re PR fortran/83191 (Writing a namelist with repeated complex numbers)
[gcc.git] / libgfortran / io / transfer.c
1 /* Copyright (C) 2002-2017 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist transfer functions contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27
28 /* transfer.c -- Top level handling of data transfer statements. */
29
30 #include "io.h"
31 #include "fbuf.h"
32 #include "format.h"
33 #include "unix.h"
34 #include <string.h>
35 #include <errno.h>
36
37
38 /* Calling conventions: Data transfer statements are unlike other
39 library calls in that they extend over several calls.
40
41 The first call is always a call to st_read() or st_write(). These
42 subroutines return no status unless a namelist read or write is
43 being done, in which case there is the usual status. No further
44 calls are necessary in this case.
45
46 For other sorts of data transfer, there are zero or more data
47 transfer statement that depend on the format of the data transfer
48 statement. For READ (and for backwards compatibily: for WRITE), one has
49
50 transfer_integer
51 transfer_logical
52 transfer_character
53 transfer_character_wide
54 transfer_real
55 transfer_complex
56 transfer_real128
57 transfer_complex128
58
59 and for WRITE
60
61 transfer_integer_write
62 transfer_logical_write
63 transfer_character_write
64 transfer_character_wide_write
65 transfer_real_write
66 transfer_complex_write
67 transfer_real128_write
68 transfer_complex128_write
69
70 These subroutines do not return status. The *128 functions
71 are in the file transfer128.c.
72
73 The last call is a call to st_[read|write]_done(). While
74 something can easily go wrong with the initial st_read() or
75 st_write(), an error inhibits any data from actually being
76 transferred. */
77
78 extern void transfer_integer (st_parameter_dt *, void *, int);
79 export_proto(transfer_integer);
80
81 extern void transfer_integer_write (st_parameter_dt *, void *, int);
82 export_proto(transfer_integer_write);
83
84 extern void transfer_real (st_parameter_dt *, void *, int);
85 export_proto(transfer_real);
86
87 extern void transfer_real_write (st_parameter_dt *, void *, int);
88 export_proto(transfer_real_write);
89
90 extern void transfer_logical (st_parameter_dt *, void *, int);
91 export_proto(transfer_logical);
92
93 extern void transfer_logical_write (st_parameter_dt *, void *, int);
94 export_proto(transfer_logical_write);
95
96 extern void transfer_character (st_parameter_dt *, void *, int);
97 export_proto(transfer_character);
98
99 extern void transfer_character_write (st_parameter_dt *, void *, int);
100 export_proto(transfer_character_write);
101
102 extern void transfer_character_wide (st_parameter_dt *, void *, int, int);
103 export_proto(transfer_character_wide);
104
105 extern void transfer_character_wide_write (st_parameter_dt *,
106 void *, int, int);
107 export_proto(transfer_character_wide_write);
108
109 extern void transfer_complex (st_parameter_dt *, void *, int);
110 export_proto(transfer_complex);
111
112 extern void transfer_complex_write (st_parameter_dt *, void *, int);
113 export_proto(transfer_complex_write);
114
115 extern void transfer_array (st_parameter_dt *, gfc_array_char *, int,
116 gfc_charlen_type);
117 export_proto(transfer_array);
118
119 extern void transfer_array_write (st_parameter_dt *, gfc_array_char *, int,
120 gfc_charlen_type);
121 export_proto(transfer_array_write);
122
123 /* User defined derived type input/output. */
124 extern void
125 transfer_derived (st_parameter_dt *dtp, void *dtio_source, void *dtio_proc);
126 export_proto(transfer_derived);
127
128 extern void
129 transfer_derived_write (st_parameter_dt *dtp, void *dtio_source, void *dtio_proc);
130 export_proto(transfer_derived_write);
131
132 static void us_read (st_parameter_dt *, int);
133 static void us_write (st_parameter_dt *, int);
134 static void next_record_r_unf (st_parameter_dt *, int);
135 static void next_record_w_unf (st_parameter_dt *, int);
136
137 static const st_option advance_opt[] = {
138 {"yes", ADVANCE_YES},
139 {"no", ADVANCE_NO},
140 {NULL, 0}
141 };
142
143
144 static const st_option decimal_opt[] = {
145 {"point", DECIMAL_POINT},
146 {"comma", DECIMAL_COMMA},
147 {NULL, 0}
148 };
149
150 static const st_option round_opt[] = {
151 {"up", ROUND_UP},
152 {"down", ROUND_DOWN},
153 {"zero", ROUND_ZERO},
154 {"nearest", ROUND_NEAREST},
155 {"compatible", ROUND_COMPATIBLE},
156 {"processor_defined", ROUND_PROCDEFINED},
157 {NULL, 0}
158 };
159
160
161 static const st_option sign_opt[] = {
162 {"plus", SIGN_SP},
163 {"suppress", SIGN_SS},
164 {"processor_defined", SIGN_S},
165 {NULL, 0}
166 };
167
168 static const st_option blank_opt[] = {
169 {"null", BLANK_NULL},
170 {"zero", BLANK_ZERO},
171 {NULL, 0}
172 };
173
174 static const st_option delim_opt[] = {
175 {"apostrophe", DELIM_APOSTROPHE},
176 {"quote", DELIM_QUOTE},
177 {"none", DELIM_NONE},
178 {NULL, 0}
179 };
180
181 static const st_option pad_opt[] = {
182 {"yes", PAD_YES},
183 {"no", PAD_NO},
184 {NULL, 0}
185 };
186
187 typedef enum
188 { FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
189 FORMATTED_DIRECT, UNFORMATTED_DIRECT, FORMATTED_STREAM, UNFORMATTED_STREAM
190 }
191 file_mode;
192
193
194 static file_mode
195 current_mode (st_parameter_dt *dtp)
196 {
197 file_mode m;
198
199 m = FORM_UNSPECIFIED;
200
201 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
202 {
203 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
204 FORMATTED_DIRECT : UNFORMATTED_DIRECT;
205 }
206 else if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
207 {
208 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
209 FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
210 }
211 else if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
212 {
213 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
214 FORMATTED_STREAM : UNFORMATTED_STREAM;
215 }
216
217 return m;
218 }
219
220
221 /* Mid level data transfer statements. */
222
223 /* Read sequential file - internal unit */
224
225 static char *
226 read_sf_internal (st_parameter_dt *dtp, int *length)
227 {
228 static char *empty_string[0];
229 char *base = NULL;
230 int lorig;
231
232 /* Zero size array gives internal unit len of 0. Nothing to read. */
233 if (dtp->internal_unit_len == 0
234 && dtp->u.p.current_unit->pad_status == PAD_NO)
235 hit_eof (dtp);
236
237 /* If we have seen an eor previously, return a length of 0. The
238 caller is responsible for correctly padding the input field. */
239 if (dtp->u.p.sf_seen_eor)
240 {
241 *length = 0;
242 /* Just return something that isn't a NULL pointer, otherwise the
243 caller thinks an error occurred. */
244 return (char*) empty_string;
245 }
246
247 /* There are some cases with mixed DTIO where we have read a character
248 and saved it in the last character buffer, so we need to backup. */
249 if (unlikely (dtp->u.p.current_unit->child_dtio > 0 &&
250 dtp->u.p.current_unit->last_char != EOF - 1))
251 {
252 dtp->u.p.current_unit->last_char = EOF - 1;
253 sseek (dtp->u.p.current_unit->s, -1, SEEK_CUR);
254 }
255
256 lorig = *length;
257 if (is_char4_unit(dtp))
258 {
259 int i;
260 gfc_char4_t *p = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s,
261 length);
262 base = fbuf_alloc (dtp->u.p.current_unit, lorig);
263 for (i = 0; i < *length; i++, p++)
264 base[i] = *p > 255 ? '?' : (unsigned char) *p;
265 }
266 else
267 base = mem_alloc_r (dtp->u.p.current_unit->s, length);
268
269 if (unlikely (lorig > *length))
270 {
271 hit_eof (dtp);
272 return NULL;
273 }
274
275 dtp->u.p.current_unit->bytes_left -= *length;
276
277 if (((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0) ||
278 dtp->u.p.current_unit->has_size)
279 dtp->u.p.current_unit->size_used += (GFC_IO_INT) *length;
280
281 return base;
282
283 }
284
285 /* When reading sequential formatted records we have a problem. We
286 don't know how long the line is until we read the trailing newline,
287 and we don't want to read too much. If we read too much, we might
288 have to do a physical seek backwards depending on how much data is
289 present, and devices like terminals aren't seekable and would cause
290 an I/O error.
291
292 Given this, the solution is to read a byte at a time, stopping if
293 we hit the newline. For small allocations, we use a static buffer.
294 For larger allocations, we are forced to allocate memory on the
295 heap. Hopefully this won't happen very often. */
296
297 /* Read sequential file - external unit */
298
299 static char *
300 read_sf (st_parameter_dt *dtp, int *length)
301 {
302 static char *empty_string[0];
303 int q, q2;
304 int n, lorig, seen_comma;
305
306 /* If we have seen an eor previously, return a length of 0. The
307 caller is responsible for correctly padding the input field. */
308 if (dtp->u.p.sf_seen_eor)
309 {
310 *length = 0;
311 /* Just return something that isn't a NULL pointer, otherwise the
312 caller thinks an error occurred. */
313 return (char*) empty_string;
314 }
315
316 /* There are some cases with mixed DTIO where we have read a character
317 and saved it in the last character buffer, so we need to backup. */
318 if (unlikely (dtp->u.p.current_unit->child_dtio > 0 &&
319 dtp->u.p.current_unit->last_char != EOF - 1))
320 {
321 dtp->u.p.current_unit->last_char = EOF - 1;
322 fbuf_seek (dtp->u.p.current_unit, -1, SEEK_CUR);
323 }
324
325 n = seen_comma = 0;
326
327 /* Read data into format buffer and scan through it. */
328 lorig = *length;
329
330 while (n < *length)
331 {
332 q = fbuf_getc (dtp->u.p.current_unit);
333 if (q == EOF)
334 break;
335 else if (dtp->u.p.current_unit->flags.cc != CC_NONE
336 && (q == '\n' || q == '\r'))
337 {
338 /* Unexpected end of line. Set the position. */
339 dtp->u.p.sf_seen_eor = 1;
340
341 /* If we see an EOR during non-advancing I/O, we need to skip
342 the rest of the I/O statement. Set the corresponding flag. */
343 if (dtp->u.p.advance_status == ADVANCE_NO || dtp->u.p.seen_dollar)
344 dtp->u.p.eor_condition = 1;
345
346 /* If we encounter a CR, it might be a CRLF. */
347 if (q == '\r') /* Probably a CRLF */
348 {
349 /* See if there is an LF. */
350 q2 = fbuf_getc (dtp->u.p.current_unit);
351 if (q2 == '\n')
352 dtp->u.p.sf_seen_eor = 2;
353 else if (q2 != EOF) /* Oops, seek back. */
354 fbuf_seek (dtp->u.p.current_unit, -1, SEEK_CUR);
355 }
356
357 /* Without padding, terminate the I/O statement without assigning
358 the value. With padding, the value still needs to be assigned,
359 so we can just continue with a short read. */
360 if (dtp->u.p.current_unit->pad_status == PAD_NO)
361 {
362 generate_error (&dtp->common, LIBERROR_EOR, NULL);
363 return NULL;
364 }
365
366 *length = n;
367 goto done;
368 }
369 /* Short circuit the read if a comma is found during numeric input.
370 The flag is set to zero during character reads so that commas in
371 strings are not ignored */
372 else if (q == ',')
373 if (dtp->u.p.sf_read_comma == 1)
374 {
375 seen_comma = 1;
376 notify_std (&dtp->common, GFC_STD_GNU,
377 "Comma in formatted numeric read.");
378 break;
379 }
380 n++;
381 }
382
383 *length = n;
384
385 /* A short read implies we hit EOF, unless we hit EOR, a comma, or
386 some other stuff. Set the relevant flags. */
387 if (lorig > *length && !dtp->u.p.sf_seen_eor && !seen_comma)
388 {
389 if (n > 0)
390 {
391 if (dtp->u.p.advance_status == ADVANCE_NO)
392 {
393 if (dtp->u.p.current_unit->pad_status == PAD_NO)
394 {
395 hit_eof (dtp);
396 return NULL;
397 }
398 else
399 dtp->u.p.eor_condition = 1;
400 }
401 else
402 dtp->u.p.at_eof = 1;
403 }
404 else if (dtp->u.p.advance_status == ADVANCE_NO
405 || dtp->u.p.current_unit->pad_status == PAD_NO
406 || dtp->u.p.current_unit->bytes_left
407 == dtp->u.p.current_unit->recl)
408 {
409 hit_eof (dtp);
410 return NULL;
411 }
412 }
413
414 done:
415
416 dtp->u.p.current_unit->bytes_left -= n;
417
418 if (((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0) ||
419 dtp->u.p.current_unit->has_size)
420 dtp->u.p.current_unit->size_used += (GFC_IO_INT) n;
421
422 /* We can't call fbuf_getptr before the loop doing fbuf_getc, because
423 fbuf_getc might reallocate the buffer. So return current pointer
424 minus all the advances, which is n plus up to two characters
425 of newline or comma. */
426 return fbuf_getptr (dtp->u.p.current_unit)
427 - n - dtp->u.p.sf_seen_eor - seen_comma;
428 }
429
430
431 /* Function for reading the next couple of bytes from the current
432 file, advancing the current position. We return NULL on end of record or
433 end of file. This function is only for formatted I/O, unformatted uses
434 read_block_direct.
