL; /* Not used under these conidtions. */
2922 if (nl->type == BT_CLASS)
2923 list_obj.data = ((gfc_class*)nl->mem_pos)->data;
2924 else
2925 list_obj.data = (void *)nl->mem_pos;
2926
2927 for (dim = 0; dim < nl->var_rank; dim++)
2928 list_obj.data = list_obj.data + (nl->ls[dim].idx
2929 - GFC_DESCRIPTOR_LBOUND(nl,dim))
2930 * GFC_DESCRIPTOR_STRIDE(nl,dim) * nl->size;
2931 }
2932 else
2933 {
2934 pdata = (void*)(nl->mem_pos + offset);
2935 for (dim = 0; dim < nl->var_rank; dim++)
2936 pdata = (void*)(pdata + (nl->ls[dim].idx
2937 - GFC_DESCRIPTOR_LBOUND(nl,dim))
2938 * GFC_DESCRIPTOR_STRIDE(nl,dim) * nl->size);
2939 }
2940
2941 /* If we are finished with the repeat count, try to read next value. */
2942
2943 nml_carry = 0;
2944 if (--dtp->u.p.repeat_count <= 0)
2945 {
2946 if (dtp->u.p.input_complete)
2947 return true;
2948 if (dtp->u.p.at_eol)
2949 finish_separator (dtp);
2950 if (dtp->u.p.input_complete)
2951 return true;
2952
2953 dtp->u.p.saved_type = BT_UNKNOWN;
2954 free_saved (dtp);
2955
2956 switch (nl->type)
2957 {
2958 case BT_INTEGER:
2959 read_integer (dtp, len);
2960 break;
2961
2962 case BT_LOGICAL:
2963 read_logical (dtp, len);
2964 break;
2965
2966 case BT_CHARACTER:
2967 read_character (dtp, len);
2968 break;
2969
2970 case BT_REAL:
2971 /* Need to copy data back from the real location to the temp in
2972 order to handle nml reads into arrays. */
2973 read_real (dtp, pdata, len);
2974 memcpy (dtp->u.p.value, pdata, dlen);
2975 break;
2976
2977 case BT_COMPLEX:
2978 /* Same as for REAL, copy back to temp. */
2979 read_complex (dtp, pdata, len, dlen);
2980 memcpy (dtp->u.p.value, pdata, dlen);
2981 break;
2982
2983 case BT_DERIVED:
2984 case BT_CLASS:
2985 /* If this object has a User Defined procedure, call it. */
2986 if (nl->dtio_sub != NULL)
2987 {
2988 int unit = dtp->u.p.current_unit->unit_number;
2989 char iotype[] = "NAMELIST";
2990 gfc_charlen_type iotype_len = 8;
2991 char tmp_iomsg[IOMSG_LEN] = "";
2992 char *child_iomsg;
2993 gfc_charlen_type child_iomsg_len;
2994 int noiostat;
2995 int *child_iostat = NULL;
2996 gfc_array_i4 vlist;
2997 formatted_dtio dtio_ptr = (formatted_dtio)nl->dtio_sub;
2998
2999 GFC_DESCRIPTOR_DATA(&vlist) = NULL;
3000 GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0);
3001
3002 list_obj.vptr = nl->vtable;
3003 list_obj.len = 0;
3004
3005 /* Set iostat, intent(out). */
3006 noiostat = 0;
3007 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
3008 dtp->common.iostat : &noiostat;
3009
3010 /* Set iomsg, intent(inout). */
3011 if (dtp->common.flags & IOPARM_HAS_IOMSG)
3012 {
3013 child_iomsg = dtp->common.iomsg;
3014 child_iomsg_len = dtp->common.iomsg_len;
3015 }
3016 else
3017 {
3018 child_iomsg = tmp_iomsg;
3019 child_iomsg_len = IOMSG_LEN;
3020 }
3021
3022 /* If reading from an internal unit, stash it to allow
3023 the child procedure to access it. */
3024 if (is_internal_unit (dtp))
3025 stash_internal_unit (dtp);
3026
3027 /* Call the user defined formatted READ procedure. */
3028 dtp->u.p.current_unit->child_dtio++;
3029 dtio_ptr ((void *)&list_obj, &unit, iotype, &vlist,
3030 child_iostat, child_iomsg,
3031 iotype_len, child_iomsg_len);
3032 dtp->u.p.child_saved_iostat = *child_iostat;
3033 dtp->u.p.current_unit->child_dtio--;
3034 goto incr_idx;
3035 }
3036
3037 /* Must be default derived type namelist read. */
3038 obj_name_len = strlen (nl->var_name) + 1;
3039 obj_name = xmalloc (obj_name_len+1);
