re PR libfortran/59513 (Fortran runtime error: Sequential READ or WRITE not allowed...
[gcc.git] / libgfortran / io / transfer.c
1 /* Copyright (C) 2002-2015 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist transfer functions contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27
28 /* transfer.c -- Top level handling of data transfer statements. */
29
30 #include "io.h"
31 #include "fbuf.h"
32 #include "format.h"
33 #include "unix.h"
34 #include <string.h>
35 #include <assert.h>
36 #include <stdlib.h>
37 #include <errno.h>
38
39
40 /* Calling conventions: Data transfer statements are unlike other
41 library calls in that they extend over several calls.
42
43 The first call is always a call to st_read() or st_write(). These
44 subroutines return no status unless a namelist read or write is
45 being done, in which case there is the usual status. No further
46 calls are necessary in this case.
47
48 For other sorts of data transfer, there are zero or more data
49 transfer statement that depend on the format of the data transfer
50 statement. For READ (and for backwards compatibily: for WRITE), one has
51
52 transfer_integer
53 transfer_logical
54 transfer_character
55 transfer_character_wide
56 transfer_real
57 transfer_complex
58 transfer_real128
59 transfer_complex128
60
61 and for WRITE
62
63 transfer_integer_write
64 transfer_logical_write
65 transfer_character_write
66 transfer_character_wide_write
67 transfer_real_write
68 transfer_complex_write
69 transfer_real128_write
70 transfer_complex128_write
71
72 These subroutines do not return status. The *128 functions
73 are in the file transfer128.c.
74
75 The last call is a call to st_[read|write]_done(). While
76 something can easily go wrong with the initial st_read() or
77 st_write(), an error inhibits any data from actually being
78 transferred. */
79
80 extern void transfer_integer (st_parameter_dt *, void *, int);
81 export_proto(transfer_integer);
82
83 extern void transfer_integer_write (st_parameter_dt *, void *, int);
84 export_proto(transfer_integer_write);
85
86 extern void transfer_real (st_parameter_dt *, void *, int);
87 export_proto(transfer_real);
88
89 extern void transfer_real_write (st_parameter_dt *, void *, int);
90 export_proto(transfer_real_write);
91
92 extern void transfer_logical (st_parameter_dt *, void *, int);
93 export_proto(transfer_logical);
94
95 extern void transfer_logical_write (st_parameter_dt *, void *, int);
96 export_proto(transfer_logical_write);
97
98 extern void transfer_character (st_parameter_dt *, void *, int);
99 export_proto(transfer_character);
100
101 extern void transfer_character_write (st_parameter_dt *, void *, int);
102 export_proto(transfer_character_write);
103
104 extern void transfer_character_wide (st_parameter_dt *, void *, int, int);
105 export_proto(transfer_character_wide);
106
107 extern void transfer_character_wide_write (st_parameter_dt *,
108 void *, int, int);
109 export_proto(transfer_character_wide_write);
110
111 extern void transfer_complex (st_parameter_dt *, void *, int);
112 export_proto(transfer_complex);
113
114 extern void transfer_complex_write (st_parameter_dt *, void *, int);
115 export_proto(transfer_complex_write);
116
117 extern void transfer_array (st_parameter_dt *, gfc_array_char *, int,
118 gfc_charlen_type);
119 export_proto(transfer_array);
120
121 extern void transfer_array_write (st_parameter_dt *, gfc_array_char *, int,
122 gfc_charlen_type);
123 export_proto(transfer_array_write);
124
125 static void us_read (st_parameter_dt *, int);
126 static void us_write (st_parameter_dt *, int);
127 static void next_record_r_unf (st_parameter_dt *, int);
128 static void next_record_w_unf (st_parameter_dt *, int);
129
130 static const st_option advance_opt[] = {
131 {"yes", ADVANCE_YES},
132 {"no", ADVANCE_NO},
133 {NULL, 0}
134 };
135
136
137 static const st_option decimal_opt[] = {
138 {"point", DECIMAL_POINT},
139 {"comma", DECIMAL_COMMA},
140 {NULL, 0}
141 };
142
143 static const st_option round_opt[] = {
144 {"up", ROUND_UP},
145 {"down", ROUND_DOWN},
146 {"zero", ROUND_ZERO},
147 {"nearest", ROUND_NEAREST},
148 {"compatible", ROUND_COMPATIBLE},
149 {"processor_defined", ROUND_PROCDEFINED},
150 {NULL, 0}
151 };
152
153
154 static const st_option sign_opt[] = {
155 {"plus", SIGN_SP},
156 {"suppress", SIGN_SS},
157 {"processor_defined", SIGN_S},
158 {NULL, 0}
159 };
160
161 static const st_option blank_opt[] = {
162 {"null", BLANK_NULL},
163 {"zero", BLANK_ZERO},
164 {NULL, 0}
165 };
166
167 static const st_option delim_opt[] = {
168 {"apostrophe", DELIM_APOSTROPHE},
169 {"quote", DELIM_QUOTE},
170 {"none", DELIM_NONE},
171 {NULL, 0}
172 };
173
174 static const st_option pad_opt[] = {
175 {"yes", PAD_YES},
176 {"no", PAD_NO},
177 {NULL, 0}
178 };
179
180 typedef enum
181 { FORMATTED_SEQUENTIAL, UNFORMATTED_SEQUENTIAL,
182 FORMATTED_DIRECT, UNFORMATTED_DIRECT, FORMATTED_STREAM, UNFORMATTED_STREAM
183 }
184 file_mode;
185
186
187 static file_mode
188 current_mode (st_parameter_dt *dtp)
189 {
190 file_mode m;
191
192 m = FORM_UNSPECIFIED;
193
194 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
195 {
196 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
197 FORMATTED_DIRECT : UNFORMATTED_DIRECT;
198 }
199 else if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
200 {
201 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
202 FORMATTED_SEQUENTIAL : UNFORMATTED_SEQUENTIAL;
203 }
204 else if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
205 {
206 m = dtp->u.p.current_unit->flags.form == FORM_FORMATTED ?
207 FORMATTED_STREAM : UNFORMATTED_STREAM;
208 }
209
210 return m;
211 }
212
213
214 /* Mid level data transfer statements. */
215
216 /* Read sequential file - internal unit */
217
218 static char *
219 read_sf_internal (st_parameter_dt *dtp, int * length)
220 {
221 static char *empty_string[0];
222 char *base;
223 int lorig;
224
225 /* Zero size array gives internal unit len of 0. Nothing to read. */
226 if (dtp->internal_unit_len == 0
227 && dtp->u.p.current_unit->pad_status == PAD_NO)
228 hit_eof (dtp);
229
230 /* If we have seen an eor previously, return a length of 0. The
231 caller is responsible for correctly padding the input field. */
232 if (dtp->u.p.sf_seen_eor)
233 {
234 *length = 0;
235 /* Just return something that isn't a NULL pointer, otherwise the
236 caller thinks an error occurred. */
237 return (char*) empty_string;
238 }
239
240 lorig = *length;
241 if (is_char4_unit(dtp))
242 {
243 int i;
244 gfc_char4_t *p = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s,
245 length);
246 base = fbuf_alloc (dtp->u.p.current_unit, lorig);
247 for (i = 0; i < *length; i++, p++)
248 base[i] = *p > 255 ? '?' : (unsigned char) *p;
249 }
250 else
251 base = mem_alloc_r (dtp->u.p.current_unit->s, length);
252
253 if (unlikely (lorig > *length))
254 {
255 hit_eof (dtp);
256 return NULL;
257 }
258
259 dtp->u.p.current_unit->bytes_left -= *length;
260
261 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
262 dtp->u.p.size_used += (GFC_IO_INT) *length;
263
264 return base;
265
266 }
267
268 /* When reading sequential formatted records we have a problem. We
269 don't know how long the line is until we read the trailing newline,
270 and we don't want to read too much. If we read too much, we might
271 have to do a physical seek backwards depending on how much data is
272 present, and devices like terminals aren't seekable and would cause
273 an I/O error.
274
275 Given this, the solution is to read a byte at a time, stopping if
276 we hit the newline. For small allocations, we use a static buffer.
277 For larger allocations, we are forced to allocate memory on the
278 heap. Hopefully this won't happen very often. */
279
280 /* Read sequential file - external unit */
281
282 static char *
283 read_sf (st_parameter_dt *dtp, int * length)
284 {
285 static char *empty_string[0];
286 int q, q2;
287 int n, lorig, seen_comma;
288
289 /* If we have seen an eor previously, return a length of 0. The
290 caller is responsible for correctly padding the input field. */
291 if (dtp->u.p.sf_seen_eor)
292 {
293 *length = 0;
294 /* Just return something that isn't a NULL pointer, otherwise the
295 caller thinks an error occurred. */
296 return (char*) empty_string;
297 }
298
299 n = seen_comma = 0;
300
301 /* Read data into format buffer and scan through it. */
302 lorig = *length;
303
304 while (n < *length)
305 {
306 q = fbuf_getc (dtp->u.p.current_unit);
307 if (q == EOF)
308 break;
309 else if (q == '\n' || q == '\r')
310 {
311 /* Unexpected end of line. Set the position. */
312 dtp->u.p.sf_seen_eor = 1;
313
314 /* If we see an EOR during non-advancing I/O, we need to skip
315 the rest of the I/O statement. Set the corresponding flag. */
316 if (dtp->u.p.advance_status == ADVANCE_NO || dtp->u.p.seen_dollar)
317 dtp->u.p.eor_condition = 1;
318
319 /* If we encounter a CR, it might be a CRLF. */
320 if (q == '\r') /* Probably a CRLF */
321 {
322 /* See if there is an LF. */
323 q2 = fbuf_getc (dtp->u.p.current_unit);
324 if (q2 == '\n')
325 dtp->u.p.sf_seen_eor = 2;
326 else if (q2 != EOF) /* Oops, seek back. */
327 fbuf_seek (dtp->u.p.current_unit, -1, SEEK_CUR);
328 }
329
330 /* Without padding, terminate the I/O statement without assigning
331 the value. With padding, the value still needs to be assigned,
332 so we can just continue with a short read. */
333 if (dtp->u.p.current_unit->pad_status == PAD_NO)
334 {
335 generate_error (&dtp->common, LIBERROR_EOR, NULL);
336 return NULL;
337 }
338
339 *length = n;
340 goto done;
341 }
342 /* Short circuit the read if a comma is found during numeric input.
343 The flag is set to zero during character reads so that commas in
344 strings are not ignored */
345 else if (q == ',')
346 if (dtp->u.p.sf_read_comma == 1)
347 {
348 seen_comma = 1;
349 notify_std (&dtp->common, GFC_STD_GNU,
350 "Comma in formatted numeric read.");
351 break;
352 }
353 n++;
354 }
355
356 *length = n;
357
358 /* A short read implies we hit EOF, unless we hit EOR, a comma, or
359 some other stuff. Set the relevant flags. */
360 if (lorig > *length && !dtp->u.p.sf_seen_eor && !seen_comma)
361 {
362 if (n > 0)
363 {
364 if (dtp->u.p.advance_status == ADVANCE_NO)
365 {
366 if (dtp->u.p.current_unit->pad_status == PAD_NO)
367 {
368 hit_eof (dtp);
369 return NULL;
370 }
371 else
372 dtp->u.p.eor_condition = 1;
373 }
374 else
375 dtp->u.p.at_eof = 1;
376 }
377 else if (dtp->u.p.advance_status == ADVANCE_NO
378 || dtp->u.p.current_unit->pad_status == PAD_NO
379 || dtp->u.p.current_unit->bytes_left
380 == dtp->u.p.current_unit->recl)
381 {
382 hit_eof (dtp);
383 return NULL;
384 }
385 }
386
387 done:
388
389 dtp->u.p.current_unit->bytes_left -= n;
390
391 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
392 dtp->u.p.size_used += (GFC_IO_INT) n;
393
394 /* We can't call fbuf_getptr before the loop doing fbuf_getc, because
395 fbuf_getc might reallocate the buffer. So return current pointer
396 minus all the advances, which is n plus up to two characters
397 of newline or comma. */
398 return fbuf_getptr (dtp->u.p.current_unit)
399 - n - dtp->u.p.sf_seen_eor - seen_comma;
400 }
401
402
403 /* Function for reading the next couple of bytes from the current
404 file, advancing the current position. We return NULL on end of record or
405 end of file. This function is only for formatted I/O, unformatted uses
406 read_block_direct.