435
436 If the read is short, then it is because the current record does not
437 have enough data to satisfy the read request and the file was
438 opened with PAD=YES. The caller must assume tailing spaces for
439 short reads. */
440
441 void *
442 read_block_form (st_parameter_dt *dtp, int *nbytes)
443 {
444 char *source;
445 int norig;
446
447 if (!is_stream_io (dtp))
448 {
449 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
450 {
451 /* For preconnected units with default record length, set bytes left
452 to unit record length and proceed, otherwise error. */
453 if (dtp->u.p.current_unit->unit_number == options.stdin_unit
454 && dtp->u.p.current_unit->recl == default_recl)
455 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
456 else
457 {
458 if (unlikely (dtp->u.p.current_unit->pad_status == PAD_NO)
459 && !is_internal_unit (dtp))
460 {
461 /* Not enough data left. */
462 generate_error (&dtp->common, LIBERROR_EOR, NULL);
463 return NULL;
464 }
465 }
466
467 if (is_internal_unit(dtp))
468 {
469 if (*nbytes > 0 && dtp->u.p.current_unit->bytes_left == 0)
470 {
471 if (dtp->u.p.advance_status == ADVANCE_NO)
472 {
473 generate_error (&dtp->common, LIBERROR_EOR, NULL);
474 return NULL;
475 }
476 }
477 }
478 else
479 {
480 if (unlikely (dtp->u.p.current_unit->bytes_left == 0))
481 {
482 hit_eof (dtp);
483 return NULL;
484 }
485 }
486
487 *nbytes = dtp->u.p.current_unit->bytes_left;
488 }
489 }
490
491 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
492 (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL ||
493 dtp->u.p.current_unit->flags.access == ACCESS_STREAM))
494 {
495 if (is_internal_unit (dtp))
496 source = read_sf_internal (dtp, nbytes);
497 else
498 source = read_sf (dtp, nbytes);
499
500 dtp->u.p.current_unit->strm_pos +=
501 (gfc_offset) (*nbytes + dtp->u.p.sf_seen_eor);
502 return source;
503 }
504
505 /* If we reach here, we can assume it's direct access. */
506
507 dtp->u.p.current_unit->bytes_left -= (gfc_offset) *nbytes;
508
509 norig = *nbytes;
510 source = fbuf_read (dtp->u.p.current_unit, nbytes);
511 fbuf_seek (dtp->u.p.current_unit, *nbytes, SEEK_CUR);
512
513 if (((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0) ||
514 dtp->u.p.current_unit->has_size)
515 dtp->u.p.current_unit->size_used += (GFC_IO_INT) *nbytes;
516
517 if (norig != *nbytes)
518 {
519 /* Short read, this shouldn't happen. */
520 if (dtp->u.p.current_unit->pad_status == PAD_NO)
521 {
522 generate_error (&dtp->common, LIBERROR_EOR, NULL);
523 source = NULL;
524 }
525 }
526
527 dtp->u.p.current_unit->strm_pos += (gfc_offset) *nbytes;
528
529 return source;
530 }
531
532
533 /* Read a block from a character(kind=4) internal unit, to be transferred into
534 a character(kind=4) variable. Note: Portions of this code borrowed from
535 read_sf_internal. */
536 void *
537 read_block_form4 (st_parameter_dt *dtp, int *nbytes)
538 {
539 static gfc_char4_t *empty_string[0];
540 gfc_char4_t *source;
541 int lorig;
542
543 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
544 *nbytes = dtp->u.p.current_unit->bytes_left;
545
546 /* Zero size array gives internal unit len of 0. Nothing to read. */
547 if (dtp->internal_unit_len == 0
548 && dtp->u.p.current_unit->pad_status == PAD_NO)
549 hit_eof (dtp);
550
551 /* If we have seen an eor previously, return a length of 0. The
552 caller is responsible for correctly padding the input field. */
553 if (dtp->u.p.sf_seen_eor)
554 {
555 *nbytes = 0;
556 /* Just return something that isn't a NULL pointer, otherwise the
557 caller thinks an error occurred. */
558 return empty_string;
559 }
560
561 lorig = *nbytes;
562 source = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s, nbytes);
563
564 if (unlikely (lorig > *nbytes))
565 {
566 hit_eof (dtp);
567 return NULL;
568 }
569
570 dtp->u.p.current_unit->bytes_left -= *nbytes;
571
572 if (((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0) ||
573 dtp->u.p.current_unit->has_size)
574 dtp->u.p.current_unit->size_used += (GFC_IO_INT) *nbytes;
575
576 return source;
577 }
578
579
580 /* Reads a block directly into application data space. This is for
581 unformatted files. */
582
583 static void
584 read_block_direct (st_parameter_dt *dtp, void *buf, size_t nbytes)
585 {
586 ssize_t to_read_record;
587 ssize_t have_read_record;
588 ssize_t to_read_subrecord;
589 ssize_t have_read_subrecord;
590 int short_record;
591
592 if (is_stream_io (dtp))
593 {
594 have_read_record = sread (dtp->u.p.current_unit->s, buf,
595 nbytes);
596 if (unlikely (have_read_record < 0))
597 {
598 generate_error (&dtp->common, LIBERROR_OS, NULL);
599 return;
600 }
601
602 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_read_record;
603
604 if (unlikely ((ssize_t) nbytes != have_read_record))
605 {
606 /* Short read, e.g. if we hit EOF. For stream files,
607 we have to set the end-of-file condition. */
608 hit_eof (dtp);
609 }
610 return;
611 }
612
613 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
614 {
615 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes)
616 {
617 short_record = 1;
618 to_read_record = dtp->u.p.current_unit->bytes_left;
619 nbytes = to_read_record;
620 }
621 else
622 {
623 short_record = 0;
624 to_read_record = nbytes;
625 }
626
627 dtp->u.p.current_unit->bytes_left -= to_read_record;
628
629 to_read_record = sread (dtp->u.p.current_unit->s, buf, to_read_record);
630 if (unlikely (to_read_record < 0))
631 {
632 generate_error (&dtp->common, LIBERROR_OS, NULL);
633 return;
634 }
635
636 if (to_read_record != (ssize_t) nbytes)
637 {
638 /* Short read, e.g. if we hit EOF. Apparently, we read
639 more than was written to the last record. */
640 return;
641 }
642
643 if (unlikely (short_record))
644 {
645 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
646 }
647 return;
648 }
649
650 /* Unformatted sequential. We loop over the subrecords, reading
651 until the request has been fulfilled or the record has run out
652 of continuation subrecords. */
653
654 /* Check whether we exceed the total record length. */
655
656 if (dtp->u.p.current_unit->flags.has_recl
657 && ((gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left))
658 {
659 to_read_record = dtp->u.p.current_unit->bytes_left;
660 short_record = 1;
661 }
662 else
663 {
664 to_read_record = nbytes;
665 short_record = 0;
666 }
667 have_read_record = 0;
668
669 while(1)
670 {
671 if (dtp->u.p.current_unit->bytes_left_subrecord
672 < (gfc_offset) to_read_record)
673 {
674 to_read_subrecord = dtp->u.p.current_unit->bytes_left_subrecord;
675 to_read_record -= to_read_subrecord;
676 }
677 else
678 {
679 to_read_subrecord = to_read_record;
680 to_read_record = 0;
681 }
682
683 dtp->u.p.current_unit->bytes_left_subrecord -= to_read_subrecord;
684
685 have_read_subrecord = sread (dtp->u.p.current_unit->s,
686 buf + have_read_record, to_read_subrecord);
687 if (unlikely (have_read_subrecord < 0))
688 {
689 generate_error (&dtp->common, LIBERROR_OS, NULL);
690 return;
691 }
692
693 have_read_record += have_read_subrecord;
694
695 if (unlikely (to_read_subrecord != have_read_subrecord))
696 {
697 /* Short read, e.g. if we hit EOF. This means the record
698 structure has been corrupted, or the trailing record
699 marker would still be present. */
700
701 generate_error (&dtp->common, LIBERROR_CORRUPT_FILE, NULL);
702 return;
703 }
704
705 if (to_read_record > 0)
706 {
707 if (likely (dtp->u.p.current_unit->continued))
708 {
709 next_record_r_unf (dtp, 0);
710 us_read (dtp, 1);
711 }
712 else
713 {
714 /* Let's make sure the file position is correctly pre-positioned
715 for the next read statement. */
716
717 dtp->u.p.current_unit->current_record = 0;
718 next_record_r_unf (dtp, 0);
719 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
720 return;
721 }
722 }
723 else
724 {
725 /* Normal exit, the read request has been fulfilled. */
726 break;
727 }
728 }
729
730 dtp->u.p.current_unit->bytes_left -= have_read_record;
731 if (unlikely (short_record))
732 {
733 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
734 return;
735 }
736 return;
737 }
738
739
740 /* Function for writing a block of bytes to the current file at the
741 current position, advancing the file pointer. We are given a length
742 and return a pointer to a buffer that the caller must (completely)
743 fill in. Returns NULL on error. */
744
745 void *
746 write_block (st_parameter_dt *dtp, int length)
747 {
748 char *dest;
749
750 if (!is_stream_io (dtp))
751 {
752 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) length)
753 {
754 /* For preconnected units with default record length, set bytes left
755 to unit record length and proceed, otherwise error. */
756 if (likely ((dtp->u.p.current_unit->unit_number
757 == options.stdout_unit
758 || dtp->u.p.current_unit->unit_number
759 == options.stderr_unit)
760 && dtp->u.p.current_unit->recl == default_recl))
761 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
762 else
763 {
764 generate_error (&dtp->common, LIBERROR_EOR, NULL);
765 return NULL;
766 }
767 }
768
769 dtp->u.p.current_unit->bytes_left -= (gfc_offset) length;
770 }
771
772 if (is_internal_unit (dtp))
773 {
774 if (is_char4_unit(dtp)) /* char4 internel unit. */
775 {
776 gfc_char4_t *dest4;
777 dest4 = mem_alloc_w4 (dtp->u.p.current_unit->s, &length);
778 if (dest4 == NULL)
779 {
780 generate_error (&dtp->common, LIBERROR_END, NULL);
781 return NULL;
782 }
783 return dest4;
784 }
785 else
786 dest = mem_alloc_w (dtp->u.p.current_unit->s, &length);
787
788 if (dest == NULL)
789 {
790 generate_error (&dtp->common, LIBERROR_END, NULL);
791 return NULL;
792 }
793
794 if (unlikely (dtp->u.p.current_unit->endfile == AT_ENDFILE))
795 generate_error (&dtp->common, LIBERROR_END, NULL);
796 }
797 else
798 {
799 dest = fbuf_alloc (dtp->u.p.current_unit, length);
800 if (dest == NULL)
801 {
802 generate_error (&dtp->common, LIBERROR_OS, NULL);
803 return NULL;
804 }
805 }
806
807 if (((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0) ||
808 dtp->u.p.current_unit->has_size)
809 dtp->u.p.current_unit->size_used += (GFC_IO_INT) length;
810
811 dtp->u.p.current_unit->strm_pos += (gfc_offset) length;
812
813 return dest;
814 }
815
816
817 /* High level interface to swrite(), taking care of errors. This is only
818 called for unformatted files. There are three cases to consider:
819 Stream I/O, unformatted direct, unformatted sequential. */
820
821 static bool
822 write_buf (st_parameter_dt *dtp, void *buf, size_t nbytes)
823 {
824
825 ssize_t have_written;
826 ssize_t to_write_subrecord;
827 int short_record;
828
829 /* Stream I/O. */
830
831 if (is_stream_io (dtp))
832 {
833 have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
834 if (unlikely (have_written < 0))
835 {
836 generate_error (&dtp->common, LIBERROR_OS, NULL);
837 return false;
838 }
839
840 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
841
842 return true;
843 }
844
845 /* Unformatted direct access. */
846
847 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
848 {
849 if (unlikely (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes))
850 {
851 generate_error (&dtp->common, LIBERROR_DIRECT_EOR, NULL);
852 return false;
853 }
854
855 if (buf == NULL && nbytes == 0)
856 return true;
857
858 have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
859 if (unlikely (have_written < 0))
860 {
861 generate_error (&dtp->common, LIBERROR_OS, NULL);
862 return false;
863 }
864
865 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
866 dtp->u.p.current_unit->bytes_left -= (gfc_offset) have_written;
867
868 return true;
869 }
870
871 /* Unformatted sequential. */
872
873 have_written = 0;
874
875 if (dtp->u.p.current_unit->flags.has_recl
876 && (gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left)
877 {
878 nbytes = dtp->u.p.current_unit->bytes_left;
879 short_record = 1;
880 }
881 else
882 {
883 short_record = 0;
884 }
885
886 while (1)
887 {
888
889 to_write_subrecord =
890 (size_t) dtp->u.p.current_unit->bytes_left_subrecord < nbytes ?
891 (size_t) dtp->u.p.current_unit->bytes_left_subrecord : nbytes;
892
893 dtp->u.p.current_unit->bytes_left_subrecord -=
894 (gfc_offset) to_write_subrecord;
895
896 to_write_subrecord = swrite (dtp->u.p.current_unit->s,
897 buf + have_written, to_write_subrecord);
898 if (unlikely (to_write_subrecord < 0))
899 {
900 generate_error (&dtp->common, LIBERROR_OS, NULL);
901 return false;
902 }
903
904 dtp->u.p.current_unit->strm_pos += (gfc_offset) to_write_subrecord;
905 nbytes -= to_write_subrecord;
906 have_written += to_write_subrecord;
907
908 if (nbytes == 0)
909 break;
910
911 next_record_w_unf (dtp, 1);
912 us_write (dtp, 1);
913 }
914 dtp->u.p.current_unit->bytes_left -= have_written;
915 if (unlikely (short_record))
916 {
917 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
918 return false;
919 }
920 return true;
921 }
922
923
924 /* Reverse memcpy - used for byte swapping. */
925
926 static void
927 reverse_memcpy (void *dest, const void *src, size_t n)
928 {
929 char *d, *s;
930 size_t i;
931
932 d = (char *) dest;
933 s = (char *) src + n - 1;
934
935 /* Write with ascending order - this is likely faster
936 on modern architectures because of write combining. */
937 for (i=0; i<n; i++)
938 *(d++) = *(s--);
939 }
940
941
942 /* Utility function for byteswapping an array, using the bswap
943 builtins if possible. dest and src can overlap completely, or then
944 they must point to separate objects; partial overlaps are not
945 allowed. */
946
947 static void
948 bswap_array (void *dest, const void *src, size_t size, size_t nelems)
949 {
950 const char *ps;
951 char *pd;
952
953 switch (size)
954 {
955 case 1:
956 break;
957 case 2:
958 for (size_t i = 0; i < nelems; i++)
959 ((uint16_t*)dest)[i] = __builtin_bswap16 (((uint16_t*)src)[i]);
960 break;
961 case 4:
962 for (size_t i = 0; i < nelems; i++)
963 ((uint32_t*)dest)[i] = __builtin_bswap32 (((uint32_t*)src)[i]);
964 break;
965 case 8:
966 for (size_t i = 0; i < nelems; i++)
967 ((uint64_t*)dest)[i] = __builtin_bswap64 (((uint64_t*)src)[i]);
968 break;
969 case 12:
970 ps = src;
971 pd = dest;
972 for (size_t i = 0; i < nelems; i++)
973 {
974 uint32_t tmp;
975 memcpy (&tmp, ps, 4);
976 *(uint32_t*)pd = __builtin_bswap32 (*(uint32_t*)(ps + 8));
977 *(uint32_t*)(pd + 4) = __builtin_bswap32 (*(uint32_t*)(ps + 4));
978 *(uint32_t*)(pd + 8) = __builtin_bswap32 (tmp);
979 ps += size;
980 pd += size;
981 }
982 break;
983 case 16:
984 ps = src;
985 pd = dest;
986 for (size_t i = 0; i < nelems; i++)
987 {
988 uint64_t tmp;
989 memcpy (&tmp, ps, 8);
990 *(uint64_t*)pd = __builtin_bswap64 (*(uint64_t*)(ps + 8));
991 *(uint64_t*)(pd + 8) = __builtin_bswap64 (tmp);
992 ps += size;
993 pd += size;
994 }
995 break;
996 default:
997 pd = dest;
998 if (dest != src)
999 {
1000 ps = src;
1001 for (size_t i = 0; i < nelems; i++)
1002 {
1003 reverse_memcpy (pd, ps, size);
1004 ps += size;
1005 pd += size;
1006 }
1007 }
1008 else
1009 {
1010 /* In-place byte swap. */
1011 for (size_t i = 0; i < nelems; i++)
1012 {
1013 char tmp, *low = pd, *high = pd + size - 1;
1014 for (size_t j = 0; j < size/2; j++)
1015 {
1016 tmp = *low;
1017 *low = *high;
1018 *high = tmp;
1019 low++;
1020 high--;
1021 }
1022 pd += size;
1023 }
1024 }
1025 }
1026 }
1027
1028
1029 /* Master function for unformatted reads. */
1030
1031 static void
1032 unformatted_read (st_parameter_dt *dtp, bt type,
1033 void *dest, int kind, size_t size, size_t nelems)
1034 {
1035 if (type == BT_CLASS)
1036 {
1037 int unit = dtp->u.p.current_unit->unit_number;
1038 char tmp_iomsg[IOMSG_LEN] = "";
1039 char *child_iomsg;
1040 gfc_charlen_type child_iomsg_len;
1041 int noiostat;
1042 int *child_iostat = NULL;
1043
1044 /* Set iostat, intent(out). */
1045 noiostat = 0;
1046 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
1047 dtp->common.iostat : &noiostat;
1048
1049 /* Set iomsg, intent(inout). */
1050 if (dtp->common.flags & IOPARM_HAS_IOMSG)
1051 {
1052 child_iomsg = dtp->common.iomsg;
1053 child_iomsg_len = dtp->common.iomsg_len;
1054 }
1055 else
1056 {
1057 child_iomsg = tmp_iomsg;
1058 child_iomsg_len = IOMSG_LEN;
1059 }
1060
1061 /* Call the user defined unformatted READ procedure. */
1062 dtp->u.p.current_unit->child_dtio++;
1063 dtp->u.p.ufdtio_ptr (dest, &unit, child_iostat, child_iomsg,
1064 child_iomsg_len);
1065 dtp->u.p.current_unit->child_dtio--;
1066 return;
1067 }
1068
1069 if (type == BT_CHARACTER)
1070 size *= GFC_SIZE_OF_CHAR_KIND(kind);
1071 read_block_direct (dtp, dest, size * nelems);
1072
1073 if (unlikely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_SWAP)
1074 && kind != 1)
1075 {
1076 /* Handle wide chracters. */
1077 if (type == BT_CHARACTER)
1078 {
1079 nelems *= size;
1080 size = kind;
1081 }
1082
1083 /* Break up complex into its constituent reals. */
1084 else if (type == BT_COMPLEX)
1085 {
1086 nelems *= 2;
1087 size /= 2;
1088 }
1089 bswap_array (dest, dest, size, nelems);
1090 }
1091 }
1092
1093
1094 /* Master function for unformatted writes. NOTE: For kind=10 the size is 16
1095 bytes on 64 bit machines. The unused bytes are not initialized and never
1096 used, which can show an error with memory checking analyzers like
1097 valgrind. We us BT_CLASS to denote a User Defined I/O call. */
1098
1099 static void
1100 unformatted_write (st_parameter_dt *dtp, bt type,
1101 void *source, int kind, size_t size, size_t nelems)
1102 {
1103 if (type == BT_CLASS)
1104 {
1105 int unit = dtp->u.p.current_unit->unit_number;
1106 char tmp_iomsg[IOMSG_LEN] = "";
1107 char *child_iomsg;
1108 gfc_charlen_type child_iomsg_len;
1109 int noiostat;
1110 int *child_iostat = NULL;
1111
1112 /* Set iostat, intent(out). */
1113 noiostat = 0;
1114 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
1115 dtp->common.iostat : &noiostat;
1116
1117 /* Set iomsg, intent(inout). */
1118 if (dtp->common.flags & IOPARM_HAS_IOMSG)
1119 {
1120 child_iomsg = dtp->common.iomsg;
1121 child_iomsg_len = dtp->common.iomsg_len;
1122 }
1123 else
1124 {
1125 child_iomsg = tmp_iomsg;
1126 child_iomsg_len = IOMSG_LEN;
1127 }
1128
1129 /* Call the user defined unformatted WRITE procedure. */
1130 dtp->u.p.current_unit->child_dtio++;
1131 dtp->u.p.ufdtio_ptr (source, &unit, child_iostat, child_iomsg,
1132 child_iomsg_len);
1133 dtp->u.p.current_unit->child_dtio--;
1134 return;
1135 }
1136
1137 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE)
1138 || kind == 1)
1139 {
1140 size_t stride = type == BT_CHARACTER ?