3040 memcpy (obj_name, nl->var_name, obj_name_len-1);
3041 memcpy (obj_name + obj_name_len - 1, "%", 2);
3042
3043 /* If reading a derived type, disable the expanded read warning
3044 since a single object can have multiple reads. */
3045 dtp->u.p.expanded_read = 0;
3046
3047 /* Now loop over the components. */
3048
3049 for (cmp = nl->next;
3050 cmp &&
3051 !strncmp (cmp->var_name, obj_name, obj_name_len);
3052 cmp = cmp->next)
3053 {
3054 /* Jump over nested derived type by testing if the potential
3055 component name contains '%'. */
3056 if (strchr (cmp->var_name + obj_name_len, '%'))
3057 continue;
3058
3059 if (!nml_read_obj (dtp, cmp, (index_type)(pdata - nl->mem_pos),
3060 pprev_nl, nml_err_msg, nml_err_msg_size,
3061 clow, chigh))
3062 {
3063 free (obj_name);
3064 return false;
3065 }
3066
3067 if (dtp->u.p.input_complete)
3068 {
3069 free (obj_name);
3070 return true;
3071 }
3072 }
3073
3074 free (obj_name);
3075 goto incr_idx;
3076
3077 default:
3078 snprintf (nml_err_msg, nml_err_msg_size,
3079 "Bad type for namelist object %s", nl->var_name);
3080 internal_error (&dtp->common, nml_err_msg);
3081 goto nml_err_ret;
3082 }
3083 }
3084
3085 /* The standard permits array data to stop short of the number of
3086 elements specified in the loop specification. In this case, we
3087 should be here with dtp->u.p.nml_read_error != 0. Control returns to
3088 nml_get_obj_data and an attempt is made to read object name. */
3089
3090 *pprev_nl = nl;
3091 if (dtp->u.p.nml_read_error)
3092 {
3093 dtp->u.p.expanded_read = 0;
3094 return true;
3095 }
3096
3097 if (dtp->u.p.saved_type == BT_UNKNOWN)
3098 {
3099 dtp->u.p.expanded_read = 0;
3100 goto incr_idx;
3101 }
3102
3103 switch (dtp->u.p.saved_type)
3104 {
3105
3106 case BT_COMPLEX:
3107 case BT_REAL:
3108 case BT_INTEGER:
3109 case BT_LOGICAL:
3110 memcpy (pdata, dtp->u.p.value, dlen);
3111 break;
3112
3113 case BT_CHARACTER:
3114 if (dlen < dtp->u.p.saved_used)
3115 {
3116 if (compile_options.bounds_check)
3117 {
3118 snprintf (nml_err_msg, nml_err_msg_size,
3119 "Namelist object '%s' truncated on read.",
3120 nl->var_name);
3121 generate_warning (&dtp->common, nml_err_msg);
3122 }
3123 m = dlen;
3124 }
3125 else
3126 m = dtp->u.p.saved_used;
3127
3128 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
3129 {
3130 gfc_char4_t *q4, *p4 = pdata;
3131 int i;
3132
3133 q4 = (gfc_char4_t *) dtp->u.p.saved_string;
3134 p4 += clow -1;
3135 for (i = 0; i < m; i++)
3136 *p4++ = *q4++;
3137 if (m < dlen)
3138 for (i = 0; i < dlen - m; i++)
3139 *p4++ = (gfc_char4_t) ' ';
3140 }
3141 else
3142 {
3143 pdata = (void*)( pdata + clow - 1 );
3144 memcpy (pdata, dtp->u.p.saved_string, m);
3145 if (m < dlen)
3146 memset ((void*)( pdata + m ), ' ', dlen - m);
3147 }
3148 break;
3149
3150 default:
3151 break;
3152 }
3153
3154 /* Warn if a non-standard expanded read occurs. A single read of a
3155 single object is acceptable. If a second read occurs, issue a warning
3156 and set the flag to zero to prevent further warnings. */
3157 if (dtp->u.p.expanded_read == 2)
3158 {
3159 notify_std (&dtp->common, GFC_STD_GNU, "Non-standard expanded namelist read.");
3160 dtp->u.p.expanded_read = 0;
3161 }
3162
3163 /* If the expanded read warning flag is set, increment it,
3164 indicating that a single read has occurred. */
3165 if (dtp->u.p.expanded_read >= 1)
3166 dtp->u.p.expanded_read++;
3167
3168 /* Break out of loop if scalar. */