407
408 If the read is short, then it is because the current record does not
409 have enough data to satisfy the read request and the file was
410 opened with PAD=YES. The caller must assume tailing spaces for
411 short reads. */
412
413 void *
414 read_block_form (st_parameter_dt *dtp, int * nbytes)
415 {
416 char *source;
417 int norig;
418
419 if (!is_stream_io (dtp))
420 {
421 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
422 {
423 /* For preconnected units with default record length, set bytes left
424 to unit record length and proceed, otherwise error. */
425 if (dtp->u.p.current_unit->unit_number == options.stdin_unit
426 && dtp->u.p.current_unit->recl == DEFAULT_RECL)
427 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
428 else
429 {
430 if (unlikely (dtp->u.p.current_unit->pad_status == PAD_NO)
431 && !is_internal_unit (dtp))
432 {
433 /* Not enough data left. */
434 generate_error (&dtp->common, LIBERROR_EOR, NULL);
435 return NULL;
436 }
437 }
438
439 if (unlikely (dtp->u.p.current_unit->bytes_left == 0
440 && !is_internal_unit(dtp)))
441 {
442 hit_eof (dtp);
443 return NULL;
444 }
445
446 *nbytes = dtp->u.p.current_unit->bytes_left;
447 }
448 }
449
450 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
451 (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL ||
452 dtp->u.p.current_unit->flags.access == ACCESS_STREAM))
453 {
454 if (is_internal_unit (dtp))
455 source = read_sf_internal (dtp, nbytes);
456 else
457 source = read_sf (dtp, nbytes);
458
459 dtp->u.p.current_unit->strm_pos +=
460 (gfc_offset) (*nbytes + dtp->u.p.sf_seen_eor);
461 return source;
462 }
463
464 /* If we reach here, we can assume it's direct access. */
465
466 dtp->u.p.current_unit->bytes_left -= (gfc_offset) *nbytes;
467
468 norig = *nbytes;
469 source = fbuf_read (dtp->u.p.current_unit, nbytes);
470 fbuf_seek (dtp->u.p.current_unit, *nbytes, SEEK_CUR);
471
472 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
473 dtp->u.p.size_used += (GFC_IO_INT) *nbytes;
474
475 if (norig != *nbytes)
476 {
477 /* Short read, this shouldn't happen. */
478 if (dtp->u.p.current_unit->pad_status == PAD_NO)
479 {
480 generate_error (&dtp->common, LIBERROR_EOR, NULL);
481 source = NULL;
482 }
483 }
484
485 dtp->u.p.current_unit->strm_pos += (gfc_offset) *nbytes;
486
487 return source;
488 }
489
490
491 /* Read a block from a character(kind=4) internal unit, to be transferred into
492 a character(kind=4) variable. Note: Portions of this code borrowed from
493 read_sf_internal. */
494 void *
495 read_block_form4 (st_parameter_dt *dtp, int * nbytes)
496 {
497 static gfc_char4_t *empty_string[0];
498 gfc_char4_t *source;
499 int lorig;
500
501 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) *nbytes)
502 *nbytes = dtp->u.p.current_unit->bytes_left;
503
504 /* Zero size array gives internal unit len of 0. Nothing to read. */
505 if (dtp->internal_unit_len == 0
506 && dtp->u.p.current_unit->pad_status == PAD_NO)
507 hit_eof (dtp);
508
509 /* If we have seen an eor previously, return a length of 0. The
510 caller is responsible for correctly padding the input field. */
511 if (dtp->u.p.sf_seen_eor)
512 {
513 *nbytes = 0;
514 /* Just return something that isn't a NULL pointer, otherwise the
515 caller thinks an error occurred. */
516 return empty_string;
517 }
518
519 lorig = *nbytes;
520 source = (gfc_char4_t *) mem_alloc_r4 (dtp->u.p.current_unit->s, nbytes);
521
522 if (unlikely (lorig > *nbytes))
523 {
524 hit_eof (dtp);
525 return NULL;
526 }
527
528 dtp->u.p.current_unit->bytes_left -= *nbytes;
529
530 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
531 dtp->u.p.size_used += (GFC_IO_INT) *nbytes;
532
533 return source;
534 }
535
536
537 /* Reads a block directly into application data space. This is for
538 unformatted files. */
539
540 static void
541 read_block_direct (st_parameter_dt *dtp, void *buf, size_t nbytes)
542 {
543 ssize_t to_read_record;
544 ssize_t have_read_record;
545 ssize_t to_read_subrecord;
546 ssize_t have_read_subrecord;
547 int short_record;
548
549 if (is_stream_io (dtp))
550 {
551 have_read_record = sread (dtp->u.p.current_unit->s, buf,
552 nbytes);
553 if (unlikely (have_read_record < 0))
554 {
555 generate_error (&dtp->common, LIBERROR_OS, NULL);
556 return;
557 }
558
559 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_read_record;
560
561 if (unlikely ((ssize_t) nbytes != have_read_record))
562 {
563 /* Short read, e.g. if we hit EOF. For stream files,
564 we have to set the end-of-file condition. */
565 hit_eof (dtp);
566 }
567 return;
568 }
569
570 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
571 {
572 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes)
573 {
574 short_record = 1;
575 to_read_record = dtp->u.p.current_unit->bytes_left;
576 nbytes = to_read_record;
577 }
578 else
579 {
580 short_record = 0;
581 to_read_record = nbytes;
582 }
583
584 dtp->u.p.current_unit->bytes_left -= to_read_record;
585
586 to_read_record = sread (dtp->u.p.current_unit->s, buf, to_read_record);
587 if (unlikely (to_read_record < 0))
588 {
589 generate_error (&dtp->common, LIBERROR_OS, NULL);
590 return;
591 }
592
593 if (to_read_record != (ssize_t) nbytes)
594 {
595 /* Short read, e.g. if we hit EOF. Apparently, we read
596 more than was written to the last record. */
597 return;
598 }
599
600 if (unlikely (short_record))
601 {
602 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
603 }
604 return;
605 }
606
607 /* Unformatted sequential. We loop over the subrecords, reading
608 until the request has been fulfilled or the record has run out
609 of continuation subrecords. */
610
611 /* Check whether we exceed the total record length. */
612
613 if (dtp->u.p.current_unit->flags.has_recl
614 && ((gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left))
615 {
616 to_read_record = dtp->u.p.current_unit->bytes_left;
617 short_record = 1;
618 }
619 else
620 {
621 to_read_record = nbytes;
622 short_record = 0;
623 }
624 have_read_record = 0;
625
626 while(1)
627 {
628 if (dtp->u.p.current_unit->bytes_left_subrecord
629 < (gfc_offset) to_read_record)
630 {
631 to_read_subrecord = dtp->u.p.current_unit->bytes_left_subrecord;
632 to_read_record -= to_read_subrecord;
633 }
634 else
635 {
636 to_read_subrecord = to_read_record;
637 to_read_record = 0;
638 }
639
640 dtp->u.p.current_unit->bytes_left_subrecord -= to_read_subrecord;
641
642 have_read_subrecord = sread (dtp->u.p.current_unit->s,
643 buf + have_read_record, to_read_subrecord);
644 if (unlikely (have_read_subrecord < 0))
645 {
646 generate_error (&dtp->common, LIBERROR_OS, NULL);
647 return;
648 }
649
650 have_read_record += have_read_subrecord;
651
652 if (unlikely (to_read_subrecord != have_read_subrecord))
653 {
654 /* Short read, e.g. if we hit EOF. This means the record
655 structure has been corrupted, or the trailing record
656 marker would still be present. */
657
658 generate_error (&dtp->common, LIBERROR_CORRUPT_FILE, NULL);
659 return;
660 }
661
662 if (to_read_record > 0)
663 {
664 if (likely (dtp->u.p.current_unit->continued))
665 {
666 next_record_r_unf (dtp, 0);
667 us_read (dtp, 1);
668 }
669 else
670 {
671 /* Let's make sure the file position is correctly pre-positioned
672 for the next read statement. */
673
674 dtp->u.p.current_unit->current_record = 0;
675 next_record_r_unf (dtp, 0);
676 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
677 return;
678 }
679 }
680 else
681 {
682 /* Normal exit, the read request has been fulfilled. */
683 break;
684 }
685 }
686
687 dtp->u.p.current_unit->bytes_left -= have_read_record;
688 if (unlikely (short_record))
689 {
690 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
691 return;
692 }
693 return;
694 }
695
696
697 /* Function for writing a block of bytes to the current file at the
698 current position, advancing the file pointer. We are given a length
699 and return a pointer to a buffer that the caller must (completely)
700 fill in. Returns NULL on error. */
701
702 void *
703 write_block (st_parameter_dt *dtp, int length)
704 {
705 char *dest;
706
707 if (!is_stream_io (dtp))
708 {
709 if (dtp->u.p.current_unit->bytes_left < (gfc_offset) length)
710 {
711 /* For preconnected units with default record length, set bytes left
712 to unit record length and proceed, otherwise error. */
713 if (likely ((dtp->u.p.current_unit->unit_number
714 == options.stdout_unit
715 || dtp->u.p.current_unit->unit_number
716 == options.stderr_unit)
717 && dtp->u.p.current_unit->recl == DEFAULT_RECL))
718 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
719 else
720 {
721 generate_error (&dtp->common, LIBERROR_EOR, NULL);
722 return NULL;
723 }
724 }
725
726 dtp->u.p.current_unit->bytes_left -= (gfc_offset) length;
727 }
728
729 if (is_internal_unit (dtp))
730 {
731 if (dtp->common.unit) /* char4 internel unit. */
732 {
733 gfc_char4_t *dest4;
734 dest4 = mem_alloc_w4 (dtp->u.p.current_unit->s, &length);
735 if (dest4 == NULL)
736 {
737 generate_error (&dtp->common, LIBERROR_END, NULL);
738 return NULL;
739 }
740 return dest4;
741 }
742 else
743 dest = mem_alloc_w (dtp->u.p.current_unit->s, &length);
744
745 if (dest == NULL)
746 {
747 generate_error (&dtp->common, LIBERROR_END, NULL);
748 return NULL;
749 }
750
751 if (unlikely (dtp->u.p.current_unit->endfile == AT_ENDFILE))
752 generate_error (&dtp->common, LIBERROR_END, NULL);
753 }
754 else
755 {
756 dest = fbuf_alloc (dtp->u.p.current_unit, length);
757 if (dest == NULL)
758 {
759 generate_error (&dtp->common, LIBERROR_OS, NULL);
760 return NULL;
761 }
762 }
763
764 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
765 dtp->u.p.size_used += (GFC_IO_INT) length;
766
767 dtp->u.p.current_unit->strm_pos += (gfc_offset) length;
768
769 return dest;
770 }
771
772
773 /* High level interface to swrite(), taking care of errors. This is only
774 called for unformatted files. There are three cases to consider:
775 Stream I/O, unformatted direct, unformatted sequential. */
776
777 static bool
778 write_buf (st_parameter_dt *dtp, void *buf, size_t nbytes)
779 {
780
781 ssize_t have_written;
782 ssize_t to_write_subrecord;
783 int short_record;
784
785 /* Stream I/O. */
786
787 if (is_stream_io (dtp))
788 {
789 have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
790 if (unlikely (have_written < 0))
791 {
792 generate_error (&dtp->common, LIBERROR_OS, NULL);
793 return false;
794 }
795
796 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
797
798 return true;
799 }
800
801 /* Unformatted direct access. */
802
803 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
804 {
805 if (unlikely (dtp->u.p.current_unit->bytes_left < (gfc_offset) nbytes))
806 {
807 generate_error (&dtp->common, LIBERROR_DIRECT_EOR, NULL);
808 return false;
809 }
810
811 if (buf == NULL && nbytes == 0)
812 return true;
813
814 have_written = swrite (dtp->u.p.current_unit->s, buf, nbytes);
815 if (unlikely (have_written < 0))
816 {
817 generate_error (&dtp->common, LIBERROR_OS, NULL);
818 return false;
819 }
820
821 dtp->u.p.current_unit->strm_pos += (gfc_offset) have_written;
822 dtp->u.p.current_unit->bytes_left -= (gfc_offset) have_written;
823
824 return true;
825 }
826
827 /* Unformatted sequential. */
828
829 have_written = 0;
830
831 if (dtp->u.p.current_unit->flags.has_recl
832 && (gfc_offset) nbytes > dtp->u.p.current_unit->bytes_left)
833 {
834 nbytes = dtp->u.p.current_unit->bytes_left;
835 short_record = 1;
836 }
837 else
838 {
839 short_record = 0;
840 }
841
842 while (1)
843 {
844
845 to_write_subrecord =
846 (size_t) dtp->u.p.current_unit->bytes_left_subrecord < nbytes ?
847 (size_t) dtp->u.p.current_unit->bytes_left_subrecord : nbytes;
848
849 dtp->u.p.current_unit->bytes_left_subrecord -=
850 (gfc_offset) to_write_subrecord;
851
852 to_write_subrecord = swrite (dtp->u.p.current_unit->s,
853 buf + have_written, to_write_subrecord);
854 if (unlikely (to_write_subrecord < 0))
855 {
856 generate_error (&dtp->common, LIBERROR_OS, NULL);
857 return false;
858 }
859
860 dtp->u.p.current_unit->strm_pos += (gfc_offset) to_write_subrecord;
861 nbytes -= to_write_subrecord;
862 have_written += to_write_subrecord;
863
864 if (nbytes == 0)
865 break;
866
867 next_record_w_unf (dtp, 1);
868 us_write (dtp, 1);
869 }
870 dtp->u.p.current_unit->bytes_left -= have_written;
871 if (unlikely (short_record))
872 {
873 generate_error (&dtp->common, LIBERROR_SHORT_RECORD, NULL);
874 return false;
875 }
876 return true;
877 }
878
879
880 /* Reverse memcpy - used for byte swapping. */
881
882 static void
883 reverse_memcpy (void *dest, const void *src, size_t n)
884 {
885 char *d, *s;
886 size_t i;
887
888 d = (char *) dest;
889 s = (char *) src + n - 1;
890
891 /* Write with ascending order - this is likely faster
892 on modern architectures because of write combining. */
893 for (i=0; i<n; i++)
894 *(d++) = *(s--);
895 }
896
897
898 /* Utility function for byteswapping an array, using the bswap
899 builtins if possible. dest and src can overlap completely, or then
900 they must point to separate objects; partial overlaps are not
901 allowed. */
902
903 static void
904 bswap_array (void *dest, const void *src, size_t size, size_t nelems)
905 {
906 const char *ps;
907 char *pd;
908
909 switch (size)
910 {
911 case 1:
912 break;
913 case 2:
914 for (size_t i = 0; i < nelems; i++)
915 ((uint16_t*)dest)[i] = __builtin_bswap16 (((uint16_t*)src)[i]);
916 break;
917 case 4:
918 for (size_t i = 0; i < nelems; i++)
919 ((uint32_t*)dest)[i] = __builtin_bswap32 (((uint32_t*)src)[i]);
920 break;
921 case 8:
922 for (size_t i = 0; i < nelems; i++)
923 ((uint64_t*)dest)[i] = __builtin_bswap64 (((uint64_t*)src)[i]);
924 break;
925 case 12:
926 ps = src;
927 pd = dest;
928 for (size_t i = 0; i < nelems; i++)
929 {
930 uint32_t tmp;
931 memcpy (&tmp, ps, 4);
932 *(uint32_t*)pd = __builtin_bswap32 (*(uint32_t*)(ps + 8));
933 *(uint32_t*)(pd + 4) = __builtin_bswap32 (*(uint32_t*)(ps + 4));
934 *(uint32_t*)(pd + 8) = __builtin_bswap32 (tmp);
935 ps += size;
936 pd += size;
937 }
938 break;
939 case 16:
940 ps = src;
941 pd = dest;
942 for (size_t i = 0; i < nelems; i++)
943 {
944 uint64_t tmp;
945 memcpy (&tmp, ps, 8);
946 *(uint64_t*)pd = __builtin_bswap64 (*(uint64_t*)(ps + 8));
947 *(uint64_t*)(pd + 8) = __builtin_bswap64 (tmp);
948 ps += size;
949 pd += size;
950 }
951 break;
952 default:
953 pd = dest;
954 if (dest != src)
955 {
956 ps = src;
957 for (size_t i = 0; i < nelems; i++)
958 {
959 reverse_memcpy (pd, ps, size);
960 ps += size;
961 pd += size;
962 }
963 }
964 else
965 {
966 /* In-place byte swap. */
967 for (size_t i = 0; i < nelems; i++)
968 {
969 char tmp, *low = pd, *high = pd + size - 1;
970 for (size_t j = 0; j < size/2; j++)
971 {
972 tmp = *low;
973 *low = *high;
974 *high = tmp;
975 low++;
976 high--;
977 }
978 pd += size;
979 }
980 }
981 }
982 }
983
984
985 /* Master function for unformatted reads. */
986
987 static void
988 unformatted_read (st_parameter_dt *dtp, bt type,
989 void *dest, int kind, size_t size, size_t nelems)
990 {
991 if (type == BT_CHARACTER)
992 size *= GFC_SIZE_OF_CHAR_KIND(kind);
993 read_block_direct (dtp, dest, size * nelems);
994
995 if (unlikely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_SWAP)
996 && kind != 1)
997 {
998 /* Handle wide chracters. */
999 if (type == BT_CHARACTER)
1000 {
1001 nelems *= size;
1002 size = kind;
1003 }
1004
1005 /* Break up complex into its constituent reals. */
1006 else if (type == BT_COMPLEX)
1007 {
1008 nelems *= 2;
1009 size /= 2;
1010 }
1011 bswap_array (dest, dest, size, nelems);
1012 }
1013 }
1014
1015
1016 /* Master function for unformatted writes. NOTE: For kind=10 the size is 16
1017 bytes on 64 bit machines. The unused bytes are not initialized and never
1018 used, which can show an error with memory checking analyzers like
1019 valgrind. */
1020
1021 static void
1022 unformatted_write (st_parameter_dt *dtp, bt type,
1023 void *source, int kind, size_t size, size_t nelems)
1024 {
1025 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE)
1026 || kind == 1)
1027 {
1028 size_t stride = type == BT_CHARACTER ?