1141 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1142
1143 write_buf (dtp, source, stride * nelems);
1144 }
1145 else
1146 {
1147 #define BSWAP_BUFSZ 512
1148 char buffer[BSWAP_BUFSZ];
1149 char *p;
1150 size_t nrem;
1151
1152 p = source;
1153
1154 /* Handle wide chracters. */
1155 if (type == BT_CHARACTER && kind != 1)
1156 {
1157 nelems *= size;
1158 size = kind;
1159 }
1160
1161 /* Break up complex into its constituent reals. */
1162 if (type == BT_COMPLEX)
1163 {
1164 nelems *= 2;
1165 size /= 2;
1166 }
1167
1168 /* By now, all complex variables have been split into their
1169 constituent reals. */
1170
1171 nrem = nelems;
1172 do
1173 {
1174 size_t nc;
1175 if (size * nrem > BSWAP_BUFSZ)
1176 nc = BSWAP_BUFSZ / size;
1177 else
1178 nc = nrem;
1179
1180 bswap_array (buffer, p, size, nc);
1181 write_buf (dtp, buffer, size * nc);
1182 p += size * nc;
1183 nrem -= nc;
1184 }
1185 while (nrem > 0);
1186 }
1187 }
1188
1189
1190 /* Return a pointer to the name of a type. */
1191
1192 const char *
1193 type_name (bt type)
1194 {
1195 const char *p;
1196
1197 switch (type)
1198 {
1199 case BT_INTEGER:
1200 p = "INTEGER";
1201 break;
1202 case BT_LOGICAL:
1203 p = "LOGICAL";
1204 break;
1205 case BT_CHARACTER:
1206 p = "CHARACTER";
1207 break;
1208 case BT_REAL:
1209 p = "REAL";
1210 break;
1211 case BT_COMPLEX:
1212 p = "COMPLEX";
1213 break;
1214 case BT_CLASS:
1215 p = "CLASS or DERIVED";
1216 break;
1217 default:
1218 internal_error (NULL, "type_name(): Bad type");
1219 }
1220
1221 return p;
1222 }
1223
1224
1225 /* Write a constant string to the output.
1226 This is complicated because the string can have doubled delimiters
1227 in it. The length in the format node is the true length. */
1228
1229 static void
1230 write_constant_string (st_parameter_dt *dtp, const fnode *f)
1231 {
1232 char c, delimiter, *p, *q;
1233 int length;
1234
1235 length = f->u.string.length;
1236 if (length == 0)
1237 return;
1238
1239 p = write_block (dtp, length);
1240 if (p == NULL)
1241 return;
1242
1243 q = f->u.string.p;
1244 delimiter = q[-1];
1245
1246 for (; length > 0; length--)
1247 {
1248 c = *p++ = *q++;
1249 if (c == delimiter && c != 'H' && c != 'h')
1250 q++; /* Skip the doubled delimiter. */
1251 }
1252 }
1253
1254
1255 /* Given actual and expected types in a formatted data transfer, make
1256 sure they agree. If not, an error message is generated. Returns
1257 nonzero if something went wrong. */
1258
1259 static int
1260 require_type (st_parameter_dt *dtp, bt expected, bt actual, const fnode *f)
1261 {
1262 #define BUFLEN 100
1263 char buffer[BUFLEN];
1264
1265 if (actual == expected)
1266 return 0;
1267
1268 /* Adjust item_count before emitting error message. */
1269 snprintf (buffer, BUFLEN,
1270 "Expected %s for item %d in formatted transfer, got %s",
1271 type_name (expected), dtp->u.p.item_count - 1, type_name (actual));
1272
1273 format_error (dtp, f, buffer);
1274 return 1;
1275 }
1276
1277
1278 /* Check that the dtio procedure required for formatted IO is present. */
1279
1280 static int
1281 check_dtio_proc (st_parameter_dt *dtp, const fnode *f)
1282 {
1283 char buffer[BUFLEN];
1284
1285 if (dtp->u.p.fdtio_ptr != NULL)
1286 return 0;
1287
1288 snprintf (buffer, BUFLEN,
1289 "Missing DTIO procedure or intrinsic type passed for item %d "
1290 "in formatted transfer",
1291 dtp->u.p.item_count - 1);
1292
1293 format_error (dtp, f, buffer);
1294 return 1;
1295 }
1296
1297
1298 static int
1299 require_numeric_type (st_parameter_dt *dtp, bt actual, const fnode *f)
1300 {
1301 #define BUFLEN 100
1302 char buffer[BUFLEN];
1303
1304 if (actual == BT_INTEGER || actual == BT_REAL || actual == BT_COMPLEX)
1305 return 0;
1306
1307 /* Adjust item_count before emitting error message. */
1308 snprintf (buffer, BUFLEN,
1309 "Expected numeric type for item %d in formatted transfer, got %s",
1310 dtp->u.p.item_count - 1, type_name (actual));
1311
1312 format_error (dtp, f, buffer);
1313 return 1;
1314 }
1315
1316 static char *
1317 get_dt_format (char *p, gfc_charlen_type *length)
1318 {
1319 char delim = p[-1]; /* The delimiter is always the first character back. */
1320 char c, *q, *res;
1321 gfc_charlen_type len = *length; /* This length already correct, less 'DT'. */
1322
1323 res = q = xmalloc (len + 2);
1324
1325 /* Set the beginning of the string to 'DT', length adjusted below. */
1326 *q++ = 'D';
1327 *q++ = 'T';
1328
1329 /* The string may contain doubled quotes so scan and skip as needed. */
1330 for (; len > 0; len--)
1331 {
1332 c = *q++ = *p++;
1333 if (c == delim)
1334 p++; /* Skip the doubled delimiter. */
1335 }
1336
1337 /* Adjust the string length by two now that we are done. */
1338 *length += 2;
1339
1340 return res;
1341 }
1342
1343
1344 /* This function is in the main loop for a formatted data transfer
1345 statement. It would be natural to implement this as a coroutine
1346 with the user program, but C makes that awkward. We loop,
1347 processing format elements. When we actually have to transfer
1348 data instead of just setting flags, we return control to the user
1349 program which calls a function that supplies the address and type
1350 of the next element, then comes back here to process it. */
1351
1352 static void
1353 formatted_transfer_scalar_read (st_parameter_dt *dtp, bt type, void *p, int kind,
1354 size_t size)
1355 {
1356 int pos, bytes_used;
1357 const fnode *f;
1358 format_token t;
1359 int n;
1360 int consume_data_flag;
1361
1362 /* Change a complex data item into a pair of reals. */
1363
1364 n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
1365 if (type == BT_COMPLEX)
1366 {
1367 type = BT_REAL;
1368 size /= 2;
1369 }
1370
1371 /* If there's an EOR condition, we simulate finalizing the transfer
1372 by doing nothing. */
1373 if (dtp->u.p.eor_condition)
1374 return;
1375
1376 /* Set this flag so that commas in reads cause the read to complete before
1377 the entire field has been read. The next read field will start right after
1378 the comma in the stream. (Set to 0 for character reads). */
1379 dtp->u.p.sf_read_comma =
1380 dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
1381
1382 for (;;)
1383 {
1384 /* If reversion has occurred and there is another real data item,
1385 then we have to move to the next record. */
1386 if (dtp->u.p.reversion_flag && n > 0)
1387 {
1388 dtp->u.p.reversion_flag = 0;
1389 next_record (dtp, 0);
1390 }
1391
1392 consume_data_flag = 1;
1393 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
1394 break;
1395
1396 f = next_format (dtp);
1397 if (f == NULL)
1398 {
1399 /* No data descriptors left. */
1400 if (unlikely (n > 0))
1401 generate_error (&dtp->common, LIBERROR_FORMAT,
1402 "Insufficient data descriptors in format after reversion");
1403 return;
1404 }
1405
1406 t = f->format;
1407
1408 bytes_used = (int)(dtp->u.p.current_unit->recl
1409 - dtp->u.p.current_unit->bytes_left);
1410
1411 if (is_stream_io(dtp))
1412 bytes_used = 0;
1413
1414 switch (t)
1415 {
1416 case FMT_I:
1417 if (n == 0)
1418 goto need_read_data;
1419 if (require_type (dtp, BT_INTEGER, type, f))
1420 return;
1421 read_decimal (dtp, f, p, kind);
1422 break;
1423
1424 case FMT_B:
1425 if (n == 0)
1426 goto need_read_data;
1427 if (!(compile_options.allow_std & GFC_STD_GNU)
1428 && require_numeric_type (dtp, type, f))
1429 return;
1430 if (!(compile_options.allow_std & GFC_STD_F2008)
1431 && require_type (dtp, BT_INTEGER, type, f))
1432 return;
1433 read_radix (dtp, f, p, kind, 2);
1434 break;
1435
1436 case FMT_O:
1437 if (n == 0)
1438 goto need_read_data;
1439 if (!(compile_options.allow_std & GFC_STD_GNU)
1440 && require_numeric_type (dtp, type, f))
1441 return;
1442 if (!(compile_options.allow_std & GFC_STD_F2008)
1443 && require_type (dtp, BT_INTEGER, type, f))
1444 return;
1445 read_radix (dtp, f, p, kind, 8);
1446 break;
1447
1448 case FMT_Z:
1449 if (n == 0)
1450 goto need_read_data;
1451 if (!(compile_options.allow_std & GFC_STD_GNU)
1452 && require_numeric_type (dtp, type, f))
1453 return;
1454 if (!(compile_options.allow_std & GFC_STD_F2008)
1455 && require_type (dtp, BT_INTEGER, type, f))
1456 return;
1457 read_radix (dtp, f, p, kind, 16);
1458 break;
1459
1460 case FMT_A:
1461 if (n == 0)
1462 goto need_read_data;
1463
1464 /* It is possible to have FMT_A with something not BT_CHARACTER such
1465 as when writing out hollerith strings, so check both type
1466 and kind before calling wide character routines. */
1467 if (type == BT_CHARACTER && kind == 4)
1468 read_a_char4 (dtp, f, p, size);
1469 else
1470 read_a (dtp, f, p, size);
1471 break;
1472
1473 case FMT_L:
1474 if (n == 0)
1475 goto need_read_data;
1476 read_l (dtp, f, p, kind);
1477 break;
1478
1479 case FMT_D:
1480 if (n == 0)
1481 goto need_read_data;
1482 if (require_type (dtp, BT_REAL, type, f))
1483 return;
1484 read_f (dtp, f, p, kind);
1485 break;
1486
1487 case FMT_DT:
1488 if (n == 0)
1489 goto need_read_data;
1490
1491 if (check_dtio_proc (dtp, f))
1492 return;
1493 if (require_type (dtp, BT_CLASS, type, f))
1494 return;
1495 int unit = dtp->u.p.current_unit->unit_number;
1496 char dt[] = "DT";
1497 char tmp_iomsg[IOMSG_LEN] = "";
1498 char *child_iomsg;
1499 gfc_charlen_type child_iomsg_len;
1500 int noiostat;
1501 int *child_iostat = NULL;
1502 char *iotype;
1503 gfc_charlen_type iotype_len = f->u.udf.string_len;
1504
1505 /* Build the iotype string. */
1506 if (iotype_len == 0)
1507 {
1508 iotype_len = 2;
1509 iotype = dt;
1510 }
1511 else
1512 iotype = get_dt_format (f->u.udf.string, &iotype_len);
1513
1514 /* Set iostat, intent(out). */
1515 noiostat = 0;
1516 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
1517 dtp->common.iostat : &noiostat;
1518
1519 /* Set iomsg, intent(inout). */
1520 if (dtp->common.flags & IOPARM_HAS_IOMSG)
1521 {
1522 child_iomsg = dtp->common.iomsg;
1523 child_iomsg_len = dtp->common.iomsg_len;
1524 }
1525 else
1526 {
1527 child_iomsg = tmp_iomsg;
1528 child_iomsg_len = IOMSG_LEN;
1529 }
1530
1531 /* Call the user defined formatted READ procedure. */
1532 dtp->u.p.current_unit->child_dtio++;
1533 dtp->u.p.current_unit->last_char = EOF - 1;
1534 dtp->u.p.fdtio_ptr (p, &unit, iotype, f->u.udf.vlist,
1535 child_iostat, child_iomsg,
1536 iotype_len, child_iomsg_len);
1537 dtp->u.p.current_unit->child_dtio--;
1538
1539 if (f->u.udf.string_len != 0)
1540 free (iotype);
1541 /* Note: vlist is freed in free_format_data. */
1542 break;
1543
1544 case FMT_E:
1545 if (n == 0)
1546 goto need_read_data;
1547 if (require_type (dtp, BT_REAL, type, f))
1548 return;
1549 read_f (dtp, f, p, kind);
1550 break;
1551
1552 case FMT_EN:
1553 if (n == 0)
1554 goto need_read_data;
1555 if (require_type (dtp, BT_REAL, type, f))
1556 return;
1557 read_f (dtp, f, p, kind);
1558 break;
1559
1560 case FMT_ES:
1561 if (n == 0)
1562 goto need_read_data;
1563 if (require_type (dtp, BT_REAL, type, f))
1564 return;
1565 read_f (dtp, f, p, kind);
1566 break;
1567
1568 case FMT_F:
1569 if (n == 0)
1570 goto need_read_data;
1571 if (require_type (dtp, BT_REAL, type, f))
1572 return;
1573 read_f (dtp, f, p, kind);
1574 break;
1575
1576 case FMT_G:
1577 if (n == 0)
1578 goto need_read_data;
1579 switch (type)
1580 {
1581 case BT_INTEGER:
1582 read_decimal (dtp, f, p, kind);
1583 break;
1584 case BT_LOGICAL:
1585 read_l (dtp, f, p, kind);
1586 break;
1587 case BT_CHARACTER:
1588 if (kind == 4)
1589 read_a_char4 (dtp, f, p, size);
1590 else
1591 read_a (dtp, f, p, size);
1592 break;
1593 case BT_REAL:
1594 read_f (dtp, f, p, kind);
1595 break;
1596 default:
1597 internal_error (&dtp->common, "formatted_transfer(): Bad type");
1598 }
1599 break;
1600
1601 case FMT_STRING:
1602 consume_data_flag = 0;
1603 format_error (dtp, f, "Constant string in input format");
1604 return;
1605
1606 /* Format codes that don't transfer data. */
1607 case FMT_X:
1608 case FMT_TR:
1609 consume_data_flag = 0;
1610 dtp->u.p.skips += f->u.n;
1611 pos = bytes_used + dtp->u.p.skips - 1;
1612 dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
1613 read_x (dtp, f->u.n);
1614 break;
1615
1616 case FMT_TL:
1617 case FMT_T:
1618 consume_data_flag = 0;
1619
1620 if (f->format == FMT_TL)
1621 {
1622 /* Handle the special case when no bytes have been used yet.
