re PR libfortran/59419 (Failing OPEN with FILE='xxx' and IOSTAT creates the file...
[gcc.git] / libgfortran / io / transfer.c
1 /* Copyright (C) 2002-2013 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist transfer functions contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27
28 /* transfer.c -- Top level handling of data transfer statements. */
29
30 #include "io.h"
31 #include "fbuf.h"
32 #include "format.h"
33 #include "unix.h"
34 #include <string.h>
35 #include <assert.h>
36 #include <stdlib.h>
37 #include <errno.h>
38
39
40 /* Calling conventions: Data transfer statements are unlike other
41 library calls in that they extend over several calls.
42
43 The first call is always a call to st_read() or st_write(). These
44 subroutines return no status unless a namelist read or write is
45 being done, in which case there is the usual status. No further
46 calls are necessary in this case.
47
48 For other sorts of data transfer, there are zero or more data
49 transfer statement that depend on the format of the data transfer
50 statement. For READ (and for backwards compatibily: for WRITE), one has
51
52 transfer_integer
53 transfer_logical
54 transfer_character
55 transfer_character_wide
56 transfer_real
57 transfer_complex
58 transfer_real128
59 transfer_complex128
60
61 and for WRITE
62
63 transfer_integer_write
64 transfer_logical_write
65 transfer_character_write
66 transfer_character_wide_write
67 transfer_real_write
68 transfer_complex_write
69 transfer_real128_write
70 transfer_complex128_write
71
72 These subroutines do not return status. The *128 functions
73 are in the file transfer128.c.
74
75 The last call is a call to st_[read|write]_done(). While
76 something can easily go wrong with the initial st_read() or
77 st_write(), an error inhibits any data from actually being
78 transferred. */
79
80 extern void transfer_integer (st_parameter_dt *, void *, int);
81 export_proto(transfer_integer);
82
83 extern void transfer_integer_write (st_parameter_dt *, void *, int);
84 export_proto(transfer_integer_write);
85
86 extern void transfer_real (st_parameter_dt *, void *, int);
87 export_proto(transfer_real);
88
89 extern void transfer_real_write (st_parameter_dt *, void *, int);
90 export_proto(transfer_real_write);
91
92 extern void transfer_logical (st_parameter_dt *, void *, int);
93 export_proto(transfer_logical);
94
95 extern void transfer_logical_write (st_parameter_dt *, void *, int);
96 export_proto(transfer_logical_write);
97
98 extern void transfer_character (st_parameter_dt *, void *, int);
99 export_proto(transfer_character);
100
101 extern void transfer_character_write (st_parameter_dt *, void *, int);
102 export_proto(transfer_character_write);
103
104 extern void transfer_character_wide (st_parameter_dt *, void *, int, int);
105 export_proto(transfer_character_wide);
106
107 extern void transfer_character_wide_write (st_parameter_dt *,
108 void *, int, int);
109 export_proto(transfer_character_wide_write);
110
111 extern void transfer_complex (st_parameter_dt *, void *, int);
112 export_proto(transfer_complex);
113
114 extern void transfer_complex_write (st_parameter_dt *, void *, int);
115 export_proto(transfer_complex_write);
116
117 extern void transfer_array (st_parameter_dt *, gfc_array_char *, int,
118 gfc_charlen_type);
119 export_proto(transfer_array);
120
121 extern void transfer_array_write (st_parameter_dt *, gfc_array_char *, int,
122 gfc_charlen_type);
123 export_proto(transfer_array_write);
124
125 static void us_read (st_parameter_dt *, int);
126 static void us_write (st_parameter_dt *, int);
127 static void next_record_r_unf (st_parameter_dt *, int);
128 static void next_record_w_unf (st_parameter_dt *, int);
129
130 static const st_option advance_opt[] = {
131 {"yes", ADVANCE_YES},
132 {"no", ADVANCE_NO},
133 {NULL, 0}
134 };
135
136
137 static const st_option decimal_opt[] = {
138 {"point", DECIMAL_POINT},
139 {"comma", DECIMAL_COMMA},
140 {NULL, 0}
141 };
142
143 static const st_option round_opt[] = {
144 {"up", ROUND_UP},
145 {"down", ROUND_DOWN},
146 {"zero", ROUND_ZERO},
147 {"nearest", ROUND_NEAREST},
148 {"compatible", ROUND_COMPATIBLE},
149 {"processor_defined", ROUND_PROCDEFINED},
150 {NULL, 0}
151 };
152
153
154 static const st_option sign_opt[] = {
155 {"plus", SIGN_SP},
156 {"suppress", SIGN_SS},
157 {"processor_defined", SIGN_S},
158 {NULL, 0}
159 };
160
161 static const st_option blank_opt[] = {
162 {"null", BLANK_NULL},
163 {"zero", BLANK_ZERO},
164 {NULL, 0}
165 };
166
167 static const st_option delim_opt[] = {
168 {"apostrophe", DELIM_APOSTROPHE},
169 {"quote", DELIM_QUOTE},
170 {"none", DELIM_NONE},
171 {NULL, 0}
172 };
173
174 static const st_option pad_opt[] = {
175 {"yes", PAD_YES},
176 {"no", PAD_NO},
177 {NULL, 0}
178 };
179
180 typedef enum
181 { FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
182 FORMATTED_DIRECT, UNFORMATTED_DIRECT, FORMATTED_STREAM, UNFORMATTED_STREAM
183 }
184 file_mode;
185
186
187 static file_mode
188 current_mode (st_parameter_dt *dtp)
189 {
190 file_mode m;
191
192 m = FORM_UNSPECIFIED;
193
194 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
195 {
196 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
197 FORMATTED_DIRECT : UNFORMATTED_DIRECT;
198 }
199 else if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
200 {
201 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
202 FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
203 }
204 else if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
205 {
206 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
207 FORMATTED_STREAM : UNFORMATTED_STREAM;
208 }
209
210 return m;
211 }
212
213
214 /* Mid level data transfer statements. */
215
216 /* Read sequential file - internal unit */
217
218 static char *
219 read_sf_internal (st_parameter_dt *dtp, int * length)
220 {
221 static char *empty_string[0];
222 char *base;
223 int lorig;
224
225 /* Zero size array gives internal unit len of 0. Nothing to read. */
226 if (dtp->internal_unit_len == 0
227 && dtp->u.p.current_unit->pad_status == PAD_NO)
228 hit_eof (dtp);
229
230 /* If we have seen an eor previously, return a length of 0. The
231 caller is responsible for correctly padding the input field. */
232 if (dtp->u.p.sf_seen_eor)
233 {
234 *length = 0;
235 /* Just return something that isn't a NULL pointer, otherwise the
236 caller thinks an error occurred. */
237 return (char*) empty_string;
238 }
239
240 lorig = *length;
241 if (is_char4_unit(dtp))
242 {
243 int i;
244 gfc_char4_t *p = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s,
245 length);
246 base = fbuf_alloc (dtp->u.p.current_unit, lorig);
247 for (i = 0; i < *length; i++, p++)
248 base[i] = *p > 255 ? '?' : (unsigned char) *p;
249 }
250 else
251 base = mem_alloc_r (dtp->u.p.current_unit->s, length);
252
253 if (unlikely (lorig > *length))
254 {
255 hit_eof (dtp);
256 return NULL;
257 }
258
259 dtp->u.p.current_unit->bytes_left -= *length;
260
261 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
262 dtp->u.p.size_used += (GFC_IO_INT) *length;
263
264 return base;
265
266 }
267
268 /* When reading sequential formatted records we have a problem. We
269 don't know how long the line is until we read the trailing newline,
270 and we don't want to read too much. If we read too much, we might
271 have to do a physical seek backwards depending on how much data is
272 present, and devices like terminals aren't seekable and would cause
273 an I/O error.
274
275 Given this, the solution is to read a byte at a time, stopping if
276 we hit the newline. For small allocations, we use a static buffer.
277 For larger allocations, we are forced to allocate memory on the
278 heap. Hopefully this won't happen very often. */
279
280 /* Read sequential file - external unit */
281
282 static char *
283 read_sf (st_parameter_dt *dtp, int * length)
284 {
285 static char *empty_string[0];
286 int q, q2;
287 int n, lorig, seen_comma;
288
289 /* If we have seen an eor previously, return a length of 0. The
290 caller is responsible for correctly padding the input field. */
291 if (dtp->u.p.sf_seen_eor)
292 {
293 *length = 0;
294 /* Just return something that isn't a NULL pointer, otherwise the
295 caller thinks an error occurred. */
296 return (char*) empty_string;
297 }
298
299 n = seen_comma = 0;
300
301 /* Read data into format buffer and scan through it. */
302 lorig = *length;
303
304 while (n < *length)
305 {
306 q = fbuf_getc (dtp->u.p.current_unit);
307 if (q == EOF)
308 break;
309 else if (q == '\n' || q == '\r')
310 {
311 /* Unexpected end of line. Set the position. */
312 dtp->u.p.sf_seen_eor = 1;
313
314 /* If we see an EOR during non-advancing I/O, we need to skip
315 the rest of the I/O statement. Set the corresponding flag. */
316 if (dtp->u.p.advance_status == ADVANCE_NO || dtp->u.p.seen_dollar)
317 dtp->u.p.eor_condition = 1;
318
319 /* If we encounter a CR, it might be a CRLF. */
320 if (q == '\r') /* Probably a CRLF */
321 {
322 /* See if there is an LF. */
323 q2 = fbuf_getc (dtp->u.p.current_unit);
324 if (q2 == '\n')
325 dtp->u.p.sf_seen_eor = 2;
326 else if (q2 != EOF) /* Oops, seek back. */
327 fbuf_seek (dtp->u.p.current_unit, -1, SEEK_CUR);
328 }
329
330 /* Without padding, terminate the I/O statement without assigning
331 the value. With padding, the value still needs to be assigned,
332 so we can just continue with a short read. */
333 if (dtp->u.p.current_unit->pad_status == PAD_NO)
334 {
335 generate_error (&dtp->common, LIBERROR_EOR, NULL);
336 return NULL;
337 }
338
339 *length = n;
340 goto done;
341 }
342 /* Short circuit the read if a comma is found during numeric input.
343 The flag is set to zero during character reads so that commas in
344 strings are not ignored */
345 else if (q == ',')
346 if (dtp->u.p.sf_read_comma == 1)
347 {
348 seen_comma = 1;
349 notify_std (&dtp->common, GFC_STD_GNU,
350 "Comma in formatted numeric read.");
351 break;
352 }
353 n++;
354 }
355
356 *length = n;
357
358 /* A short read implies we hit EOF, unless we hit EOR, a comma, or
359 some other stuff. Set the relevant flags. */
360 if (lorig > *length && !dtp->u.p.sf_seen_eor && !seen_comma)
361 {
362 if (n > 0)
363 {
364 if (dtp->u.p.advance_status == ADVANCE_NO)
365 {
366 if (dtp->u.p.current_unit->pad_status == PAD_NO)
367 {
368 hit_eof (dtp);
369 return NULL;
370 }
371 else
372 dtp->u.p.eor_condition = 1;
373 }
374 else
375 dtp->u.p.at_eof = 1;
376 }
377 else if (dtp->u.p.advance_status == ADVANCE_NO
378 || dtp->u.p.current_unit->pad_status == PAD_NO
379 || dtp->u.p.current_unit->bytes_left
380 == dtp->u.p.current_unit->recl)
381 {
382 hit_eof (dtp);
383 return NULL;
384 }
385 }
386
387 done:
388
389 dtp->u.p.current_unit->bytes_left -= n;
390
391 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
392 dtp->u.p.size_used += (GFC_IO_INT) n;
393
394 /* We can't call fbuf_getptr before the loop doing fbuf_getc, because
395 fbuf_getc might reallocate the buffer. So return current pointer
396 minus all the advances, which is n plus up to two characters
397 of newline or comma. */
398 return fbuf_getptr (dtp->u.p.current_unit)
399 - n - dtp->u.p.sf_seen_eor - seen_comma;
400 }
401
402
403 /* Function for reading the next couple of bytes from the current
404 file, advancing the current position. We return NULL on end of record or
405 end of file. This function is only for formatted I/O, unformatted uses
406 read_block_direct.