1029 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1030
1031 write_buf (dtp, source, stride * nelems);
1032 }
1033 else
1034 {
1035 #define BSWAP_BUFSZ 512
1036 char buffer[BSWAP_BUFSZ];
1037 char *p;
1038 size_t nrem;
1039
1040 p = source;
1041
1042 /* Handle wide chracters. */
1043 if (type == BT_CHARACTER && kind != 1)
1044 {
1045 nelems *= size;
1046 size = kind;
1047 }
1048
1049 /* Break up complex into its constituent reals. */
1050 if (type == BT_COMPLEX)
1051 {
1052 nelems *= 2;
1053 size /= 2;
1054 }
1055
1056 /* By now, all complex variables have been split into their
1057 constituent reals. */
1058
1059 nrem = nelems;
1060 do
1061 {
1062 size_t nc;
1063 if (size * nrem > BSWAP_BUFSZ)
1064 nc = BSWAP_BUFSZ / size;
1065 else
1066 nc = nrem;
1067
1068 bswap_array (buffer, p, size, nc);
1069 write_buf (dtp, buffer, size * nc);
1070 p += size * nc;
1071 nrem -= nc;
1072 }
1073 while (nrem > 0);
1074 }
1075 }
1076
1077
1078 /* Return a pointer to the name of a type. */
1079
1080 const char *
1081 type_name (bt type)
1082 {
1083 const char *p;
1084
1085 switch (type)
1086 {
1087 case BT_INTEGER:
1088 p = "INTEGER";
1089 break;
1090 case BT_LOGICAL:
1091 p = "LOGICAL";
1092 break;
1093 case BT_CHARACTER:
1094 p = "CHARACTER";
1095 break;
1096 case BT_REAL:
1097 p = "REAL";
1098 break;
1099 case BT_COMPLEX:
1100 p = "COMPLEX";
1101 break;
1102 default:
1103 internal_error (NULL, "type_name(): Bad type");
1104 }
1105
1106 return p;
1107 }
1108
1109
1110 /* Write a constant string to the output.
1111 This is complicated because the string can have doubled delimiters
1112 in it. The length in the format node is the true length. */
1113
1114 static void
1115 write_constant_string (st_parameter_dt *dtp, const fnode *f)
1116 {
1117 char c, delimiter, *p, *q;
1118 int length;
1119
1120 length = f->u.string.length;
1121 if (length == 0)
1122 return;
1123
1124 p = write_block (dtp, length);
1125 if (p == NULL)
1126 return;
1127
1128 q = f->u.string.p;
1129 delimiter = q[-1];
1130
1131 for (; length > 0; length--)
1132 {
1133 c = *p++ = *q++;
1134 if (c == delimiter && c != 'H' && c != 'h')
1135 q++; /* Skip the doubled delimiter. */
1136 }
1137 }
1138
1139
1140 /* Given actual and expected types in a formatted data transfer, make
1141 sure they agree. If not, an error message is generated. Returns
1142 nonzero if something went wrong. */
1143
1144 static int
1145 require_type (st_parameter_dt *dtp, bt expected, bt actual, const fnode *f)
1146 {
1147 #define BUFLEN 100
1148 char buffer[BUFLEN];
1149
1150 if (actual == expected)
1151 return 0;
1152
1153 /* Adjust item_count before emitting error message. */
1154 snprintf (buffer, BUFLEN,
1155 "Expected %s for item %d in formatted transfer, got %s",
1156 type_name (expected), dtp->u.p.item_count - 1, type_name (actual));
1157
1158 format_error (dtp, f, buffer);
1159 return 1;
1160 }
1161
1162
1163 static int
1164 require_numeric_type (st_parameter_dt *dtp, bt actual, const fnode *f)
1165 {
1166 #define BUFLEN 100
1167 char buffer[BUFLEN];
1168
1169 if (actual == BT_INTEGER || actual == BT_REAL || actual == BT_COMPLEX)
1170 return 0;
1171
1172 /* Adjust item_count before emitting error message. */
1173 snprintf (buffer, BUFLEN,
1174 "Expected numeric type for item %d in formatted transfer, got %s",
1175 dtp->u.p.item_count - 1, type_name (actual));
1176
1177 format_error (dtp, f, buffer);
1178 return 1;
1179 }
1180
1181
1182 /* This function is in the main loop for a formatted data transfer
1183 statement. It would be natural to implement this as a coroutine
1184 with the user program, but C makes that awkward. We loop,
1185 processing format elements. When we actually have to transfer
1186 data instead of just setting flags, we return control to the user
1187 program which calls a function that supplies the address and type
1188 of the next element, then comes back here to process it. */
1189
1190 static void
1191 formatted_transfer_scalar_read (st_parameter_dt *dtp, bt type, void *p, int kind,
1192 size_t size)
1193 {
1194 int pos, bytes_used;
1195 const fnode *f;
1196 format_token t;
1197 int n;
1198 int consume_data_flag;
1199
1200 /* Change a complex data item into a pair of reals. */
1201
1202 n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
1203 if (type == BT_COMPLEX)
1204 {
1205 type = BT_REAL;
1206 size /= 2;
1207 }
1208
1209 /* If there's an EOR condition, we simulate finalizing the transfer
1210 by doing nothing. */
1211 if (dtp->u.p.eor_condition)
1212 return;
1213
1214 /* Set this flag so that commas in reads cause the read to complete before
1215 the entire field has been read. The next read field will start right after
1216 the comma in the stream. (Set to 0 for character reads). */
1217 dtp->u.p.sf_read_comma =
1218 dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
1219
1220 for (;;)
1221 {
1222 /* If reversion has occurred and there is another real data item,
1223 then we have to move to the next record. */
1224 if (dtp->u.p.reversion_flag && n > 0)
1225 {
1226 dtp->u.p.reversion_flag = 0;
1227 next_record (dtp, 0);
1228 }
1229
1230 consume_data_flag = 1;
1231 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
1232 break;
1233
1234 f = next_format (dtp);
1235 if (f == NULL)
1236 {
1237 /* No data descriptors left. */
1238 if (unlikely (n > 0))
1239 generate_error (&dtp->common, LIBERROR_FORMAT,
1240 "Insufficient data descriptors in format after reversion");
1241 return;
1242 }
1243
1244 t = f->format;
1245
1246 bytes_used = (int)(dtp->u.p.current_unit->recl
1247 - dtp->u.p.current_unit->bytes_left);
1248
1249 if (is_stream_io(dtp))
1250 bytes_used = 0;
1251
1252 switch (t)
1253 {
1254 case FMT_I:
1255 if (n == 0)
1256 goto need_read_data;
1257 if (require_type (dtp, BT_INTEGER, type, f))
1258 return;
1259 read_decimal (dtp, f, p, kind);
1260 break;
1261
1262 case FMT_B:
1263 if (n == 0)
1264 goto need_read_data;
1265 if (!(compile_options.allow_std & GFC_STD_GNU)
1266 && require_numeric_type (dtp, type, f))
1267 return;
1268 if (!(compile_options.allow_std & GFC_STD_F2008)
1269 && require_type (dtp, BT_INTEGER, type, f))
1270 return;
1271 read_radix (dtp, f, p, kind, 2);
1272 break;
1273
1274 case FMT_O:
1275 if (n == 0)
1276 goto need_read_data;
1277 if (!(compile_options.allow_std & GFC_STD_GNU)
1278 && require_numeric_type (dtp, type, f))
1279 return;
1280 if (!(compile_options.allow_std & GFC_STD_F2008)
1281 && require_type (dtp, BT_INTEGER, type, f))
1282 return;
1283 read_radix (dtp, f, p, kind, 8);
1284 break;
1285
1286 case FMT_Z:
1287 if (n == 0)
1288 goto need_read_data;
1289 if (!(compile_options.allow_std & GFC_STD_GNU)
1290 && require_numeric_type (dtp, type, f))
1291 return;
1292 if (!(compile_options.allow_std & GFC_STD_F2008)
1293 && require_type (dtp, BT_INTEGER, type, f))
1294 return;
1295 read_radix (dtp, f, p, kind, 16);
1296 break;
1297
1298 case FMT_A:
1299 if (n == 0)
1300 goto need_read_data;
1301
1302 /* It is possible to have FMT_A with something not BT_CHARACTER such
1303 as when writing out hollerith strings, so check both type
1304 and kind before calling wide character routines. */
1305 if (type == BT_CHARACTER && kind == 4)
1306 read_a_char4 (dtp, f, p, size);
1307 else
1308 read_a (dtp, f, p, size);
1309 break;
1310
1311 case FMT_L:
1312 if (n == 0)
1313 goto need_read_data;
1314 read_l (dtp, f, p, kind);
1315 break;
1316
1317 case FMT_D:
1318 if (n == 0)
1319 goto need_read_data;
1320 if (require_type (dtp, BT_REAL, type, f))
1321 return;
1322 read_f (dtp, f, p, kind);
1323 break;
1324
1325 case FMT_E:
1326 if (n == 0)
1327 goto need_read_data;
1328 if (require_type (dtp, BT_REAL, type, f))
1329 return;
1330 read_f (dtp, f, p, kind);
1331 break;
1332
1333 case FMT_EN:
1334 if (n == 0)
1335 goto need_read_data;
1336 if (require_type (dtp, BT_REAL, type, f))
1337 return;
1338 read_f (dtp, f, p, kind);
1339 break;
1340
1341 case FMT_ES:
1342 if (n == 0)
1343 goto need_read_data;
1344 if (require_type (dtp, BT_REAL, type, f))
1345 return;
1346 read_f (dtp, f, p, kind);
1347 break;
1348
1349 case FMT_F:
1350 if (n == 0)
1351 goto need_read_data;
1352 if (require_type (dtp, BT_REAL, type, f))
1353 return;
1354 read_f (dtp, f, p, kind);
1355 break;
1356
1357 case FMT_G:
1358 if (n == 0)
1359 goto need_read_data;
1360 switch (type)
1361 {
1362 case BT_INTEGER:
1363 read_decimal (dtp, f, p, kind);
1364 break;
1365 case BT_LOGICAL:
1366 read_l (dtp, f, p, kind);
1367 break;
1368 case BT_CHARACTER:
1369 if (kind == 4)
1370 read_a_char4 (dtp, f, p, size);
1371 else
1372 read_a (dtp, f, p, size);
1373 break;
1374 case BT_REAL:
1375 read_f (dtp, f, p, kind);
1376 break;
1377 default:
1378 internal_error (&dtp->common, "formatted_transfer(): Bad type");
1379 }
1380 break;
1381
1382 case FMT_STRING:
1383 consume_data_flag = 0;
1384 format_error (dtp, f, "Constant string in input format");
1385 return;
1386
1387 /* Format codes that don't transfer data. */
1388 case FMT_X:
1389 case FMT_TR:
1390 consume_data_flag = 0;
1391 dtp->u.p.skips += f->u.n;
1392 pos = bytes_used + dtp->u.p.skips - 1;
1393 dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
1394 read_x (dtp, f->u.n);
1395 break;
1396
1397 case FMT_TL:
1398 case FMT_T:
1399 consume_data_flag = 0;
1400
1401 if (f->format == FMT_TL)
1402 {
1403 /* Handle the special case when no bytes have been used yet.