1623 Cannot go below zero. */
1624 if (bytes_used == 0)
1625 {
1626 dtp->u.p.pending_spaces -= f->u.n;
1627 dtp->u.p.skips -= f->u.n;
1628 dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
1629 }
1630
1631 pos = bytes_used - f->u.n;
1632 }
1633 else /* FMT_T */
1634 pos = f->u.n - 1;
1635
1636 /* Standard 10.6.1.1: excessive left tabbing is reset to the
1637 left tab limit. We do not check if the position has gone
1638 beyond the end of record because a subsequent tab could
1639 bring us back again. */
1640 pos = pos < 0 ? 0 : pos;
1641
1642 dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
1643 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
1644 + pos - dtp->u.p.max_pos;
1645 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
1646 ? 0 : dtp->u.p.pending_spaces;
1647 if (dtp->u.p.skips == 0)
1648 break;
1649
1650 /* Adjust everything for end-of-record condition */
1651 if (dtp->u.p.sf_seen_eor && !is_internal_unit (dtp))
1652 {
1653 dtp->u.p.current_unit->bytes_left -= dtp->u.p.sf_seen_eor;
1654 dtp->u.p.skips -= dtp->u.p.sf_seen_eor;
1655 bytes_used = pos;
1656 if (dtp->u.p.pending_spaces == 0)
1657 dtp->u.p.sf_seen_eor = 0;
1658 }
1659 if (dtp->u.p.skips < 0)
1660 {
1661 if (is_internal_unit (dtp))
1662 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
1663 else
1664 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
1665 dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
1666 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1667 }
1668 else
1669 read_x (dtp, dtp->u.p.skips);
1670 break;
1671
1672 case FMT_S:
1673 consume_data_flag = 0;
1674 dtp->u.p.sign_status = SIGN_S;
1675 break;
1676
1677 case FMT_SS:
1678 consume_data_flag = 0;
1679 dtp->u.p.sign_status = SIGN_SS;
1680 break;
1681
1682 case FMT_SP:
1683 consume_data_flag = 0;
1684 dtp->u.p.sign_status = SIGN_SP;
1685 break;
1686
1687 case FMT_BN:
1688 consume_data_flag = 0 ;
1689 dtp->u.p.blank_status = BLANK_NULL;
1690 break;
1691
1692 case FMT_BZ:
1693 consume_data_flag = 0;
1694 dtp->u.p.blank_status = BLANK_ZERO;
1695 break;
1696
1697 case FMT_DC:
1698 consume_data_flag = 0;
1699 dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
1700 break;
1701
1702 case FMT_DP:
1703 consume_data_flag = 0;
1704 dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
1705 break;
1706
1707 case FMT_RC:
1708 consume_data_flag = 0;
1709 dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
1710 break;
1711
1712 case FMT_RD:
1713 consume_data_flag = 0;
1714 dtp->u.p.current_unit->round_status = ROUND_DOWN;
1715 break;
1716
1717 case FMT_RN:
1718 consume_data_flag = 0;
1719 dtp->u.p.current_unit->round_status = ROUND_NEAREST;
1720 break;
1721
1722 case FMT_RP:
1723 consume_data_flag = 0;
1724 dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
1725 break;
1726
1727 case FMT_RU:
1728 consume_data_flag = 0;
1729 dtp->u.p.current_unit->round_status = ROUND_UP;
1730 break;
1731
1732 case FMT_RZ:
1733 consume_data_flag = 0;
1734 dtp->u.p.current_unit->round_status = ROUND_ZERO;
1735 break;
1736
1737 case FMT_P:
1738 consume_data_flag = 0;
1739 dtp->u.p.scale_factor = f->u.k;
1740 break;
1741
1742 case FMT_DOLLAR:
1743 consume_data_flag = 0;
1744 dtp->u.p.seen_dollar = 1;
1745 break;
1746
1747 case FMT_SLASH:
1748 consume_data_flag = 0;
1749 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1750 next_record (dtp, 0);
1751 break;
1752
1753 case FMT_COLON:
1754 /* A colon descriptor causes us to exit this loop (in
1755 particular preventing another / descriptor from being
1756 processed) unless there is another data item to be
1757 transferred. */
1758 consume_data_flag = 0;
1759 if (n == 0)
1760 return;
1761 break;
1762
1763 default:
1764 internal_error (&dtp->common, "Bad format node");
1765 }
1766
1767 /* Adjust the item count and data pointer. */
1768
1769 if ((consume_data_flag > 0) && (n > 0))
1770 {
1771 n--;
1772 p = ((char *) p) + size;
1773 }
1774
1775 dtp->u.p.skips = 0;
1776
1777 pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
1778 dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
1779 }
1780
1781 return;
1782
1783 /* Come here when we need a data descriptor but don't have one. We
1784 push the current format node back onto the input, then return and
1785 let the user program call us back with the data. */
1786 need_read_data:
1787 unget_format (dtp, f);
1788 }
1789
1790
1791 static void
1792 formatted_transfer_scalar_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1793 size_t size)
1794 {
1795 int pos, bytes_used;
1796 const fnode *f;
1797 format_token t;
1798 int n;
1799 int consume_data_flag;
1800
1801 /* Change a complex data item into a pair of reals. */
1802
1803 n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
1804 if (type == BT_COMPLEX)
1805 {
1806 type = BT_REAL;
1807 size /= 2;
1808 }
1809
1810 /* If there's an EOR condition, we simulate finalizing the transfer
1811 by doing nothing. */
1812 if (dtp->u.p.eor_condition)
1813 return;
1814
1815 /* Set this flag so that commas in reads cause the read to complete before
1816 the entire field has been read. The next read field will start right after
1817 the comma in the stream. (Set to 0 for character reads). */
1818 dtp->u.p.sf_read_comma =
1819 dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
1820
1821 for (;;)
1822 {
1823 /* If reversion has occurred and there is another real data item,
1824 then we have to move to the next record. */
1825 if (dtp->u.p.reversion_flag && n > 0)
1826 {
1827 dtp->u.p.reversion_flag = 0;
1828 next_record (dtp, 0);
1829 }
1830
1831 consume_data_flag = 1;
1832 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
1833 break;
1834
1835 f = next_format (dtp);
1836 if (f == NULL)
1837 {
1838 /* No data descriptors left. */
1839 if (unlikely (n > 0))
1840 generate_error (&dtp->common, LIBERROR_FORMAT,
1841 "Insufficient data descriptors in format after reversion");
1842 return;
1843 }
1844
1845 /* Now discharge T, TR and X movements to the right. This is delayed
1846 until a data producing format to suppress trailing spaces. */
1847
1848 t = f->format;
1849 if (dtp->u.p.mode == WRITING && dtp->u.p.skips != 0
1850 && ((n>0 && ( t == FMT_I || t == FMT_B || t == FMT_O
1851 || t == FMT_Z || t == FMT_F || t == FMT_E
1852 || t == FMT_EN || t == FMT_ES || t == FMT_G
1853 || t == FMT_L || t == FMT_A || t == FMT_D
1854 || t == FMT_DT))
1855 || t == FMT_STRING))
1856 {
1857 if (dtp->u.p.skips > 0)
1858 {
1859 int tmp;
1860 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
1861 tmp = (int)(dtp->u.p.current_unit->recl
1862 - dtp->u.p.current_unit->bytes_left);
1863 dtp->u.p.max_pos =
1864 dtp->u.p.max_pos > tmp ? dtp->u.p.max_pos : tmp;
1865 dtp->u.p.skips = 0;
1866 }
1867 if (dtp->u.p.skips < 0)
1868 {
1869 if (is_internal_unit (dtp))
1870 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
1871 else
1872 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
1873 dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
1874 }
1875 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1876 }
1877
1878 bytes_used = (int)(dtp->u.p.current_unit->recl
1879 - dtp->u.p.current_unit->bytes_left);
1880
1881 if (is_stream_io(dtp))
1882 bytes_used = 0;
1883
1884 switch (t)
1885 {
1886 case FMT_I:
1887 if (n == 0)
1888 goto need_data;
1889 if (require_type (dtp, BT_INTEGER, type, f))
1890 return;
1891 write_i (dtp, f, p, kind);
1892 break;
1893
1894 case FMT_B:
1895 if (n == 0)
1896 goto need_data;
1897 if (!(compile_options.allow_std & GFC_STD_GNU)
1898 && require_numeric_type (dtp, type, f))
1899 return;
1900 if (!(compile_options.allow_std & GFC_STD_F2008)
1901 && require_type (dtp, BT_INTEGER, type, f))
1902 return;
1903 write_b (dtp, f, p, kind);
1904 break;
1905
1906 case FMT_O:
1907 if (n == 0)
1908 goto need_data;
1909 if (!(compile_options.allow_std & GFC_STD_GNU)
1910 && require_numeric_type (dtp, type, f))
1911 return;
1912 if (!(compile_options.allow_std & GFC_STD_F2008)
1913 && require_type (dtp, BT_INTEGER, type, f))
1914 return;
1915 write_o (dtp, f, p, kind);
1916 break;
1917
1918 case FMT_Z:
1919 if (n == 0)
1920 goto need_data;
1921 if (!(compile_options.allow_std & GFC_STD_GNU)
1922 && require_numeric_type (dtp, type, f))
1923 return;
1924 if (!(compile_options.allow_std & GFC_STD_F2008)
1925 && require_type (dtp, BT_INTEGER, type, f))
1926 return;
1927 write_z (dtp, f, p, kind);
1928 break;
1929
1930 case FMT_A:
1931 if (n == 0)
1932 goto need_data;
1933
1934 /* It is possible to have FMT_A with something not BT_CHARACTER such
1935 as when writing out hollerith strings, so check both type
1936 and kind before calling wide character routines. */
1937 if (type == BT_CHARACTER && kind == 4)
1938 write_a_char4 (dtp, f, p, size);
1939 else
1940 write_a (dtp, f, p, size);
1941 break;
1942
1943 case FMT_L:
1944 if (n == 0)
1945 goto need_data;
1946 write_l (dtp, f, p, kind);
1947 break;
1948
1949 case FMT_D:
1950 if (n == 0)
1951 goto need_data;
1952 if (require_type (dtp, BT_REAL, type, f))
1953 return;
1954 write_d (dtp, f, p, kind);
1955 break;
1956
1957 case FMT_DT:
1958 if (n == 0)
1959 goto need_data;
1960 int unit = dtp->u.p.current_unit->unit_number;
1961 char dt[] = "DT";
1962 char tmp_iomsg[IOMSG_LEN] = "";
1963 char *child_iomsg;
1964 gfc_charlen_type child_iomsg_len;
1965 int noiostat;
1966 int *child_iostat = NULL;
1967 char *iotype;
1968 gfc_charlen_type iotype_len = f->u.udf.string_len;
1969
1970 /* Build the iotype string. */
1971 if (iotype_len == 0)
1972 {
1973 iotype_len = 2;
1974 iotype = dt;
1975 }
1976 else
1977 iotype = get_dt_format (f->u.udf.string, &iotype_len);
1978
1979 /* Set iostat, intent(out). */
1980 noiostat = 0;
1981 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
1982 dtp->common.iostat : &noiostat;
1983
1984 /* Set iomsg, intent(inout). */
1985 if (dtp->common.flags & IOPARM_HAS_IOMSG)
1986 {
1987 child_iomsg = dtp->common.iomsg;
1988 child_iomsg_len = dtp->common.iomsg_len;
1989 }
1990 else
1991 {
1992 child_iomsg = tmp_iomsg;
1993 child_iomsg_len = IOMSG_LEN;
1994 }
1995
1996 if (check_dtio_proc (dtp, f))
1997 return;
1998
1999 /* Call the user defined formatted WRITE procedure. */
2000 dtp->u.p.current_unit->child_dtio++;
2001
2002 dtp->u.p.fdtio_ptr (p, &unit, iotype, f->u.udf.vlist,
2003 child_iostat, child_iomsg,
2004 iotype_len, child_iomsg_len);
2005 dtp->u.p.current_unit->child_dtio--;
2006
2007 if (f->u.udf.string_len != 0)
2008 free (iotype);
2009 /* Note: vlist is freed in free_format_data. */
2010 break;
2011
2012 case FMT_E:
2013 if (n == 0)
2014 goto need_data;
2015 if (require_type (dtp, BT_REAL, type, f))
2016 return;
2017 write_e (dtp, f, p, kind);
2018 break;
2019
2020 case FMT_EN:
2021 if (n == 0)
2022 goto need_data;
2023 if (require_type (dtp, BT_REAL, type, f))
2024 return;
2025 write_en (dtp, f, p, kind);
2026 break;
2027
2028 case FMT_ES:
2029 if (n == 0)
2030 goto need_data;
2031 if (require_type (dtp, BT_REAL, type, f))
2032 return;
2033 write_es (dtp, f, p, kind);
2034 break;
2035
2036 case FMT_F:
2037 if (n == 0)
2038 goto need_data;
2039 if (require_type (dtp, BT_REAL, type, f))
2040 return;
2041 write_f (dtp, f, p, kind);
2042 break;
2043
2044 case FMT_G:
2045 if (n == 0)
2046 goto need_data;
2047 switch (type)
2048 {
2049 case BT_INTEGER:
2050 write_i (dtp, f, p, kind);
2051 break;
2052 case BT_LOGICAL:
2053 write_l (dtp, f, p, kind);
2054 break;
2055 case BT_CHARACTER:
2056 if (kind == 4)
2057 write_a_char4 (dtp, f, p, size);
2058 else
2059 write_a (dtp, f, p, size);
2060 break;
2061 case BT_REAL:
2062 if (f->u.real.w == 0)
2063 write_real_g0 (dtp, p, kind, f->u.real.d);
2064 else
2065 write_d (dtp, f, p, kind);
2066 break;
2067 default:
2068 internal_error (&dtp->common,
2069 "formatted_transfer(): Bad type");
2070 }
2071 break;
2072
2073 case FMT_STRING:
2074 consume_data_flag = 0;
2075 write_constant_string (dtp, f);
2076 break;
2077
2078 /* Format codes that don't transfer data. */
2079 case FMT_X:
2080 case FMT_TR:
2081 consume_data_flag = 0;
2082
2083 dtp->u.p.skips += f->u.n;
2084 pos = bytes_used + dtp->u.p.skips - 1;
2085 dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
2086 /* Writes occur just before the switch on f->format, above, so
2087 that trailing blanks are suppressed, unless we are doing a
2088 non-advancing write in which case we want to output the blanks
2089 now. */
2090 if (dtp->u.p.advance_status == ADVANCE_NO)
2091 {
2092 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
2093 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
2094 }
2095 break;
2096
2097 case FMT_TL:
2098 case FMT_T:
2099 consume_data_flag = 0;
2100
2101 if (f->format == FMT_TL)
2102 {
2103
2104 /* Handle the special case when no bytes have been used yet.
2105 Cannot go below zero. */
2106 if (bytes_used == 0)
2107 {
2108 dtp->u.p.pending_spaces -= f->u.n;
2109 dtp->u.p.skips -= f->u.n;
2110 dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
2111 }
2112
2113 pos = bytes_used - f->u.n;
2114 }
2115 else /* FMT_T */
2116 pos = f->u.n - dtp->u.p.pending_spaces - 1;
2117
2118 /* Standard 10.6.1.1: excessive left tabbing is reset to the
2119 left tab limit. We do not check if the position has gone
2120 beyond the end of record because a subsequent tab could
2121 bring us back again. */
2122 pos = pos < 0 ? 0 : pos;
2123
2124 dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
2125 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
2126 + pos - dtp->u.p.max_pos;
2127 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
2128 ? 0 : dtp->u.p.pending_spaces;
2129 break;
2130
2131 case FMT_S:
2132 consume_data_flag = 0;
2133 dtp->u.p.sign_status = SIGN_S;
2134 break;
2135
2136 case FMT_SS:
2137 consume_data_flag = 0;
2138 dtp->u.p.sign_status = SIGN_SS;
2139 break;
2140
2141 case FMT_SP:
2142 consume_data_flag = 0;
2143 dtp->u.p.sign_status = SIGN_SP;
2144 break;
2145
2146 case FMT_BN:
2147 consume_data_flag = 0 ;
2148 dtp->u.p.blank_status = BLANK_NULL;
2149 break;
2150
2151 case FMT_BZ:
2152 consume_data_flag = 0;
2153 dtp->u.p.blank_status = BLANK_ZERO;
2154 break;
2155
2156 case FMT_DC:
2157 consume_data_flag = 0;
2158 dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
2159 break;
2160
2161 case FMT_DP:
2162 consume_data_flag = 0;
2163 dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
2164 break;
2165
2166 case FMT_RC:
2167 consume_data_flag = 0;
2168 dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
2169 break;
2170
2171 case FMT_RD:
2172 consume_data_flag = 0;
2173 dtp->u.p.current_unit->round_status = ROUND_DOWN;
2174 break;
2175
2176 case FMT_RN:
2177 consume_data_flag = 0;
2178 dtp->u.p.current_unit->round_status = ROUND_NEAREST;
2179 break;
2180
2181 case FMT_RP:
2182 consume_data_flag = 0;
2183 dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
2184 break;
2185
2186 case FMT_RU:
2187 consume_data_flag = 0;
2188 dtp->u.p.current_unit->round_status = ROUND_UP;
2189 break;
2190
2191 case FMT_RZ:
2192 consume_data_flag = 0;
2193 dtp->u.p.current_unit->round_status = ROUND_ZERO;
2194 break;
2195
2196 case FMT_P:
2197 consume_data_flag = 0;
2198 dtp->u.p.scale_factor = f->u.k;
2199 break;
2200
2201 case FMT_DOLLAR:
2202 consume_data_flag = 0;
2203 dtp->u.p.seen_dollar = 1;
2204 break;
2205
2206 case FMT_SLASH:
2207 consume_data_flag = 0;
2208 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
2209 next_record (dtp, 0);
2210 break;
2211
2212 case FMT_COLON:
2213 /* A colon descriptor causes us to exit this loop (in
2214 particular preventing another / descriptor from being
2215 processed) unless there is another data item to be
2216 transferred. */
2217 consume_data_flag = 0;
2218 if (n == 0)
2219 return;
2220 break;
2221
2222 default:
2223 internal_error (&dtp->common, "Bad format node");
2224 }
2225
2226 /* Adjust the item count and data pointer. */
2227
2228 if ((consume_data_flag > 0) && (n > 0))
2229 {
2230 n--;
2231 p = ((char *) p) + size;
2232 }
2233
2234 pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
2235 dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
2236 }
2237
2238 return;
2239
2240 /* Come here when we need a data descriptor but don't have one. We
2241 push the current format node back onto the input, then return and
2242 let the user program call us back with the data. */
2243 need_data:
2244 unget_format (dtp, f);
2245 }
2246
2247 /* This function is first called from data_init_transfer to initiate the loop
2248 over each item in the format, transferring data as required. Subsequent
2249 calls to this function occur for each data item foound in the READ/WRITE
2250 statement. The item_count is incremented for each call. Since the first
2251 call is from data_transfer_init, the item_count is always one greater than
2252 the actual count number of the item being transferred. */
2253
2254 static void
2255 formatted_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
2256 size_t size, size_t nelems)
2257 {
2258 size_t elem;
2259 char *tmp;
2260
2261 tmp = (char *) p;
2262 size_t stride = type == BT_CHARACTER ?