407
408 If the read is short, then it is because the current record does not
409 have enough data to satisfy the read request and the file was
410 opened with PAD=YES. The caller must assume tailing spaces for
411 short reads. */
412
413 void *
414 read_block_form (st_parameter_dt *dtp, int * nbytes)
415 {
416 char *source;
417 int norig;
418
419 if (!is_stream_io (dtp))
420 {
421 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
422 {
423 /* For preconnected units with default record length, set bytes left
424 to unit record length and proceed, otherwise error. */
425 if (dtp->u.p.current_unit->unit_number == options.stdin_unit
426 && dtp->u.p.current_unit->recl == DEFAULT_RECL)
427 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
428 else
429 {
430 if (unlikely (dtp->u.p.current_unit->pad_status == PAD_NO)
431 && !is_internal_unit (dtp))
432 {
433 /* Not enough data left. */
434 generate_error (&dtp->common, LIBERROR_EOR, NULL);
435 return NULL;
436 }
437 }
438
439 if (unlikely (dtp->u.p.current_unit->bytes_left == 0
440 && !is_internal_unit(dtp)))
441 {
442 hit_eof (dtp);
443 return NULL;
444 }
445
446 *nbytes = dtp->u.p.current_unit->bytes_left;
447 }
448 }
449
450 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
451 (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL ||
452 dtp->u.p.current_unit->flags.access == ACCESS_STREAM))
453 {
454 if (is_internal_unit (dtp))
455 source = read_sf_internal (dtp, nbytes);
456 else
457 source = read_sf (dtp, nbytes);
458
459 dtp->u.p.current_unit->strm_pos +=
460 (gfc_offset) (*nbytes + dtp->u.p.sf_seen_eor);
461 return source;
462 }
463
464 /* If we reach here, we can assume it's direct access. */
465
466 dtp->u.p.current_unit->bytes_left -= (gfc_offset) *nbytes;
467
468 norig = *nbytes;
469 source = fbuf_read (dtp->u.p.current_unit, nbytes);
470 fbuf_seek (dtp->u.p.current_unit, *nbytes, SEEK_CUR);
471
472 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
473 dtp->u.p.size_used += (GFC_IO_INT) *nbytes;
474
475 if (norig != *nbytes)
476 {
477 /* Short read, this shouldn't happen. */
478 if (!dtp->u.p.current_unit->pad_status == PAD_YES)
479 {
480 generate_error (&dtp->common, LIBERROR_EOR, NULL);
481 source = NULL;
482 }
483 }
484
485 dtp->u.p.current_unit->strm_pos += (gfc_offset) *nbytes;
486
487 return source;
488 }
489
490
491 /* Read a block from a character(kind=4) internal unit, to be transferred into
492 a character(kind=4) variable. Note: Portions of this code borrowed from
493 read_sf_internal. */
494 void *
495 read_block_form4 (st_parameter_dt *dtp, int * nbytes)
496 {
497 static gfc_char4_t *empty_string[0];
498 gfc_char4_t *source;
499 int lorig;
500
501 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
502 *nbytes = dtp->u.p.current_unit->bytes_left;
503
504 /* Zero size array gives internal unit len of 0. Nothing to read. */
505 if (dtp->internal_unit_len == 0
506 && dtp->u.p.current_unit->pad_status == PAD_NO)
507 hit_eof (dtp);
508
509 /* If we have seen an eor previously, return a length of 0. The
510 caller is responsible for correctly padding the input field. */
511 if (dtp->u.p.sf_seen_eor)
512 {
513 *nbytes = 0;
514 /* Just return something that isn't a NULL pointer, otherwise the
515 caller thinks an error occurred. */
516 return empty_string;
517 }
518
519 lorig = *nbytes;
520 source = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s, nbytes);
521
522 if (unlikely (lorig > *nbytes))
523 {
524 hit_eof (dtp);
525 return NULL;
526 }
527
528 dtp->u.p.current_unit->bytes_left -= *nbytes;
529
530 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
531 dtp->u.p.size_used += (GFC_IO_INT) *nbytes;
532
533 return source;
534 }
535
536
537 /* Reads a block directly into application data space. This is for
538 unformatted files. */
539
540 static void
541 read_block_direct (st_parameter_dt *dtp, void *buf, size_t nbytes)
542 {
543 ssize_t to_read_record;
544 ssize_t have_read_record;
545 ssize_t to_read_subrecord;
546 ssize_t have_read_subrecord;
547 int short_record;
548
549 if (is_stream_io (dtp))
550 {
551 have_read_record = sread (dtp->u.p.current_unit->s, buf,
552 nbytes);
553 if (unlikely (have_read_record < 0))
554 {
555 generate_error (&dtp->common, LIBERROR_OS, NULL);
556 return;
557 }
558
559 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_read_record;
560
561 if (unlikely ((ssize_t) nbytes != have_read_record))
562 {
563 /* Short read, e.g. if we hit EOF. For stream files,
564 we have to set the end-of-file condition. */
565 hit_eof (dtp);
566 }
567 return;
568 }
569
570 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
571 {
572 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes)
573 {
574 short_record = 1;
575 to_read_record = dtp->u.p.current_unit->bytes_left;
576 nbytes = to_read_record;
577 }
578 else
579 {
580 short_record = 0;
581 to_read_record = nbytes;
582 }
583
584 dtp->u.p.current_unit->bytes_left -= to_read_record;
585
586 to_read_record = sread (dtp->u.p.current_unit->s, buf, to_read_record);
587 if (unlikely (to_read_record < 0))
588 {
589 generate_error (&dtp->common, LIBERROR_OS, NULL);
590 return;
591 }
592
593 if (to_read_record != (ssize_t) nbytes)
594 {
595 /* Short read, e.g. if we hit EOF. Apparently, we read
596 more than was written to the last record. */
597 return;
598 }
599
600 if (unlikely (short_record))
601 {
602 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
603 }
604 return;
605 }
606
607 /* Unformatted sequential. We loop over the subrecords, reading
608 until the request has been fulfilled or the record has run out
609 of continuation subrecords. */
610
611 /* Check whether we exceed the total record length. */
612
613 if (dtp->u.p.current_unit->flags.has_recl
614 && ((gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left))
615 {
616 to_read_record = dtp->u.p.current_unit->bytes_left;
617 short_record = 1;
618 }
619 else
620 {
621 to_read_record = nbytes;
622 short_record = 0;
623 }
624 have_read_record = 0;
625
626 while(1)
627 {
628 if (dtp->u.p.current_unit->bytes_left_subrecord
629 < (gfc_offset) to_read_record)
630 {
631 to_read_subrecord = dtp->u.p.current_unit->bytes_left_subrecord;
632 to_read_record -= to_read_subrecord;
633 }
634 else
635 {
636 to_read_subrecord = to_read_record;
637 to_read_record = 0;
638 }
639
640 dtp->u.p.current_unit->bytes_left_subrecord -= to_read_subrecord;
641
642 have_read_subrecord = sread (dtp->u.p.current_unit->s,
643 buf + have_read_record, to_read_subrecord);
644 if (unlikely (have_read_subrecord < 0))
645 {
646 generate_error (&dtp->common, LIBERROR_OS, NULL);
647 return;
648 }
649
650 have_read_record += have_read_subrecord;
651
652 if (unlikely (to_read_subrecord != have_read_subrecord))
653 {
654 /* Short read, e.g. if we hit EOF. This means the record
655 structure has been corrupted, or the trailing record
656 marker would still be present. */
657
658 generate_error (&dtp->common, LIBERROR_CORRUPT_FILE, NULL);
659 return;
660 }
661
662 if (to_read_record > 0)
663 {
664 if (likely (dtp->u.p.current_unit->continued))
665 {
666 next_record_r_unf (dtp, 0);
667 us_read (dtp, 1);
668 }
669 else
670 {
671 /* Let's make sure the file position is correctly pre-positioned
672 for the next read statement. */
673
674 dtp->u.p.current_unit->current_record = 0;
675 next_record_r_unf (dtp, 0);
676 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
677 return;
678 }
679 }
680 else
681 {
682 /* Normal exit, the read request has been fulfilled. */
683 break;
684 }
685 }
686
687 dtp->u.p.current_unit->bytes_left -= have_read_record;
688 if (unlikely (short_record))
689 {
690 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
691 return;
692 }
693 return;
694 }
695
696
697 /* Function for writing a block of bytes to the current file at the
698 current position, advancing the file pointer. We are given a length
699 and return a pointer to a buffer that the caller must (completely)
700 fill in. Returns NULL on error. */
701
702 void *
703 write_block (st_parameter_dt *dtp, int length)
704 {
705 char *dest;
706
707 if (!is_stream_io (dtp))
708 {
709 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) length)
710 {
711 /* For preconnected units with default record length, set bytes left
712 to unit record length and proceed, otherwise error. */
713 if (likely ((dtp->u.p.current_unit->unit_number
714 == options.stdout_unit
715 || dtp->u.p.current_unit->unit_number
716 == options.stderr_unit)
717 && dtp->u.p.current_unit->recl == DEFAULT_RECL))
718 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
719 else
720 {
721 generate_error (&dtp->common, LIBERROR_EOR, NULL);
722 return NULL;
723 }
724 }
725
726 dtp->u.p.current_unit->bytes_left -= (gfc_offset) length;
727 }
728
729 if (is_internal_unit (dtp))
730 {
731 if (dtp->common.unit) /* char4 internel unit. */
732 {
733 gfc_char4_t *dest4;
734 dest4 = mem_alloc_w4 (dtp->u.p.current_unit->s, &length);
735 if (dest4 == NULL)
736 {
737 generate_error (&dtp->common, LIBERROR_END, NULL);
738 return NULL;
739 }
740 return dest4;
741 }
742 else
743 dest = mem_alloc_w (dtp->u.p.current_unit->s, &length);
744
745 if (dest == NULL)
746 {
747 generate_error (&dtp->common, LIBERROR_END, NULL);
748 return NULL;
749 }
750
751 if (unlikely (dtp->u.p.current_unit->endfile == AT_ENDFILE))
752 generate_error (&dtp->common, LIBERROR_END, NULL);
753 }
754 else
755 {
756 dest = fbuf_alloc (dtp->u.p.current_unit, length);
757 if (dest == NULL)
758 {
759 generate_error (&dtp->common, LIBERROR_OS, NULL);
760 return NULL;
761 }
762 }
763
764 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
765 dtp->u.p.size_used += (GFC_IO_INT) length;
766
767 dtp->u.p.current_unit->strm_pos += (gfc_offset) length;
768
769 return dest;
770 }
771
772
773 /* High level interface to swrite(), taking care of errors. This is only
774 called for unformatted files. There are three cases to consider:
775 Stream I/O, unformatted direct, unformatted sequential. */
776
777 static bool
778 write_buf (st_parameter_dt *dtp, void *buf, size_t nbytes)
779 {
780
781 ssize_t have_written;
782 ssize_t to_write_subrecord;
783 int short_record;
784
785 /* Stream I/O. */
786
787 if (is_stream_io (dtp))
788 {
789 have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
790 if (unlikely (have_written < 0))
791 {
792 generate_error (&dtp->common, LIBERROR_OS, NULL);
793 return false;
794 }
795
796 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
797
798 return true;
799 }
800
801 /* Unformatted direct access. */
802
803 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
804 {
805 if (unlikely (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes))
806 {
807 generate_error (&dtp->common, LIBERROR_DIRECT_EOR, NULL);
808 return false;
809 }
810
811 if (buf == NULL && nbytes == 0)
812 return true;
813
814 have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
815 if (unlikely (have_written < 0))
816 {
817 generate_error (&dtp->common, LIBERROR_OS, NULL);
818 return false;
819 }
820
821 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
822 dtp->u.p.current_unit->bytes_left -= (gfc_offset) have_written;
823
824 return true;
825 }
826
827 /* Unformatted sequential. */
828
829 have_written = 0;
830
831 if (dtp->u.p.current_unit->flags.has_recl
832 && (gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left)
833 {
834 nbytes = dtp->u.p.current_unit->bytes_left;
835 short_record = 1;
836 }
837 else
838 {
839 short_record = 0;
840 }
841
842 while (1)
843 {
844
845 to_write_subrecord =
846 (size_t) dtp->u.p.current_unit->bytes_left_subrecord < nbytes ?
847 (size_t) dtp->u.p.current_unit->bytes_left_subrecord : nbytes;
848
849 dtp->u.p.current_unit->bytes_left_subrecord -=
850 (gfc_offset) to_write_subrecord;
851
852 to_write_subrecord = swrite (dtp->u.p.current_unit->s,
853 buf + have_written, to_write_subrecord);
854 if (unlikely (to_write_subrecord < 0))
855 {
856 generate_error (&dtp->common, LIBERROR_OS, NULL);
857 return false;
858 }
859
860 dtp->u.p.current_unit->strm_pos += (gfc_offset) to_write_subrecord;
861 nbytes -= to_write_subrecord;
862 have_written += to_write_subrecord;
863
864 if (nbytes == 0)
865 break;
866
867 next_record_w_unf (dtp, 1);
868 us_write (dtp, 1);
869 }
870 dtp->u.p.current_unit->bytes_left -= have_written;
871 if (unlikely (short_record))
872 {
873 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
874 return false;
875 }
876 return true;
877 }
878
879
880 /* Reverse memcpy - used for byte swapping. */
881
882 static void
883 reverse_memcpy (void *dest, const void *src, size_t n)
884 {
885 char *d, *s;
886 size_t i;
887
888 d = (char *) dest;
889 s = (char *) src + n - 1;
890
891 /* Write with ascending order - this is likely faster
892 on modern architectures because of write combining. */
893 for (i=0; i<n; i++)
894 *(d++) = *(s--);
895 }
896
897
898 /* Utility function for byteswapping an array, using the bswap
899 builtins if possible. dest and src can overlap completely, or then
900 they must point to separate objects; partial overlaps are not
901 allowed. */
902
903 static void
904 bswap_array (void *dest, const void *src, size_t size, size_t nelems)
905 {
906 const char *ps;
907 char *pd;
908
909 switch (size)
910 {
911 case 1:
912 break;
913 case 2:
914 for (size_t i = 0; i < nelems; i++)
915 ((uint16_t*)dest)[i] = __builtin_bswap16 (((uint16_t*)src)[i]);
916 break;
917 case 4:
918 for (size_t i = 0; i < nelems; i++)
919 ((uint32_t*)dest)[i] = __builtin_bswap32 (((uint32_t*)src)[i]);
920 break;
921 case 8:
922 for (size_t i = 0; i < nelems; i++)
923 ((uint64_t*)dest)[i] = __builtin_bswap64 (((uint64_t*)src)[i]);
924 break;
925 case 12:
926 ps = src;
927 pd = dest;
928 for (size_t i = 0; i < nelems; i++)
929 {
930 uint32_t tmp;
931 memcpy (&tmp, ps, 4);
932 *(uint32_t*)pd = __builtin_bswap32 (*(uint32_t*)(ps + 8));
933 *(uint32_t*)(pd + 4) = __builtin_bswap32 (*(uint32_t*)(ps + 4));
934 *(uint32_t*)(pd + 8) = __builtin_bswap32 (tmp);
935 ps += size;
936 pd += size;
937 }
938 break;
939 case 16:
940 ps = src;
941 pd = dest;
942 for (size_t i = 0; i < nelems; i++)
943 {
944 uint64_t tmp;
945 memcpy (&tmp, ps, 8);
946 *(uint64_t*)pd = __builtin_bswap64 (*(uint64_t*)(ps + 8));
947 *(uint64_t*)(pd + 8) = __builtin_bswap64 (tmp);
948 ps += size;
949 pd += size;
950 }
951 break;
952 default:
953 pd = dest;
954 if (dest != src)
955 {
956 ps = src;
957 for (size_t i = 0; i < nelems; i++)
958 {
959 reverse_memcpy (pd, ps, size);
960 ps += size;
961 pd += size;
962 }
963 }
964 else
965 {
966 /* In-place byte swap. */
967 for (size_t i = 0; i < nelems; i++)
968 {
969 char tmp, *low = pd, *high = pd + size - 1;
970 for (size_t j = 0; j < size/2; j++)
971 {
972 tmp = *low;
973 *low = *high;
974 *high = tmp;
975 low++;
976 high--;
977 }
978 pd += size;
979 }
980 }
981 }
982 }
983
984
985 /* Master function for unformatted reads. */
986
987 static void
988 unformatted_read (st_parameter_dt *dtp, bt type,
989 void *dest, int kind, size_t size, size_t nelems)
990 {
991 if (type == BT_CHARACTER)
992 size *= GFC_SIZE_OF_CHAR_KIND(kind);
993 read_block_direct (dtp, dest, size * nelems);
994
995 if (unlikely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_SWAP)
996 && kind != 1)
997 {
998 /* Handle wide chracters. */
999 if (type == BT_CHARACTER)
1000 {
1001 nelems *= size;
1002 size = kind;
1003 }
1004
1005 /* Break up complex into its constituent reals. */
1006 else if (type == BT_COMPLEX)
1007 {
1008 nelems *= 2;
1009 size /= 2;
1010 }
1011 bswap_array (dest, dest, size, nelems);
1012 }
1013 }
1014
1015
1016 /* Master function for unformatted writes. NOTE: For kind=10 the size is 16
1017 bytes on 64 bit machines. The unused bytes are not initialized and never
1018 used, which can show an error with memory checking analyzers like
1019 valgrind. */
1020
1021 static void
1022 unformatted_write (st_parameter_dt *dtp, bt type,
1023 void *source, int kind, size_t size, size_t nelems)
1024 {
1025 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE)
1026 || kind == 1)
1027 {
1028 size_t stride = type == BT_CHARACTER ?