1404 Cannot go below zero. */
1405 if (bytes_used == 0)
1406 {
1407 dtp->u.p.pending_spaces -= f->u.n;
1408 dtp->u.p.skips -= f->u.n;
1409 dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
1410 }
1411
1412 pos = bytes_used - f->u.n;
1413 }
1414 else /* FMT_T */
1415 pos = f->u.n - 1;
1416
1417 /* Standard 10.6.1.1: excessive left tabbing is reset to the
1418 left tab limit. We do not check if the position has gone
1419 beyond the end of record because a subsequent tab could
1420 bring us back again. */
1421 pos = pos < 0 ? 0 : pos;
1422
1423 dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
1424 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
1425 + pos - dtp->u.p.max_pos;
1426 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
1427 ? 0 : dtp->u.p.pending_spaces;
1428 if (dtp->u.p.skips == 0)
1429 break;
1430
1431 /* Adjust everything for end-of-record condition */
1432 if (dtp->u.p.sf_seen_eor && !is_internal_unit (dtp))
1433 {
1434 dtp->u.p.current_unit->bytes_left -= dtp->u.p.sf_seen_eor;
1435 dtp->u.p.skips -= dtp->u.p.sf_seen_eor;
1436 bytes_used = pos;
1437 dtp->u.p.sf_seen_eor = 0;
1438 }
1439 if (dtp->u.p.skips < 0)
1440 {
1441 if (is_internal_unit (dtp))
1442 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
1443 else
1444 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
1445 dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
1446 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1447 }
1448 else
1449 read_x (dtp, dtp->u.p.skips);
1450 break;
1451
1452 case FMT_S:
1453 consume_data_flag = 0;
1454 dtp->u.p.sign_status = SIGN_S;
1455 break;
1456
1457 case FMT_SS:
1458 consume_data_flag = 0;
1459 dtp->u.p.sign_status = SIGN_SS;
1460 break;
1461
1462 case FMT_SP:
1463 consume_data_flag = 0;
1464 dtp->u.p.sign_status = SIGN_SP;
1465 break;
1466
1467 case FMT_BN:
1468 consume_data_flag = 0 ;
1469 dtp->u.p.blank_status = BLANK_NULL;
1470 break;
1471
1472 case FMT_BZ:
1473 consume_data_flag = 0;
1474 dtp->u.p.blank_status = BLANK_ZERO;
1475 break;
1476
1477 case FMT_DC:
1478 consume_data_flag = 0;
1479 dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
1480 break;
1481
1482 case FMT_DP:
1483 consume_data_flag = 0;
1484 dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
1485 break;
1486
1487 case FMT_RC:
1488 consume_data_flag = 0;
1489 dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
1490 break;
1491
1492 case FMT_RD:
1493 consume_data_flag = 0;
1494 dtp->u.p.current_unit->round_status = ROUND_DOWN;
1495 break;
1496
1497 case FMT_RN:
1498 consume_data_flag = 0;
1499 dtp->u.p.current_unit->round_status = ROUND_NEAREST;
1500 break;
1501
1502 case FMT_RP:
1503 consume_data_flag = 0;
1504 dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
1505 break;
1506
1507 case FMT_RU:
1508 consume_data_flag = 0;
1509 dtp->u.p.current_unit->round_status = ROUND_UP;
1510 break;
1511
1512 case FMT_RZ:
1513 consume_data_flag = 0;
1514 dtp->u.p.current_unit->round_status = ROUND_ZERO;
1515 break;
1516
1517 case FMT_P:
1518 consume_data_flag = 0;
1519 dtp->u.p.scale_factor = f->u.k;
1520 break;
1521
1522 case FMT_DOLLAR:
1523 consume_data_flag = 0;
1524 dtp->u.p.seen_dollar = 1;
1525 break;
1526
1527 case FMT_SLASH:
1528 consume_data_flag = 0;
1529 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1530 next_record (dtp, 0);
1531 break;
1532
1533 case FMT_COLON:
1534 /* A colon descriptor causes us to exit this loop (in
1535 particular preventing another / descriptor from being
1536 processed) unless there is another data item to be
1537 transferred. */
1538 consume_data_flag = 0;
1539 if (n == 0)
1540 return;
1541 break;
1542
1543 default:
1544 internal_error (&dtp->common, "Bad format node");
1545 }
1546
1547 /* Adjust the item count and data pointer. */
1548
1549 if ((consume_data_flag > 0) && (n > 0))
1550 {
1551 n--;
1552 p = ((char *) p) + size;
1553 }
1554
1555 dtp->u.p.skips = 0;
1556
1557 pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
1558 dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
1559 }
1560
1561 return;
1562
1563 /* Come here when we need a data descriptor but don't have one. We
1564 push the current format node back onto the input, then return and
1565 let the user program call us back with the data. */
1566 need_read_data:
1567 unget_format (dtp, f);
1568 }
1569
1570
1571 static void
1572 formatted_transfer_scalar_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1573 size_t size)
1574 {
1575 int pos, bytes_used;
1576 const fnode *f;
1577 format_token t;
1578 int n;
1579 int consume_data_flag;
1580
1581 /* Change a complex data item into a pair of reals. */
1582
1583 n = (p == NULL) ? 0 : ((type != BT_COMPLEX) ? 1 : 2);
1584 if (type == BT_COMPLEX)
1585 {
1586 type = BT_REAL;
1587 size /= 2;
1588 }
1589
1590 /* If there's an EOR condition, we simulate finalizing the transfer
1591 by doing nothing. */
1592 if (dtp->u.p.eor_condition)
1593 return;
1594
1595 /* Set this flag so that commas in reads cause the read to complete before
1596 the entire field has been read. The next read field will start right after
1597 the comma in the stream. (Set to 0 for character reads). */
1598 dtp->u.p.sf_read_comma =
1599 dtp->u.p.current_unit->decimal_status == DECIMAL_COMMA ? 0 : 1;
1600
1601 for (;;)
1602 {
1603 /* If reversion has occurred and there is another real data item,
1604 then we have to move to the next record. */
1605 if (dtp->u.p.reversion_flag && n > 0)
1606 {
1607 dtp->u.p.reversion_flag = 0;
1608 next_record (dtp, 0);
1609 }
1610
1611 consume_data_flag = 1;
1612 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
1613 break;
1614
1615 f = next_format (dtp);
1616 if (f == NULL)
1617 {
1618 /* No data descriptors left. */
1619 if (unlikely (n > 0))
1620 generate_error (&dtp->common, LIBERROR_FORMAT,
1621 "Insufficient data descriptors in format after reversion");
1622 return;
1623 }
1624
1625 /* Now discharge T, TR and X movements to the right. This is delayed
1626 until a data producing format to suppress trailing spaces. */
1627
1628 t = f->format;
1629 if (dtp->u.p.mode == WRITING && dtp->u.p.skips != 0
1630 && ((n>0 && ( t == FMT_I || t == FMT_B || t == FMT_O
1631 || t == FMT_Z || t == FMT_F || t == FMT_E
1632 || t == FMT_EN || t == FMT_ES || t == FMT_G
1633 || t == FMT_L || t == FMT_A || t == FMT_D))
1634 || t == FMT_STRING))
1635 {
1636 if (dtp->u.p.skips > 0)
1637 {
1638 int tmp;
1639 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
1640 tmp = (int)(dtp->u.p.current_unit->recl
1641 - dtp->u.p.current_unit->bytes_left);
1642 dtp->u.p.max_pos =
1643 dtp->u.p.max_pos > tmp ? dtp->u.p.max_pos : tmp;
1644 }
1645 if (dtp->u.p.skips < 0)
1646 {
1647 if (is_internal_unit (dtp))
1648 sseek (dtp->u.p.current_unit->s, dtp->u.p.skips, SEEK_CUR);
1649 else
1650 fbuf_seek (dtp->u.p.current_unit, dtp->u.p.skips, SEEK_CUR);
1651 dtp->u.p.current_unit->bytes_left -= (gfc_offset) dtp->u.p.skips;
1652 }
1653 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1654 }
1655
1656 bytes_used = (int)(dtp->u.p.current_unit->recl
1657 - dtp->u.p.current_unit->bytes_left);
1658
1659 if (is_stream_io(dtp))
1660 bytes_used = 0;
1661
1662 switch (t)
1663 {
1664 case FMT_I:
1665 if (n == 0)
1666 goto need_data;
1667 if (require_type (dtp, BT_INTEGER, type, f))
1668 return;
1669 write_i (dtp, f, p, kind);
1670 break;
1671
1672 case FMT_B:
1673 if (n == 0)
1674 goto need_data;
1675 if (!(compile_options.allow_std & GFC_STD_GNU)
1676 && require_numeric_type (dtp, type, f))
1677 return;
1678 if (!(compile_options.allow_std & GFC_STD_F2008)
1679 && require_type (dtp, BT_INTEGER, type, f))
1680 return;
1681 write_b (dtp, f, p, kind);
1682 break;
1683
1684 case FMT_O:
1685 if (n == 0)
1686 goto need_data;
1687 if (!(compile_options.allow_std & GFC_STD_GNU)
1688 && require_numeric_type (dtp, type, f))
1689 return;
1690 if (!(compile_options.allow_std & GFC_STD_F2008)
1691 && require_type (dtp, BT_INTEGER, type, f))
1692 return;
1693 write_o (dtp, f, p, kind);
1694 break;
1695
1696 case FMT_Z:
1697 if (n == 0)
1698 goto need_data;
1699 if (!(compile_options.allow_std & GFC_STD_GNU)
1700 && require_numeric_type (dtp, type, f))
1701 return;
1702 if (!(compile_options.allow_std & GFC_STD_F2008)
1703 && require_type (dtp, BT_INTEGER, type, f))
1704 return;
1705 write_z (dtp, f, p, kind);
1706 break;
1707
1708 case FMT_A:
1709 if (n == 0)
1710 goto need_data;
1711
1712 /* It is possible to have FMT_A with something not BT_CHARACTER such
1713 as when writing out hollerith strings, so check both type
1714 and kind before calling wide character routines. */
1715 if (type == BT_CHARACTER && kind == 4)
1716 write_a_char4 (dtp, f, p, size);
1717 else
1718 write_a (dtp, f, p, size);
1719 break;
1720
1721 case FMT_L:
1722 if (n == 0)
1723 goto need_data;
1724 write_l (dtp, f, p, kind);
1725 break;
1726
1727 case FMT_D:
1728 if (n == 0)
1729 goto need_data;
1730 if (require_type (dtp, BT_REAL, type, f))
1731 return;
1732 write_d (dtp, f, p, kind);
1733 break;
1734
1735 case FMT_E:
1736 if (n == 0)
1737 goto need_data;
1738 if (require_type (dtp, BT_REAL, type, f))
1739 return;
1740 write_e (dtp, f, p, kind);
1741 break;
1742
1743 case FMT_EN:
1744 if (n == 0)
1745 goto need_data;
1746 if (require_type (dtp, BT_REAL, type, f))
1747 return;
1748 write_en (dtp, f, p, kind);
1749 break;
1750
1751 case FMT_ES:
1752 if (n == 0)
1753 goto need_data;
1754 if (require_type (dtp, BT_REAL, type, f))
1755 return;
1756 write_es (dtp, f, p, kind);
1757 break;
1758
1759 case FMT_F:
1760 if (n == 0)
1761 goto need_data;
1762 if (require_type (dtp, BT_REAL, type, f))
1763 return;
1764 write_f (dtp, f, p, kind);
1765 break;
1766
1767 case FMT_G:
1768 if (n == 0)
1769 goto need_data;
1770 switch (type)
1771 {
1772 case BT_INTEGER:
1773 write_i (dtp, f, p, kind);
1774 break;
1775 case BT_LOGICAL:
1776 write_l (dtp, f, p, kind);
1777 break;
1778 case BT_CHARACTER:
1779 if (kind == 4)
1780 write_a_char4 (dtp, f, p, size);
1781 else
1782 write_a (dtp, f, p, size);
1783 break;
1784 case BT_REAL:
1785 if (f->u.real.w == 0)
1786 write_real_g0 (dtp, p, kind, f->u.real.d);
1787 else
1788 write_d (dtp, f, p, kind);
1789 break;
1790 default:
1791 internal_error (&dtp->common,
1792 "formatted_transfer(): Bad type");
1793 }
1794 break;
1795
1796 case FMT_STRING:
1797 consume_data_flag = 0;
1798 write_constant_string (dtp, f);
1799 break;
1800
1801 /* Format codes that don't transfer data. */
1802 case FMT_X:
1803 case FMT_TR:
1804 consume_data_flag = 0;
1805
1806 dtp->u.p.skips += f->u.n;
1807 pos = bytes_used + dtp->u.p.skips - 1;
1808 dtp->u.p.pending_spaces = pos - dtp->u.p.max_pos + 1;
1809 /* Writes occur just before the switch on f->format, above, so
1810 that trailing blanks are suppressed, unless we are doing a
1811 non-advancing write in which case we want to output the blanks
1812 now. */
1813 if (dtp->u.p.advance_status == ADVANCE_NO)
1814 {
1815 write_x (dtp, dtp->u.p.skips, dtp->u.p.pending_spaces);
1816 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1817 }
1818 break;
1819
1820 case FMT_TL:
1821 case FMT_T:
1822 consume_data_flag = 0;
1823
1824 if (f->format == FMT_TL)
1825 {
1826
1827 /* Handle the special case when no bytes have been used yet.