2263 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
2264 if (dtp->u.p.mode == READING)
2265 {
2266 /* Big loop over all the elements. */
2267 for (elem = 0; elem < nelems; elem++)
2268 {
2269 dtp->u.p.item_count++;
2270 formatted_transfer_scalar_read (dtp, type, tmp + stride*elem, kind, size);
2271 }
2272 }
2273 else
2274 {
2275 /* Big loop over all the elements. */
2276 for (elem = 0; elem < nelems; elem++)
2277 {
2278 dtp->u.p.item_count++;
2279 formatted_transfer_scalar_write (dtp, type, tmp + stride*elem, kind, size);
2280 }
2281 }
2282 }
2283
2284
2285 /* Data transfer entry points. The type of the data entity is
2286 implicit in the subroutine call. This prevents us from having to
2287 share a common enum with the compiler. */
2288
2289 void
2290 transfer_integer (st_parameter_dt *dtp, void *p, int kind)
2291 {
2292 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2293 return;
2294 dtp->u.p.transfer (dtp, BT_INTEGER, p, kind, kind, 1);
2295 }
2296
2297 void
2298 transfer_integer_write (st_parameter_dt *dtp, void *p, int kind)
2299 {
2300 transfer_integer (dtp, p, kind);
2301 }
2302
2303 void
2304 transfer_real (st_parameter_dt *dtp, void *p, int kind)
2305 {
2306 size_t size;
2307 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2308 return;
2309 size = size_from_real_kind (kind);
2310 dtp->u.p.transfer (dtp, BT_REAL, p, kind, size, 1);
2311 }
2312
2313 void
2314 transfer_real_write (st_parameter_dt *dtp, void *p, int kind)
2315 {
2316 transfer_real (dtp, p, kind);
2317 }
2318
2319 void
2320 transfer_logical (st_parameter_dt *dtp, void *p, int kind)
2321 {
2322 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2323 return;
2324 dtp->u.p.transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
2325 }
2326
2327 void
2328 transfer_logical_write (st_parameter_dt *dtp, void *p, int kind)
2329 {
2330 transfer_logical (dtp, p, kind);
2331 }
2332
2333 void
2334 transfer_character (st_parameter_dt *dtp, void *p, int len)
2335 {
2336 static char *empty_string[0];
2337
2338 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2339 return;
2340
2341 /* Strings of zero length can have p == NULL, which confuses the
2342 transfer routines into thinking we need more data elements. To avoid
2343 this, we give them a nice pointer. */
2344 if (len == 0 && p == NULL)
2345 p = empty_string;
2346
2347 /* Set kind here to 1. */
2348 dtp->u.p.transfer (dtp, BT_CHARACTER, p, 1, len, 1);
2349 }
2350
2351 void
2352 transfer_character_write (st_parameter_dt *dtp, void *p, int len)
2353 {
2354 transfer_character (dtp, p, len);
2355 }
2356
2357 void
2358 transfer_character_wide (st_parameter_dt *dtp, void *p, int len, int kind)
2359 {
2360 static char *empty_string[0];
2361
2362 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2363 return;
2364
2365 /* Strings of zero length can have p == NULL, which confuses the
2366 transfer routines into thinking we need more data elements. To avoid
2367 this, we give them a nice pointer. */
2368 if (len == 0 && p == NULL)
2369 p = empty_string;
2370
2371 /* Here we pass the actual kind value. */
2372 dtp->u.p.transfer (dtp, BT_CHARACTER, p, kind, len, 1);
2373 }
2374
2375 void
2376 transfer_character_wide_write (st_parameter_dt *dtp, void *p, int len, int kind)
2377 {
2378 transfer_character_wide (dtp, p, len, kind);
2379 }
2380
2381 void
2382 transfer_complex (st_parameter_dt *dtp, void *p, int kind)
2383 {
2384 size_t size;
2385 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2386 return;
2387 size = size_from_complex_kind (kind);
2388 dtp->u.p.transfer (dtp, BT_COMPLEX, p, kind, size, 1);
2389 }
2390
2391 void
2392 transfer_complex_write (st_parameter_dt *dtp, void *p, int kind)
2393 {
2394 transfer_complex (dtp, p, kind);
2395 }
2396
2397 void
2398 transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
2399 gfc_charlen_type charlen)
2400 {
2401 index_type count[GFC_MAX_DIMENSIONS];
2402 index_type extent[GFC_MAX_DIMENSIONS];
2403 index_type stride[GFC_MAX_DIMENSIONS];
2404 index_type stride0, rank, size, n;
2405 size_t tsize;
2406 char *data;
2407 bt iotype;
2408
2409 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2410 return;
2411
2412 iotype = (bt) GFC_DESCRIPTOR_TYPE (desc);
2413 size = iotype == BT_CHARACTER ? charlen : GFC_DESCRIPTOR_SIZE (desc);
2414
2415 rank = GFC_DESCRIPTOR_RANK (desc);
2416 for (n = 0; n < rank; n++)
2417 {
2418 count[n] = 0;
2419 stride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(desc,n);
2420 extent[n] = GFC_DESCRIPTOR_EXTENT(desc,n);
2421
2422 /* If the extent of even one dimension is zero, then the entire
2423 array section contains zero elements, so we return after writing
2424 a zero array record. */
2425 if (extent[n] <= 0)
2426 {
2427 data = NULL;
2428 tsize = 0;
2429 dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
2430 return;
2431 }
2432 }
2433
2434 stride0 = stride[0];
2435
2436 /* If the innermost dimension has a stride of 1, we can do the transfer
2437 in contiguous chunks. */
2438 if (stride0 == size)
2439 tsize = extent[0];
2440 else
2441 tsize = 1;
2442
2443 data = GFC_DESCRIPTOR_DATA (desc);
2444
2445 while (data)
2446 {
2447 dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
2448 data += stride0 * tsize;
2449 count[0] += tsize;
2450 n = 0;
2451 while (count[n] == extent[n])
2452 {
2453 count[n] = 0;
2454 data -= stride[n] * extent[n];
2455 n++;
2456 if (n == rank)
2457 {
2458 data = NULL;
2459 break;
2460 }
2461 else
2462 {
2463 count[n]++;
2464 data += stride[n];
2465 }
2466 }
2467 }
2468 }
2469
2470 void
2471 transfer_array_write (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
2472 gfc_charlen_type charlen)
2473 {
2474 transfer_array (dtp, desc, kind, charlen);
2475 }
2476
2477
2478 /* User defined input/output iomsg. */
2479
2480 #define IOMSG_LEN 256
2481
2482 void
2483 transfer_derived (st_parameter_dt *parent, void *dtio_source, void *dtio_proc)
2484 {
2485 if (parent->u.p.current_unit)
2486 {
2487 if (parent->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2488 parent->u.p.ufdtio_ptr = (unformatted_dtio) dtio_proc;
2489 else
2490 parent->u.p.fdtio_ptr = (formatted_dtio) dtio_proc;
2491 }
2492 parent->u.p.transfer (parent, BT_CLASS, dtio_source, 0, 0, 1);
2493 }
2494
2495
2496 /* Preposition a sequential unformatted file while reading. */
2497
2498 static void
2499 us_read (st_parameter_dt *dtp, int continued)
2500 {
2501 ssize_t n, nr;
2502 GFC_INTEGER_4 i4;
2503 GFC_INTEGER_8 i8;
2504 gfc_offset i;
2505
2506 if (compile_options.record_marker == 0)
2507 n = sizeof (GFC_INTEGER_4);
2508 else
2509 n = compile_options.record_marker;
2510
2511 nr = sread (dtp->u.p.current_unit->s, &i, n);
2512 if (unlikely (nr < 0))
2513 {
2514 generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
2515 return;
2516 }
2517 else if (nr == 0)
2518 {
2519 hit_eof (dtp);
2520 return; /* end of file */
2521 }
2522 else if (unlikely (n != nr))
2523 {
2524 generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
2525 return;
2526 }
2527
2528 /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here. */
2529 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
2530 {
2531 switch (nr)
2532 {
2533 case sizeof(GFC_INTEGER_4):
2534 memcpy (&i4, &i, sizeof (i4));
2535 i = i4;
2536 break;
2537
2538 case sizeof(GFC_INTEGER_8):
2539 memcpy (&i8, &i, sizeof (i8));
2540 i = i8;
2541 break;
2542
2543 default:
2544 runtime_error ("Illegal value for record marker");
2545 break;
2546 }
2547 }
2548 else
2549 {
2550 uint32_t u32;
2551 uint64_t u64;
2552 switch (nr)
2553 {
2554 case sizeof(GFC_INTEGER_4):
2555 memcpy (&u32, &i, sizeof (u32));
2556 u32 = __builtin_bswap32 (u32);
2557 memcpy (&i4, &u32, sizeof (i4));
2558 i = i4;
2559 break;
2560
2561 case sizeof(GFC_INTEGER_8):
2562 memcpy (&u64, &i, sizeof (u64));
2563 u64 = __builtin_bswap64 (u64);
2564 memcpy (&i8, &u64, sizeof (i8));
2565 i = i8;
2566 break;
2567
2568 default:
2569 runtime_error ("Illegal value for record marker");
2570 break;
2571 }
2572 }
2573
2574 if (i >= 0)
2575 {
2576 dtp->u.p.current_unit->bytes_left_subrecord = i;
2577 dtp->u.p.current_unit->continued = 0;
2578 }
2579 else
2580 {
2581 dtp->u.p.current_unit->bytes_left_subrecord = -i;
2582 dtp->u.p.current_unit->continued = 1;
2583 }
2584
2585 if (! continued)
2586 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
2587 }
2588
2589
2590 /* Preposition a sequential unformatted file while writing. This
2591 amount to writing a bogus length that will be filled in later. */
2592
2593 static void
2594 us_write (st_parameter_dt *dtp, int continued)
2595 {
2596 ssize_t nbytes;
2597 gfc_offset dummy;
2598
2599 dummy = 0;
2600
2601 if (compile_options.record_marker == 0)
2602 nbytes = sizeof (GFC_INTEGER_4);
2603 else
2604 nbytes = compile_options.record_marker ;
2605
2606 if (swrite (dtp->u.p.current_unit->s, &dummy, nbytes) != nbytes)
2607 generate_error (&dtp->common, LIBERROR_OS, NULL);
2608
2609 /* For sequential unformatted, if RECL= was not specified in the OPEN
2610 we write until we have more bytes than can fit in the subrecord
2611 markers, then we write a new subrecord. */
2612
2613 dtp->u.p.current_unit->bytes_left_subrecord =
2614 dtp->u.p.current_unit->recl_subrecord;
2615 dtp->u.p.current_unit->continued = continued;
2616 }
2617
2618
2619 /* Position to the next record prior to transfer. We are assumed to
2620 be before the next record. We also calculate the bytes in the next
2621 record. */
2622
2623 static void
2624 pre_position (st_parameter_dt *dtp)
2625 {
2626 if (dtp->u.p.current_unit->current_record)
2627 return; /* Already positioned. */
2628
2629 switch (current_mode (dtp))
2630 {
2631 case FORMATTED_STREAM:
2632 case UNFORMATTED_STREAM:
2633 /* There are no records with stream I/O. If the position was specified
2634 data_transfer_init has already positioned the file. If no position
2635 was specified, we continue from where we last left off. I.e.
2636 there is nothing to do here. */
2637 break;
2638
2639 case UNFORMATTED_SEQUENTIAL:
2640 if (dtp->u.p.mode == READING)
2641 us_read (dtp, 0);
2642 else
2643 us_write (dtp, 0);
2644
2645 break;
2646
2647 case FORMATTED_SEQUENTIAL:
2648 case FORMATTED_DIRECT:
2649 case UNFORMATTED_DIRECT:
2650 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
2651 break;
2652 }
2653
2654 dtp->u.p.current_unit->current_record = 1;
2655 }
2656
2657
2658 /* Initialize things for a data transfer. This code is common for
2659 both reading and writing. */
2660
2661 static void
2662 data_transfer_init (st_parameter_dt *dtp, int read_flag)
2663 {
2664 unit_flags u_flags; /* Used for creating a unit if needed. */
2665 GFC_INTEGER_4 cf = dtp->common.flags;
2666 namelist_info *ionml;
2667
2668 ionml = ((cf & IOPARM_DT_IONML_SET) != 0) ? dtp->u.p.ionml : NULL;
2669
2670 memset (&dtp->u.p, 0, sizeof (dtp->u.p));
2671
2672 dtp->u.p.ionml = ionml;
2673 dtp->u.p.mode = read_flag ? READING : WRITING;
2674 dtp->u.p.namelist_mode = 0;
2675 dtp->u.p.cc.len = 0;
2676
2677 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2678 return;
2679
2680 dtp->u.p.current_unit = get_unit (dtp, 1);
2681
2682 if (dtp->u.p.current_unit == NULL)
2683 {
2684 /* This means we tried to access an external unit < 0 without
2685 having opened it first with NEWUNIT=. */
2686 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2687 "Unit number is negative and unit was not already "
2688 "opened with OPEN(NEWUNIT=...)");
2689 return;
2690 }
2691 else if (dtp->u.p.current_unit->s == NULL)
2692 { /* Open the unit with some default flags. */
2693 st_parameter_open opp;
2694 unit_convert conv;
2695
2696 memset (&u_flags, '\0', sizeof (u_flags));
2697 u_flags.access = ACCESS_SEQUENTIAL;
2698 u_flags.action = ACTION_READWRITE;
2699
2700 /* Is it unformatted? */
2701 if (!(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT
2702 | IOPARM_DT_IONML_SET)))
2703 u_flags.form = FORM_UNFORMATTED;
2704 else
2705 u_flags.form = FORM_UNSPECIFIED;
2706
2707 u_flags.delim = DELIM_UNSPECIFIED;
2708 u_flags.blank = BLANK_UNSPECIFIED;
2709 u_flags.pad = PAD_UNSPECIFIED;
2710 u_flags.decimal = DECIMAL_UNSPECIFIED;
2711 u_flags.encoding = ENCODING_UNSPECIFIED;
2712 u_flags.async = ASYNC_UNSPECIFIED;
2713 u_flags.round = ROUND_UNSPECIFIED;
2714 u_flags.sign = SIGN_UNSPECIFIED;
2715 u_flags.share = SHARE_UNSPECIFIED;
2716 u_flags.cc = CC_UNSPECIFIED;
2717 u_flags.readonly = 0;
2718
2719 u_flags.status = STATUS_UNKNOWN;
2720
2721 conv = get_unformatted_convert (dtp->common.unit);
2722
2723 if (conv == GFC_CONVERT_NONE)
2724 conv = compile_options.convert;
2725
2726 switch (conv)
2727 {
2728 case GFC_CONVERT_NATIVE:
2729 case GFC_CONVERT_SWAP:
2730 break;
2731
2732 case GFC_CONVERT_BIG:
2733 conv = __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
2734 break;
2735
2736 case GFC_CONVERT_LITTLE:
2737 conv = __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
2738 break;
2739
2740 default:
2741 internal_error (&opp.common, "Illegal value for CONVERT");
2742 break;
2743 }
2744
2745 u_flags.convert = conv;
2746
2747 opp.common = dtp->common;
2748 opp.common.flags &= IOPARM_COMMON_MASK;
2749 dtp->u.p.current_unit = new_unit (&opp, dtp->u.p.current_unit, &u_flags);
2750 dtp->common.flags &= ~IOPARM_COMMON_MASK;
2751 dtp->common.flags |= (opp.common.flags & IOPARM_COMMON_MASK);
2752 if (dtp->u.p.current_unit == NULL)
2753 return;
2754 }
2755
2756 if (dtp->u.p.current_unit->child_dtio == 0)
2757 {
2758 if ((cf & IOPARM_DT_HAS_SIZE) != 0)
2759 {
2760 dtp->u.p.current_unit->has_size = true;
2761 /* Initialize the count. */
2762 dtp->u.p.current_unit->size_used = 0;
2763 }
2764 else
2765 dtp->u.p.current_unit->has_size = false;
2766 }
2767 else if (dtp->u.p.current_unit->internal_unit_kind > 0)
2768 dtp->u.p.unit_is_internal = 1;
2769
2770 /* Check the action. */
2771
2772 if (read_flag && dtp->u.p.current_unit->flags.action == ACTION_WRITE)
2773 {
2774 generate_error (&dtp->common, LIBERROR_BAD_ACTION,
2775 "Cannot read from file opened for WRITE");
2776 return;
2777 }
2778
2779 if (!read_flag && dtp->u.p.current_unit->flags.action == ACTION_READ)
2780 {
2781 generate_error (&dtp->common, LIBERROR_BAD_ACTION,
2782 "Cannot write to file opened for READ");
2783 return;
2784 }
2785
2786 dtp->u.p.first_item = 1;
2787
2788 /* Check the format. */
2789
2790 if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
2791 parse_format (dtp);
2792
2793 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED
2794 && (cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
2795 != 0)
2796 {
2797 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2798 "Format present for UNFORMATTED data transfer");
2799 return;
2800 }
2801
2802 if ((cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0 && dtp->u.p.ionml != NULL)
2803 {
2804 if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
2805 {
2806 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2807 "A format cannot be specified with a namelist");
2808 return;
2809 }
2810 }
2811 else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
2812 !(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT)))
2813 {
2814 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2815 "Missing format for FORMATTED data transfer");
2816 return;
2817 }
2818
2819 if (is_internal_unit (dtp)
2820 && dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2821 {
2822 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2823 "Internal file cannot be accessed by UNFORMATTED "
2824 "data transfer");
2825 return;
2826 }
2827
2828 /* Check the record or position number. */
2829
2830 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT
2831 && (cf & IOPARM_DT_HAS_REC) == 0)
2832 {
2833 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2834 "Direct access data transfer requires record number");
2835 return;
2836 }
2837
2838 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
2839 {
2840 if ((cf & IOPARM_DT_HAS_REC) != 0)
2841 {
2842 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2843 "Record number not allowed for sequential access "
2844 "data transfer");
2845 return;
2846 }
2847
2848 if (compile_options.warn_std &&
2849 dtp->u.p.current_unit->endfile == AFTER_ENDFILE)
2850 {
2851 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2852 "Sequential READ or WRITE not allowed after "
2853 "EOF marker, possibly use REWIND or BACKSPACE");
2854 return;
2855 }
2856 }
2857
2858 /* Process the ADVANCE option. */
2859
2860 dtp->u.p.advance_status
2861 = !(cf & IOPARM_DT_HAS_ADVANCE) ? ADVANCE_UNSPECIFIED :
2862 find_option (&dtp->common, dtp->advance, dtp->advance_len, advance_opt,
2863 "Bad ADVANCE parameter in data transfer statement");
2864
2865 if (dtp->u.p.advance_status != ADVANCE_UNSPECIFIED)
2866 {
2867 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
2868 {
2869 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2870 "ADVANCE specification conflicts with sequential "
2871 "access");
2872 return;
2873 }
2874
2875 if (is_internal_unit (dtp))
2876 {
2877 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2878 "ADVANCE specification conflicts with internal file");
2879 return;
2880 }
2881
2882 if ((cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
2883 != IOPARM_DT_HAS_FORMAT)
2884 {
2885 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2886 "ADVANCE specification requires an explicit format");
2887 return;
2888 }
2889 }
2890
2891 /* Child IO is non-advancing and any ADVANCE= specifier is ignored.