1029 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1030
1031 write_buf (dtp, source, stride * nelems);
1032 }
1033 else
1034 {
1035 #define BSWAP_BUFSZ 512
1036 char buffer[BSWAP_BUFSZ];
1037 char *p;
1038 size_t nrem;
1039
1040 p = source;
1041
1042 /* Handle wide chracters. */
1043 if (type == BT_CHARACTER && kind != 1)
1044 {
1045 nelems *= size;
1046 size = kind;
1047 }
1048
1049 /* Break up complex into its constituent reals. */
1050 if (type == BT_COMPLEX)
1051 {
1052 nelems *= 2;
1053 size /= 2;
1054 }
1055
1056 /* By now, all complex variables have been split into their
1057 constituent reals. */
1058
1059 nrem = nelems;
1060 do
1061 {
1062 size_t nc;
1063 if (size * nrem > BSWAP_BUFSZ)
1064 nc = BSWAP_BUFSZ / size;
1065 else
1066 nc = nrem;
1067
1068 bswap_array (buffer, p, size, nc);
1069 write_buf (dtp, buffer, size * nc);
1070 p += size * nc;
1071 nrem -= nc;
1072 }
1073 while (nrem > 0);
1074 }
1075 }
1076
1077
1078 /* Return a pointer to the name of a type. */
1079
1080 const char *
1081 type_name (bt type)
1082 {
1083 const char *p;
1084
1085 switch (type)
1086 {
1087 case BT_INTEGER:
1088 p = "INTEGER";
1089 break;
1090 case BT_LOGICAL:
1091 p = "LOGICAL";
1092 break;
1093 case BT_CHARACTER:
1094 p = "CHARACTER";
1095 break;
1096 case BT_REAL:
1097 p = "REAL";
1098 break;
1099 case BT_COMPLEX:
1100 p = "COMPLEX";
1101 break;
1102 default:
1103 internal_error (NULL, "type_name(): Bad type");
1104 }
1105
1106 return p;
1107 }
1108
1109
1110 /* Write a constant string to the output.
1111 This is complicated because the string can have doubled delimiters
1112 in it. The length in the format node is the true length. */
1113
1114 static void
1115 write_constant_string (st_parameter_dt *dtp, const fnode *f)
1116 {
1117 char c, delimiter, *p, *q;
1118 int length;
1119
1120 length = f->u.string.length;
1121 if (length == 0)
1122 return;
1123
1124 p = write_block (dtp, length);
1125 if (p == NULL)
1126 return;
1127
1128 q = f->u.string.p;
1129 delimiter = q[-1];
1130
1131 for (; length > 0; length--)
1132 {
1133 c = *p++ = *q++;
1134 if (c == delimiter && c != 'H' && c != 'h')
1135 q++; /* Skip the doubled delimiter. */
1136 }
1137 }
1138
1139
1140 /* Given actual and expected types in a formatted data transfer, make
1141 sure they agree. If not, an error message is generated. Returns
1142 nonzero if something went wrong. */
1143
1144 static int
1145 require_type (st_parameter_dt *dtp, bt expected, bt actual, const fnode *f)
1146 {
1147 #define BUFLEN 100
1148 char buffer[BUFLEN];
1149
1150 if (actual == expected)
1151 return 0;
1152
1153 /* Adjust item_count before emitting error message. */
1154 snprintf (buffer, BUFLEN,
1155 "Expected %s for item %d in formatted transfer, got %s",
1156 type_name (expected), dtp->u.p.item_count - 1, type_name (actual));
1157
1158 format_error (dtp, f, buffer);
1159 return 1;
1160 }
1161
1162
1163 static int
1164 require_numeric_type (st_parameter_dt *dtp, bt actual, const fnode *f)
1165 {
1166 #define BUFLEN 100
1167 char buffer[BUFLEN];
1168
1169 if (actual == BT_INTEGER || actual == BT_REAL || actual == BT_COMPLEX)
1170 return 0;
1171
1172 /* Adjust item_count before emitting error message. */
1173 snprintf (buffer, BUFLEN,
1174 "Expected numeric type for item %d in formatted transfer, got %s",
1175 dtp->u.p.item_count - 1, type_name (actual));
1176
1177 format_error (dtp, f, buffer);
1178 return 1;
1179 }
1180
1181
1182 /* This function is in the main loop for a formatted data transfer
1183 statement. It would be natural to implement this as a coroutine
1184 with the user program, but C makes that awkward. We loop,
1185 processing format elements. When we actually have to transfer
1186 data instead of just setting flags, we return control to the user
1187 program which calls a function that supplies the address and type
1188 of the next element, then comes back here to process it. */
1189
1190 static void
1191 formatted_transfer_scalar_read (st_parameter_dt *dtp, bt type, void *p, int kind,
1192 size_t size)
1193 {
1194 int pos, bytes_used;
1195 const fnode *f;
1196 format_token t;
1197 int n;
1198 int consume_data_flag;
1199
1200 /* Change a complex data item into a pair of reals. */
1201
1202 n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
1203 if (type == BT_COMPLEX)
1204 {
1205 type = BT_REAL;
1206 size /= 2;
1207 }
1208
1209 /* If there's an EOR condition, we simulate finalizing the transfer
1210 by doing nothing. */
1211 if (dtp->u.p.eor_condition)
1212 return;
1213
1214 /* Set this flag so that commas in reads cause the read to complete before
1215 the entire field has been read. The next read field will start right after
1216 the comma in the stream. (Set to 0 for character reads). */
1217 dtp->u.p.sf_read_comma =
1218 dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
1219
1220 for (;;)
1221 {
1222 /* If reversion has occurred and there is another real data item,
1223 then we have to move to the next record. */
1224 if (dtp->u.p.reversion_flag && n > 0)
1225 {
1226 dtp->u.p.reversion_flag = 0;
1227 next_record (dtp, 0);
1228 }
1229
1230 consume_data_flag = 1;
1231 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
1232 break;
1233
1234 f = next_format (dtp);
1235 if (f == NULL)
1236 {
1237 /* No data descriptors left. */
1238 if (unlikely (n > 0))
1239 generate_error (&dtp->common, LIBERROR_FORMAT,
1240 "Insufficient data descriptors in format after reversion");
1241 return;
1242 }
1243
1244 t = f->format;
1245
1246 bytes_used = (int)(dtp->u.p.current_unit->recl
1247 - dtp->u.p.current_unit->bytes_left);
1248
1249 if (is_stream_io(dtp))
1250 bytes_used = 0;
1251
1252 switch (t)
1253 {
1254 case FMT_I:
1255 if (n == 0)
1256 goto need_read_data;
1257 if (require_type (dtp, BT_INTEGER, type, f))
1258 return;
1259 read_decimal (dtp, f, p, kind);
1260 break;
1261
1262 case FMT_B:
1263 if (n == 0)
1264 goto need_read_data;
1265 if (!(compile_options.allow_std & GFC_STD_GNU)
1266 && require_numeric_type (dtp, type, f))
1267 return;
1268 if (!(compile_options.allow_std & GFC_STD_F2008)
1269 && require_type (dtp, BT_INTEGER, type, f))
1270 return;
1271 read_radix (dtp, f, p, kind, 2);
1272 break;
1273
1274 case FMT_O:
1275 if (n == 0)
1276 goto need_read_data;
1277 if (!(compile_options.allow_std & GFC_STD_GNU)
1278 && require_numeric_type (dtp, type, f))
1279 return;
1280 if (!(compile_options.allow_std & GFC_STD_F2008)
1281 && require_type (dtp, BT_INTEGER, type, f))
1282 return;
1283 read_radix (dtp, f, p, kind, 8);
1284 break;
1285
1286 case FMT_Z:
1287 if (n == 0)
1288 goto need_read_data;
1289 if (!(compile_options.allow_std & GFC_STD_GNU)
1290 && require_numeric_type (dtp, type, f))
1291 return;
1292 if (!(compile_options.allow_std & GFC_STD_F2008)
1293 && require_type (dtp, BT_INTEGER, type, f))
1294 return;
1295 read_radix (dtp, f, p, kind, 16);
1296 break;
1297
1298 case FMT_A:
1299 if (n == 0)
1300 goto need_read_data;
1301
1302 /* It is possible to have FMT_A with something not BT_CHARACTER such
1303 as when writing out hollerith strings, so check both type
1304 and kind before calling wide character routines. */
1305 if (type == BT_CHARACTER && kind == 4)
1306 read_a_char4 (dtp, f, p, size);
1307 else
1308 read_a (dtp, f, p, size);
1309 break;
1310
1311 case FMT_L:
1312 if (n == 0)
1313 goto need_read_data;
1314 read_l (dtp, f, p, kind);
1315 break;
1316
1317 case FMT_D:
1318 if (n == 0)
1319 goto need_read_data;
1320 if (require_type (dtp, BT_REAL, type, f))
1321 return;
1322 read_f (dtp, f, p, kind);
1323 break;
1324
1325 case FMT_E:
1326 if (n == 0)
1327 goto need_read_data;
1328 if (require_type (dtp, BT_REAL, type, f))
1329 return;
1330 read_f (dtp, f, p, kind);
1331 break;
1332
1333 case FMT_EN:
1334 if (n == 0)
1335 goto need_read_data;
1336 if (require_type (dtp, BT_REAL, type, f))
1337 return;
1338 read_f (dtp, f, p, kind);
1339 break;
1340
1341 case FMT_ES:
1342 if (n == 0)
1343 goto need_read_data;
1344 if (require_type (dtp, BT_REAL, type, f))
1345 return;
1346 read_f (dtp, f, p, kind);
1347 break;
1348
1349 case FMT_F:
1350 if (n == 0)
1351 goto need_read_data;
1352 if (require_type (dtp, BT_REAL, type, f))
1353 return;
1354 read_f (dtp, f, p, kind);
1355 break;
1356
1357 case FMT_G:
1358 if (n == 0)
1359 goto need_read_data;
1360 switch (type)
1361 {
1362 case BT_INTEGER:
1363 read_decimal (dtp, f, p, kind);
1364 break;
1365 case BT_LOGICAL:
1366 read_l (dtp, f, p, kind);
1367 break;
1368 case BT_CHARACTER:
1369 if (kind == 4)
1370 read_a_char4 (dtp, f, p, size);
1371 else
1372 read_a (dtp, f, p, size);
1373 break;
1374 case BT_REAL:
1375 read_f (dtp, f, p, kind);
1376 break;
1377 default:
1378 internal_error (&dtp->common, "formatted_transfer(): Bad type");
1379 }
1380 break;
1381
1382 case FMT_STRING:
1383 consume_data_flag = 0;
1384 format_error (dtp, f, "Constant string in input format");
1385 return;
1386
1387 /* Format codes that don't transfer data. */
1388 case FMT_X:
1389 case FMT_TR:
1390 consume_data_flag = 0;
1391 dtp->u.p.skips += f->u.n;
1392 pos = bytes_used + dtp->u.p.skips - 1;
1393 dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
1394 read_x (dtp, f->u.n);
1395 break;
1396
1397 case FMT_TL:
1398 case FMT_T:
1399 consume_data_flag = 0;
1400
1401 if (f->format == FMT_TL)
1402 {
1403 /* Handle the special case when no bytes have been used yet.