3169 if (!nl->var_rank)
3170 break;
3171
3172 /* Now increment the index vector. */
3173
3174 incr_idx:
3175
3176 nml_carry = 1;
3177 for (dim = 0; dim < nl->var_rank; dim++)
3178 {
3179 nl->ls[dim].idx += nml_carry * nl->ls[dim].step;
3180 nml_carry = 0;
3181 if (((nl->ls[dim].step > 0) && (nl->ls[dim].idx > nl->ls[dim].end))
3182 ||
3183 ((nl->ls[dim].step < 0) && (nl->ls[dim].idx < nl->ls[dim].end)))
3184 {
3185 nl->ls[dim].idx = nl->ls[dim].start;
3186 nml_carry = 1;
3187 }
3188 }
3189 } while (!nml_carry);
3190
3191 if (dtp->u.p.repeat_count > 1)
3192 {
3193 snprintf (nml_err_msg, nml_err_msg_size,
3194 "Repeat count too large for namelist object %s", nl->var_name);
3195 goto nml_err_ret;
3196 }
3197 return true;
3198
3199 nml_err_ret:
3200
3201 return false;
3202 }
3203
3204 /* Parses the object name, including array and substring qualifiers. It
3205 iterates over derived type components, touching those components and
3206 setting their loop specifications, if there is a qualifier. If the
3207 object is itself a derived type, its components and subcomponents are
3208 touched. nml_read_obj is called at the end and this reads the data in
3209 the manner specified by the object name. */
3210
3211 static bool
3212 nml_get_obj_data (st_parameter_dt *dtp, namelist_info **pprev_nl,
3213 char *nml_err_msg, size_t nml_err_msg_size)
3214 {
3215 int c;
3216 namelist_info *nl;
3217 namelist_info *first_nl = NULL;
3218 namelist_info *root_nl = NULL;
3219 int dim, parsed_rank;
3220 int component_flag, qualifier_flag;
3221 index_type clow, chigh;
3222 int non_zero_rank_count;
3223
3224 /* Look for end of input or object name. If '?' or '=?' are encountered
3225 in stdin, print the node names or the namelist to stdout. */
3226
3227 eat_separator (dtp);
3228 if (dtp->u.p.input_complete)
3229 return true;
3230
3231 if (dtp->u.p.at_eol)
3232 finish_separator (dtp);
3233 if (dtp->u.p.input_complete)
3234 return true;
3235
3236 if ((c = next_char (dtp)) == EOF)
3237 goto nml_err_ret;
3238 switch (c)
3239 {
3240 case '=':
3241 if ((c = next_char (dtp)) == EOF)
3242 goto nml_err_ret;
3243 if (c != '?')
3244 {
3245 snprintf (nml_err_msg, nml_err_msg_size,
3246 "namelist read: misplaced = sign");
3247 goto nml_err_ret;
3248 }
3249 nml_query (dtp, '=');
3250 return true;
3251
3252 case '?':
3253 nml_query (dtp, '?');
3254 return true;
3255
3256 case '$':
3257 case '&':
3258 nml_match_name (dtp, "end", 3);
3259 if (dtp->u.p.nml_read_error)
3260 {
3261 snprintf (nml_err_msg, nml_err_msg_size,
3262 "namelist not terminated with / or &end");
3263 goto nml_err_ret;
3264 }
3265 /* Fall through. */
3266 case '/':
3267 dtp->u.p.input_complete = 1;
3268 return true;
3269
3270 default :
3271 break;
3272 }
3273
3274 /* Untouch all nodes of the namelist and reset the flags that are set for
3275 derived type components. */
3276
3277 nml_untouch_nodes (dtp);
3278 component_flag = 0;
3279 qualifier_flag = 0;
3280 non_zero_rank_count = 0;
3281
3282 /* Get the object name - should '!' and '\n' be permitted separators? */
3283
3284 get_name:
3285
3286 free_saved (dtp);
3287
3288 do
3289 {
3290 if (!is_separator (c))
3291 push_char_default (dtp, tolower(c));
3292 if ((c = next_char (dtp)) == EOF)
3293 goto nml_err_ret;
3294 }
3295 while (!( c=='=' || c==' ' || c=='\t' || c =='(' || c =='%' ));
3296
3297 unget_char (dtp, c);
3298
3299 /* Check that the name is in the namelist and get pointer to object.