2892 F2008 9.6.2.4 */
2893 if (dtp->u.p.current_unit->child_dtio > 0)
2894 dtp->u.p.advance_status = ADVANCE_NO;
2895
2896 if (read_flag)
2897 {
2898 dtp->u.p.current_unit->previous_nonadvancing_write = 0;
2899
2900 if ((cf & IOPARM_EOR) != 0 && dtp->u.p.advance_status != ADVANCE_NO)
2901 {
2902 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2903 "EOR specification requires an ADVANCE specification "
2904 "of NO");
2905 return;
2906 }
2907
2908 if ((cf & IOPARM_DT_HAS_SIZE) != 0
2909 && dtp->u.p.advance_status != ADVANCE_NO)
2910 {
2911 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2912 "SIZE specification requires an ADVANCE "
2913 "specification of NO");
2914 return;
2915 }
2916 }
2917 else
2918 { /* Write constraints. */
2919 if ((cf & IOPARM_END) != 0)
2920 {
2921 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2922 "END specification cannot appear in a write "
2923 "statement");
2924 return;
2925 }
2926
2927 if ((cf & IOPARM_EOR) != 0)
2928 {
2929 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2930 "EOR specification cannot appear in a write "
2931 "statement");
2932 return;
2933 }
2934
2935 if ((cf & IOPARM_DT_HAS_SIZE) != 0)
2936 {
2937 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2938 "SIZE specification cannot appear in a write "
2939 "statement");
2940 return;
2941 }
2942 }
2943
2944 if (dtp->u.p.advance_status == ADVANCE_UNSPECIFIED)
2945 dtp->u.p.advance_status = ADVANCE_YES;
2946
2947 /* Check the decimal mode. */
2948 dtp->u.p.current_unit->decimal_status
2949 = !(cf & IOPARM_DT_HAS_DECIMAL) ? DECIMAL_UNSPECIFIED :
2950 find_option (&dtp->common, dtp->decimal, dtp->decimal_len,
2951 decimal_opt, "Bad DECIMAL parameter in data transfer "
2952 "statement");
2953
2954 if (dtp->u.p.current_unit->decimal_status == DECIMAL_UNSPECIFIED)
2955 dtp->u.p.current_unit->decimal_status = dtp->u.p.current_unit->flags.decimal;
2956
2957 /* Check the round mode. */
2958 dtp->u.p.current_unit->round_status
2959 = !(cf & IOPARM_DT_HAS_ROUND) ? ROUND_UNSPECIFIED :
2960 find_option (&dtp->common, dtp->round, dtp->round_len,
2961 round_opt, "Bad ROUND parameter in data transfer "
2962 "statement");
2963
2964 if (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED)
2965 dtp->u.p.current_unit->round_status = dtp->u.p.current_unit->flags.round;
2966
2967 /* Check the sign mode. */
2968 dtp->u.p.sign_status
2969 = !(cf & IOPARM_DT_HAS_SIGN) ? SIGN_UNSPECIFIED :
2970 find_option (&dtp->common, dtp->sign, dtp->sign_len, sign_opt,
2971 "Bad SIGN parameter in data transfer statement");
2972
2973 if (dtp->u.p.sign_status == SIGN_UNSPECIFIED)
2974 dtp->u.p.sign_status = dtp->u.p.current_unit->flags.sign;
2975
2976 /* Check the blank mode. */
2977 dtp->u.p.blank_status
2978 = !(cf & IOPARM_DT_HAS_BLANK) ? BLANK_UNSPECIFIED :
2979 find_option (&dtp->common, dtp->blank, dtp->blank_len,
2980 blank_opt,
2981 "Bad BLANK parameter in data transfer statement");
2982
2983 if (dtp->u.p.blank_status == BLANK_UNSPECIFIED)
2984 dtp->u.p.blank_status = dtp->u.p.current_unit->flags.blank;
2985
2986 /* Check the delim mode. */
2987 dtp->u.p.current_unit->delim_status
2988 = !(cf & IOPARM_DT_HAS_DELIM) ? DELIM_UNSPECIFIED :
2989 find_option (&dtp->common, dtp->delim, dtp->delim_len,
2990 delim_opt, "Bad DELIM parameter in data transfer statement");
2991
2992 if (dtp->u.p.current_unit->delim_status == DELIM_UNSPECIFIED)
2993 {
2994 if (ionml && dtp->u.p.current_unit->flags.delim == DELIM_UNSPECIFIED)
2995 dtp->u.p.current_unit->delim_status = DELIM_QUOTE;
2996 else
2997 dtp->u.p.current_unit->delim_status = dtp->u.p.current_unit->flags.delim;
2998 }
2999
3000 /* Check the pad mode. */
3001 dtp->u.p.current_unit->pad_status
3002 = !(cf & IOPARM_DT_HAS_PAD) ? PAD_UNSPECIFIED :
3003 find_option (&dtp->common, dtp->pad, dtp->pad_len, pad_opt,
3004 "Bad PAD parameter in data transfer statement");
3005
3006 if (dtp->u.p.current_unit->pad_status == PAD_UNSPECIFIED)
3007 dtp->u.p.current_unit->pad_status = dtp->u.p.current_unit->flags.pad;
3008
3009 /* Check to see if we might be reading what we wrote before */
3010
3011 if (dtp->u.p.mode != dtp->u.p.current_unit->mode
3012 && !is_internal_unit (dtp))
3013 {
3014 int pos = fbuf_reset (dtp->u.p.current_unit);
3015 if (pos != 0)
3016 sseek (dtp->u.p.current_unit->s, pos, SEEK_CUR);
3017 sflush(dtp->u.p.current_unit->s);
3018 }
3019
3020 /* Check the POS= specifier: that it is in range and that it is used with a
3021 unit that has been connected for STREAM access. F2003 9.5.1.10. */
3022
3023 if (((cf & IOPARM_DT_HAS_POS) != 0))
3024 {
3025 if (is_stream_io (dtp))
3026 {
3027
3028 if (dtp->pos <= 0)
3029 {
3030 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3031 "POS=specifier must be positive");
3032 return;
3033 }
3034
3035 if (dtp->pos >= dtp->u.p.current_unit->maxrec)
3036 {
3037 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3038 "POS=specifier too large");
3039 return;
3040 }
3041
3042 dtp->rec = dtp->pos;
3043
3044 if (dtp->u.p.mode == READING)
3045 {
3046 /* Reset the endfile flag; if we hit EOF during reading
3047 we'll set the flag and generate an error at that point
3048 rather than worrying about it here. */
3049 dtp->u.p.current_unit->endfile = NO_ENDFILE;
3050 }
3051
3052 if (dtp->pos != dtp->u.p.current_unit->strm_pos)
3053 {
3054 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3055 if (sseek (dtp->u.p.current_unit->s, dtp->pos - 1, SEEK_SET) < 0)
3056 {
3057 generate_error (&dtp->common, LIBERROR_OS, NULL);
3058 return;
3059 }
3060 dtp->u.p.current_unit->strm_pos = dtp->pos;
3061 }
3062 }
3063 else
3064 {
3065 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3066 "POS=specifier not allowed, "
3067 "Try OPEN with ACCESS='stream'");
3068 return;
3069 }
3070 }
3071
3072
3073 /* Sanity checks on the record number. */
3074 if ((cf & IOPARM_DT_HAS_REC) != 0)
3075 {
3076 if (dtp->rec <= 0)
3077 {
3078 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3079 "Record number must be positive");
3080 return;
3081 }
3082
3083 if (dtp->rec >= dtp->u.p.current_unit->maxrec)
3084 {
3085 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3086 "Record number too large");
3087 return;
3088 }
3089
3090 /* Make sure format buffer is reset. */
3091 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
3092 fbuf_reset (dtp->u.p.current_unit);
3093
3094
3095 /* Check whether the record exists to be read. Only
3096 a partial record needs to exist. */
3097
3098 if (dtp->u.p.mode == READING && (dtp->rec - 1)
3099 * dtp->u.p.current_unit->recl >= ssize (dtp->u.p.current_unit->s))
3100 {
3101 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3102 "Non-existing record number");
3103 return;
3104 }
3105
3106 /* Position the file. */
3107 if (sseek (dtp->u.p.current_unit->s, (gfc_offset) (dtp->rec - 1)
3108 * dtp->u.p.current_unit->recl, SEEK_SET) < 0)
3109 {
3110 generate_error (&dtp->common, LIBERROR_OS, NULL);
3111 return;
3112 }
3113
3114 if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
3115 {
3116 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
3117 "Record number not allowed for stream access "
3118 "data transfer");
3119 return;
3120 }
3121 }
3122
3123 /* Bugware for badly written mixed C-Fortran I/O. */
3124 if (!is_internal_unit (dtp))
3125 flush_if_preconnected(dtp->u.p.current_unit->s);
3126
3127 dtp->u.p.current_unit->mode = dtp->u.p.mode;
3128
3129 /* Set the maximum position reached from the previous I/O operation. This
3130 could be greater than zero from a previous non-advancing write. */
3131 dtp->u.p.max_pos = dtp->u.p.current_unit->saved_pos;
3132
3133 pre_position (dtp);
3134
3135
3136 /* Set up the subroutine that will handle the transfers. */
3137
3138 if (read_flag)
3139 {
3140 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
3141 dtp->u.p.transfer = unformatted_read;
3142 else
3143 {
3144 if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
3145 {
3146 if (dtp->u.p.current_unit->child_dtio == 0)
3147 dtp->u.p.current_unit->last_char = EOF - 1;
3148 dtp->u.p.transfer = list_formatted_read;
3149 }
3150 else
3151 dtp->u.p.transfer = formatted_transfer;
3152 }
3153 }
3154 else
3155 {
3156 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
3157 dtp->u.p.transfer = unformatted_write;
3158 else
3159 {
3160 if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
3161 dtp->u.p.transfer = list_formatted_write;
3162 else
3163 dtp->u.p.transfer = formatted_transfer;
3164 }
3165 }
3166
3167 /* Make sure that we don't do a read after a nonadvancing write. */
3168
3169 if (read_flag)
3170 {
3171 if (dtp->u.p.current_unit->read_bad && !is_stream_io (dtp))
3172 {
3173 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
3174 "Cannot READ after a nonadvancing WRITE");
3175 return;
3176 }
3177 }
3178 else
3179 {
3180 if (dtp->u.p.advance_status == ADVANCE_YES && !dtp->u.p.seen_dollar)
3181 dtp->u.p.current_unit->read_bad = 1;
3182 }
3183
3184 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
3185 {
3186 #ifdef HAVE_USELOCALE
3187 dtp->u.p.old_locale = uselocale (c_locale);
3188 #else
3189 __gthread_mutex_lock (&old_locale_lock);
3190 if (!old_locale_ctr++)
3191 {
3192 old_locale = setlocale (LC_NUMERIC, NULL);
3193 setlocale (LC_NUMERIC, "C");
3194 }
3195 __gthread_mutex_unlock (&old_locale_lock);
3196 #endif
3197 /* Start the data transfer if we are doing a formatted transfer. */
3198 if ((cf & (IOPARM_DT_LIST_FORMAT | IOPARM_DT_HAS_NAMELIST_NAME)) == 0
3199 && dtp->u.p.ionml == NULL)
3200 formatted_transfer (dtp, 0, NULL, 0, 0, 1);
3201 }
3202 }
3203
3204
3205 /* Initialize an array_loop_spec given the array descriptor. The function
3206 returns the index of the last element of the array, and also returns
3207 starting record, where the first I/O goes to (necessary in case of
3208 negative strides). */
3209
3210 gfc_offset
3211 init_loop_spec (gfc_array_char *desc, array_loop_spec *ls,
3212 gfc_offset *start_record)
3213 {
3214 int rank = GFC_DESCRIPTOR_RANK(desc);
3215 int i;
3216 gfc_offset index;
3217 int empty;
3218
3219 empty = 0;
3220 index = 1;
3221 *start_record = 0;
3222
3223 for (i=0; i<rank; i++)
3224 {
3225 ls[i].idx = GFC_DESCRIPTOR_LBOUND(desc,i);
3226 ls[i].start = GFC_DESCRIPTOR_LBOUND(desc,i);
3227 ls[i].end = GFC_DESCRIPTOR_UBOUND(desc,i);
3228 ls[i].step = GFC_DESCRIPTOR_STRIDE(desc,i);
3229 empty = empty || (GFC_DESCRIPTOR_UBOUND(desc,i)
3230 < GFC_DESCRIPTOR_LBOUND(desc,i));
3231
3232 if (GFC_DESCRIPTOR_STRIDE(desc,i) > 0)
3233 {
3234 index += (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
3235 * GFC_DESCRIPTOR_STRIDE(desc,i);
3236 }
3237 else
3238 {
3239 index -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
3240 * GFC_DESCRIPTOR_STRIDE(desc,i);
3241 *start_record -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
3242 * GFC_DESCRIPTOR_STRIDE(desc,i);
3243 }
3244 }
3245
3246 if (empty)
3247 return 0;
3248 else
3249 return index;
3250 }
3251
3252 /* Determine the index to the next record in an internal unit array by
3253 by incrementing through the array_loop_spec. */
3254
3255 gfc_offset
3256 next_array_record (st_parameter_dt *dtp, array_loop_spec *ls, int *finished)
3257 {
3258 int i, carry;
3259 gfc_offset index;
3260
3261 carry = 1;
3262 index = 0;
3263
3264 for (i = 0; i < dtp->u.p.current_unit->rank; i++)
3265 {
3266 if (carry)
3267 {
3268 ls[i].idx++;
3269 if (ls[i].idx > ls[i].end)
3270 {
3271 ls[i].idx = ls[i].start;
3272 carry = 1;
3273 }
3274 else
3275 carry = 0;
3276 }
3277 index = index + (ls[i].idx - ls[i].start) * ls[i].step;
3278 }
3279
3280 *finished = carry;
3281
3282 return index;
3283 }
3284
3285
3286
3287 /* Skip to the end of the current record, taking care of an optional
3288 record marker of size bytes. If the file is not seekable, we
3289 read chunks of size MAX_READ until we get to the right
3290 position. */
3291
3292 static void
3293 skip_record (st_parameter_dt *dtp, gfc_offset bytes)
3294 {
3295 ssize_t rlength, readb;
3296 #define MAX_READ 4096
3297 char p[MAX_READ];
3298
3299 dtp->u.p.current_unit->bytes_left_subrecord += bytes;
3300 if (dtp->u.p.current_unit->bytes_left_subrecord == 0)
3301 return;
3302
3303 /* Direct access files do not generate END conditions,
3304 only I/O errors. */
3305 if (sseek (dtp->u.p.current_unit->s,
3306 dtp->u.p.current_unit->bytes_left_subrecord, SEEK_CUR) < 0)
3307 {
3308 /* Seeking failed, fall back to seeking by reading data. */
3309 while (dtp->u.p.current_unit->bytes_left_subrecord > 0)
3310 {
3311 rlength =
3312 (MAX_READ < dtp->u.p.current_unit->bytes_left_subrecord) ?