1404 Cannot go below zero. */
1405 if (bytes_used == 0)
1406 {
1407 dtp->u.p.pending_spaces -= f->u.n;
1408 dtp->u.p.skips -= f->u.n;
1409 dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
1410 }
1411
1412 pos = bytes_used - f->u.n;
1413 }
1414 else /* FMT_T */
1415 pos = f->u.n - 1;
1416
1417 /* Standard 10.6.1.1: excessive left tabbing is reset to the
1418 left tab limit. We do not check if the position has gone
1419 beyond the end of record because a subsequent tab could
1420 bring us back again. */
1421 pos = pos < 0 ? 0 : pos;
1422
1423 dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
1424 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
1425 + pos - dtp->u.p.max_pos;
1426 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
1427 ? 0 : dtp->u.p.pending_spaces;
1428 if (dtp->u.p.skips == 0)
1429 break;
1430
1431 /* Adjust everything for end-of-record condition */
1432 if (dtp->u.p.sf_seen_eor && !is_internal_unit (dtp))
1433 {
1434 dtp->u.p.current_unit->bytes_left -= dtp->u.p.sf_seen_eor;
1435 dtp->u.p.skips -= dtp->u.p.sf_seen_eor;
1436 bytes_used = pos;
1437 dtp->u.p.sf_seen_eor = 0;
1438 }
1439 if (dtp->u.p.skips < 0)
1440 {
1441 if (is_internal_unit (dtp))
1442 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
1443 else
1444 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
1445 dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
1446 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1447 }
1448 else
1449 read_x (dtp, dtp->u.p.skips);
1450 break;
1451
1452 case FMT_S:
1453 consume_data_flag = 0;
1454 dtp->u.p.sign_status = SIGN_S;
1455 break;
1456
1457 case FMT_SS:
1458 consume_data_flag = 0;
1459 dtp->u.p.sign_status = SIGN_SS;
1460 break;
1461
1462 case FMT_SP:
1463 consume_data_flag = 0;
1464 dtp->u.p.sign_status = SIGN_SP;
1465 break;
1466
1467 case FMT_BN:
1468 consume_data_flag = 0 ;
1469 dtp->u.p.blank_status = BLANK_NULL;
1470 break;
1471
1472 case FMT_BZ:
1473 consume_data_flag = 0;
1474 dtp->u.p.blank_status = BLANK_ZERO;
1475 break;
1476
1477 case FMT_DC:
1478 consume_data_flag = 0;
1479 dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
1480 break;
1481
1482 case FMT_DP:
1483 consume_data_flag = 0;
1484 dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
1485 break;
1486
1487 case FMT_RC:
1488 consume_data_flag = 0;
1489 dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
1490 break;
1491
1492 case FMT_RD:
1493 consume_data_flag = 0;
1494 dtp->u.p.current_unit->round_status = ROUND_DOWN;
1495 break;
1496
1497 case FMT_RN:
1498 consume_data_flag = 0;
1499 dtp->u.p.current_unit->round_status = ROUND_NEAREST;
1500 break;
1501
1502 case FMT_RP:
1503 consume_data_flag = 0;
1504 dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
1505 break;
1506
1507 case FMT_RU:
1508 consume_data_flag = 0;
1509 dtp->u.p.current_unit->round_status = ROUND_UP;
1510 break;
1511
1512 case FMT_RZ:
1513 consume_data_flag = 0;
1514 dtp->u.p.current_unit->round_status = ROUND_ZERO;
1515 break;
1516
1517 case FMT_P:
1518 consume_data_flag = 0;
1519 dtp->u.p.scale_factor = f->u.k;
1520 break;
1521
1522 case FMT_DOLLAR:
1523 consume_data_flag = 0;
1524 dtp->u.p.seen_dollar = 1;
1525 break;
1526
1527 case FMT_SLASH:
1528 consume_data_flag = 0;
1529 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1530 next_record (dtp, 0);
1531 break;
1532
1533 case FMT_COLON:
1534 /* A colon descriptor causes us to exit this loop (in
1535 particular preventing another / descriptor from being
1536 processed) unless there is another data item to be
1537 transferred. */
1538 consume_data_flag = 0;
1539 if (n == 0)
1540 return;
1541 break;
1542
1543 default:
1544 internal_error (&dtp->common, "Bad format node");
1545 }
1546
1547 /* Adjust the item count and data pointer. */
1548
1549 if ((consume_data_flag > 0) && (n > 0))
1550 {
1551 n--;
1552 p = ((char *) p) + size;
1553 }
1554
1555 dtp->u.p.skips = 0;
1556
1557 pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
1558 dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
1559 }
1560
1561 return;
1562
1563 /* Come here when we need a data descriptor but don't have one. We
1564 push the current format node back onto the input, then return and
1565 let the user program call us back with the data. */
1566 need_read_data:
1567 unget_format (dtp, f);
1568 }
1569
1570
1571 static void
1572 formatted_transfer_scalar_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1573 size_t size)
1574 {
1575 int pos, bytes_used;
1576 const fnode *f;
1577 format_token t;
1578 int n;
1579 int consume_data_flag;
1580
1581 /* Change a complex data item into a pair of reals. */
1582
1583 n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
1584 if (type == BT_COMPLEX)
1585 {
1586 type = BT_REAL;
1587 size /= 2;
1588 }
1589
1590 /* If there's an EOR condition, we simulate finalizing the transfer
1591 by doing nothing. */
1592 if (dtp->u.p.eor_condition)
1593 return;
1594
1595 /* Set this flag so that commas in reads cause the read to complete before
1596 the entire field has been read. The next read field will start right after
1597 the comma in the stream. (Set to 0 for character reads). */
1598 dtp->u.p.sf_read_comma =
1599 dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
1600
1601 for (;;)
1602 {
1603 /* If reversion has occurred and there is another real data item,
1604 then we have to move to the next record. */
1605 if (dtp->u.p.reversion_flag && n > 0)
1606 {
1607 dtp->u.p.reversion_flag = 0;
1608 next_record (dtp, 0);
1609 }
1610
1611 consume_data_flag = 1;
1612 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
1613 break;
1614
1615 f = next_format (dtp);
1616 if (f == NULL)
1617 {
1618 /* No data descriptors left. */
1619 if (unlikely (n > 0))
1620 generate_error (&dtp->common, LIBERROR_FORMAT,
1621 "Insufficient data descriptors in format after reversion");
1622 return;
1623 }
1624
1625 /* Now discharge T, TR and X movements to the right. This is delayed
1626 until a data producing format to suppress trailing spaces. */
1627
1628 t = f->format;
1629 if (dtp->u.p.mode == WRITING && dtp->u.p.skips != 0
1630 && ((n>0 && ( t == FMT_I || t == FMT_B || t == FMT_O
1631 || t == FMT_Z || t == FMT_F || t == FMT_E
1632 || t == FMT_EN || t == FMT_ES || t == FMT_G
1633 || t == FMT_L || t == FMT_A || t == FMT_D))
1634 || t == FMT_STRING))
1635 {
1636 if (dtp->u.p.skips > 0)
1637 {
1638 int tmp;
1639 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
1640 tmp = (int)(dtp->u.p.current_unit->recl
1641 - dtp->u.p.current_unit->bytes_left);
1642 dtp->u.p.max_pos =
1643 dtp->u.p.max_pos > tmp ? dtp->u.p.max_pos : tmp;
1644 }
1645 if (dtp->u.p.skips < 0)
1646 {
1647 if (is_internal_unit (dtp))
1648 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
1649 else
1650 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
1651 dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
1652 }
1653 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1654 }
1655
1656 bytes_used = (int)(dtp->u.p.current_unit->recl
1657 - dtp->u.p.current_unit->bytes_left);
1658
1659 if (is_stream_io(dtp))
1660 bytes_used = 0;
1661
1662 switch (t)
1663 {
1664 case FMT_I:
1665 if (n == 0)
1666 goto need_data;
1667 if (require_type (dtp, BT_INTEGER, type, f))
1668 return;
1669 write_i (dtp, f, p, kind);
1670 break;
1671
1672 case FMT_B:
1673 if (n == 0)
1674 goto need_data;
1675 if (!(compile_options.allow_std & GFC_STD_GNU)
1676 && require_numeric_type (dtp, type, f))
1677 return;
1678 if (!(compile_options.allow_std & GFC_STD_F2008)
1679 && require_type (dtp, BT_INTEGER, type, f))
1680 return;
1681 write_b (dtp, f, p, kind);
1682 break;
1683
1684 case FMT_O:
1685 if (n == 0)
1686 goto need_data;
1687 if (!(compile_options.allow_std & GFC_STD_GNU)
1688 && require_numeric_type (dtp, type, f))
1689 return;
1690 if (!(compile_options.allow_std & GFC_STD_F2008)
1691 && require_type (dtp, BT_INTEGER, type, f))
1692 return;
1693 write_o (dtp, f, p, kind);
1694 break;
1695
1696 case FMT_Z:
1697 if (n == 0)
1698 goto need_data;
1699 if (!(compile_options.allow_std & GFC_STD_GNU)
1700 && require_numeric_type (dtp, type, f))
1701 return;
1702 if (!(compile_options.allow_std & GFC_STD_F2008)
1703 && require_type (dtp, BT_INTEGER, type, f))
1704 return;
1705 write_z (dtp, f, p, kind);
1706 break;
1707
1708 case FMT_A:
1709 if (n == 0)
1710 goto need_data;
1711
1712 /* It is possible to have FMT_A with something not BT_CHARACTER such
1713 as when writing out hollerith strings, so check both type
1714 and kind before calling wide character routines. */
1715 if (type == BT_CHARACTER && kind == 4)
1716 write_a_char4 (dtp, f, p, size);
1717 else
1718 write_a (dtp, f, p, size);
1719 break;
1720
1721 case FMT_L:
1722 if (n == 0)
1723 goto need_data;
1724 write_l (dtp, f, p, kind);
1725 break;
1726
1727 case FMT_D:
1728 if (n == 0)
1729 goto need_data;
1730 if (require_type (dtp, BT_REAL, type, f))
1731 return;
1732 write_d (dtp, f, p, kind);
1733 break;
1734
1735 case FMT_E:
1736 if (n == 0)
1737 goto need_data;
1738 if (require_type (dtp, BT_REAL, type, f))
1739 return;
1740 write_e (dtp, f, p, kind);
1741 break;
1742
1743 case FMT_EN:
1744 if (n == 0)
1745 goto need_data;
1746 if (require_type (dtp, BT_REAL, type, f))
1747 return;
1748 write_en (dtp, f, p, kind);
1749 break;
1750
1751 case FMT_ES:
1752 if (n == 0)
1753 goto need_data;
1754 if (require_type (dtp, BT_REAL, type, f))
1755 return;
1756 write_es (dtp, f, p, kind);
1757 break;
1758
1759 case FMT_F:
1760 if (n == 0)
1761 goto need_data;
1762 if (require_type (dtp, BT_REAL, type, f))
1763 return;
1764 write_f (dtp, f, p, kind);
1765 break;
1766
1767 case FMT_G:
1768 if (n == 0)
1769 goto need_data;
1770 switch (type)
1771 {
1772 case BT_INTEGER:
1773 write_i (dtp, f, p, kind);
1774 break;
1775 case BT_LOGICAL:
1776 write_l (dtp, f, p, kind);
1777 break;
1778 case BT_CHARACTER:
1779 if (kind == 4)
1780 write_a_char4 (dtp, f, p, size);
1781 else
1782 write_a (dtp, f, p, size);
1783 break;
1784 case BT_REAL:
1785 if (f->u.real.w == 0)
1786 write_real_g0 (dtp, p, kind, f->u.real.d);
1787 else
1788 write_d (dtp, f, p, kind);
1789 break;
1790 default:
1791 internal_error (&dtp->common,
1792 "formatted_transfer(): Bad type");
1793 }
1794 break;
1795
1796 case FMT_STRING:
1797 consume_data_flag = 0;
1798 write_constant_string (dtp, f);
1799 break;
1800
1801 /* Format codes that don't transfer data. */
1802 case FMT_X:
1803 case FMT_TR:
1804 consume_data_flag = 0;
1805
1806 dtp->u.p.skips += f->u.n;
1807 pos = bytes_used + dtp->u.p.skips - 1;
1808 dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
1809 /* Writes occur just before the switch on f->format, above, so
1810 that trailing blanks are suppressed, unless we are doing a
1811 non-advancing write in which case we want to output the blanks
1812 now. */
1813 if (dtp->u.p.advance_status == ADVANCE_NO)
1814 {
1815 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
1816 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1817 }
1818 break;
1819
1820 case FMT_TL:
1821 case FMT_T:
1822 consume_data_flag = 0;
1823
1824 if (f->format == FMT_TL)
1825 {
1826
1827 /* Handle the special case when no bytes have been used yet.
1828 Cannot go below zero. */
1829 if (bytes_used == 0)
1830 {
1831 dtp->u.p.pending_spaces -= f->u.n;
1832 dtp->u.p.skips -= f->u.n;
1833 dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
1834 }
1835
1836 pos = bytes_used - f->u.n;
1837 }
1838 else /* FMT_T */
1839 pos = f->u.n - dtp->u.p.pending_spaces - 1;
1840
1841 /* Standard 10.6.1.1: excessive left tabbing is reset to the
1842 left tab limit. We do not check if the position has gone
1843 beyond the end of record because a subsequent tab could
1844 bring us back again. */
1845 pos = pos < 0 ? 0 : pos;
1846
1847 dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
1848 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
1849 + pos - dtp->u.p.max_pos;
1850 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
1851 ? 0 : dtp->u.p.pending_spaces;
1852 break;
1853
1854 case FMT_S:
1855 consume_data_flag = 0;
1856 dtp->u.p.sign_status = SIGN_S;
1857 break;
1858
1859 case FMT_SS:
1860 consume_data_flag = 0;
1861 dtp->u.p.sign_status = SIGN_SS;
1862 break;
1863
1864 case FMT_SP:
1865 consume_data_flag = 0;
1866 dtp->u.p.sign_status = SIGN_SP;
1867 break;
1868
1869 case FMT_BN:
1870 consume_data_flag = 0 ;
1871 dtp->u.p.blank_status = BLANK_NULL;
1872 break;
1873
1874 case FMT_BZ:
1875 consume_data_flag = 0;
1876 dtp->u.p.blank_status = BLANK_ZERO;
1877 break;
1878
1879 case FMT_DC:
1880 consume_data_flag = 0;
1881 dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
1882 break;
1883
1884 case FMT_DP:
1885 consume_data_flag = 0;
1886 dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
1887 break;
1888
1889 case FMT_RC:
1890 consume_data_flag = 0;
1891 dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
1892 break;
1893
1894 case FMT_RD:
1895 consume_data_flag = 0;
1896 dtp->u.p.current_unit->round_status = ROUND_DOWN;
1897 break;
1898
1899 case FMT_RN:
1900 consume_data_flag = 0;
1901 dtp->u.p.current_unit->round_status = ROUND_NEAREST;
1902 break;
1903
1904 case FMT_RP:
1905 consume_data_flag = 0;
1906 dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
1907 break;
1908
1909 case FMT_RU:
1910 consume_data_flag = 0;
1911 dtp->u.p.current_unit->round_status = ROUND_UP;
1912 break;
1913
1914 case FMT_RZ:
1915 consume_data_flag = 0;
1916 dtp->u.p.current_unit->round_status = ROUND_ZERO;
1917 break;
1918
1919 case FMT_P:
1920 consume_data_flag = 0;
1921 dtp->u.p.scale_factor = f->u.k;
1922 break;
1923
1924 case FMT_DOLLAR:
1925 consume_data_flag = 0;
1926 dtp->u.p.seen_dollar = 1;
1927 break;
1928
1929 case FMT_SLASH:
1930 consume_data_flag = 0;
1931 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1932 next_record (dtp, 0);
1933 break;
1934
1935 case FMT_COLON:
1936 /* A colon descriptor causes us to exit this loop (in
1937 particular preventing another / descriptor from being
1938 processed) unless there is another data item to be
1939 transferred. */
1940 consume_data_flag = 0;
1941 if (n == 0)
1942 return;
1943 break;
1944
1945 default:
1946 internal_error (&dtp->common, "Bad format node");
1947 }
1948
1949 /* Adjust the item count and data pointer. */
1950
1951 if ((consume_data_flag > 0) && (n > 0))
1952 {
1953 n--;
1954 p = ((char *) p) + size;
1955 }
1956
1957 pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
1958 dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
1959 }
1960
1961 return;
1962
1963 /* Come here when we need a data descriptor but don't have one. We
1964 push the current format node back onto the input, then return and
1965 let the user program call us back with the data. */
1966 need_data:
1967 unget_format (dtp, f);
1968 }
1969
1970 /* This function is first called from data_init_transfer to initiate the loop
1971 over each item in the format, transferring data as required. Subsequent
1972 calls to this function occur for each data item foound in the READ/WRITE
1973 statement. The item_count is incremented for each call. Since the first
1974 call is from data_transfer_init, the item_count is always one greater than
1975 the actual count number of the item being transferred. */
1976
1977 static void
1978 formatted_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
1979 size_t size, size_t nelems)
1980 {
1981 size_t elem;
1982 char *tmp;
1983
1984 tmp = (char *) p;
1985 size_t stride = type == BT_CHARACTER ?