3300 Three error conditions exist: (i) An attempt is being made to
3301 identify a non-existent object, following a failed data read or
3302 (ii) The object name does not exist or (iii) Too many data items
3303 are present for an object. (iii) gives the same error message
3304 as (i) */
3305
3306 push_char_default (dtp, '\0');
3307
3308 if (component_flag)
3309 {
3310 #define EXT_STACK_SZ 100
3311 char ext_stack[EXT_STACK_SZ];
3312 char *ext_name;
3313 size_t var_len = strlen (root_nl->var_name);
3314 size_t saved_len
3315 = dtp->u.p.saved_string ? strlen (dtp->u.p.saved_string) : 0;
3316 size_t ext_size = var_len + saved_len + 1;
3317
3318 if (ext_size > EXT_STACK_SZ)
3319 ext_name = xmalloc (ext_size);
3320 else
3321 ext_name = ext_stack;
3322
3323 memcpy (ext_name, root_nl->var_name, var_len);
3324 if (dtp->u.p.saved_string)
3325 memcpy (ext_name + var_len, dtp->u.p.saved_string, saved_len);
3326 ext_name[var_len + saved_len] = '\0';
3327 nl = find_nml_node (dtp, ext_name);
3328
3329 if (ext_size > EXT_STACK_SZ)
3330 free (ext_name);
3331 }
3332 else
3333 nl = find_nml_node (dtp, dtp->u.p.saved_string);
3334
3335 if (nl == NULL)
3336 {
3337 if (dtp->u.p.nml_read_error && *pprev_nl)
3338 snprintf (nml_err_msg, nml_err_msg_size,
3339 "Bad data for namelist object %s", (*pprev_nl)->var_name);
3340
3341 else
3342 snprintf (nml_err_msg, nml_err_msg_size,
3343 "Cannot match namelist object name %s",
3344 dtp->u.p.saved_string);
3345
3346 goto nml_err_ret;
3347 }
3348
3349 /* Get the length, data length, base pointer and rank of the variable.
3350 Set the default loop specification first. */
3351
3352 for (dim=0; dim < nl->var_rank; dim++)
3353 {
3354 nl->ls[dim].step = 1;
3355 nl->ls[dim].end = GFC_DESCRIPTOR_UBOUND(nl,dim);
3356 nl->ls[dim].start = GFC_DESCRIPTOR_LBOUND(nl,dim);
3357 nl->ls[dim].idx = nl->ls[dim].start;
3358 }
3359
3360 /* Check to see if there is a qualifier: if so, parse it.*/
3361
3362 if (c == '(' && nl->var_rank)
3363 {
3364 parsed_rank = 0;
3365 if (!nml_parse_qualifier (dtp, nl->dim, nl->ls, nl->var_rank,
3366 nl->type, nml_err_msg, nml_err_msg_size,
3367 &parsed_rank))
3368 {
3369 char *nml_err_msg_end = strchr (nml_err_msg, '\0');
3370 snprintf (nml_err_msg_end,
3371 nml_err_msg_size - (nml_err_msg_end - nml_err_msg),
3372 " for namelist variable %s", nl->var_name);
3373 goto nml_err_ret;
3374 }
3375 if (parsed_rank > 0)
3376 non_zero_rank_count++;
3377
3378 qualifier_flag = 1;
3379
3380 if ((c = next_char (dtp)) == EOF)
3381 goto nml_err_ret;
3382 unget_char (dtp, c);
3383 }
3384 else if (nl->var_rank > 0)
3385 non_zero_rank_count++;
3386
3387 /* Now parse a derived type component. The root namelist_info address
3388 is backed up, as is the previous component level. The component flag
3389 is set and the iteration is made by jumping back to get_name. */
3390
3391 if (c == '%')
3392 {
3393 if (nl->type != BT_DERIVED)
3394 {
3395 snprintf (nml_err_msg, nml_err_msg_size,
3396 "Attempt to get derived component for %s", nl->var_name);
3397 goto nml_err_ret;
3398 }
3399
3400 /* Don't move first_nl further in the list if a qualifier was found. */
3401 if ((*pprev_nl == NULL && !qualifier_flag) || !component_flag)
3402 first_nl = nl;
3403