3313 MAX_READ : dtp->u.p.current_unit->bytes_left_subrecord;
3314
3315 readb = sread (dtp->u.p.current_unit->s, p, rlength);
3316 if (readb < 0)
3317 {
3318 generate_error (&dtp->common, LIBERROR_OS, NULL);
3319 return;
3320 }
3321
3322 dtp->u.p.current_unit->bytes_left_subrecord -= readb;
3323 }
3324 return;
3325 }
3326 dtp->u.p.current_unit->bytes_left_subrecord = 0;
3327 }
3328
3329
3330 /* Advance to the next record reading unformatted files, taking
3331 care of subrecords. If complete_record is nonzero, we loop
3332 until all subrecords are cleared. */
3333
3334 static void
3335 next_record_r_unf (st_parameter_dt *dtp, int complete_record)
3336 {
3337 size_t bytes;
3338
3339 bytes = compile_options.record_marker == 0 ?
3340 sizeof (GFC_INTEGER_4) : compile_options.record_marker;
3341
3342 while(1)
3343 {
3344
3345 /* Skip over tail */
3346
3347 skip_record (dtp, bytes);
3348
3349 if ( ! (complete_record && dtp->u.p.current_unit->continued))
3350 return;
3351
3352 us_read (dtp, 1);
3353 }
3354 }
3355
3356
3357 static gfc_offset
3358 min_off (gfc_offset a, gfc_offset b)
3359 {
3360 return (a < b ? a : b);
3361 }
3362
3363
3364 /* Space to the next record for read mode. */
3365
3366 static void
3367 next_record_r (st_parameter_dt *dtp, int done)
3368 {
3369 gfc_offset record;
3370 char p;
3371 int cc;
3372
3373 switch (current_mode (dtp))
3374 {
3375 /* No records in unformatted STREAM I/O. */
3376 case UNFORMATTED_STREAM:
3377 return;
3378
3379 case UNFORMATTED_SEQUENTIAL:
3380 next_record_r_unf (dtp, 1);
3381 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3382 break;
3383
3384 case FORMATTED_DIRECT:
3385 case UNFORMATTED_DIRECT:
3386 skip_record (dtp, dtp->u.p.current_unit->bytes_left);
3387 break;
3388
3389 case FORMATTED_STREAM:
3390 case FORMATTED_SEQUENTIAL:
3391 /* read_sf has already terminated input because of an '\n', or
3392 we have hit EOF. */
3393 if (dtp->u.p.sf_seen_eor)
3394 {
3395 dtp->u.p.sf_seen_eor = 0;
3396 break;
3397 }
3398
3399 if (is_internal_unit (dtp))
3400 {
3401 if (is_array_io (dtp))
3402 {
3403 int finished;
3404
3405 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
3406 &finished);
3407 if (!done && finished)
3408 hit_eof (dtp);
3409
3410 /* Now seek to this record. */
3411 record = record * dtp->u.p.current_unit->recl;
3412 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
3413 {
3414 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3415 break;
3416 }
3417 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3418 }
3419 else
3420 {
3421 gfc_offset bytes_left = dtp->u.p.current_unit->bytes_left;
3422 bytes_left = min_off (bytes_left,
3423 ssize (dtp->u.p.current_unit->s)
3424 - stell (dtp->u.p.current_unit->s));
3425 if (sseek (dtp->u.p.current_unit->s,
3426 bytes_left, SEEK_CUR) < 0)
3427 {
3428 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3429 break;
3430 }
3431 dtp->u.p.current_unit->bytes_left
3432 = dtp->u.p.current_unit->recl;
3433 }
3434 break;
3435 }
3436 else if (dtp->u.p.current_unit->flags.cc != CC_NONE)
3437 {
3438 do
3439 {
3440 errno = 0;
3441 cc = fbuf_getc (dtp->u.p.current_unit);
3442 if (cc == EOF)
3443 {
3444 if (errno != 0)
3445 generate_error (&dtp->common, LIBERROR_OS, NULL);
3446 else
3447 {
3448 if (is_stream_io (dtp)
3449 || dtp->u.p.current_unit->pad_status == PAD_NO
3450 || dtp->u.p.current_unit->bytes_left
3451 == dtp->u.p.current_unit->recl)
3452 hit_eof (dtp);
3453 }
3454 break;
3455 }
3456
3457 if (is_stream_io (dtp))
3458 dtp->u.p.current_unit->strm_pos++;
3459
3460 p = (char) cc;
3461 }
3462 while (p != '\n');
3463 }
3464 break;
3465 }
3466 }
3467
3468
3469 /* Small utility function to write a record marker, taking care of
3470 byte swapping and of choosing the correct size. */
3471
3472 static int
3473 write_us_marker (st_parameter_dt *dtp, const gfc_offset buf)
3474 {
3475 size_t len;
3476 GFC_INTEGER_4 buf4;
3477 GFC_INTEGER_8 buf8;
3478
3479 if (compile_options.record_marker == 0)
3480 len = sizeof (GFC_INTEGER_4);
3481 else
3482 len = compile_options.record_marker;
3483
3484 /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here. */
3485 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
3486 {
3487 switch (len)
3488 {
3489 case sizeof (GFC_INTEGER_4):
3490 buf4 = buf;
3491 return swrite (dtp->u.p.current_unit->s, &buf4, len);
3492 break;
3493
3494 case sizeof (GFC_INTEGER_8):
3495 buf8 = buf;
3496 return swrite (dtp->u.p.current_unit->s, &buf8, len);
3497 break;
3498
3499 default:
3500 runtime_error ("Illegal value for record marker");
3501 break;
3502 }
3503 }
3504 else
3505 {
3506 uint32_t u32;
3507 uint64_t u64;
3508 switch (len)
3509 {
3510 case sizeof (GFC_INTEGER_4):
3511 buf4 = buf;
3512 memcpy (&u32, &buf4, sizeof (u32));
3513 u32 = __builtin_bswap32 (u32);
3514 return swrite (dtp->u.p.current_unit->s, &u32, len);
3515 break;
3516
3517 case sizeof (GFC_INTEGER_8):
3518 buf8 = buf;
3519 memcpy (&u64, &buf8, sizeof (u64));
3520 u64 = __builtin_bswap64 (u64);
3521 return swrite (dtp->u.p.current_unit->s, &u64, len);
3522 break;
3523
3524 default:
3525 runtime_error ("Illegal value for record marker");
3526 break;
3527 }
3528 }
3529
3530 }
3531
3532 /* Position to the next (sub)record in write mode for
3533 unformatted sequential files. */
3534
3535 static void
3536 next_record_w_unf (st_parameter_dt *dtp, int next_subrecord)
3537 {
3538 gfc_offset m, m_write, record_marker;
3539
3540 /* Bytes written. */
3541 m = dtp->u.p.current_unit->recl_subrecord
3542 - dtp->u.p.current_unit->bytes_left_subrecord;
3543
3544 if (compile_options.record_marker == 0)
3545 record_marker = sizeof (GFC_INTEGER_4);
3546 else
3547 record_marker = compile_options.record_marker;
3548
3549 /* Seek to the head and overwrite the bogus length with the real
3550 length. */
3551
3552 if (unlikely (sseek (dtp->u.p.current_unit->s, - m - record_marker,
3553 SEEK_CUR) < 0))
3554 goto io_error;
3555
3556 if (next_subrecord)
3557 m_write = -m;
3558 else
3559 m_write = m;
3560
3561 if (unlikely (write_us_marker (dtp, m_write) < 0))
3562 goto io_error;
3563
3564 /* Seek past the end of the current record. */
3565
3566 if (unlikely (sseek (dtp->u.p.current_unit->s, m, SEEK_CUR) < 0))
3567 goto io_error;
3568
3569 /* Write the length tail. If we finish a record containing
3570 subrecords, we write out the negative length. */
3571
3572 if (dtp->u.p.current_unit->continued)
3573 m_write = -m;
3574 else
3575 m_write = m;
3576
3577 if (unlikely (write_us_marker (dtp, m_write) < 0))
3578 goto io_error;
3579
3580 return;
3581
3582 io_error:
3583 generate_error (&dtp->common, LIBERROR_OS, NULL);
3584 return;
3585
3586 }
3587
3588
3589 /* Utility function like memset() but operating on streams. Return
3590 value is same as for POSIX write(). */
3591
3592 static gfc_offset
3593 sset (stream *s, int c, gfc_offset nbyte)
3594 {
3595 #define WRITE_CHUNK 256
3596 char p[WRITE_CHUNK];
3597 gfc_offset bytes_left;
3598 ssize_t trans;
3599
3600 if (nbyte < WRITE_CHUNK)
3601 memset (p, c, nbyte);
3602 else
3603 memset (p, c, WRITE_CHUNK);
3604
3605 bytes_left = nbyte;
3606 while (bytes_left > 0)
3607 {
3608 trans = (bytes_left < WRITE_CHUNK) ? bytes_left : WRITE_CHUNK;
3609 trans = swrite (s, p, trans);
3610 if (trans <= 0)
3611 return trans;
3612 bytes_left -= trans;
3613 }
3614
3615 return nbyte - bytes_left;
3616 }
3617
3618
3619 /* Finish up a record according to the legacy carriagecontrol type, based
3620 on the first character in the record. */
3621
3622 static void
3623 next_record_cc (st_parameter_dt *dtp)
3624 {
3625 /* Only valid with CARRIAGECONTROL=FORTRAN. */
3626 if (dtp->u.p.current_unit->flags.cc != CC_FORTRAN)
3627 return;
3628
3629 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3630 if (dtp->u.p.cc.len > 0)
3631 {
3632 char *p = fbuf_alloc (dtp->u.p.current_unit, dtp->u.p.cc.len);
3633 if (!p)
3634 generate_error (&dtp->common, LIBERROR_OS, NULL);
3635
3636 /* Output CR for the first character with default CC setting. */
3637 *(p++) = dtp->u.p.cc.u.end;
3638 if (dtp->u.p.cc.len > 1)
3639 *p = dtp->u.p.cc.u.end;
3640 }
3641 }
3642
3643 /* Position to the next record in write mode. */
3644
3645 static void
3646 next_record_w (st_parameter_dt *dtp, int done)
3647 {
3648 gfc_offset max_pos_off;
3649
3650 /* Zero counters for X- and T-editing. */
3651 max_pos_off = dtp->u.p.max_pos;
3652 dtp->u.p.max_pos = dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
3653
3654 switch (current_mode (dtp))
3655 {
3656 /* No records in unformatted STREAM I/O. */
3657 case UNFORMATTED_STREAM:
3658 return;
3659
3660 case FORMATTED_DIRECT:
3661 if (dtp->u.p.current_unit->bytes_left == 0)
3662 break;
3663
3664 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3665 fbuf_flush (dtp->u.p.current_unit, WRITING);
3666 if (sset (dtp->u.p.current_unit->s, ' ',
3667 dtp->u.p.current_unit->bytes_left)
3668 != dtp->u.p.current_unit->bytes_left)
3669 goto io_error;
3670
3671 break;
3672
3673 case UNFORMATTED_DIRECT:
3674 if (dtp->u.p.current_unit->bytes_left > 0)
3675 {
3676 gfc_offset length = dtp->u.p.current_unit->bytes_left;
3677 if (sset (dtp->u.p.current_unit->s, 0, length) != length)
3678 goto io_error;
3679 }
3680 break;
3681
3682 case UNFORMATTED_SEQUENTIAL:
3683 next_record_w_unf (dtp, 0);
3684 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3685 break;
3686
3687 case FORMATTED_STREAM:
3688 case FORMATTED_SEQUENTIAL:
3689
3690 if (is_internal_unit (dtp))
3691 {
3692 char *p;
3693 /* Internal unit, so must fit in memory. */
3694 ptrdiff_t length, m, record;
3695 ptrdiff_t max_pos = max_pos_off;
3696 if (is_array_io (dtp))
3697 {
3698 int finished;
3699
3700 length = dtp->u.p.current_unit->bytes_left;
3701
3702 /* If the farthest position reached is greater than current
3703 position, adjust the position and set length to pad out
3704 whats left. Otherwise just pad whats left.