1986 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1987 if (dtp->u.p.mode == READING)
1988 {
1989 /* Big loop over all the elements. */
1990 for (elem = 0; elem < nelems; elem++)
1991 {
1992 dtp->u.p.item_count++;
1993 formatted_transfer_scalar_read (dtp, type, tmp + stride*elem, kind, size);
1994 }
1995 }
1996 else
1997 {
1998 /* Big loop over all the elements. */
1999 for (elem = 0; elem < nelems; elem++)
2000 {
2001 dtp->u.p.item_count++;
2002 formatted_transfer_scalar_write (dtp, type, tmp + stride*elem, kind, size);
2003 }
2004 }
2005 }
2006
2007
2008 /* Data transfer entry points. The type of the data entity is
2009 implicit in the subroutine call. This prevents us from having to
2010 share a common enum with the compiler. */
2011
2012 void
2013 transfer_integer (st_parameter_dt *dtp, void *p, int kind)
2014 {
2015 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2016 return;
2017 dtp->u.p.transfer (dtp, BT_INTEGER, p, kind, kind, 1);
2018 }
2019
2020 void
2021 transfer_integer_write (st_parameter_dt *dtp, void *p, int kind)
2022 {
2023 transfer_integer (dtp, p, kind);
2024 }
2025
2026 void
2027 transfer_real (st_parameter_dt *dtp, void *p, int kind)
2028 {
2029 size_t size;
2030 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2031 return;
2032 size = size_from_real_kind (kind);
2033 dtp->u.p.transfer (dtp, BT_REAL, p, kind, size, 1);
2034 }
2035
2036 void
2037 transfer_real_write (st_parameter_dt *dtp, void *p, int kind)
2038 {
2039 transfer_real (dtp, p, kind);
2040 }
2041
2042 void
2043 transfer_logical (st_parameter_dt *dtp, void *p, int kind)
2044 {
2045 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2046 return;
2047 dtp->u.p.transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
2048 }
2049
2050 void
2051 transfer_logical_write (st_parameter_dt *dtp, void *p, int kind)
2052 {
2053 transfer_logical (dtp, p, kind);
2054 }
2055
2056 void
2057 transfer_character (st_parameter_dt *dtp, void *p, int len)
2058 {
2059 static char *empty_string[0];
2060
2061 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2062 return;
2063
2064 /* Strings of zero length can have p == NULL, which confuses the
2065 transfer routines into thinking we need more data elements. To avoid
2066 this, we give them a nice pointer. */
2067 if (len == 0 && p == NULL)
2068 p = empty_string;
2069
2070 /* Set kind here to 1. */
2071 dtp->u.p.transfer (dtp, BT_CHARACTER, p, 1, len, 1);
2072 }
2073
2074 void
2075 transfer_character_write (st_parameter_dt *dtp, void *p, int len)
2076 {
2077 transfer_character (dtp, p, len);
2078 }
2079
2080 void
2081 transfer_character_wide (st_parameter_dt *dtp, void *p, int len, int kind)
2082 {
2083 static char *empty_string[0];
2084
2085 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2086 return;
2087
2088 /* Strings of zero length can have p == NULL, which confuses the
2089 transfer routines into thinking we need more data elements. To avoid
2090 this, we give them a nice pointer. */
2091 if (len == 0 && p == NULL)
2092 p = empty_string;
2093
2094 /* Here we pass the actual kind value. */
2095 dtp->u.p.transfer (dtp, BT_CHARACTER, p, kind, len, 1);
2096 }
2097
2098 void
2099 transfer_character_wide_write (st_parameter_dt *dtp, void *p, int len, int kind)
2100 {
2101 transfer_character_wide (dtp, p, len, kind);
2102 }
2103
2104 void
2105 transfer_complex (st_parameter_dt *dtp, void *p, int kind)
2106 {
2107 size_t size;
2108 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2109 return;
2110 size = size_from_complex_kind (kind);
2111 dtp->u.p.transfer (dtp, BT_COMPLEX, p, kind, size, 1);
2112 }
2113
2114 void
2115 transfer_complex_write (st_parameter_dt *dtp, void *p, int kind)
2116 {
2117 transfer_complex (dtp, p, kind);
2118 }
2119
2120 void
2121 transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
2122 gfc_charlen_type charlen)
2123 {
2124 index_type count[GFC_MAX_DIMENSIONS];
2125 index_type extent[GFC_MAX_DIMENSIONS];
2126 index_type stride[GFC_MAX_DIMENSIONS];
2127 index_type stride0, rank, size, n;
2128 size_t tsize;
2129 char *data;
2130 bt iotype;
2131
2132 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2133 return;
2134
2135 iotype = (bt) GFC_DESCRIPTOR_TYPE (desc);
2136 size = iotype == BT_CHARACTER ? charlen : GFC_DESCRIPTOR_SIZE (desc);
2137
2138 rank = GFC_DESCRIPTOR_RANK (desc);
2139 for (n = 0; n < rank; n++)
2140 {
2141 count[n] = 0;
2142 stride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(desc,n);
2143 extent[n] = GFC_DESCRIPTOR_EXTENT(desc,n);
2144
2145 /* If the extent of even one dimension is zero, then the entire
2146 array section contains zero elements, so we return after writing
2147 a zero array record. */
2148 if (extent[n] <= 0)
2149 {
2150 data = NULL;
2151 tsize = 0;
2152 dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
2153 return;
2154 }
2155 }
2156
2157 stride0 = stride[0];
2158
2159 /* If the innermost dimension has a stride of 1, we can do the transfer
2160 in contiguous chunks. */
2161 if (stride0 == size)
2162 tsize = extent[0];
2163 else
2164 tsize = 1;
2165
2166 data = GFC_DESCRIPTOR_DATA (desc);
2167
2168 while (data)
2169 {
2170 dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
2171 data += stride0 * tsize;
2172 count[0] += tsize;
2173 n = 0;
2174 while (count[n] == extent[n])
2175 {
2176 count[n] = 0;
2177 data -= stride[n] * extent[n];
2178 n++;
2179 if (n == rank)
2180 {
2181 data = NULL;
2182 break;
2183 }
2184 else
2185 {
2186 count[n]++;
2187 data += stride[n];
2188 }
2189 }
2190 }
2191 }
2192
2193 void
2194 transfer_array_write (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
2195 gfc_charlen_type charlen)
2196 {
2197 transfer_array (dtp, desc, kind, charlen);
2198 }
2199
2200 /* Preposition a sequential unformatted file while reading. */
2201
2202 static void
2203 us_read (st_parameter_dt *dtp, int continued)
2204 {
2205 ssize_t n, nr;
2206 GFC_INTEGER_4 i4;
2207 GFC_INTEGER_8 i8;
2208 gfc_offset i;
2209
2210 if (compile_options.record_marker == 0)
2211 n = sizeof (GFC_INTEGER_4);
2212 else
2213 n = compile_options.record_marker;
2214
2215 nr = sread (dtp->u.p.current_unit->s, &i, n);
2216 if (unlikely (nr < 0))
2217 {
2218 generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
2219 return;
2220 }
2221 else if (nr == 0)
2222 {
2223 hit_eof (dtp);
2224 return; /* end of file */
2225 }
2226 else if (unlikely (n != nr))
2227 {
2228 generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
2229 return;
2230 }
2231
2232 /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here. */
2233 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
2234 {
2235 switch (nr)
2236 {
2237 case sizeof(GFC_INTEGER_4):
2238 memcpy (&i4, &i, sizeof (i4));
2239 i = i4;
2240 break;
2241
2242 case sizeof(GFC_INTEGER_8):
2243 memcpy (&i8, &i, sizeof (i8));
2244 i = i8;
2245 break;
2246
2247 default:
2248 runtime_error ("Illegal value for record marker");
2249 break;
2250 }
2251 }
2252 else
2253 {
2254 uint32_t u32;
2255 uint64_t u64;
2256 switch (nr)
2257 {
2258 case sizeof(GFC_INTEGER_4):
2259 memcpy (&u32, &i, sizeof (u32));
2260 u32 = __builtin_bswap32 (u32);
2261 memcpy (&i4, &u32, sizeof (i4));
2262 i = i4;
2263 break;
2264
2265 case sizeof(GFC_INTEGER_8):
2266 memcpy (&u64, &i, sizeof (u64));
2267 u64 = __builtin_bswap64 (u64);
2268 memcpy (&i8, &u64, sizeof (i8));
2269 i = i8;
2270 break;
2271
2272 default:
2273 runtime_error ("Illegal value for record marker");
2274 break;
2275 }
2276 }
2277
2278 if (i >= 0)
2279 {
2280 dtp->u.p.current_unit->bytes_left_subrecord = i;
2281 dtp->u.p.current_unit->continued = 0;
2282 }
2283 else
2284 {
2285 dtp->u.p.current_unit->bytes_left_subrecord = -i;
2286 dtp->u.p.current_unit->continued = 1;
2287 }
2288
2289 if (! continued)
2290 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
2291 }
2292
2293
2294 /* Preposition a sequential unformatted file while writing. This
2295 amount to writing a bogus length that will be filled in later. */
2296
2297 static void
2298 us_write (st_parameter_dt *dtp, int continued)
2299 {
2300 ssize_t nbytes;
2301 gfc_offset dummy;
2302
2303 dummy = 0;
2304
2305 if (compile_options.record_marker == 0)
2306 nbytes = sizeof (GFC_INTEGER_4);
2307 else
2308 nbytes = compile_options.record_marker ;
2309
2310 if (swrite (dtp->u.p.current_unit->s, &dummy, nbytes) != nbytes)
2311 generate_error (&dtp->common, LIBERROR_OS, NULL);
2312
2313 /* For sequential unformatted, if RECL= was not specified in the OPEN
2314 we write until we have more bytes than can fit in the subrecord
2315 markers, then we write a new subrecord. */
2316
2317 dtp->u.p.current_unit->bytes_left_subrecord =
2318 dtp->u.p.current_unit->recl_subrecord;
2319 dtp->u.p.current_unit->continued = continued;
2320 }
2321
2322
2323 /* Position to the next record prior to transfer. We are assumed to
2324 be before the next record. We also calculate the bytes in the next
2325 record. */
2326
2327 static void
2328 pre_position (st_parameter_dt *dtp)
2329 {
2330 if (dtp->u.p.current_unit->current_record)
2331 return; /* Already positioned. */
2332
2333 switch (current_mode (dtp))
2334 {
2335 case FORMATTED_STREAM:
2336 case UNFORMATTED_STREAM:
2337 /* There are no records with stream I/O. If the position was specified
2338 data_transfer_init has already positioned the file. If no position
2339 was specified, we continue from where we last left off. I.e.
2340 there is nothing to do here. */
2341 break;
2342
2343 case UNFORMATTED_SEQUENTIAL:
2344 if (dtp->u.p.mode == READING)
2345 us_read (dtp, 0);
2346 else
2347 us_write (dtp, 0);
2348
2349 break;
2350
2351 case FORMATTED_SEQUENTIAL:
2352 case FORMATTED_DIRECT:
2353 case UNFORMATTED_DIRECT:
2354 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
2355 break;
2356 }
2357
2358 dtp->u.p.current_unit->current_record = 1;
2359 }
2360
2361
2362 /* Initialize things for a data transfer. This code is common for
2363 both reading and writing. */
2364
2365 static void
2366 data_transfer_init (st_parameter_dt *dtp, int read_flag)
2367 {
2368 unit_flags u_flags; /* Used for creating a unit if needed. */
2369 GFC_INTEGER_4 cf = dtp->common.flags;
2370 namelist_info *ionml;
2371
2372 ionml = ((cf & IOPARM_DT_IONML_SET) != 0) ? dtp->u.p.ionml : NULL;
2373
2374 memset (&dtp->u.p, 0, sizeof (dtp->u.p));
2375
2376 dtp->u.p.ionml = ionml;
2377 dtp->u.p.mode = read_flag ? READING : WRITING;
2378
2379 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2380 return;
2381
2382 if ((cf & IOPARM_DT_HAS_SIZE) != 0)
2383 dtp->u.p.size_used = 0; /* Initialize the count. */
2384
2385 dtp->u.p.current_unit = get_unit (dtp, 1);
2386 if (dtp->u.p.current_unit->s == NULL)
2387 { /* Open the unit with some default flags. */
2388 st_parameter_open opp;
2389 unit_convert conv;
2390
2391 if (dtp->common.unit < 0)
2392 {
2393 close_unit (dtp->u.p.current_unit);
2394 dtp->u.p.current_unit = NULL;
2395 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2396 "Bad unit number in statement");
2397 return;
2398 }
2399 memset (&u_flags, '\0', sizeof (u_flags));
2400 u_flags.access = ACCESS_SEQUENTIAL;
2401 u_flags.action = ACTION_READWRITE;
2402
2403 /* Is it unformatted? */
2404 if (!(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT
2405 | IOPARM_DT_IONML_SET)))
2406 u_flags.form = FORM_UNFORMATTED;
2407 else
2408 u_flags.form = FORM_UNSPECIFIED;
2409
2410 u_flags.delim = DELIM_UNSPECIFIED;
2411 u_flags.blank = BLANK_UNSPECIFIED;
2412 u_flags.pad = PAD_UNSPECIFIED;
2413 u_flags.decimal = DECIMAL_UNSPECIFIED;
2414 u_flags.encoding = ENCODING_UNSPECIFIED;
2415 u_flags.async = ASYNC_UNSPECIFIED;
2416 u_flags.round = ROUND_UNSPECIFIED;
2417 u_flags.sign = SIGN_UNSPECIFIED;
2418
2419 u_flags.status = STATUS_UNKNOWN;
2420
2421 conv = get_unformatted_convert (dtp->common.unit);
2422
2423 if (conv == GFC_CONVERT_NONE)
2424 conv = compile_options.convert;
2425
2426 /* We use big_endian, which is 0 on little-endian machines
2427 and 1 on big-endian machines. */
2428 switch (conv)
2429 {
2430 case GFC_CONVERT_NATIVE:
2431 case GFC_CONVERT_SWAP:
2432 break;
2433
2434 case GFC_CONVERT_BIG:
2435 conv = big_endian ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
2436 break;
2437
2438 case GFC_CONVERT_LITTLE:
2439 conv = big_endian ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
2440 break;
2441
2442 default:
2443 internal_error (&opp.common, "Illegal value for CONVERT");
2444 break;
2445 }
2446
2447 u_flags.convert = conv;
2448
2449 opp.common = dtp->common;
2450 opp.common.flags &= IOPARM_COMMON_MASK;
2451 dtp->u.p.current_unit = new_unit (&opp, dtp->u.p.current_unit, &u_flags);
2452 dtp->common.flags &= ~IOPARM_COMMON_MASK;
2453 dtp->common.flags |= (opp.common.flags & IOPARM_COMMON_MASK);
2454 if (dtp->u.p.current_unit == NULL)
2455 return;
2456 }
2457
2458 /* Check the action. */
2459
2460 if (read_flag && dtp->u.p.current_unit->flags.action == ACTION_WRITE)
2461 {
2462 generate_error (&dtp->common, LIBERROR_BAD_ACTION,
2463 "Cannot read from file opened for WRITE");
2464 return;
2465 }
2466
2467 if (!read_flag && dtp->u.p.current_unit->flags.action == ACTION_READ)
2468 {
2469 generate_error (&dtp->common, LIBERROR_BAD_ACTION,
2470 "Cannot write to file opened for READ");
2471 return;
2472 }
2473
2474 dtp->u.p.first_item = 1;
2475
2476 /* Check the format. */
2477
2478 if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
2479 parse_format (dtp);
2480
2481 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED
2482 && (cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
2483 != 0)
2484 {
2485 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2486 "Format present for UNFORMATTED data transfer");
2487 return;
2488 }
2489
2490 if ((cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0 && dtp->u.p.ionml != NULL)
2491 {
2492 if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
2493 {
2494 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2495 "A format cannot be specified with a namelist");
2496 return;
2497 }
2498 }
2499 else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
2500 !(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT)))
2501 {
2502 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2503 "Missing format for FORMATTED data transfer");
2504 return;
2505 }
2506