1828 Cannot go below zero. */
1829 if (bytes_used == 0)
1830 {
1831 dtp->u.p.pending_spaces -= f->u.n;
1832 dtp->u.p.skips -= f->u.n;
1833 dtp->u.p.skips = dtp->u.p.skips < 0 ? 0 : dtp->u.p.skips;
1834 }
1835
1836 pos = bytes_used - f->u.n;
1837 }
1838 else /* FMT_T */
1839 pos = f->u.n - dtp->u.p.pending_spaces - 1;
1840
1841 /* Standard 10.6.1.1: excessive left tabbing is reset to the
1842 left tab limit. We do not check if the position has gone
1843 beyond the end of record because a subsequent tab could
1844 bring us back again. */
1845 pos = pos < 0 ? 0 : pos;
1846
1847 dtp->u.p.skips = dtp->u.p.skips + pos - bytes_used;
1848 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces
1849 + pos - dtp->u.p.max_pos;
1850 dtp->u.p.pending_spaces = dtp->u.p.pending_spaces < 0
1851 ? 0 : dtp->u.p.pending_spaces;
1852 break;
1853
1854 case FMT_S:
1855 consume_data_flag = 0;
1856 dtp->u.p.sign_status = SIGN_S;
1857 break;
1858
1859 case FMT_SS:
1860 consume_data_flag = 0;
1861 dtp->u.p.sign_status = SIGN_SS;
1862 break;
1863
1864 case FMT_SP:
1865 consume_data_flag = 0;
1866 dtp->u.p.sign_status = SIGN_SP;
1867 break;
1868
1869 case FMT_BN:
1870 consume_data_flag = 0 ;
1871 dtp->u.p.blank_status = BLANK_NULL;
1872 break;
1873
1874 case FMT_BZ:
1875 consume_data_flag = 0;
1876 dtp->u.p.blank_status = BLANK_ZERO;
1877 break;
1878
1879 case FMT_DC:
1880 consume_data_flag = 0;
1881 dtp->u.p.current_unit->decimal_status = DECIMAL_COMMA;
1882 break;
1883
1884 case FMT_DP:
1885 consume_data_flag = 0;
1886 dtp->u.p.current_unit->decimal_status = DECIMAL_POINT;
1887 break;
1888
1889 case FMT_RC:
1890 consume_data_flag = 0;
1891 dtp->u.p.current_unit->round_status = ROUND_COMPATIBLE;
1892 break;
1893
1894 case FMT_RD:
1895 consume_data_flag = 0;
1896 dtp->u.p.current_unit->round_status = ROUND_DOWN;
1897 break;
1898
1899 case FMT_RN:
1900 consume_data_flag = 0;
1901 dtp->u.p.current_unit->round_status = ROUND_NEAREST;
1902 break;
1903
1904 case FMT_RP:
1905 consume_data_flag = 0;
1906 dtp->u.p.current_unit->round_status = ROUND_PROCDEFINED;
1907 break;
1908
1909 case FMT_RU:
1910 consume_data_flag = 0;
1911 dtp->u.p.current_unit->round_status = ROUND_UP;
1912 break;
1913
1914 case FMT_RZ:
1915 consume_data_flag = 0;
1916 dtp->u.p.current_unit->round_status = ROUND_ZERO;
1917 break;
1918
1919 case FMT_P:
1920 consume_data_flag = 0;
1921 dtp->u.p.scale_factor = f->u.k;
1922 break;
1923
1924 case FMT_DOLLAR:
1925 consume_data_flag = 0;
1926 dtp->u.p.seen_dollar = 1;
1927 break;
1928
1929 case FMT_SLASH:
1930 consume_data_flag = 0;
1931 dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
1932 next_record (dtp, 0);
1933 break;
1934
1935 case FMT_COLON:
1936 /* A colon descriptor causes us to exit this loop (in
1937 particular preventing another / descriptor from being
1938 processed) unless there is another data item to be
1939 transferred. */
1940 consume_data_flag = 0;
1941 if (n == 0)
1942 return;
1943 break;
1944
1945 default:
1946 internal_error (&dtp->common, "Bad format node");
1947 }
1948
1949 /* Adjust the item count and data pointer. */
1950
1951 if ((consume_data_flag > 0) && (n > 0))
1952 {
1953 n--;
1954 p = ((char *) p) + size;
1955 }
1956
1957 pos = (int)(dtp->u.p.current_unit->recl - dtp->u.p.current_unit->bytes_left);
1958 dtp->u.p.max_pos = (dtp->u.p.max_pos > pos) ? dtp->u.p.max_pos : pos;
1959 }
1960
1961 return;
1962
1963 /* Come here when we need a data descriptor but don't have one. We
1964 push the current format node back onto the input, then return and
1965 let the user program call us back with the data. */
1966 need_data:
1967 unget_format (dtp, f);
1968 }
1969
1970 /* This function is first called from data_init_transfer to initiate the loop
1971 over each item in the format, transferring data as required. Subsequent
1972 calls to this function occur for each data item foound in the READ/WRITE
1973 statement. The item_count is incremented for each call. Since the first
1974 call is from data_transfer_init, the item_count is always one greater than
1975 the actual count number of the item being transferred. */
1976
1977 static void
1978 formatted_transfer (st_parameter_dt *dtp, bt type, void *p, int kind,
1979 size_t size, size_t nelems)
1980 {
1981 size_t elem;
1982 char *tmp;
1983
1984 tmp = (char *) p;
1985 size_t stride = type == BT_CHARACTER ?
1986 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1987 if (dtp->u.p.mode == READING)
1988 {
1989 /* Big loop over all the elements. */
1990 for (elem = 0; elem < nelems; elem++)
1991 {
1992 dtp->u.p.item_count++;
1993 formatted_transfer_scalar_read (dtp, type, tmp + stride*elem, kind, size);
1994 }
1995 }
1996 else
1997 {
1998 /* Big loop over all the elements. */
1999 for (elem = 0; elem < nelems; elem++)
2000 {
2001 dtp->u.p.item_count++;
2002 formatted_transfer_scalar_write (dtp, type, tmp + stride*elem, kind, size);
2003 }
2004 }
2005 }
2006
2007
2008 /* Data transfer entry points. The type of the data entity is
2009 implicit in the subroutine call. This prevents us from having to
2010 share a common enum with the compiler. */
2011
2012 void
2013 transfer_integer (st_parameter_dt *dtp, void *p, int kind)
2014 {
2015 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2016 return;
2017 dtp->u.p.transfer (dtp, BT_INTEGER, p, kind, kind, 1);
2018 }
2019
2020 void
2021 transfer_integer_write (st_parameter_dt *dtp, void *p, int kind)
2022 {
2023 transfer_integer (dtp, p, kind);
2024 }
2025
2026 void
2027 transfer_real (st_parameter_dt *dtp, void *p, int kind)
2028 {
2029 size_t size;
2030 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2031 return;
2032 size = size_from_real_kind (kind);
2033 dtp->u.p.transfer (dtp, BT_REAL, p, kind, size, 1);
2034 }
2035
2036 void
2037 transfer_real_write (st_parameter_dt *dtp, void *p, int kind)
2038 {
2039 transfer_real (dtp, p, kind);
2040 }
2041
2042 void
2043 transfer_logical (st_parameter_dt *dtp, void *p, int kind)
2044 {
2045 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2046 return;
2047 dtp->u.p.transfer (dtp, BT_LOGICAL, p, kind, kind, 1);
2048 }
2049
2050 void
2051 transfer_logical_write (st_parameter_dt *dtp, void *p, int kind)
2052 {
2053 transfer_logical (dtp, p, kind);
2054 }
2055
2056 void
2057 transfer_character (st_parameter_dt *dtp, void *p, int len)
2058 {
2059 static char *empty_string[0];
2060
2061 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2062 return;
2063
2064 /* Strings of zero length can have p == NULL, which confuses the
2065 transfer routines into thinking we need more data elements. To avoid
2066 this, we give them a nice pointer. */
2067 if (len == 0 && p == NULL)
2068 p = empty_string;
2069
2070 /* Set kind here to 1. */
2071 dtp->u.p.transfer (dtp, BT_CHARACTER, p, 1, len, 1);
2072 }
2073
2074 void
2075 transfer_character_write (st_parameter_dt *dtp, void *p, int len)
2076 {
2077 transfer_character (dtp, p, len);
2078 }
2079
2080 void
2081 transfer_character_wide (st_parameter_dt *dtp, void *p, int len, int kind)
2082 {
2083 static char *empty_string[0];
2084
2085 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2086 return;
2087
2088 /* Strings of zero length can have p == NULL, which confuses the
2089 transfer routines into thinking we need more data elements. To avoid
2090 this, we give them a nice pointer. */
2091 if (len == 0 && p == NULL)
2092 p = empty_string;
2093
2094 /* Here we pass the actual kind value. */
2095 dtp->u.p.transfer (dtp, BT_CHARACTER, p, kind, len, 1);
2096 }
2097
2098 void
2099 transfer_character_wide_write (st_parameter_dt *dtp, void *p, int len, int kind)
2100 {
2101 transfer_character_wide (dtp, p, len, kind);
2102 }
2103
2104 void
2105 transfer_complex (st_parameter_dt *dtp, void *p, int kind)
2106 {
2107 size_t size;
2108 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2109 return;
2110 size = size_from_complex_kind (kind);
2111 dtp->u.p.transfer (dtp, BT_COMPLEX, p, kind, size, 1);
2112 }
2113
2114 void
2115 transfer_complex_write (st_parameter_dt *dtp, void *p, int kind)
2116 {
2117 transfer_complex (dtp, p, kind);
2118 }
2119
2120 void
2121 transfer_array (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
2122 gfc_charlen_type charlen)
2123 {
2124 index_type count[GFC_MAX_DIMENSIONS];
2125 index_type extent[GFC_MAX_DIMENSIONS];
2126 index_type stride[GFC_MAX_DIMENSIONS];
2127 index_type stride0, rank, size, n;
2128 size_t tsize;
2129 char *data;
2130 bt iotype;
2131
2132 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2133 return;
2134
2135 iotype = (bt) GFC_DESCRIPTOR_TYPE (desc);
2136 size = iotype == BT_CHARACTER ? charlen : GFC_DESCRIPTOR_SIZE (desc);
2137
2138 rank = GFC_DESCRIPTOR_RANK (desc);
2139 for (n = 0; n < rank; n++)
2140 {
2141 count[n] = 0;
2142 stride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(desc,n);
2143 extent[n] = GFC_DESCRIPTOR_EXTENT(desc,n);
2144
2145 /* If the extent of even one dimension is zero, then the entire
2146 array section contains zero elements, so we return after writing
2147 a zero array record. */
2148 if (extent[n] <= 0)
2149 {
2150 data = NULL;
2151 tsize = 0;
2152 dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
2153 return;
2154 }
2155 }
2156
2157 stride0 = stride[0];
2158
2159 /* If the innermost dimension has a stride of 1, we can do the transfer
2160 in contiguous chunks. */
2161 if (stride0 == size)
2162 tsize = extent[0];
2163 else
2164 tsize = 1;
2165
2166 data = GFC_DESCRIPTOR_DATA (desc);
2167
2168 while (data)
2169 {
2170 dtp->u.p.transfer (dtp, iotype, data, kind, size, tsize);
2171 data += stride0 * tsize;
2172 count[0] += tsize;
2173 n = 0;
2174 while (count[n] == extent[n])
2175 {
2176 count[n] = 0;
2177 data -= stride[n] * extent[n];
2178 n++;
2179 if (n == rank)
2180 {
2181 data = NULL;
2182 break;
2183 }
2184 else
2185 {
2186 count[n]++;
2187 data += stride[n];
2188 }
2189 }
2190 }
2191 }
2192
2193 void
2194 transfer_array_write (st_parameter_dt *dtp, gfc_array_char *desc, int kind,
2195 gfc_charlen_type charlen)
2196 {
2197 transfer_array (dtp, desc, kind, charlen);
2198 }
2199
2200 /* Preposition a sequential unformatted file while reading. */
2201
2202 static void
2203 us_read (st_parameter_dt *dtp, int continued)
2204 {
2205 ssize_t n, nr;
2206 GFC_INTEGER_4 i4;
2207 GFC_INTEGER_8 i8;
2208 gfc_offset i;
2209
2210 if (compile_options.record_marker == 0)
2211 n = sizeof (GFC_INTEGER_4);
2212 else
2213 n = compile_options.record_marker;
2214
2215 nr = sread (dtp->u.p.current_unit->s, &i, n);
2216 if (unlikely (nr < 0))
2217 {
2218 generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
2219 return;
2220 }
2221 else if (nr == 0)
2222 {
2223 hit_eof (dtp);
2224 return; /* end of file */
2225 }
2226 else if (unlikely (n != nr))
2227 {
2228 generate_error (&dtp->common, LIBERROR_BAD_US, NULL);
2229 return;
2230 }
2231
2232 /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here. */
2233 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
2234 {
2235 switch (nr)
2236 {
2237 case sizeof(GFC_INTEGER_4):
2238 memcpy (&i4, &i, sizeof (i4));
2239 i = i4;
2240 break;
2241
2242 case sizeof(GFC_INTEGER_8):
2243 memcpy (&i8, &i, sizeof (i8));
2244 i = i8;
2245 break;
2246
2247 default:
2248 runtime_error ("Illegal value for record marker");
2249 break;
2250 }
2251 }
2252 else
2253 {
2254 uint32_t u32;
2255 uint64_t u64;
2256 switch (nr)
2257 {
2258 case sizeof(GFC_INTEGER_4):
2259 memcpy (&u32, &i, sizeof (u32));
2260 u32 = __builtin_bswap32 (u32);
2261 memcpy (&i4, &u32, sizeof (i4));
2262 i = i4;
2263 break;
2264
2265 case sizeof(GFC_INTEGER_8):
2266 memcpy (&u64, &i, sizeof (u64));
2267 u64 = __builtin_bswap64 (u64);
2268 memcpy (&i8, &u64, sizeof (i8));
2269 i = i8;
2270 break;
2271
2272 default:
2273 runtime_error ("Illegal value for record marker");
2274 break;
2275 }
2276 }
2277
2278 if (i >= 0)
2279 {
2280 dtp->u.p.current_unit->bytes_left_subrecord = i;
2281 dtp->u.p.current_unit->continued = 0;
2282 }
2283 else
2284 {
2285 dtp->u.p.current_unit->bytes_left_subrecord = -i;
2286 dtp->u.p.current_unit->continued = 1;
2287 }
2288
2289 if (! continued)
2290 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
2291 }
2292
2293
2294 /* Preposition a sequential unformatted file while writing. This
2295 amount to writing a bogus length that will be filled in later. */
2296
2297 static void
2298 us_write (st_parameter_dt *dtp, int continued)
2299 {
2300 ssize_t nbytes;
2301 gfc_offset dummy;
2302
2303 dummy = 0;
2304
2305 if (compile_options.record_marker == 0)
2306 nbytes = sizeof (GFC_INTEGER_4);
2307 else
2308 nbytes = compile_options.record_marker ;
2309
2310 if (swrite (dtp->u.p.current_unit->s, &dummy, nbytes) != nbytes)
2311 generate_error (&dtp->common, LIBERROR_OS, NULL);
2312
2313 /* For sequential unformatted, if RECL= was not specified in the OPEN
2314 we write until we have more bytes than can fit in the subrecord
2315 markers, then we write a new subrecord. */
2316
2317 dtp->u.p.current_unit->bytes_left_subrecord =
2318 dtp->u.p.current_unit->recl_subrecord;
2319 dtp->u.p.current_unit->continued = continued;
2320 }
2321
2322
2323 /* Position to the next record prior to transfer. We are assumed to
2324 be before the next record. We also calculate the bytes in the next
2325 record. */
2326
2327 static void
2328 pre_position (st_parameter_dt *dtp)
2329 {
2330 if (dtp->u.p.current_unit->current_record)
2331 return; /* Already positioned. */
2332
2333 switch (current_mode (dtp))
2334 {
2335 case FORMATTED_STREAM:
2336 case UNFORMATTED_STREAM:
2337 /* There are no records with stream I/O. If the position was specified
2338 data_transfer_init has already positioned the file. If no position
2339 was specified, we continue from where we last left off. I.e.