3705 (for character array unit) */
3706 m = dtp->u.p.current_unit->recl
3707 - dtp->u.p.current_unit->bytes_left;
3708 if (max_pos > m)
3709 {
3710 length = (max_pos - m);
3711 if (sseek (dtp->u.p.current_unit->s,
3712 length, SEEK_CUR) < 0)
3713 {
3714 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3715 return;
3716 }
3717 length = ((ptrdiff_t) dtp->u.p.current_unit->recl - max_pos);
3718 }
3719
3720 p = write_block (dtp, length);
3721 if (p == NULL)
3722 return;
3723
3724 if (unlikely (is_char4_unit (dtp)))
3725 {
3726 gfc_char4_t *p4 = (gfc_char4_t *) p;
3727 memset4 (p4, ' ', length);
3728 }
3729 else
3730 memset (p, ' ', length);
3731
3732 /* Now that the current record has been padded out,
3733 determine where the next record in the array is. */
3734 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
3735 &finished);
3736 if (finished)
3737 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3738
3739 /* Now seek to this record */
3740 record = record * ((ptrdiff_t) dtp->u.p.current_unit->recl);
3741
3742 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
3743 {
3744 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3745 return;
3746 }
3747
3748 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3749 }
3750 else
3751 {
3752 length = 1;
3753
3754 /* If this is the last call to next_record move to the farthest
3755 position reached and set length to pad out the remainder
3756 of the record. (for character scaler unit) */
3757 if (done)
3758 {
3759 m = dtp->u.p.current_unit->recl
3760 - dtp->u.p.current_unit->bytes_left;
3761 if (max_pos > m)
3762 {
3763 length = max_pos - m;
3764 if (sseek (dtp->u.p.current_unit->s,
3765 length, SEEK_CUR) < 0)
3766 {
3767 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3768 return;
3769 }
3770 length = (ptrdiff_t) dtp->u.p.current_unit->recl
3771 - max_pos;
3772 }
3773 else
3774 length = dtp->u.p.current_unit->bytes_left;
3775 }
3776 if (length > 0)
3777 {
3778 p = write_block (dtp, length);
3779 if (p == NULL)
3780 return;
3781
3782 if (unlikely (is_char4_unit (dtp)))
3783 {
3784 gfc_char4_t *p4 = (gfc_char4_t *) p;
3785 memset4 (p4, (gfc_char4_t) ' ', length);
3786 }
3787 else
3788 memset (p, ' ', length);
3789 }
3790 }
3791 }
3792 /* Handle legacy CARRIAGECONTROL line endings. */
3793 else if (dtp->u.p.current_unit->flags.cc == CC_FORTRAN)
3794 next_record_cc (dtp);
3795 else
3796 {
3797 /* Skip newlines for CC=CC_NONE. */
3798 const int len = (dtp->u.p.current_unit->flags.cc == CC_NONE)
3799 ? 0
3800 #ifdef HAVE_CRLF
3801 : 2;
3802 #else
3803 : 1;
3804 #endif
3805 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3806 if (dtp->u.p.current_unit->flags.cc != CC_NONE)
3807 {
3808 char *p = fbuf_alloc (dtp->u.p.current_unit, len);
3809 if (!p)
3810 goto io_error;
3811 #ifdef HAVE_CRLF
3812 *(p++) = '\r';
3813 #endif
3814 *p = '\n';
3815 }
3816 if (is_stream_io (dtp))
3817 {
3818 dtp->u.p.current_unit->strm_pos += len;
3819 if (dtp->u.p.current_unit->strm_pos
3820 < ssize (dtp->u.p.current_unit->s))
3821 unit_truncate (dtp->u.p.current_unit,
3822 dtp->u.p.current_unit->strm_pos - 1,
3823 &dtp->common);
3824 }
3825 }
3826
3827 break;
3828
3829 io_error:
3830 generate_error (&dtp->common, LIBERROR_OS, NULL);
3831 break;
3832 }
3833 }
3834
3835 /* Position to the next record, which means moving to the end of the
3836 current record. This can happen under several different
3837 conditions. If the done flag is not set, we get ready to process
3838 the next record. */
3839
3840 void
3841 next_record (st_parameter_dt *dtp, int done)
3842 {
3843 gfc_offset fp; /* File position. */
3844
3845 dtp->u.p.current_unit->read_bad = 0;
3846
3847 if (dtp->u.p.mode == READING)
3848 next_record_r (dtp, done);
3849 else
3850 next_record_w (dtp, done);
3851
3852 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3853
3854 if (!is_stream_io (dtp))
3855 {
3856 /* Since we have changed the position, set it to unspecified so
3857 that INQUIRE(POSITION=) knows it needs to look into it. */
3858 if (done)
3859 dtp->u.p.current_unit->flags.position = POSITION_UNSPECIFIED;
3860
3861 dtp->u.p.current_unit->current_record = 0;
3862 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
3863 {
3864 fp = stell (dtp->u.p.current_unit->s);
3865 /* Calculate next record, rounding up partial records. */
3866 dtp->u.p.current_unit->last_record =
3867 (fp + dtp->u.p.current_unit->recl) /
3868 dtp->u.p.current_unit->recl - 1;
3869 }
3870 else
3871 dtp->u.p.current_unit->last_record++;
3872 }
3873
3874 if (!done)
3875 pre_position (dtp);
3876
3877 smarkeor (dtp->u.p.current_unit->s);
3878 }
3879
3880
3881 /* Finalize the current data transfer. For a nonadvancing transfer,
3882 this means advancing to the next record. For internal units close the
3883 stream associated with the unit. */
3884
3885 static void
3886 finalize_transfer (st_parameter_dt *dtp)
3887 {
3888 GFC_INTEGER_4 cf = dtp->common.flags;
3889
3890 if ((dtp->u.p.ionml != NULL)
3891 && (cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0)
3892 {
3893 dtp->u.p.namelist_mode = 1;
3894 if ((cf & IOPARM_DT_NAMELIST_READ_MODE) != 0)
3895 namelist_read (dtp);
3896 else
3897 namelist_write (dtp);
3898 }
3899
3900 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
3901 *dtp->size = dtp->u.p.current_unit->size_used;
3902
3903 if (dtp->u.p.eor_condition)
3904 {
3905 generate_error (&dtp->common, LIBERROR_EOR, NULL);
3906 goto done;
3907 }
3908
3909 if (dtp->u.p.current_unit && (dtp->u.p.current_unit->child_dtio > 0))
3910 {
3911 if (cf & IOPARM_DT_HAS_FORMAT)
3912 {
3913 free (dtp->u.p.fmt);
3914 free (dtp->format);
3915 }
3916 return;
3917 }
3918
3919 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
3920 {
3921 if (dtp->u.p.current_unit && current_mode (dtp) == UNFORMATTED_SEQUENTIAL)
3922 dtp->u.p.current_unit->current_record = 0;
3923 goto done;
3924 }
3925
3926 dtp->u.p.transfer = NULL;
3927 if (dtp->u.p.current_unit == NULL)
3928 goto done;
3929
3930 if ((cf & IOPARM_DT_LIST_FORMAT) != 0 && dtp->u.p.mode == READING)
3931 {
3932 finish_list_read (dtp);
3933 goto done;
3934 }
3935
3936 if (dtp->u.p.mode == WRITING)
3937 dtp->u.p.current_unit->previous_nonadvancing_write
3938 = dtp->u.p.advance_status == ADVANCE_NO;
3939
3940 if (is_stream_io (dtp))
3941 {
3942 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
3943 && dtp->u.p.advance_status != ADVANCE_NO)
3944 next_record (dtp, 1);
3945
3946 goto done;
3947 }
3948
3949 dtp->u.p.current_unit->current_record = 0;
3950
3951 if (!is_internal_unit (dtp) && dtp->u.p.seen_dollar)
3952 {
3953 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3954 dtp->u.p.seen_dollar = 0;
3955 goto done;
3956 }
3957
3958 /* For non-advancing I/O, save the current maximum position for use in the
3959 next I/O operation if needed. */
3960 if (dtp->u.p.advance_status == ADVANCE_NO)
3961 {
3962 if (dtp->u.p.skips > 0)
3963 {
3964 int tmp;
3965 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
3966 tmp = (int)(dtp->u.p.current_unit->recl
3967 - dtp->u.p.current_unit->bytes_left);
3968 dtp->u.p.max_pos =
3969 dtp->u.p.max_pos > tmp ? dtp->u.p.max_pos : tmp;
3970 dtp->u.p.skips = 0;
3971 }
3972 int bytes_written = (int) (dtp->u.p.current_unit->recl
3973 - dtp->u.p.current_unit->bytes_left);
3974 dtp->u.p.current_unit->saved_pos =
3975 dtp->u.p.max_pos > 0 ? dtp->u.p.max_pos - bytes_written : 0;
3976 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3977 goto done;
3978 }
3979 else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
3980 && dtp->u.p.mode == WRITING && !is_internal_unit (dtp))
3981 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3982
3983 dtp->u.p.current_unit->saved_pos = 0;
3984 dtp->u.p.current_unit->last_char = EOF - 1;
3985 next_record (dtp, 1);
3986
3987 done:
3988 #ifdef HAVE_USELOCALE
3989 if (dtp->u.p.old_locale != (locale_t) 0)
3990 {
3991 uselocale (dtp->u.p.old_locale);
3992 dtp->u.p.old_locale = (locale_t) 0;
3993 }
3994 #else
3995 __gthread_mutex_lock (&old_locale_lock);
3996 if (!--old_locale_ctr)
3997 {
3998 setlocale (LC_NUMERIC, old_locale);
3999 old_locale = NULL;
4000 }
4001 __gthread_mutex_unlock (&old_locale_lock);
4002 #endif
4003 }
4004
4005 /* Transfer function for IOLENGTH. It doesn't actually do any
4006 data transfer, it just updates the length counter. */
4007
4008 static void
4009 iolength_transfer (st_parameter_dt *dtp, bt type __attribute__((unused)),
4010 void *dest __attribute__ ((unused)),
4011 int kind __attribute__((unused)),
4012 size_t size, size_t nelems)
4013 {
4014 if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
4015 *dtp->iolength += (GFC_IO_INT) (size * nelems);
4016 }
4017
4018
4019 /* Initialize the IOLENGTH data transfer. This function is in essence
4020 a very much simplified version of data_transfer_init(), because it
4021 doesn't have to deal with units at all. */
4022
4023 static void
4024 iolength_transfer_init (st_parameter_dt *dtp)
4025 {
4026 if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
4027 *dtp->iolength = 0;
4028
4029 memset (&dtp->u.p, 0, sizeof (dtp->u.p));
4030
4031 /* Set up the subroutine that will handle the transfers. */
4032
4033 dtp->u.p.transfer = iolength_transfer;
4034 }
4035
4036
4037 /* Library entry point for the IOLENGTH form of the INQUIRE
4038 statement. The IOLENGTH form requires no I/O to be performed, but
4039 it must still be a runtime library call so that we can determine
4040 the iolength for dynamic arrays and such. */
4041
4042 extern void st_iolength (st_parameter_dt *);
4043 export_proto(st_iolength);
4044
4045 void
4046 st_iolength (st_parameter_dt *dtp)
4047 {
4048 library_start (&dtp->common);
4049 iolength_transfer_init (dtp);
4050 }
4051
4052 extern void st_iolength_done (st_parameter_dt *);
4053 export_proto(st_iolength_done);
4054
4055 void
4056 st_iolength_done (st_parameter_dt *dtp __attribute__((unused)))
4057 {
4058 free_ionml (dtp);
4059 library_end ();
4060 }
4061
4062
4063 /* The READ statement. */
4064
4065 extern void st_read (st_parameter_dt *);
4066 export_proto(st_read);
4067
4068 void
4069 st_read (st_parameter_dt *dtp)
4070 {
4071 library_start (&dtp->common);
4072
4073 data_transfer_init (dtp, 1);
4074 }
4075
4076 extern void st_read_done (st_parameter_dt *);
4077 export_proto(st_read_done);
4078
4079 void
4080 st_read_done (st_parameter_dt *dtp)
4081 {
4082 finalize_transfer (dtp);
4083
4084 free_ionml (dtp);
4085
4086 /* If this is a parent READ statement we do not need to retain the
4087 internal unit structure for child use. */
4088 if (dtp->u.p.current_unit != NULL
4089 && dtp->u.p.current_unit->child_dtio == 0)
4090 {
4091 if (dtp->u.p.unit_is_internal)
4092 {
4093 if ((dtp->common.flags & IOPARM_DT_HAS_UDTIO) == 0)
4094 {
4095 free (dtp->u.p.current_unit->filename);
4096 dtp->u.p.current_unit->filename = NULL;
4097 free (dtp->u.p.current_unit->s);
4098 dtp->u.p.current_unit->s = NULL;
4099 if (dtp->u.p.current_unit->ls)
4100 free (dtp->u.p.current_unit->ls);
4101 dtp->u.p.current_unit->ls = NULL;
4102 }
4103 newunit_free (dtp->common.unit);
4104 }
4105 if (dtp->u.p.unit_is_internal || dtp->u.p.format_not_saved)
4106 {
4107 free_format_data (dtp->u.p.fmt);
4108 free_format (dtp);
4109 }
4110 unlock_unit (dtp->u.p.current_unit);
4111 }
4112
4113 library_end ();
4114 }
4115
4116 extern void st_write (st_parameter_dt *);
4117 export_proto(st_write);
4118
4119 void
4120 st_write (st_parameter_dt *dtp)
4121 {
4122 library_start (&dtp->common);
4123 data_transfer_init (dtp, 0);
4124 }
4125
4126 extern void st_write_done (st_parameter_dt *);
4127 export_proto(st_write_done);
4128
4129 void
4130 st_write_done (st_parameter_dt *dtp)
4131 {
4132 finalize_transfer (dtp);
4133
4134 if (dtp->u.p.current_unit != NULL
4135 && dtp->u.p.current_unit->child_dtio == 0)
4136 {
4137 /* Deal with endfile conditions associated with sequential files. */
4138 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
4139 switch (dtp->u.p.current_unit->endfile)
4140 {
4141 case AT_ENDFILE: /* Remain at the endfile record. */
4142 break;
4143
4144 case AFTER_ENDFILE:
4145 dtp->u.p.current_unit->endfile = AT_ENDFILE; /* Just at it now. */
4146 break;
4147
4148 case NO_ENDFILE:
4149 /* Get rid of whatever is after this record. */
4150 if (!is_internal_unit (dtp))
4151 unit_truncate (dtp->u.p.current_unit,
4152 stell (dtp->u.p.current_unit->s),
4153 &dtp->common);
4154 dtp->u.p.current_unit->endfile = AT_ENDFILE;
4155 break;
4156 }
4157
4158 free_ionml (dtp);
4159
4160 /* If this is a parent WRITE statement we do not need to retain the
4161 internal unit structure for child use. */
4162 if (dtp->u.p.unit_is_internal)
4163 {
4164 if ((dtp->common.flags & IOPARM_DT_HAS_UDTIO) == 0)
4165 {
4166 free (dtp->u.p.current_unit->filename);
4167 dtp->u.p.current_unit->filename = NULL;
4168 free (dtp->u.p.current_unit->s);
4169 dtp->u.p.current_unit->s = NULL;
4170 if (dtp->u.p.current_unit->ls)
4171 free (dtp->u.p.current_unit->ls);
4172 dtp->u.p.current_unit->ls = NULL;
4173 }
4174 newunit_free (dtp->common.unit);
4175 }
4176 if (dtp->u.p.unit_is_internal || dtp->u.p.format_not_saved)
4177 {
4178 free_format_data (dtp->u.p.fmt);
4179 free_format (dtp);
4180 }
4181 unlock_unit (dtp->u.p.current_unit);
4182 }
4183 library_end ();
4184 }
4185
4186
4187 /* F2003: This is a stub for the runtime portion of the WAIT statement. */
4188 void
4189 st_wait (st_parameter_wait *wtp __attribute__((unused)))
4190 {
4191 }
4192
4193
4194 /* Receives the scalar information for namelist objects and stores it
4195 in a linked list of namelist_info types. */
4196
4197 static void
4198 set_nml_var (st_parameter_dt *dtp, void *var_addr, char *var_name,
4199 GFC_INTEGER_4 len, gfc_charlen_type string_length,
4200 GFC_INTEGER_4 dtype, void *dtio_sub, void *vtable)
4201 {
4202 namelist_info *t1 = NULL;
4203 namelist_info *nml;
4204 size_t var_name_len = strlen (var_name);
4205
4206 nml = (namelist_info*) xmalloc (sizeof (namelist_info));
4207
4208 nml->mem_pos = var_addr;
4209 nml->dtio_sub = dtio_sub;
4210 nml->vtable = vtable;
4211
4212 nml->var_name = (char*) xmalloc (var_name_len + 1);
4213 memcpy (nml->var_name, var_name, var_name_len);
4214 nml->var_name[var_name_len] = '\0';
4215
4216 nml->len = (int) len;
4217 nml->string_length = (index_type) string_length;
4218
4219 nml->var_rank = (int) (dtype & GFC_DTYPE_RANK_MASK);
4220 nml->size = (index_type) (dtype >> GFC_DTYPE_SIZE_SHIFT);
4221 nml->type = (bt) ((dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT);
4222
4223 if (nml->var_rank > 0)
4224 {
4225 nml->dim = (descriptor_dimension*)
4226 xmallocarray (nml->var_rank, sizeof (descriptor_dimension));
4227 nml->ls = (array_loop_spec*)
4228 xmallocarray (nml->var_rank, sizeof (array_loop_spec));
4229 }
4230 else
4231 {
4232 nml->dim = NULL;
4233 nml->ls = NULL;
4234 }
4235
4236 nml->next = NULL;
4237
4238 if ((dtp->common.flags & IOPARM_DT_IONML_SET) == 0)
4239 {
4240 dtp->common.flags |= IOPARM_DT_IONML_SET;
4241 dtp->u.p.ionml = nml;
4242 }
4243 else
4244 {
4245 for (t1 = dtp->u.p.ionml; t1->next; t1 = t1->next);
4246 t1->next = nml;
4247 }
4248 }
4249
4250 extern void st_set_nml_var (st_parameter_dt *dtp, void *, char *,
4251 GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4);
4252 export_proto(st_set_nml_var);
4253
4254 void
4255 st_set_nml_var (st_parameter_dt *dtp, void *var_addr, char *var_name,
4256 GFC_INTEGER_4 len, gfc_charlen_type string_length,
4257 GFC_INTEGER_4 dtype)
4258 {
4259 set_nml_var (dtp, var_addr, var_name, len, string_length,
4260 dtype, NULL, NULL);
4261 }
4262
4263
4264 /* Essentially the same as previous but carrying the dtio procedure
4265 and the vtable as additional arguments. */
4266 extern void st_set_nml_dtio_var (st_parameter_dt *dtp, void *, char *,
4267 GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4,
4268 void *, void *);
4269 export_proto(st_set_nml_dtio_var);
4270
4271
4272 void
4273 st_set_nml_dtio_var (st_parameter_dt *dtp, void *var_addr, char *var_name,
4274 GFC_INTEGER_4 len, gfc_charlen_type string_length,
4275 GFC_INTEGER_4 dtype, void *dtio_sub, void *vtable)
4276 {
4277 set_nml_var (dtp, var_addr, var_name, len, string_length,
4278 dtype, dtio_sub, vtable);
4279 }
4280
4281 /* Store the dimensional information for the namelist object. */
4282 extern void st_set_nml_var_dim (st_parameter_dt *, GFC_INTEGER_4,
4283 index_type, index_type,
4284 index_type);
4285 export_proto(st_set_nml_var_dim);
4286
4287 void
4288 st_set_nml_var_dim (st_parameter_dt *dtp, GFC_INTEGER_4 n_dim,
4289 index_type stride, index_type lbound,
4290 index_type ubound)
4291 {
4292 namelist_info *nml;
4293 int n;
4294
4295 n = (int)n_dim;
4296
4297 for (nml = dtp->u.p.ionml; nml->next; nml = nml->next);
4298
4299 GFC_DIMENSION_SET(nml->dim[n],lbound,ubound,stride);
4300 }
4301
4302
4303 /* Once upon a time, a poor innocent Fortran program was reading a
4304 file, when suddenly it hit the end-of-file (EOF). Unfortunately
4305 the OS doesn't tell whether we're at the EOF or whether we already
4306 went past it. Luckily our hero, libgfortran, keeps track of this.
4307 Call this function when you detect an EOF condition. See Section
4308 9.10.2 in F2003. */
4309
4310 void
4311 hit_eof (st_parameter_dt *dtp)
4312 {
4313 dtp->u.p.current_unit->flags.position = POSITION_APPEND;
4314
4315 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
4316 switch (dtp->u.p.current_unit->endfile)
4317 {
4318 case NO_ENDFILE:
4319 case AT_ENDFILE:
4320 generate_error (&dtp->common, LIBERROR_END, NULL);
4321 if (!is_internal_unit (dtp) && !dtp->u.p.namelist_mode)
4322 {
4323 dtp->u.p.current_unit->endfile = AFTER_ENDFILE;
4324 dtp->u.p.current_unit->current_record = 0;
4325 }
4326 else
4327 dtp->u.p.current_unit->endfile = AT_ENDFILE;
4328 break;
4329
4330 case AFTER_ENDFILE:
4331 generate_error (&dtp->common, LIBERROR_ENDFILE, NULL);
4332 dtp->u.p.current_unit->current_record = 0;
4333 break;
4334 }
4335 else
4336 {
4337 /* Non-sequential files don't have an ENDFILE record, so we
4338 can't be at AFTER_ENDFILE. */
4339 dtp->u.p.current_unit->endfile = AT_ENDFILE;
4340 generate_error (&dtp->common, LIBERROR_END, NULL);
4341 dtp->u.p.current_unit->current_record = 0;
4342 }
4343 }