2507 if (is_internal_unit (dtp)
2508 && dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2509 {
2510 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2511 "Internal file cannot be accessed by UNFORMATTED "
2512 "data transfer");
2513 return;
2514 }
2515
2516 /* Check the record or position number. */
2517
2518 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT
2519 && (cf & IOPARM_DT_HAS_REC) == 0)
2520 {
2521 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2522 "Direct access data transfer requires record number");
2523 return;
2524 }
2525
2526 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
2527 {
2528 if ((cf & IOPARM_DT_HAS_REC) != 0)
2529 {
2530 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2531 "Record number not allowed for sequential access "
2532 "data transfer");
2533 return;
2534 }
2535
2536 if (dtp->u.p.current_unit->endfile == AFTER_ENDFILE)
2537 {
2538 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2539 "Sequential READ or WRITE not allowed after "
2540 "EOF marker, possibly use REWIND or BACKSPACE");
2541 return;
2542 }
2543
2544 }
2545 /* Process the ADVANCE option. */
2546
2547 dtp->u.p.advance_status
2548 = !(cf & IOPARM_DT_HAS_ADVANCE) ? ADVANCE_UNSPECIFIED :
2549 find_option (&dtp->common, dtp->advance, dtp->advance_len, advance_opt,
2550 "Bad ADVANCE parameter in data transfer statement");
2551
2552 if (dtp->u.p.advance_status != ADVANCE_UNSPECIFIED)
2553 {
2554 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
2555 {
2556 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2557 "ADVANCE specification conflicts with sequential "
2558 "access");
2559 return;
2560 }
2561
2562 if (is_internal_unit (dtp))
2563 {
2564 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2565 "ADVANCE specification conflicts with internal file");
2566 return;
2567 }
2568
2569 if ((cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
2570 != IOPARM_DT_HAS_FORMAT)
2571 {
2572 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2573 "ADVANCE specification requires an explicit format");
2574 return;
2575 }
2576 }
2577
2578 if (read_flag)
2579 {
2580 dtp->u.p.current_unit->previous_nonadvancing_write = 0;
2581
2582 if ((cf & IOPARM_EOR) != 0 && dtp->u.p.advance_status != ADVANCE_NO)
2583 {
2584 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2585 "EOR specification requires an ADVANCE specification "
2586 "of NO");
2587 return;
2588 }
2589
2590 if ((cf & IOPARM_DT_HAS_SIZE) != 0
2591 && dtp->u.p.advance_status != ADVANCE_NO)
2592 {
2593 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2594 "SIZE specification requires an ADVANCE "
2595 "specification of NO");
2596 return;
2597 }
2598 }
2599 else
2600 { /* Write constraints. */
2601 if ((cf & IOPARM_END) != 0)
2602 {
2603 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2604 "END specification cannot appear in a write "
2605 "statement");
2606 return;
2607 }
2608
2609 if ((cf & IOPARM_EOR) != 0)
2610 {
2611 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2612 "EOR specification cannot appear in a write "
2613 "statement");
2614 return;
2615 }
2616
2617 if ((cf & IOPARM_DT_HAS_SIZE) != 0)
2618 {
2619 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2620 "SIZE specification cannot appear in a write "
2621 "statement");
2622 return;
2623 }
2624 }
2625
2626 if (dtp->u.p.advance_status == ADVANCE_UNSPECIFIED)
2627 dtp->u.p.advance_status = ADVANCE_YES;
2628
2629 /* Check the decimal mode. */
2630 dtp->u.p.current_unit->decimal_status
2631 = !(cf & IOPARM_DT_HAS_DECIMAL) ? DECIMAL_UNSPECIFIED :
2632 find_option (&dtp->common, dtp->decimal, dtp->decimal_len,
2633 decimal_opt, "Bad DECIMAL parameter in data transfer "
2634 "statement");
2635
2636 if (dtp->u.p.current_unit->decimal_status == DECIMAL_UNSPECIFIED)
2637 dtp->u.p.current_unit->decimal_status = dtp->u.p.current_unit->flags.decimal;
2638
2639 /* Check the round mode. */
2640 dtp->u.p.current_unit->round_status
2641 = !(cf & IOPARM_DT_HAS_ROUND) ? ROUND_UNSPECIFIED :
2642 find_option (&dtp->common, dtp->round, dtp->round_len,
2643 round_opt, "Bad ROUND parameter in data transfer "
2644 "statement");
2645
2646 if (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED)
2647 dtp->u.p.current_unit->round_status = dtp->u.p.current_unit->flags.round;
2648
2649 /* Check the sign mode. */
2650 dtp->u.p.sign_status
2651 = !(cf & IOPARM_DT_HAS_SIGN) ? SIGN_UNSPECIFIED :
2652 find_option (&dtp->common, dtp->sign, dtp->sign_len, sign_opt,
2653 "Bad SIGN parameter in data transfer statement");
2654
2655 if (dtp->u.p.sign_status == SIGN_UNSPECIFIED)
2656 dtp->u.p.sign_status = dtp->u.p.current_unit->flags.sign;
2657
2658 /* Check the blank mode. */
2659 dtp->u.p.blank_status
2660 = !(cf & IOPARM_DT_HAS_BLANK) ? BLANK_UNSPECIFIED :
2661 find_option (&dtp->common, dtp->blank, dtp->blank_len,
2662 blank_opt,
2663 "Bad BLANK parameter in data transfer statement");
2664
2665 if (dtp->u.p.blank_status == BLANK_UNSPECIFIED)
2666 dtp->u.p.blank_status = dtp->u.p.current_unit->flags.blank;
2667
2668 /* Check the delim mode. */
2669 dtp->u.p.current_unit->delim_status
2670 = !(cf & IOPARM_DT_HAS_DELIM) ? DELIM_UNSPECIFIED :
2671 find_option (&dtp->common, dtp->delim, dtp->delim_len,
2672 delim_opt, "Bad DELIM parameter in data transfer statement");
2673
2674 if (dtp->u.p.current_unit->delim_status == DELIM_UNSPECIFIED)
2675 dtp->u.p.current_unit->delim_status = dtp->u.p.current_unit->flags.delim;
2676
2677 /* Check the pad mode. */
2678 dtp->u.p.current_unit->pad_status
2679 = !(cf & IOPARM_DT_HAS_PAD) ? PAD_UNSPECIFIED :
2680 find_option (&dtp->common, dtp->pad, dtp->pad_len, pad_opt,
2681 "Bad PAD parameter in data transfer statement");
2682
2683 if (dtp->u.p.current_unit->pad_status == PAD_UNSPECIFIED)
2684 dtp->u.p.current_unit->pad_status = dtp->u.p.current_unit->flags.pad;
2685
2686 /* Check to see if we might be reading what we wrote before */
2687
2688 if (dtp->u.p.mode != dtp->u.p.current_unit->mode
2689 && !is_internal_unit (dtp))
2690 {
2691 int pos = fbuf_reset (dtp->u.p.current_unit);
2692 if (pos != 0)
2693 sseek (dtp->u.p.current_unit->s, pos, SEEK_CUR);
2694 sflush(dtp->u.p.current_unit->s);
2695 }
2696
2697 /* Check the POS= specifier: that it is in range and that it is used with a
2698 unit that has been connected for STREAM access. F2003 9.5.1.10. */
2699
2700 if (((cf & IOPARM_DT_HAS_POS) != 0))
2701 {
2702 if (is_stream_io (dtp))
2703 {
2704
2705 if (dtp->pos <= 0)
2706 {
2707 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2708 "POS=specifier must be positive");
2709 return;
2710 }
2711
2712 if (dtp->pos >= dtp->u.p.current_unit->maxrec)
2713 {
2714 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2715 "POS=specifier too large");
2716 return;
2717 }
2718
2719 dtp->rec = dtp->pos;
2720
2721 if (dtp->u.p.mode == READING)
2722 {
2723 /* Reset the endfile flag; if we hit EOF during reading
2724 we'll set the flag and generate an error at that point
2725 rather than worrying about it here. */
2726 dtp->u.p.current_unit->endfile = NO_ENDFILE;
2727 }
2728
2729 if (dtp->pos != dtp->u.p.current_unit->strm_pos)
2730 {
2731 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
2732 if (sseek (dtp->u.p.current_unit->s, dtp->pos - 1, SEEK_SET) < 0)
2733 {
2734 generate_error (&dtp->common, LIBERROR_OS, NULL);
2735 return;
2736 }
2737 dtp->u.p.current_unit->strm_pos = dtp->pos;
2738 }
2739 }
2740 else
2741 {
2742 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2743 "POS=specifier not allowed, "
2744 "Try OPEN with ACCESS='stream'");
2745 return;
2746 }
2747 }
2748
2749
2750 /* Sanity checks on the record number. */
2751 if ((cf & IOPARM_DT_HAS_REC) != 0)
2752 {
2753 if (dtp->rec <= 0)
2754 {
2755 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2756 "Record number must be positive");
2757 return;
2758 }
2759
2760 if (dtp->rec >= dtp->u.p.current_unit->maxrec)
2761 {
2762 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2763 "Record number too large");
2764 return;
2765 }
2766
2767 /* Make sure format buffer is reset. */
2768 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
2769 fbuf_reset (dtp->u.p.current_unit);
2770
2771
2772 /* Check whether the record exists to be read. Only
2773 a partial record needs to exist. */
2774
2775 if (dtp->u.p.mode == READING && (dtp->rec - 1)
2776 * dtp->u.p.current_unit->recl >= ssize (dtp->u.p.current_unit->s))
2777 {
2778 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2779 "Non-existing record number");
2780 return;
2781 }
2782
2783 /* Position the file. */
2784 if (sseek (dtp->u.p.current_unit->s, (gfc_offset) (dtp->rec - 1)
2785 * dtp->u.p.current_unit->recl, SEEK_SET) < 0)
2786 {
2787 generate_error (&dtp->common, LIBERROR_OS, NULL);
2788 return;
2789 }
2790
2791 /* TODO: This is required to maintain compatibility between
2792 4.3 and 4.4 runtime. Remove when ABI changes from 4.3 */
2793
2794 if (is_stream_io (dtp))
2795 dtp->u.p.current_unit->strm_pos = dtp->rec;
2796
2797 /* TODO: Un-comment this code when ABI changes from 4.3.
2798 if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
2799 {
2800 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2801 "Record number not allowed for stream access "
2802 "data transfer");
2803 return;
2804 } */
2805 }
2806
2807 /* Bugware for badly written mixed C-Fortran I/O. */
2808 if (!is_internal_unit (dtp))
2809 flush_if_preconnected(dtp->u.p.current_unit->s);
2810
2811 dtp->u.p.current_unit->mode = dtp->u.p.mode;
2812
2813 /* Set the maximum position reached from the previous I/O operation. This
2814 could be greater than zero from a previous non-advancing write. */
2815 dtp->u.p.max_pos = dtp->u.p.current_unit->saved_pos;
2816
2817 pre_position (dtp);
2818
2819
2820 /* Set up the subroutine that will handle the transfers. */
2821
2822 if (read_flag)
2823 {
2824 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2825 dtp->u.p.transfer = unformatted_read;
2826 else
2827 {
2828 if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
2829 {
2830 dtp->u.p.last_char = EOF - 1;
2831 dtp->u.p.transfer = list_formatted_read;
2832 }
2833 else
2834 dtp->u.p.transfer = formatted_transfer;
2835 }
2836 }
2837 else
2838 {
2839 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2840 dtp->u.p.transfer = unformatted_write;
2841 else
2842 {
2843 if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
2844 dtp->u.p.transfer = list_formatted_write;
2845 else
2846 dtp->u.p.transfer = formatted_transfer;
2847 }
2848 }
2849
2850 /* Make sure that we don't do a read after a nonadvancing write. */
2851
2852 if (read_flag)
2853 {
2854 if (dtp->u.p.current_unit->read_bad && !is_stream_io (dtp))
2855 {
2856 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2857 "Cannot READ after a nonadvancing WRITE");
2858 return;
2859 }
2860 }
2861 else
2862 {
2863 if (dtp->u.p.advance_status == ADVANCE_YES && !dtp->u.p.seen_dollar)
2864 dtp->u.p.current_unit->read_bad = 1;
2865 }
2866
2867 /* Start the data transfer if we are doing a formatted transfer. */
2868 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
2869 && ((cf & (IOPARM_DT_LIST_FORMAT | IOPARM_DT_HAS_NAMELIST_NAME)) == 0)
2870 && dtp->u.p.ionml == NULL)
2871 formatted_transfer (dtp, 0, NULL, 0, 0, 1);
2872 }
2873
2874 /* Initialize an array_loop_spec given the array descriptor. The function
2875 returns the index of the last element of the array, and also returns
2876 starting record, where the first I/O goes to (necessary in case of
2877 negative strides). */
2878
2879 gfc_offset
2880 init_loop_spec (gfc_array_char *desc, array_loop_spec *ls,
2881 gfc_offset *start_record)
2882 {
2883 int rank = GFC_DESCRIPTOR_RANK(desc);
2884 int i;
2885 gfc_offset index;
2886 int empty;
2887
2888 empty = 0;
2889 index = 1;
2890 *start_record = 0;
2891
2892 for (i=0; i<rank; i++)
2893 {
2894 ls[i].idx = GFC_DESCRIPTOR_LBOUND(desc,i);
2895 ls[i].start = GFC_DESCRIPTOR_LBOUND(desc,i);
2896 ls[i].end = GFC_DESCRIPTOR_UBOUND(desc,i);
2897 ls[i].step = GFC_DESCRIPTOR_STRIDE(desc,i);
2898 empty = empty || (GFC_DESCRIPTOR_UBOUND(desc,i)
2899 < GFC_DESCRIPTOR_LBOUND(desc,i));
2900
2901 if (GFC_DESCRIPTOR_STRIDE(desc,i) > 0)
2902 {
2903 index += (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
2904 * GFC_DESCRIPTOR_STRIDE(desc,i);
2905 }
2906 else
2907 {
2908 index -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
2909 * GFC_DESCRIPTOR_STRIDE(desc,i);
2910 *start_record -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
2911 * GFC_DESCRIPTOR_STRIDE(desc,i);
2912 }
2913 }
2914
2915 if (empty)
2916 return 0;
2917 else
2918 return index;
2919 }
2920
2921 /* Determine the index to the next record in an internal unit array by
2922 by incrementing through the array_loop_spec. */
2923
2924 gfc_offset
2925 next_array_record (st_parameter_dt *dtp, array_loop_spec *ls, int *finished)
2926 {
2927 int i, carry;
2928 gfc_offset index;
2929
2930 carry = 1;
2931 index = 0;
2932
2933 for (i = 0; i < dtp->u.p.current_unit->rank; i++)
2934 {
2935 if (carry)
2936 {
2937 ls[i].idx++;
2938 if (ls[i].idx > ls[i].end)
2939 {
2940 ls[i].idx = ls[i].start;
2941 carry = 1;
2942 }
2943 else
2944 carry = 0;
2945 }
2946 index = index + (ls[i].idx - ls[i].start) * ls[i].step;
2947 }
2948
2949 *finished = carry;
2950
2951 return index;
2952 }
2953
2954
2955
2956 /* Skip to the end of the current record, taking care of an optional
2957 record marker of size bytes. If the file is not seekable, we
2958 read chunks of size MAX_READ until we get to the right
2959 position. */
2960
2961 static void
2962 skip_record (st_parameter_dt *dtp, ssize_t bytes)
2963 {
2964 ssize_t rlength, readb;
2965 static const ssize_t MAX_READ = 4096;
2966 char p[MAX_READ];
2967
2968 dtp->u.p.current_unit->bytes_left_subrecord += bytes;
2969 if (dtp->u.p.current_unit->bytes_left_subrecord == 0)
2970 return;
2971
2972 /* Direct access files do not generate END conditions,
2973 only I/O errors. */
2974 if (sseek (dtp->u.p.current_unit->s,
2975 dtp->u.p.current_unit->bytes_left_subrecord, SEEK_CUR) < 0)
2976 {
2977 /* Seeking failed, fall back to seeking by reading data. */
2978 while (dtp->u.p.current_unit->bytes_left_subrecord > 0)
2979 {
2980 rlength =
2981 (MAX_READ < dtp->u.p.current_unit->bytes_left_subrecord) ?