2340 there is nothing to do here. */
2341 break;
2342
2343 case UNFORMATTED_SEQUENTIAL:
2344 if (dtp->u.p.mode == READING)
2345 us_read (dtp, 0);
2346 else
2347 us_write (dtp, 0);
2348
2349 break;
2350
2351 case FORMATTED_SEQUENTIAL:
2352 case FORMATTED_DIRECT:
2353 case UNFORMATTED_DIRECT:
2354 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
2355 break;
2356 }
2357
2358 dtp->u.p.current_unit->current_record = 1;
2359 }
2360
2361
2362 /* Initialize things for a data transfer. This code is common for
2363 both reading and writing. */
2364
2365 static void
2366 data_transfer_init (st_parameter_dt *dtp, int read_flag)
2367 {
2368 unit_flags u_flags; /* Used for creating a unit if needed. */
2369 GFC_INTEGER_4 cf = dtp->common.flags;
2370 namelist_info *ionml;
2371
2372 ionml = ((cf & IOPARM_DT_IONML_SET) != 0) ? dtp->u.p.ionml : NULL;
2373
2374 memset (&dtp->u.p, 0, sizeof (dtp->u.p));
2375
2376 dtp->u.p.ionml = ionml;
2377 dtp->u.p.mode = read_flag ? READING : WRITING;
2378
2379 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
2380 return;
2381
2382 if ((cf & IOPARM_DT_HAS_SIZE) != 0)
2383 dtp->u.p.size_used = 0; /* Initialize the count. */
2384
2385 dtp->u.p.current_unit = get_unit (dtp, 1);
2386 if (dtp->u.p.current_unit->s == NULL)
2387 { /* Open the unit with some default flags. */
2388 st_parameter_open opp;
2389 unit_convert conv;
2390
2391 if (dtp->common.unit < 0)
2392 {
2393 close_unit (dtp->u.p.current_unit);
2394 dtp->u.p.current_unit = NULL;
2395 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2396 "Bad unit number in statement");
2397 return;
2398 }
2399 memset (&u_flags, '\0', sizeof (u_flags));
2400 u_flags.access = ACCESS_SEQUENTIAL;
2401 u_flags.action = ACTION_READWRITE;
2402
2403 /* Is it unformatted? */
2404 if (!(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT
2405 | IOPARM_DT_IONML_SET)))
2406 u_flags.form = FORM_UNFORMATTED;
2407 else
2408 u_flags.form = FORM_UNSPECIFIED;
2409
2410 u_flags.delim = DELIM_UNSPECIFIED;
2411 u_flags.blank = BLANK_UNSPECIFIED;
2412 u_flags.pad = PAD_UNSPECIFIED;
2413 u_flags.decimal = DECIMAL_UNSPECIFIED;
2414 u_flags.encoding = ENCODING_UNSPECIFIED;
2415 u_flags.async = ASYNC_UNSPECIFIED;
2416 u_flags.round = ROUND_UNSPECIFIED;
2417 u_flags.sign = SIGN_UNSPECIFIED;
2418
2419 u_flags.status = STATUS_UNKNOWN;
2420
2421 conv = get_unformatted_convert (dtp->common.unit);
2422
2423 if (conv == GFC_CONVERT_NONE)
2424 conv = compile_options.convert;
2425
2426 /* We use big_endian, which is 0 on little-endian machines
2427 and 1 on big-endian machines. */
2428 switch (conv)
2429 {
2430 case GFC_CONVERT_NATIVE:
2431 case GFC_CONVERT_SWAP:
2432 break;
2433
2434 case GFC_CONVERT_BIG:
2435 conv = big_endian ? GFC_CONVERT_NATIVE : GFC_CONVERT_SWAP;
2436 break;
2437
2438 case GFC_CONVERT_LITTLE:
2439 conv = big_endian ? GFC_CONVERT_SWAP : GFC_CONVERT_NATIVE;
2440 break;
2441
2442 default:
2443 internal_error (&opp.common, "Illegal value for CONVERT");
2444 break;
2445 }
2446
2447 u_flags.convert = conv;
2448
2449 opp.common = dtp->common;
2450 opp.common.flags &= IOPARM_COMMON_MASK;
2451 dtp->u.p.current_unit = new_unit (&opp, dtp->u.p.current_unit, &u_flags);
2452 dtp->common.flags &= ~IOPARM_COMMON_MASK;
2453 dtp->common.flags |= (opp.common.flags & IOPARM_COMMON_MASK);
2454 if (dtp->u.p.current_unit == NULL)
2455 return;
2456 }
2457
2458 /* Check the action. */
2459
2460 if (read_flag && dtp->u.p.current_unit->flags.action == ACTION_WRITE)
2461 {
2462 generate_error (&dtp->common, LIBERROR_BAD_ACTION,
2463 "Cannot read from file opened for WRITE");
2464 return;
2465 }
2466
2467 if (!read_flag && dtp->u.p.current_unit->flags.action == ACTION_READ)
2468 {
2469 generate_error (&dtp->common, LIBERROR_BAD_ACTION,
2470 "Cannot write to file opened for READ");
2471 return;
2472 }
2473
2474 dtp->u.p.first_item = 1;
2475
2476 /* Check the format. */
2477
2478 if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
2479 parse_format (dtp);
2480
2481 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED
2482 && (cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
2483 != 0)
2484 {
2485 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2486 "Format present for UNFORMATTED data transfer");
2487 return;
2488 }
2489
2490 if ((cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0 && dtp->u.p.ionml != NULL)
2491 {
2492 if ((cf & IOPARM_DT_HAS_FORMAT) != 0)
2493 {
2494 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2495 "A format cannot be specified with a namelist");
2496 return;
2497 }
2498 }
2499 else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED &&
2500 !(cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT)))
2501 {
2502 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2503 "Missing format for FORMATTED data transfer");
2504 return;
2505 }
2506
2507 if (is_internal_unit (dtp)
2508 && dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2509 {
2510 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2511 "Internal file cannot be accessed by UNFORMATTED "
2512 "data transfer");
2513 return;
2514 }
2515
2516 /* Check the record or position number. */
2517
2518 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT
2519 && (cf & IOPARM_DT_HAS_REC) == 0)
2520 {
2521 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2522 "Direct access data transfer requires record number");
2523 return;
2524 }
2525
2526 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
2527 {
2528 if ((cf & IOPARM_DT_HAS_REC) != 0)
2529 {
2530 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2531 "Record number not allowed for sequential access "
2532 "data transfer");
2533 return;
2534 }
2535
2536 if (compile_options.warn_std &&
2537 dtp->u.p.current_unit->endfile == AFTER_ENDFILE)
2538 {
2539 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2540 "Sequential READ or WRITE not allowed after "
2541 "EOF marker, possibly use REWIND or BACKSPACE");
2542 return;
2543 }
2544
2545 }
2546 /* Process the ADVANCE option. */
2547
2548 dtp->u.p.advance_status
2549 = !(cf & IOPARM_DT_HAS_ADVANCE) ? ADVANCE_UNSPECIFIED :
2550 find_option (&dtp->common, dtp->advance, dtp->advance_len, advance_opt,
2551 "Bad ADVANCE parameter in data transfer statement");
2552
2553 if (dtp->u.p.advance_status != ADVANCE_UNSPECIFIED)
2554 {
2555 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
2556 {
2557 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2558 "ADVANCE specification conflicts with sequential "
2559 "access");
2560 return;
2561 }
2562
2563 if (is_internal_unit (dtp))
2564 {
2565 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2566 "ADVANCE specification conflicts with internal file");
2567 return;
2568 }
2569
2570 if ((cf & (IOPARM_DT_HAS_FORMAT | IOPARM_DT_LIST_FORMAT))
2571 != IOPARM_DT_HAS_FORMAT)
2572 {
2573 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2574 "ADVANCE specification requires an explicit format");
2575 return;
2576 }
2577 }
2578
2579 if (read_flag)
2580 {
2581 dtp->u.p.current_unit->previous_nonadvancing_write = 0;
2582
2583 if ((cf & IOPARM_EOR) != 0 && dtp->u.p.advance_status != ADVANCE_NO)
2584 {
2585 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2586 "EOR specification requires an ADVANCE specification "
2587 "of NO");
2588 return;
2589 }
2590
2591 if ((cf & IOPARM_DT_HAS_SIZE) != 0
2592 && dtp->u.p.advance_status != ADVANCE_NO)
2593 {
2594 generate_error (&dtp->common, LIBERROR_MISSING_OPTION,
2595 "SIZE specification requires an ADVANCE "
2596 "specification of NO");
2597 return;
2598 }
2599 }
2600 else
2601 { /* Write constraints. */
2602 if ((cf & IOPARM_END) != 0)
2603 {
2604 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2605 "END specification cannot appear in a write "
2606 "statement");
2607 return;
2608 }
2609
2610 if ((cf & IOPARM_EOR) != 0)
2611 {
2612 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2613 "EOR specification cannot appear in a write "
2614 "statement");
2615 return;
2616 }
2617
2618 if ((cf & IOPARM_DT_HAS_SIZE) != 0)
2619 {
2620 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2621 "SIZE specification cannot appear in a write "
2622 "statement");
2623 return;
2624 }
2625 }
2626
2627 if (dtp->u.p.advance_status == ADVANCE_UNSPECIFIED)
2628 dtp->u.p.advance_status = ADVANCE_YES;
2629
2630 /* Check the decimal mode. */
2631 dtp->u.p.current_unit->decimal_status
2632 = !(cf & IOPARM_DT_HAS_DECIMAL) ? DECIMAL_UNSPECIFIED :
2633 find_option (&dtp->common, dtp->decimal, dtp->decimal_len,
2634 decimal_opt, "Bad DECIMAL parameter in data transfer "
2635 "statement");
2636
2637 if (dtp->u.p.current_unit->decimal_status == DECIMAL_UNSPECIFIED)
2638 dtp->u.p.current_unit->decimal_status = dtp->u.p.current_unit->flags.decimal;
2639
2640 /* Check the round mode. */
2641 dtp->u.p.current_unit->round_status
2642 = !(cf & IOPARM_DT_HAS_ROUND) ? ROUND_UNSPECIFIED :
2643 find_option (&dtp->common, dtp->round, dtp->round_len,
2644 round_opt, "Bad ROUND parameter in data transfer "
2645 "statement");
2646
2647 if (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED)
2648 dtp->u.p.current_unit->round_status = dtp->u.p.current_unit->flags.round;
2649
2650 /* Check the sign mode. */
2651 dtp->u.p.sign_status
2652 = !(cf & IOPARM_DT_HAS_SIGN) ? SIGN_UNSPECIFIED :
2653 find_option (&dtp->common, dtp->sign, dtp->sign_len, sign_opt,
2654 "Bad SIGN parameter in data transfer statement");
2655
2656 if (dtp->u.p.sign_status == SIGN_UNSPECIFIED)
2657 dtp->u.p.sign_status = dtp->u.p.current_unit->flags.sign;
2658
2659 /* Check the blank mode. */
2660 dtp->u.p.blank_status
2661 = !(cf & IOPARM_DT_HAS_BLANK) ? BLANK_UNSPECIFIED :
2662 find_option (&dtp->common, dtp->blank, dtp->blank_len,
2663 blank_opt,
2664 "Bad BLANK parameter in data transfer statement");
2665
2666 if (dtp->u.p.blank_status == BLANK_UNSPECIFIED)
2667 dtp->u.p.blank_status = dtp->u.p.current_unit->flags.blank;
2668
2669 /* Check the delim mode. */
2670 dtp->u.p.current_unit->delim_status
2671 = !(cf & IOPARM_DT_HAS_DELIM) ? DELIM_UNSPECIFIED :
2672 find_option (&dtp->common, dtp->delim, dtp->delim_len,
2673 delim_opt, "Bad DELIM parameter in data transfer statement");
2674
2675 if (dtp->u.p.current_unit->delim_status == DELIM_UNSPECIFIED)
2676 {
2677 if (ionml && dtp->u.p.current_unit->flags.delim == DELIM_UNSPECIFIED)
2678 dtp->u.p.current_unit->delim_status =
2679 compile_options.allow_std & GFC_STD_GNU ? DELIM_QUOTE : DELIM_NONE;
2680 else
2681 dtp->u.p.current_unit->delim_status = dtp->u.p.current_unit->flags.delim;
2682 }
2683
2684 /* Check the pad mode. */
2685 dtp->u.p.current_unit->pad_status
2686 = !(cf & IOPARM_DT_HAS_PAD) ? PAD_UNSPECIFIED :
2687 find_option (&dtp->common, dtp->pad, dtp->pad_len, pad_opt,
2688 "Bad PAD parameter in data transfer statement");
2689
2690 if (dtp->u.p.current_unit->pad_status == PAD_UNSPECIFIED)
2691 dtp->u.p.current_unit->pad_status = dtp->u.p.current_unit->flags.pad;
2692
2693 /* Check to see if we might be reading what we wrote before */
2694
2695 if (dtp->u.p.mode != dtp->u.p.current_unit->mode
2696 && !is_internal_unit (dtp))
2697 {
2698 int pos = fbuf_reset (dtp->u.p.current_unit);
2699 if (pos != 0)
2700 sseek (dtp->u.p.current_unit->s, pos, SEEK_CUR);
2701 sflush(dtp->u.p.current_unit->s);
2702 }
2703
2704 /* Check the POS= specifier: that it is in range and that it is used with a
2705 unit that has been connected for STREAM access. F2003 9.5.1.10. */
2706
2707 if (((cf & IOPARM_DT_HAS_POS) != 0))
2708 {
2709 if (is_stream_io (dtp))
2710 {
2711
2712 if (dtp->pos <= 0)
2713 {
2714 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2715 "POS=specifier must be positive");
2716 return;
2717 }
2718
2719 if (dtp->pos >= dtp->u.p.current_unit->maxrec)
2720 {
2721 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2722 "POS=specifier too large");
2723 return;
2724 }
2725
2726 dtp->rec = dtp->pos;
2727
2728 if (dtp->u.p.mode == READING)
2729 {
2730 /* Reset the endfile flag; if we hit EOF during reading
2731 we'll set the flag and generate an error at that point
2732 rather than worrying about it here. */
2733 dtp->u.p.current_unit->endfile = NO_ENDFILE;
2734 }
2735
2736 if (dtp->pos != dtp->u.p.current_unit->strm_pos)
2737 {
2738 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
2739 if (sseek (dtp->u.p.current_unit->s, dtp->pos - 1, SEEK_SET) < 0)
2740 {
2741 generate_error (&dtp->common, LIBERROR_OS, NULL);
2742 return;
2743 }
2744 dtp->u.p.current_unit->strm_pos = dtp->pos;
2745 }
2746 }
2747 else
2748 {
2749 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2750 "POS=specifier not allowed, "
2751 "Try OPEN with ACCESS='stream'");
2752 return;
2753 }
2754 }
2755
2756
2757 /* Sanity checks on the record number. */
2758 if ((cf & IOPARM_DT_HAS_REC) != 0)
2759 {
2760 if (dtp->rec <= 0)
2761 {
2762 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2763 "Record number must be positive");
2764 return;
2765 }
2766
2767 if (dtp->rec >= dtp->u.p.current_unit->maxrec)
2768 {
2769 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2770 "Record number too large");
2771 return;
2772 }
2773
2774 /* Make sure format buffer is reset. */
2775 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
2776 fbuf_reset (dtp->u.p.current_unit);
2777
2778
2779 /* Check whether the record exists to be read. Only
2780 a partial record needs to exist. */
2781
2782 if (dtp->u.p.mode == READING && (dtp->rec - 1)
2783 * dtp->u.p.current_unit->recl >= ssize (dtp->u.p.current_unit->s))
2784 {
2785 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2786 "Non-existing record number");
2787 return;
2788 }
2789
2790 /* Position the file. */
2791 if (sseek (dtp->u.p.current_unit->s, (gfc_offset) (dtp->rec - 1)
2792 * dtp->u.p.current_unit->recl, SEEK_SET) < 0)
2793 {
2794 generate_error (&dtp->common, LIBERROR_OS, NULL);
2795 return;
2796 }
2797
2798 /* TODO: This is required to maintain compatibility between
2799 4.3 and 4.4 runtime. Remove when ABI changes from 4.3 */
2800
2801 if (is_stream_io (dtp))
2802 dtp->u.p.current_unit->strm_pos = dtp->rec;
2803
2804 /* TODO: Un-comment this code when ABI changes from 4.3.