3404 root_nl = nl;
3405
3406 component_flag = 1;
3407 if ((c = next_char (dtp)) == EOF)
3408 goto nml_err_ret;
3409 goto get_name;
3410 }
3411
3412 /* Parse a character qualifier, if present. chigh = 0 is a default
3413 that signals that the string length = string_length. */
3414
3415 clow = 1;
3416 chigh = 0;
3417
3418 if (c == '(' && nl->type == BT_CHARACTER)
3419 {
3420 descriptor_dimension chd[1] = { {1, clow, nl->string_length} };
3421 array_loop_spec ind[1] = { {1, clow, nl->string_length, 1} };
3422
3423 if (!nml_parse_qualifier (dtp, chd, ind, -1, nl->type,
3424 nml_err_msg, nml_err_msg_size, &parsed_rank))
3425 {
3426 char *nml_err_msg_end = strchr (nml_err_msg, '\0');
3427 snprintf (nml_err_msg_end,
3428 nml_err_msg_size - (nml_err_msg_end - nml_err_msg),
3429 " for namelist variable %s", nl->var_name);
3430 goto nml_err_ret;
3431 }
3432
3433 clow = ind[0].start;
3434 chigh = ind[0].end;
3435
3436 if (ind[0].step != 1)
3437 {
3438 snprintf (nml_err_msg, nml_err_msg_size,
3439 "Step not allowed in substring qualifier"
3440 " for namelist object %s", nl->var_name);
3441 goto nml_err_ret;
3442 }
3443
3444 if ((c = next_char (dtp)) == EOF)
3445 goto nml_err_ret;
3446 unget_char (dtp, c);
3447 }
3448
3449 /* Make sure no extraneous qualifiers are there. */
3450
3451 if (c == '(')
3452 {
3453 snprintf (nml_err_msg, nml_err_msg_size,
3454 "Qualifier for a scalar or non-character namelist object %s",
3455 nl->var_name);
3456 goto nml_err_ret;
3457 }
3458
3459 /* Make sure there is no more than one non-zero rank object. */
3460 if (non_zero_rank_count > 1)
3461 {
3462 snprintf (nml_err_msg, nml_err_msg_size,
3463 "Multiple sub-objects with non-zero rank in namelist object %s",
3464 nl->var_name);
3465 non_zero_rank_count = 0;
3466 goto nml_err_ret;
3467 }
3468
3469 /* According to the standard, an equal sign MUST follow an object name. The
3470 following is possibly lax - it allows comments, blank lines and so on to
3471 intervene. eat_spaces (dtp); c = next_char (dtp); would be compliant*/
3472
3473 free_saved (dtp);
3474
3475 eat_separator (dtp);
3476 if (dtp->u.p.input_complete)
3477 return true;
3478
3479 if (dtp->u.p.at_eol)
3480 finish_separator (dtp);
3481 if (dtp->u.p.input_complete)
3482 return true;
3483
3484 if ((c = next_char (dtp)) == EOF)
3485 goto nml_err_ret;
3486
3487 if (c != '=')
3488 {
3489 snprintf (nml_err_msg, nml_err_msg_size,
3490 "Equal sign must follow namelist object name %s",
3491 nl->var_name);
3492 goto nml_err_ret;
3493 }
3494
3495 /* If a derived type, touch its components and restore the root
3496 namelist_info if we have parsed a qualified derived type
3497 component. */
3498
3499 if (nl->type == BT_DERIVED && nl->dtio_sub == NULL)
3500 nml_touch_nodes (nl);
3501
3502 if (first_nl)
3503 {
3504 if (first_nl->var_rank == 0)
3505 {
3506 if (component_flag && qualifier_flag)
3507 nl = first_nl;
3508 }
3509 else
3510 nl = first_nl;
3511 }
3512
3513 dtp->u.p.nml_read_error = 0;
3514 if (!nml_read_obj (dtp, nl, 0, pprev_nl, nml_err_msg, nml_err_msg_size,
3515 clow, chigh))
3516 goto nml_err_ret;
3517
3518 return true;
3519
3520 nml_err_ret:
3521
3522 /* The EOF error message is issued by hit_eof. Return true so that the