2982 MAX_READ : dtp->u.p.current_unit->bytes_left_subrecord;
2983
2984 readb = sread (dtp->u.p.current_unit->s, p, rlength);
2985 if (readb < 0)
2986 {
2987 generate_error (&dtp->common, LIBERROR_OS, NULL);
2988 return;
2989 }
2990
2991 dtp->u.p.current_unit->bytes_left_subrecord -= readb;
2992 }
2993 return;
2994 }
2995 dtp->u.p.current_unit->bytes_left_subrecord = 0;
2996 }
2997
2998
2999 /* Advance to the next record reading unformatted files, taking
3000 care of subrecords. If complete_record is nonzero, we loop
3001 until all subrecords are cleared. */
3002
3003 static void
3004 next_record_r_unf (st_parameter_dt *dtp, int complete_record)
3005 {
3006 size_t bytes;
3007
3008 bytes = compile_options.record_marker == 0 ?
3009 sizeof (GFC_INTEGER_4) : compile_options.record_marker;
3010
3011 while(1)
3012 {
3013
3014 /* Skip over tail */
3015
3016 skip_record (dtp, bytes);
3017
3018 if ( ! (complete_record && dtp->u.p.current_unit->continued))
3019 return;
3020
3021 us_read (dtp, 1);
3022 }
3023 }
3024
3025
3026 static gfc_offset
3027 min_off (gfc_offset a, gfc_offset b)
3028 {
3029 return (a < b ? a : b);
3030 }
3031
3032
3033 /* Space to the next record for read mode. */
3034
3035 static void
3036 next_record_r (st_parameter_dt *dtp, int done)
3037 {
3038 gfc_offset record;
3039 int bytes_left;
3040 char p;
3041 int cc;
3042
3043 switch (current_mode (dtp))
3044 {
3045 /* No records in unformatted STREAM I/O. */
3046 case UNFORMATTED_STREAM:
3047 return;
3048
3049 case UNFORMATTED_SEQUENTIAL:
3050 next_record_r_unf (dtp, 1);
3051 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3052 break;
3053
3054 case FORMATTED_DIRECT:
3055 case UNFORMATTED_DIRECT:
3056 skip_record (dtp, dtp->u.p.current_unit->bytes_left);
3057 break;
3058
3059 case FORMATTED_STREAM:
3060 case FORMATTED_SEQUENTIAL:
3061 /* read_sf has already terminated input because of an '\n', or
3062 we have hit EOF. */
3063 if (dtp->u.p.sf_seen_eor)
3064 {
3065 dtp->u.p.sf_seen_eor = 0;
3066 break;
3067 }
3068
3069 if (is_internal_unit (dtp))
3070 {
3071 if (is_array_io (dtp))
3072 {
3073 int finished;
3074
3075 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
3076 &finished);
3077 if (!done && finished)
3078 hit_eof (dtp);
3079
3080 /* Now seek to this record. */
3081 record = record * dtp->u.p.current_unit->recl;
3082 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
3083 {
3084 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3085 break;
3086 }
3087 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3088 }
3089 else
3090 {
3091 bytes_left = (int) dtp->u.p.current_unit->bytes_left;
3092 bytes_left = min_off (bytes_left,
3093 ssize (dtp->u.p.current_unit->s)
3094 - stell (dtp->u.p.current_unit->s));
3095 if (sseek (dtp->u.p.current_unit->s,
3096 bytes_left, SEEK_CUR) < 0)
3097 {
3098 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3099 break;
3100 }
3101 dtp->u.p.current_unit->bytes_left
3102 = dtp->u.p.current_unit->recl;
3103 }
3104 break;
3105 }
3106 else
3107 {
3108 do
3109 {
3110 errno = 0;
3111 cc = fbuf_getc (dtp->u.p.current_unit);
3112 if (cc == EOF)
3113 {
3114 if (errno != 0)
3115 generate_error (&dtp->common, LIBERROR_OS, NULL);
3116 else
3117 {
3118 if (is_stream_io (dtp)
3119 || dtp->u.p.current_unit->pad_status == PAD_NO
3120 || dtp->u.p.current_unit->bytes_left
3121 == dtp->u.p.current_unit->recl)
3122 hit_eof (dtp);
3123 }
3124 break;
3125 }
3126
3127 if (is_stream_io (dtp))
3128 dtp->u.p.current_unit->strm_pos++;
3129
3130 p = (char) cc;
3131 }
3132 while (p != '\n');
3133 }
3134 break;
3135 }
3136 }
3137
3138
3139 /* Small utility function to write a record marker, taking care of
3140 byte swapping and of choosing the correct size. */
3141
3142 static int
3143 write_us_marker (st_parameter_dt *dtp, const gfc_offset buf)
3144 {
3145 size_t len;
3146 GFC_INTEGER_4 buf4;
3147 GFC_INTEGER_8 buf8;
3148
3149 if (compile_options.record_marker == 0)
3150 len = sizeof (GFC_INTEGER_4);
3151 else
3152 len = compile_options.record_marker;
3153
3154 /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here. */
3155 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
3156 {
3157 switch (len)
3158 {
3159 case sizeof (GFC_INTEGER_4):
3160 buf4 = buf;
3161 return swrite (dtp->u.p.current_unit->s, &buf4, len);
3162 break;
3163
3164 case sizeof (GFC_INTEGER_8):
3165 buf8 = buf;
3166 return swrite (dtp->u.p.current_unit->s, &buf8, len);
3167 break;
3168
3169 default:
3170 runtime_error ("Illegal value for record marker");
3171 break;
3172 }
3173 }
3174 else
3175 {
3176 uint32_t u32;
3177 uint64_t u64;
3178 switch (len)
3179 {
3180 case sizeof (GFC_INTEGER_4):
3181 buf4 = buf;
3182 memcpy (&u32, &buf4, sizeof (u32));
3183 u32 = __builtin_bswap32 (u32);
3184 return swrite (dtp->u.p.current_unit->s, &u32, len);
3185 break;
3186
3187 case sizeof (GFC_INTEGER_8):
3188 buf8 = buf;
3189 memcpy (&u64, &buf8, sizeof (u64));
3190 u64 = __builtin_bswap64 (u64);
3191 return swrite (dtp->u.p.current_unit->s, &u64, len);
3192 break;
3193
3194 default:
3195 runtime_error ("Illegal value for record marker");
3196 break;
3197 }
3198 }
3199
3200 }
3201
3202 /* Position to the next (sub)record in write mode for
3203 unformatted sequential files. */
3204
3205 static void
3206 next_record_w_unf (st_parameter_dt *dtp, int next_subrecord)
3207 {
3208 gfc_offset m, m_write, record_marker;
3209
3210 /* Bytes written. */
3211 m = dtp->u.p.current_unit->recl_subrecord
3212 - dtp->u.p.current_unit->bytes_left_subrecord;
3213
3214 if (compile_options.record_marker == 0)
3215 record_marker = sizeof (GFC_INTEGER_4);
3216 else
3217 record_marker = compile_options.record_marker;
3218
3219 /* Seek to the head and overwrite the bogus length with the real
3220 length. */
3221
3222 if (unlikely (sseek (dtp->u.p.current_unit->s, - m - record_marker,
3223 SEEK_CUR) < 0))
3224 goto io_error;
3225
3226 if (next_subrecord)
3227 m_write = -m;
3228 else
3229 m_write = m;
3230
3231 if (unlikely (write_us_marker (dtp, m_write) < 0))
3232 goto io_error;
3233
3234 /* Seek past the end of the current record. */
3235
3236 if (unlikely (sseek (dtp->u.p.current_unit->s, m, SEEK_CUR) < 0))
3237 goto io_error;
3238
3239 /* Write the length tail. If we finish a record containing
3240 subrecords, we write out the negative length. */
3241
3242 if (dtp->u.p.current_unit->continued)
3243 m_write = -m;
3244 else
3245 m_write = m;
3246
3247 if (unlikely (write_us_marker (dtp, m_write) < 0))
3248 goto io_error;
3249
3250 return;
3251
3252 io_error:
3253 generate_error (&dtp->common, LIBERROR_OS, NULL);
3254 return;
3255
3256 }
3257
3258
3259 /* Utility function like memset() but operating on streams. Return
3260 value is same as for POSIX write(). */
3261
3262 static ssize_t
3263 sset (stream * s, int c, ssize_t nbyte)
3264 {
3265 static const int WRITE_CHUNK = 256;
3266 char p[WRITE_CHUNK];
3267 ssize_t bytes_left, trans;
3268
3269 if (nbyte < WRITE_CHUNK)
3270 memset (p, c, nbyte);
3271 else
3272 memset (p, c, WRITE_CHUNK);
3273
3274 bytes_left = nbyte;
3275 while (bytes_left > 0)
3276 {
3277 trans = (bytes_left < WRITE_CHUNK) ? bytes_left : WRITE_CHUNK;
3278 trans = swrite (s, p, trans);
3279 if (trans <= 0)
3280 return trans;
3281 bytes_left -= trans;
3282 }
3283
3284 return nbyte - bytes_left;
3285 }
3286
3287
3288 /* Position to the next record in write mode. */
3289
3290 static void
3291 next_record_w (st_parameter_dt *dtp, int done)
3292 {
3293 gfc_offset m, record, max_pos;
3294 int length;
3295
3296 /* Zero counters for X- and T-editing. */
3297 max_pos = dtp->u.p.max_pos;
3298 dtp->u.p.max_pos = dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
3299
3300 switch (current_mode (dtp))
3301 {
3302 /* No records in unformatted STREAM I/O. */
3303 case UNFORMATTED_STREAM:
3304 return;
3305
3306 case FORMATTED_DIRECT:
3307 if (dtp->u.p.current_unit->bytes_left == 0)
3308 break;
3309
3310 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3311 fbuf_flush (dtp->u.p.current_unit, WRITING);
3312 if (sset (dtp->u.p.current_unit->s, ' ',
3313 dtp->u.p.current_unit->bytes_left)
3314 != dtp->u.p.current_unit->bytes_left)
3315 goto io_error;
3316
3317 break;
3318
3319 case UNFORMATTED_DIRECT:
3320 if (dtp->u.p.current_unit->bytes_left > 0)
3321 {
3322 length = (int) dtp->u.p.current_unit->bytes_left;
3323 if (sset (dtp->u.p.current_unit->s, 0, length) != length)
3324 goto io_error;
3325 }
3326 break;
3327
3328 case UNFORMATTED_SEQUENTIAL:
3329 next_record_w_unf (dtp, 0);
3330 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3331 break;
3332
3333 case FORMATTED_STREAM:
3334 case FORMATTED_SEQUENTIAL:
3335
3336 if (is_internal_unit (dtp))
3337 {
3338 char *p;
3339 if (is_array_io (dtp))
3340 {
3341 int finished;
3342
3343 length = (int) dtp->u.p.current_unit->bytes_left;
3344
3345 /* If the farthest position reached is greater than current
3346 position, adjust the position and set length to pad out
3347 whats left. Otherwise just pad whats left.