2805 if (dtp->u.p.current_unit->flags.access == ACCESS_STREAM)
2806 {
2807 generate_error (&dtp->common, LIBERROR_OPTION_CONFLICT,
2808 "Record number not allowed for stream access "
2809 "data transfer");
2810 return;
2811 } */
2812 }
2813
2814 /* Bugware for badly written mixed C-Fortran I/O. */
2815 if (!is_internal_unit (dtp))
2816 flush_if_preconnected(dtp->u.p.current_unit->s);
2817
2818 dtp->u.p.current_unit->mode = dtp->u.p.mode;
2819
2820 /* Set the maximum position reached from the previous I/O operation. This
2821 could be greater than zero from a previous non-advancing write. */
2822 dtp->u.p.max_pos = dtp->u.p.current_unit->saved_pos;
2823
2824 pre_position (dtp);
2825
2826
2827 /* Set up the subroutine that will handle the transfers. */
2828
2829 if (read_flag)
2830 {
2831 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2832 dtp->u.p.transfer = unformatted_read;
2833 else
2834 {
2835 if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
2836 {
2837 dtp->u.p.last_char = EOF - 1;
2838 dtp->u.p.transfer = list_formatted_read;
2839 }
2840 else
2841 dtp->u.p.transfer = formatted_transfer;
2842 }
2843 }
2844 else
2845 {
2846 if (dtp->u.p.current_unit->flags.form == FORM_UNFORMATTED)
2847 dtp->u.p.transfer = unformatted_write;
2848 else
2849 {
2850 if ((cf & IOPARM_DT_LIST_FORMAT) != 0)
2851 dtp->u.p.transfer = list_formatted_write;
2852 else
2853 dtp->u.p.transfer = formatted_transfer;
2854 }
2855 }
2856
2857 /* Make sure that we don't do a read after a nonadvancing write. */
2858
2859 if (read_flag)
2860 {
2861 if (dtp->u.p.current_unit->read_bad && !is_stream_io (dtp))
2862 {
2863 generate_error (&dtp->common, LIBERROR_BAD_OPTION,
2864 "Cannot READ after a nonadvancing WRITE");
2865 return;
2866 }
2867 }
2868 else
2869 {
2870 if (dtp->u.p.advance_status == ADVANCE_YES && !dtp->u.p.seen_dollar)
2871 dtp->u.p.current_unit->read_bad = 1;
2872 }
2873
2874 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED)
2875 {
2876 #ifdef HAVE_USELOCALE
2877 dtp->u.p.old_locale = uselocale (c_locale);
2878 #else
2879 __gthread_mutex_lock (&old_locale_lock);
2880 if (!old_locale_ctr++)
2881 {
2882 old_locale = setlocale (LC_NUMERIC, NULL);
2883 setlocale (LC_NUMERIC, "C");
2884 }
2885 __gthread_mutex_unlock (&old_locale_lock);
2886 #endif
2887 /* Start the data transfer if we are doing a formatted transfer. */
2888 if ((cf & (IOPARM_DT_LIST_FORMAT | IOPARM_DT_HAS_NAMELIST_NAME)) == 0
2889 && dtp->u.p.ionml == NULL)
2890 formatted_transfer (dtp, 0, NULL, 0, 0, 1);
2891 }
2892 }
2893
2894
2895 /* Initialize an array_loop_spec given the array descriptor. The function
2896 returns the index of the last element of the array, and also returns
2897 starting record, where the first I/O goes to (necessary in case of
2898 negative strides). */
2899
2900 gfc_offset
2901 init_loop_spec (gfc_array_char *desc, array_loop_spec *ls,
2902 gfc_offset *start_record)
2903 {
2904 int rank = GFC_DESCRIPTOR_RANK(desc);
2905 int i;
2906 gfc_offset index;
2907 int empty;
2908
2909 empty = 0;
2910 index = 1;
2911 *start_record = 0;
2912
2913 for (i=0; i<rank; i++)
2914 {
2915 ls[i].idx = GFC_DESCRIPTOR_LBOUND(desc,i);
2916 ls[i].start = GFC_DESCRIPTOR_LBOUND(desc,i);
2917 ls[i].end = GFC_DESCRIPTOR_UBOUND(desc,i);
2918 ls[i].step = GFC_DESCRIPTOR_STRIDE(desc,i);
2919 empty = empty || (GFC_DESCRIPTOR_UBOUND(desc,i)
2920 < GFC_DESCRIPTOR_LBOUND(desc,i));
2921
2922 if (GFC_DESCRIPTOR_STRIDE(desc,i) > 0)
2923 {
2924 index += (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
2925 * GFC_DESCRIPTOR_STRIDE(desc,i);
2926 }
2927 else
2928 {
2929 index -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
2930 * GFC_DESCRIPTOR_STRIDE(desc,i);
2931 *start_record -= (GFC_DESCRIPTOR_EXTENT(desc,i) - 1)
2932 * GFC_DESCRIPTOR_STRIDE(desc,i);
2933 }
2934 }
2935
2936 if (empty)
2937 return 0;
2938 else
2939 return index;
2940 }
2941
2942 /* Determine the index to the next record in an internal unit array by
2943 by incrementing through the array_loop_spec. */
2944
2945 gfc_offset
2946 next_array_record (st_parameter_dt *dtp, array_loop_spec *ls, int *finished)
2947 {
2948 int i, carry;
2949 gfc_offset index;
2950
2951 carry = 1;
2952 index = 0;
2953
2954 for (i = 0; i < dtp->u.p.current_unit->rank; i++)
2955 {
2956 if (carry)
2957 {
2958 ls[i].idx++;
2959 if (ls[i].idx > ls[i].end)
2960 {
2961 ls[i].idx = ls[i].start;
2962 carry = 1;
2963 }
2964 else
2965 carry = 0;
2966 }
2967 index = index + (ls[i].idx - ls[i].start) * ls[i].step;
2968 }
2969
2970 *finished = carry;
2971
2972 return index;
2973 }
2974
2975
2976
2977 /* Skip to the end of the current record, taking care of an optional
2978 record marker of size bytes. If the file is not seekable, we
2979 read chunks of size MAX_READ until we get to the right
2980 position. */
2981
2982 static void
2983 skip_record (st_parameter_dt *dtp, ssize_t bytes)
2984 {
2985 ssize_t rlength, readb;
2986 #define MAX_READ 4096
2987 char p[MAX_READ];
2988
2989 dtp->u.p.current_unit->bytes_left_subrecord += bytes;
2990 if (dtp->u.p.current_unit->bytes_left_subrecord == 0)
2991 return;
2992
2993 /* Direct access files do not generate END conditions,
2994 only I/O errors. */
2995 if (sseek (dtp->u.p.current_unit->s,
2996 dtp->u.p.current_unit->bytes_left_subrecord, SEEK_CUR) < 0)
2997 {
2998 /* Seeking failed, fall back to seeking by reading data. */
2999 while (dtp->u.p.current_unit->bytes_left_subrecord > 0)
3000 {
3001 rlength =
3002 (MAX_READ < dtp->u.p.current_unit->bytes_left_subrecord) ?
3003 MAX_READ : dtp->u.p.current_unit->bytes_left_subrecord;
3004
3005 readb = sread (dtp->u.p.current_unit->s, p, rlength);
3006 if (readb < 0)
3007 {
3008 generate_error (&dtp->common, LIBERROR_OS, NULL);
3009 return;
3010 }
3011
3012 dtp->u.p.current_unit->bytes_left_subrecord -= readb;
3013 }
3014 return;
3015 }
3016 dtp->u.p.current_unit->bytes_left_subrecord = 0;
3017 }
3018
3019
3020 /* Advance to the next record reading unformatted files, taking
3021 care of subrecords. If complete_record is nonzero, we loop
3022 until all subrecords are cleared. */
3023
3024 static void
3025 next_record_r_unf (st_parameter_dt *dtp, int complete_record)
3026 {
3027 size_t bytes;
3028
3029 bytes = compile_options.record_marker == 0 ?
3030 sizeof (GFC_INTEGER_4) : compile_options.record_marker;
3031
3032 while(1)
3033 {
3034
3035 /* Skip over tail */
3036
3037 skip_record (dtp, bytes);
3038
3039 if ( ! (complete_record && dtp->u.p.current_unit->continued))
3040 return;
3041
3042 us_read (dtp, 1);
3043 }
3044 }
3045
3046
3047 static gfc_offset
3048 min_off (gfc_offset a, gfc_offset b)
3049 {
3050 return (a < b ? a : b);
3051 }
3052
3053
3054 /* Space to the next record for read mode. */
3055
3056 static void
3057 next_record_r (st_parameter_dt *dtp, int done)
3058 {
3059 gfc_offset record;
3060 int bytes_left;
3061 char p;
3062 int cc;
3063
3064 switch (current_mode (dtp))
3065 {
3066 /* No records in unformatted STREAM I/O. */
3067 case UNFORMATTED_STREAM:
3068 return;
3069
3070 case UNFORMATTED_SEQUENTIAL:
3071 next_record_r_unf (dtp, 1);
3072 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3073 break;
3074
3075 case FORMATTED_DIRECT:
3076 case UNFORMATTED_DIRECT:
3077 skip_record (dtp, dtp->u.p.current_unit->bytes_left);
3078 break;
3079
3080 case FORMATTED_STREAM:
3081 case FORMATTED_SEQUENTIAL:
3082 /* read_sf has already terminated input because of an '\n', or
3083 we have hit EOF. */
3084 if (dtp->u.p.sf_seen_eor)
3085 {
3086 dtp->u.p.sf_seen_eor = 0;
3087 break;
3088 }
3089
3090 if (is_internal_unit (dtp))
3091 {
3092 if (is_array_io (dtp))
3093 {
3094 int finished;
3095
3096 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
3097 &finished);
3098 if (!done && finished)
3099 hit_eof (dtp);
3100
3101 /* Now seek to this record. */
3102 record = record * dtp->u.p.current_unit->recl;
3103 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
3104 {
3105 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3106 break;
3107 }
3108 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3109 }
3110 else
3111 {
3112 bytes_left = (int) dtp->u.p.current_unit->bytes_left;
3113 bytes_left = min_off (bytes_left,
3114 ssize (dtp->u.p.current_unit->s)
3115 - stell (dtp->u.p.current_unit->s));
3116 if (sseek (dtp->u.p.current_unit->s,
3117 bytes_left, SEEK_CUR) < 0)
3118 {
3119 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3120 break;
3121 }
3122 dtp->u.p.current_unit->bytes_left
3123 = dtp->u.p.current_unit->recl;
3124 }
3125 break;
3126 }
3127 else
3128 {
3129 do
3130 {
3131 errno = 0;
3132 cc = fbuf_getc (dtp->u.p.current_unit);
3133 if (cc == EOF)
3134 {
3135 if (errno != 0)
3136 generate_error (&dtp->common, LIBERROR_OS, NULL);
3137 else
3138 {
3139 if (is_stream_io (dtp)
3140 || dtp->u.p.current_unit->pad_status == PAD_NO
3141 || dtp->u.p.current_unit->bytes_left
3142 == dtp->u.p.current_unit->recl)
3143 hit_eof (dtp);
3144 }
3145 break;
3146 }
3147
3148 if (is_stream_io (dtp))
3149 dtp->u.p.current_unit->strm_pos++;
3150
3151 p = (char) cc;
3152 }
3153 while (p != '\n');
3154 }
3155 break;
3156 }
3157 }
3158
3159
3160 /* Small utility function to write a record marker, taking care of
3161 byte swapping and of choosing the correct size. */
3162
3163 static int
3164 write_us_marker (st_parameter_dt *dtp, const gfc_offset buf)
3165 {
3166 size_t len;
3167 GFC_INTEGER_4 buf4;
3168 GFC_INTEGER_8 buf8;
3169
3170 if (compile_options.record_marker == 0)
3171 len = sizeof (GFC_INTEGER_4);
3172 else
3173 len = compile_options.record_marker;
3174
3175 /* Only GFC_CONVERT_NATIVE and GFC_CONVERT_SWAP are valid here. */
3176 if (likely (dtp->u.p.current_unit->flags.convert == GFC_CONVERT_NATIVE))
3177 {
3178 switch (len)
3179 {
3180 case sizeof (GFC_INTEGER_4):
3181 buf4 = buf;
3182 return swrite (dtp->u.p.current_unit->s, &buf4, len);
3183 break;
3184
3185 case sizeof (GFC_INTEGER_8):
3186 buf8 = buf;
3187 return swrite (dtp->u.p.current_unit->s, &buf8, len);
3188 break;
3189
3190 default:
3191 runtime_error ("Illegal value for record marker");
3192 break;
3193 }
3194 }
3195 else
3196 {
3197 uint32_t u32;
3198 uint64_t u64;
3199 switch (len)
3200 {
3201 case sizeof (GFC_INTEGER_4):
3202 buf4 = buf;
3203 memcpy (&u32, &buf4, sizeof (u32));
3204 u32 = __builtin_bswap32 (u32);
3205 return swrite (dtp->u.p.current_unit->s, &u32, len);
3206 break;
3207
3208 case sizeof (GFC_INTEGER_8):
3209 buf8 = buf;
3210 memcpy (&u64, &buf8, sizeof (u64));
3211 u64 = __builtin_bswap64 (u64);
3212 return swrite (dtp->u.p.current_unit->s, &u64, len);
3213 break;
3214
3215 default:
3216 runtime_error ("Illegal value for record marker");
3217 break;
3218 }
3219 }
3220
3221 }
3222
3223 /* Position to the next (sub)record in write mode for
3224 unformatted sequential files. */
3225