3523 caller does not use nml_err_msg and nml_err_msg_size to generate
3524 an unrelated error message. */
3525 if (c == EOF)
3526 {
3527 dtp->u.p.input_complete = 1;
3528 unget_char (dtp, c);
3529 hit_eof (dtp);
3530 return true;
3531 }
3532 return false;
3533 }
3534
3535 /* Entry point for namelist input. Goes through input until namelist name
3536 is matched. Then cycles through nml_get_obj_data until the input is
3537 completed or there is an error. */
3538
3539 void
3540 namelist_read (st_parameter_dt *dtp)
3541 {
3542 int c;
3543 char nml_err_msg[200];
3544
3545 /* Initialize the error string buffer just in case we get an unexpected fail
3546 somewhere and end up at nml_err_ret. */
3547 strcpy (nml_err_msg, "Internal namelist read error");
3548
3549 /* Pointer to the previously read object, in case attempt is made to read
3550 new object name. Should this fail, error message can give previous
3551 name. */
3552 namelist_info *prev_nl = NULL;
3553
3554 dtp->u.p.namelist_mode = 1;
3555 dtp->u.p.input_complete = 0;
3556 dtp->u.p.expanded_read = 0;
3557
3558 /* Set the next_char and push_char worker functions. */
3559 set_workers (dtp);
3560
3561 /* Look for &namelist_name . Skip all characters, testing for $nmlname.
3562 Exit on success or EOF. If '?' or '=?' encountered in stdin, print
3563 node names or namelist on stdout. */
3564
3565 find_nml_name:
3566 c = next_char (dtp);
3567 switch (c)
3568 {
3569 case '$':
3570 case '&':
3571 break;
3572
3573 case '!':
3574 eat_line (dtp);
3575 goto find_nml_name;
3576
3577 case '=':
3578 c = next_char (dtp);
3579 if (c == '?')
3580 nml_query (dtp, '=');
3581 else
3582 unget_char (dtp, c);
3583 goto find_nml_name;
3584
3585 case '?':
3586 nml_query (dtp, '?');
3587 goto find_nml_name;
3588
3589 case EOF:
3590 return;
3591
3592 default:
3593 goto find_nml_name;
3594 }
3595
3596 /* Match the name of the namelist. */
3597
3598 nml_match_name (dtp, dtp->namelist_name, dtp->namelist_name_len);
3599
3600 if (dtp->u.p.nml_read_error)
3601 goto find_nml_name;
3602
3603 /* A trailing space is required, we give a little latitude here, 10.9.1. */
3604 c = next_char (dtp);
3605 if (!is_separator(c) && c != '!')
3606 {
3607 unget_char (dtp, c);
3608 goto find_nml_name;
3609 }
3610
3611 unget_char (dtp, c);
3612 eat_separator (dtp);
3613
3614 /* Ready to read namelist objects. If there is an error in input
3615 from stdin, output the error message and continue. */
3616
3617 while (!dtp->u.p.input_complete)
3618 {
3619 if (!nml_get_obj_data (dtp, &prev_nl, nml_err_msg, sizeof nml_err_msg))
3620 {
3621 if (dtp->u.p.current_unit->unit_number != options.stdin_unit)
3622 goto nml_err_ret;
3623 generate_error (&dtp->common, LIBERROR_READ_VALUE, nml_err_msg);
3624 }
3625
3626 /* Reset the previous namelist pointer if we know we are not going
3627 to be doing multiple reads within a single namelist object. */
3628 if (prev_nl && prev_nl->var_rank == 0)
3629 prev_nl = NULL;
3630 }
3631
3632 free_saved (dtp);
3633 free_line (dtp);
3634 return;
3635
3636
3637 nml_err_ret:
3638
3639 /* All namelist error calls return from here */
3640 free_saved (dtp);
3641 free_line (dtp);
3642 generate_error (&dtp->common, LIBERROR_READ_VALUE, nml_err_msg);
3643 return;
3644 }