3348 (for character array unit) */
3349 m = dtp->u.p.current_unit->recl
3350 - dtp->u.p.current_unit->bytes_left;
3351 if (max_pos > m)
3352 {
3353 length = (int) (max_pos - m);
3354 if (sseek (dtp->u.p.current_unit->s,
3355 length, SEEK_CUR) < 0)
3356 {
3357 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3358 return;
3359 }
3360 length = (int) (dtp->u.p.current_unit->recl - max_pos);
3361 }
3362
3363 p = write_block (dtp, length);
3364 if (p == NULL)
3365 return;
3366
3367 if (unlikely (is_char4_unit (dtp)))
3368 {
3369 gfc_char4_t *p4 = (gfc_char4_t *) p;
3370 memset4 (p4, ' ', length);
3371 }
3372 else
3373 memset (p, ' ', length);
3374
3375 /* Now that the current record has been padded out,
3376 determine where the next record in the array is. */
3377 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
3378 &finished);
3379 if (finished)
3380 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3381
3382 /* Now seek to this record */
3383 record = record * dtp->u.p.current_unit->recl;
3384
3385 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
3386 {
3387 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3388 return;
3389 }
3390
3391 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3392 }
3393 else
3394 {
3395 length = 1;
3396
3397 /* If this is the last call to next_record move to the farthest
3398 position reached and set length to pad out the remainder
3399 of the record. (for character scaler unit) */
3400 if (done)
3401 {
3402 m = dtp->u.p.current_unit->recl
3403 - dtp->u.p.current_unit->bytes_left;
3404 if (max_pos > m)
3405 {
3406 length = (int) (max_pos - m);
3407 if (sseek (dtp->u.p.current_unit->s,
3408 length, SEEK_CUR) < 0)
3409 {
3410 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3411 return;
3412 }
3413 length = (int) (dtp->u.p.current_unit->recl - max_pos);
3414 }
3415 else
3416 length = (int) dtp->u.p.current_unit->bytes_left;
3417 }
3418 if (length > 0)
3419 {
3420 p = write_block (dtp, length);
3421 if (p == NULL)
3422 return;
3423
3424 if (unlikely (is_char4_unit (dtp)))
3425 {
3426 gfc_char4_t *p4 = (gfc_char4_t *) p;
3427 memset4 (p4, (gfc_char4_t) ' ', length);
3428 }
3429 else
3430 memset (p, ' ', length);
3431 }
3432 }
3433 }
3434 else
3435 {
3436 #ifdef HAVE_CRLF
3437 const int len = 2;
3438 #else
3439 const int len = 1;
3440 #endif
3441 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3442 char * p = fbuf_alloc (dtp->u.p.current_unit, len);
3443 if (!p)
3444 goto io_error;
3445 #ifdef HAVE_CRLF
3446 *(p++) = '\r';
3447 #endif
3448 *p = '\n';
3449 if (is_stream_io (dtp))
3450 {
3451 dtp->u.p.current_unit->strm_pos += len;
3452 if (dtp->u.p.current_unit->strm_pos
3453 < ssize (dtp->u.p.current_unit->s))
3454 unit_truncate (dtp->u.p.current_unit,
3455 dtp->u.p.current_unit->strm_pos - 1,
3456 &dtp->common);
3457 }
3458 }
3459
3460 break;
3461
3462 io_error:
3463 generate_error (&dtp->common, LIBERROR_OS, NULL);
3464 break;
3465 }
3466 }
3467
3468 /* Position to the next record, which means moving to the end of the
3469 current record. This can happen under several different
3470 conditions. If the done flag is not set, we get ready to process
3471 the next record. */
3472
3473 void
3474 next_record (st_parameter_dt *dtp, int done)
3475 {
3476 gfc_offset fp; /* File position. */
3477
3478 dtp->u.p.current_unit->read_bad = 0;
3479
3480 if (dtp->u.p.mode == READING)
3481 next_record_r (dtp, done);
3482 else
3483 next_record_w (dtp, done);
3484
3485 if (!is_stream_io (dtp))
3486 {
3487 /* Since we have changed the position, set it to unspecified so
3488 that INQUIRE(POSITION=) knows it needs to look into it. */
3489 if (done)
3490 dtp->u.p.current_unit->flags.position = POSITION_UNSPECIFIED;
3491
3492 dtp->u.p.current_unit->current_record = 0;
3493 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
3494 {
3495 fp = stell (dtp->u.p.current_unit->s);
3496 /* Calculate next record, rounding up partial records. */
3497 dtp->u.p.current_unit->last_record =
3498 (fp + dtp->u.p.current_unit->recl - 1) /
3499 dtp->u.p.current_unit->recl;
3500 }
3501 else
3502 dtp->u.p.current_unit->last_record++;
3503 }
3504
3505 if (!done)
3506 pre_position (dtp);
3507
3508 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3509 flush_if_unbuffered (dtp->u.p.current_unit->s);
3510 }
3511
3512
3513 /* Finalize the current data transfer. For a nonadvancing transfer,
3514 this means advancing to the next record. For internal units close the
3515 stream associated with the unit. */
3516
3517 static void
3518 finalize_transfer (st_parameter_dt *dtp)
3519 {
3520 GFC_INTEGER_4 cf = dtp->common.flags;
3521
3522 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
3523 *dtp->size = dtp->u.p.size_used;
3524
3525 if (dtp->u.p.eor_condition)
3526 {
3527 generate_error (&dtp->common, LIBERROR_EOR, NULL);
3528 return;
3529 }
3530
3531 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
3532 {
3533 if (dtp->u.p.current_unit && current_mode (dtp) == UNFORMATTED_SEQUENTIAL)
3534 dtp->u.p.current_unit->current_record = 0;
3535 return;
3536 }
3537
3538 if ((dtp->u.p.ionml != NULL)
3539 && (cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0)
3540 {
3541 if ((cf & IOPARM_DT_NAMELIST_READ_MODE) != 0)
3542 namelist_read (dtp);
3543 else
3544 namelist_write (dtp);
3545 }
3546
3547 dtp->u.p.transfer = NULL;
3548 if (dtp->u.p.current_unit == NULL)
3549 return;
3550
3551 if ((cf & IOPARM_DT_LIST_FORMAT) != 0 && dtp->u.p.mode == READING)
3552 {
3553 finish_list_read (dtp);
3554 return;
3555 }
3556
3557 if (dtp->u.p.mode == WRITING)
3558 dtp->u.p.current_unit->previous_nonadvancing_write
3559 = dtp->u.p.advance_status == ADVANCE_NO;
3560
3561 if (is_stream_io (dtp))
3562 {
3563 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
3564 && dtp->u.p.advance_status != ADVANCE_NO)
3565 next_record (dtp, 1);
3566
3567 return;
3568 }
3569
3570 dtp->u.p.current_unit->current_record = 0;
3571
3572 if (!is_internal_unit (dtp) && dtp->u.p.seen_dollar)
3573 {
3574 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3575 dtp->u.p.seen_dollar = 0;
3576 return;
3577 }
3578
3579 /* For non-advancing I/O, save the current maximum position for use in the
3580 next I/O operation if needed. */
3581 if (dtp->u.p.advance_status == ADVANCE_NO)
3582 {
3583 int bytes_written = (int) (dtp->u.p.current_unit->recl
3584 - dtp->u.p.current_unit->bytes_left);
3585 dtp->u.p.current_unit->saved_pos =
3586 dtp->u.p.max_pos > 0 ? dtp->u.p.max_pos - bytes_written : 0;
3587 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3588 return;
3589 }
3590 else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
3591 && dtp->u.p.mode == WRITING && !is_internal_unit (dtp))
3592 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3593
3594 dtp->u.p.current_unit->saved_pos = 0;
3595
3596 next_record (dtp, 1);
3597 }
3598
3599 /* Transfer function for IOLENGTH. It doesn't actually do any
3600 data transfer, it just updates the length counter. */
3601
3602 static void
3603 iolength_transfer (st_parameter_dt *dtp, bt type __attribute__((unused)),
3604 void *dest __attribute__ ((unused)),
3605 int kind __attribute__((unused)),
3606 size_t size, size_t nelems)
3607 {
3608 if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
3609 *dtp->iolength += (GFC_IO_INT) (size * nelems);
3610 }
3611
3612
3613 /* Initialize the IOLENGTH data transfer. This function is in essence
3614 a very much simplified version of data_transfer_init(), because it
3615 doesn't have to deal with units at all. */
3616
3617 static void
3618 iolength_transfer_init (st_parameter_dt *dtp)
3619 {
3620 if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
3621 *dtp->iolength = 0;
3622
3623 memset (&dtp->u.p, 0, sizeof (dtp->u.p));
3624
3625 /* Set up the subroutine that will handle the transfers. */
3626
3627 dtp->u.p.transfer = iolength_transfer;
3628 }
3629
3630
3631 /* Library entry point for the IOLENGTH form of the INQUIRE
3632 statement. The IOLENGTH form requires no I/O to be performed, but
3633 it must still be a runtime library call so that we can determine
3634 the iolength for dynamic arrays and such. */
3635
3636 extern void st_iolength (st_parameter_dt *);
3637 export_proto(st_iolength);
3638
3639 void
3640 st_iolength (st_parameter_dt *dtp)
3641 {
3642 library_start (&dtp->common);
3643 iolength_transfer_init (dtp);
3644 }
3645
3646 extern void st_iolength_done (st_parameter_dt *);
3647 export_proto(st_iolength_done);
3648
3649 void
3650 st_iolength_done (st_parameter_dt *dtp __attribute__((unused)))
3651 {
3652 free_ionml (dtp);
3653 library_end ();
3654 }
3655
3656
3657 /* The READ statement. */
3658
3659 extern void st_read (st_parameter_dt *);
3660 export_proto(st_read);
3661
3662 void
3663 st_read (st_parameter_dt *dtp)
3664 {
3665 library_start (&dtp->common);
3666
3667 data_transfer_init (dtp, 1);
3668 }
3669
3670 extern void st_read_done (st_parameter_dt *);
3671 export_proto(st_read_done);
3672
3673 void
3674 st_read_done (st_parameter_dt *dtp)
3675 {
3676 finalize_transfer (dtp);
3677 if (is_internal_unit (dtp) || dtp->u.p.format_not_saved)
3678 free_format_data (dtp->u.p.fmt);
3679 free_ionml (dtp);
3680 if (dtp->u.p.current_unit != NULL)
3681 unlock_unit (dtp->u.p.current_unit);
3682
3683 free_internal_unit (dtp);
3684
3685 library_end ();
3686 }
3687
3688 extern void st_write (st_parameter_dt *);
3689 export_proto(st_write);
3690
3691 void
3692 st_write (st_parameter_dt *dtp)
3693 {
3694 library_start (&dtp->common);
3695 data_transfer_init (dtp, 0);
3696 }
3697
3698 extern void st_write_done (st_parameter_dt *);
3699 export_proto(st_write_done);
3700
3701 void
3702 st_write_done (st_parameter_dt *dtp)
3703 {
3704 finalize_transfer (dtp);
3705
3706 /* Deal with endfile conditions associated with sequential files. */
3707
3708 if (dtp->u.p.current_unit != NULL
3709 && dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
3710 switch (dtp->u.p.current_unit->endfile)
3711 {
3712 case AT_ENDFILE: /* Remain at the endfile record. */
3713 break;
3714
3715 case AFTER_ENDFILE:
3716 dtp->u.p.current_unit->endfile = AT_ENDFILE; /* Just at it now. */
3717 break;
3718
3719 case NO_ENDFILE:
3720 /* Get rid of whatever is after this record. */
3721 if (!is_internal_unit (dtp))
3722 unit_truncate (dtp->u.p.current_unit,
3723 stell (dtp->u.p.current_unit->s),
3724 &dtp->common);
3725 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3726 break;
3727 }
3728
3729 if (is_internal_unit (dtp) || dtp->u.p.format_not_saved)
3730 free_format_data (dtp->u.p.fmt);
3731 free_ionml (dtp);
3732 if (dtp->u.p.current_unit != NULL)
3733 unlock_unit (dtp->u.p.current_unit);
3734
3735 free_internal_unit (dtp);
3736
3737 library_end ();
3738 }
3739
3740
3741 /* F2003: This is a stub for the runtime portion of the WAIT statement. */
3742 void
3743 st_wait (st_parameter_wait *wtp __attribute__((unused)))
3744 {
3745 }
3746
3747
3748 /* Receives the scalar information for namelist objects and stores it
3749 in a linked list of namelist_info types. */
3750
3751 extern void st_set_nml_var (st_parameter_dt *dtp, void *, char *,
3752 GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4);
3753 export_proto(st_set_nml_var);
3754
3755
3756 void
3757 st_set_nml_var (st_parameter_dt *dtp, void * var_addr, char * var_name,
3758 GFC_INTEGER_4 len, gfc_charlen_type string_length,
3759 GFC_INTEGER_4 dtype)
3760 {
3761 namelist_info *t1 = NULL;
3762 namelist_info *nml;
3763 size_t var_name_len = strlen (var_name);
3764
3765 nml = (namelist_info*) xmalloc (sizeof (namelist_info));
3766
3767 nml->mem_pos = var_addr;
3768
3769 nml->var_name = (char*) xmalloc (var_name_len + 1);
3770 memcpy (nml->var_name, var_name, var_name_len);
3771 nml->var_name[var_name_len] = '\0';
3772
3773 nml->len = (int) len;
3774 nml->string_length = (index_type) string_length;
3775
3776 nml->var_rank = (int) (dtype & GFC_DTYPE_RANK_MASK);
3777 nml->size = (index_type) (dtype >> GFC_DTYPE_SIZE_SHIFT);
3778 nml->type = (bt) ((dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT);
3779
3780 if (nml->var_rank > 0)
3781 {
3782 nml->dim = (descriptor_dimension*)
3783 xmalloc (nml->var_rank * sizeof (descriptor_dimension));
3784 nml->ls = (array_loop_spec*)
3785 xmalloc (nml->var_rank * sizeof (array_loop_spec));
3786 }
3787 else
3788 {
3789 nml->dim = NULL;
3790 nml->ls = NULL;
3791 }
3792
3793 nml->next = NULL;
3794
3795 if ((dtp->common.flags & IOPARM_DT_IONML_SET) == 0)
3796 {
3797 dtp->common.flags |= IOPARM_DT_IONML_SET;
3798 dtp->u.p.ionml = nml;
3799 }
3800 else
3801 {
3802 for (t1 = dtp->u.p.ionml; t1->next; t1 = t1->next);
3803 t1->next = nml;
3804 }
3805 }
3806
3807 /* Store the dimensional information for the namelist object. */
3808 extern void st_set_nml_var_dim (st_parameter_dt *, GFC_INTEGER_4,
3809 index_type, index_type,
3810 index_type);
3811 export_proto(st_set_nml_var_dim);
3812
3813 void
3814 st_set_nml_var_dim (st_parameter_dt *dtp, GFC_INTEGER_4 n_dim,
3815 index_type stride, index_type lbound,
3816 index_type ubound)
3817 {
3818 namelist_info * nml;
3819 int n;
3820
3821 n = (int)n_dim;
3822
3823 for (nml = dtp->u.p.ionml; nml->next; nml = nml->next);
3824
3825 GFC_DIMENSION_SET(nml->dim[n],lbound,ubound,stride);
3826 }
3827
3828
3829 /* Once upon a time, a poor innocent Fortran program was reading a
3830 file, when suddenly it hit the end-of-file (EOF). Unfortunately
3831 the OS doesn't tell whether we're at the EOF or whether we already
3832 went past it. Luckily our hero, libgfortran, keeps track of this.
3833 Call this function when you detect an EOF condition. See Section
3834 9.10.2 in F2003. */
3835
3836 void
3837 hit_eof (st_parameter_dt * dtp)
3838 {
3839 dtp->u.p.current_unit->flags.position = POSITION_APPEND;
3840
3841 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
3842 switch (dtp->u.p.current_unit->endfile)
3843 {
3844 case NO_ENDFILE:
3845 case AT_ENDFILE:
3846 generate_error (&dtp->common, LIBERROR_END, NULL);
3847 if (!is_internal_unit (dtp) && !dtp->u.p.namelist_mode)
3848 {
3849 dtp->u.p.current_unit->endfile = AFTER_ENDFILE;
3850 dtp->u.p.current_unit->current_record = 0;
3851 }
3852 else
3853 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3854 break;
3855
3856 case AFTER_ENDFILE:
3857 generate_error (&dtp->common, LIBERROR_ENDFILE, NULL);
3858 dtp->u.p.current_unit->current_record = 0;
3859 break;
3860 }
3861 else
3862 {
3863 /* Non-sequential files don't have an ENDFILE record, so we
3864 can't be at AFTER_ENDFILE. */
3865 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3866 generate_error (&dtp->common, LIBERROR_END, NULL);
3867 dtp->u.p.current_unit->current_record = 0;
3868 }
3869 }