3226 static void
3227 next_record_w_unf (st_parameter_dt *dtp, int next_subrecord)
3228 {
3229 gfc_offset m, m_write, record_marker;
3230
3231 /* Bytes written. */
3232 m = dtp->u.p.current_unit->recl_subrecord
3233 - dtp->u.p.current_unit->bytes_left_subrecord;
3234
3235 if (compile_options.record_marker == 0)
3236 record_marker = sizeof (GFC_INTEGER_4);
3237 else
3238 record_marker = compile_options.record_marker;
3239
3240 /* Seek to the head and overwrite the bogus length with the real
3241 length. */
3242
3243 if (unlikely (sseek (dtp->u.p.current_unit->s, - m - record_marker,
3244 SEEK_CUR) < 0))
3245 goto io_error;
3246
3247 if (next_subrecord)
3248 m_write = -m;
3249 else
3250 m_write = m;
3251
3252 if (unlikely (write_us_marker (dtp, m_write) < 0))
3253 goto io_error;
3254
3255 /* Seek past the end of the current record. */
3256
3257 if (unlikely (sseek (dtp->u.p.current_unit->s, m, SEEK_CUR) < 0))
3258 goto io_error;
3259
3260 /* Write the length tail. If we finish a record containing
3261 subrecords, we write out the negative length. */
3262
3263 if (dtp->u.p.current_unit->continued)
3264 m_write = -m;
3265 else
3266 m_write = m;
3267
3268 if (unlikely (write_us_marker (dtp, m_write) < 0))
3269 goto io_error;
3270
3271 return;
3272
3273 io_error:
3274 generate_error (&dtp->common, LIBERROR_OS, NULL);
3275 return;
3276
3277 }
3278
3279
3280 /* Utility function like memset() but operating on streams. Return
3281 value is same as for POSIX write(). */
3282
3283 static ssize_t
3284 sset (stream * s, int c, ssize_t nbyte)
3285 {
3286 #define WRITE_CHUNK 256
3287 char p[WRITE_CHUNK];
3288 ssize_t bytes_left, trans;
3289
3290 if (nbyte < WRITE_CHUNK)
3291 memset (p, c, nbyte);
3292 else
3293 memset (p, c, WRITE_CHUNK);
3294
3295 bytes_left = nbyte;
3296 while (bytes_left > 0)
3297 {
3298 trans = (bytes_left < WRITE_CHUNK) ? bytes_left : WRITE_CHUNK;
3299 trans = swrite (s, p, trans);
3300 if (trans <= 0)
3301 return trans;
3302 bytes_left -= trans;
3303 }
3304
3305 return nbyte - bytes_left;
3306 }
3307
3308
3309 /* Position to the next record in write mode. */
3310
3311 static void
3312 next_record_w (st_parameter_dt *dtp, int done)
3313 {
3314 gfc_offset m, record, max_pos;
3315 int length;
3316
3317 /* Zero counters for X- and T-editing. */
3318 max_pos = dtp->u.p.max_pos;
3319 dtp->u.p.max_pos = dtp->u.p.skips = dtp->u.p.pending_spaces = 0;
3320
3321 switch (current_mode (dtp))
3322 {
3323 /* No records in unformatted STREAM I/O. */
3324 case UNFORMATTED_STREAM:
3325 return;
3326
3327 case FORMATTED_DIRECT:
3328 if (dtp->u.p.current_unit->bytes_left == 0)
3329 break;
3330
3331 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3332 fbuf_flush (dtp->u.p.current_unit, WRITING);
3333 if (sset (dtp->u.p.current_unit->s, ' ',
3334 dtp->u.p.current_unit->bytes_left)
3335 != dtp->u.p.current_unit->bytes_left)
3336 goto io_error;
3337
3338 break;
3339
3340 case UNFORMATTED_DIRECT:
3341 if (dtp->u.p.current_unit->bytes_left > 0)
3342 {
3343 length = (int) dtp->u.p.current_unit->bytes_left;
3344 if (sset (dtp->u.p.current_unit->s, 0, length) != length)
3345 goto io_error;
3346 }
3347 break;
3348
3349 case UNFORMATTED_SEQUENTIAL:
3350 next_record_w_unf (dtp, 0);
3351 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3352 break;
3353
3354 case FORMATTED_STREAM:
3355 case FORMATTED_SEQUENTIAL:
3356
3357 if (is_internal_unit (dtp))
3358 {
3359 char *p;
3360 if (is_array_io (dtp))
3361 {
3362 int finished;
3363
3364 length = (int) dtp->u.p.current_unit->bytes_left;
3365
3366 /* If the farthest position reached is greater than current
3367 position, adjust the position and set length to pad out
3368 whats left. Otherwise just pad whats left.
3369 (for character array unit) */
3370 m = dtp->u.p.current_unit->recl
3371 - dtp->u.p.current_unit->bytes_left;
3372 if (max_pos > m)
3373 {
3374 length = (int) (max_pos - m);
3375 if (sseek (dtp->u.p.current_unit->s,
3376 length, SEEK_CUR) < 0)
3377 {
3378 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3379 return;
3380 }
3381 length = (int) (dtp->u.p.current_unit->recl - max_pos);
3382 }
3383
3384 p = write_block (dtp, length);
3385 if (p == NULL)
3386 return;
3387
3388 if (unlikely (is_char4_unit (dtp)))
3389 {
3390 gfc_char4_t *p4 = (gfc_char4_t *) p;
3391 memset4 (p4, ' ', length);
3392 }
3393 else
3394 memset (p, ' ', length);
3395
3396 /* Now that the current record has been padded out,
3397 determine where the next record in the array is. */
3398 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
3399 &finished);
3400 if (finished)
3401 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3402
3403 /* Now seek to this record */
3404 record = record * dtp->u.p.current_unit->recl;
3405
3406 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
3407 {
3408 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3409 return;
3410 }
3411
3412 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
3413 }
3414 else
3415 {
3416 length = 1;
3417
3418 /* If this is the last call to next_record move to the farthest
3419 position reached and set length to pad out the remainder
3420 of the record. (for character scaler unit) */
3421 if (done)
3422 {
3423 m = dtp->u.p.current_unit->recl
3424 - dtp->u.p.current_unit->bytes_left;
3425 if (max_pos > m)
3426 {
3427 length = (int) (max_pos - m);
3428 if (sseek (dtp->u.p.current_unit->s,
3429 length, SEEK_CUR) < 0)
3430 {
3431 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
3432 return;
3433 }
3434 length = (int) (dtp->u.p.current_unit->recl - max_pos);
3435 }
3436 else
3437 length = (int) dtp->u.p.current_unit->bytes_left;
3438 }
3439 if (length > 0)
3440 {
3441 p = write_block (dtp, length);
3442 if (p == NULL)
3443 return;
3444
3445 if (unlikely (is_char4_unit (dtp)))
3446 {
3447 gfc_char4_t *p4 = (gfc_char4_t *) p;
3448 memset4 (p4, (gfc_char4_t) ' ', length);
3449 }
3450 else
3451 memset (p, ' ', length);
3452 }
3453 }
3454 }
3455 else
3456 {
3457 #ifdef HAVE_CRLF
3458 const int len = 2;
3459 #else
3460 const int len = 1;
3461 #endif
3462 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3463 char * p = fbuf_alloc (dtp->u.p.current_unit, len);
3464 if (!p)
3465 goto io_error;
3466 #ifdef HAVE_CRLF
3467 *(p++) = '\r';
3468 #endif
3469 *p = '\n';
3470 if (is_stream_io (dtp))
3471 {
3472 dtp->u.p.current_unit->strm_pos += len;
3473 if (dtp->u.p.current_unit->strm_pos
3474 < ssize (dtp->u.p.current_unit->s))
3475 unit_truncate (dtp->u.p.current_unit,
3476 dtp->u.p.current_unit->strm_pos - 1,
3477 &dtp->common);
3478 }
3479 }
3480
3481 break;
3482
3483 io_error:
3484 generate_error (&dtp->common, LIBERROR_OS, NULL);
3485 break;
3486 }
3487 }
3488
3489 /* Position to the next record, which means moving to the end of the
3490 current record. This can happen under several different
3491 conditions. If the done flag is not set, we get ready to process
3492 the next record. */
3493
3494 void
3495 next_record (st_parameter_dt *dtp, int done)
3496 {
3497 gfc_offset fp; /* File position. */
3498
3499 dtp->u.p.current_unit->read_bad = 0;
3500
3501 if (dtp->u.p.mode == READING)
3502 next_record_r (dtp, done);
3503 else
3504 next_record_w (dtp, done);
3505
3506 if (!is_stream_io (dtp))
3507 {
3508 /* Since we have changed the position, set it to unspecified so
3509 that INQUIRE(POSITION=) knows it needs to look into it. */
3510 if (done)
3511 dtp->u.p.current_unit->flags.position = POSITION_UNSPECIFIED;
3512
3513 dtp->u.p.current_unit->current_record = 0;
3514 if (dtp->u.p.current_unit->flags.access == ACCESS_DIRECT)
3515 {
3516 fp = stell (dtp->u.p.current_unit->s);
3517 /* Calculate next record, rounding up partial records. */
3518 dtp->u.p.current_unit->last_record =
3519 (fp + dtp->u.p.current_unit->recl - 1) /
3520 dtp->u.p.current_unit->recl;
3521 }
3522 else
3523 dtp->u.p.current_unit->last_record++;
3524 }
3525
3526 if (!done)
3527 pre_position (dtp);
3528
3529 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3530 smarkeor (dtp->u.p.current_unit->s);
3531 }
3532
3533
3534 /* Finalize the current data transfer. For a nonadvancing transfer,
3535 this means advancing to the next record. For internal units close the
3536 stream associated with the unit. */
3537
3538 static void
3539 finalize_transfer (st_parameter_dt *dtp)
3540 {
3541 GFC_INTEGER_4 cf = dtp->common.flags;
3542
3543 if ((dtp->common.flags & IOPARM_DT_HAS_SIZE) != 0)
3544 *dtp->size = dtp->u.p.size_used;
3545
3546 if (dtp->u.p.eor_condition)
3547 {
3548 generate_error (&dtp->common, LIBERROR_EOR, NULL);
3549 goto done;
3550 }
3551
3552 if ((dtp->common.flags & IOPARM_LIBRETURN_MASK) != IOPARM_LIBRETURN_OK)
3553 {
3554 if (dtp->u.p.current_unit && current_mode (dtp) == UNFORMATTED_SEQUENTIAL)
3555 dtp->u.p.current_unit->current_record = 0;
3556 goto done;
3557 }
3558
3559 if ((dtp->u.p.ionml != NULL)
3560 && (cf & IOPARM_DT_HAS_NAMELIST_NAME) != 0)
3561 {
3562 if ((cf & IOPARM_DT_NAMELIST_READ_MODE) != 0)
3563 namelist_read (dtp);
3564 else
3565 namelist_write (dtp);
3566 }
3567
3568 dtp->u.p.transfer = NULL;
3569 if (dtp->u.p.current_unit == NULL)
3570 goto done;
3571
3572 if ((cf & IOPARM_DT_LIST_FORMAT) != 0 && dtp->u.p.mode == READING)
3573 {
3574 finish_list_read (dtp);
3575 goto done;
3576 }
3577
3578 if (dtp->u.p.mode == WRITING)
3579 dtp->u.p.current_unit->previous_nonadvancing_write
3580 = dtp->u.p.advance_status == ADVANCE_NO;
3581
3582 if (is_stream_io (dtp))
3583 {
3584 if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
3585 && dtp->u.p.advance_status != ADVANCE_NO)
3586 next_record (dtp, 1);
3587
3588 goto done;
3589 }
3590
3591 dtp->u.p.current_unit->current_record = 0;
3592
3593 if (!is_internal_unit (dtp) && dtp->u.p.seen_dollar)
3594 {
3595 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3596 dtp->u.p.seen_dollar = 0;
3597 goto done;
3598 }
3599
3600 /* For non-advancing I/O, save the current maximum position for use in the
3601 next I/O operation if needed. */
3602 if (dtp->u.p.advance_status == ADVANCE_NO)
3603 {
3604 int bytes_written = (int) (dtp->u.p.current_unit->recl
3605 - dtp->u.p.current_unit->bytes_left);
3606 dtp->u.p.current_unit->saved_pos =
3607 dtp->u.p.max_pos > 0 ? dtp->u.p.max_pos - bytes_written : 0;
3608 fbuf_flush (dtp->u.p.current_unit, dtp->u.p.mode);
3609 goto done;
3610 }
3611 else if (dtp->u.p.current_unit->flags.form == FORM_FORMATTED
3612 && dtp->u.p.mode == WRITING && !is_internal_unit (dtp))
3613 fbuf_seek (dtp->u.p.current_unit, 0, SEEK_END);
3614
3615 dtp->u.p.current_unit->saved_pos = 0;
3616
3617 next_record (dtp, 1);
3618
3619 done:
3620 #ifdef HAVE_USELOCALE
3621 if (dtp->u.p.old_locale != (locale_t) 0)
3622 {
3623 uselocale (dtp->u.p.old_locale);
3624 dtp->u.p.old_locale = (locale_t) 0;
3625 }
3626 #else
3627 __gthread_mutex_lock (&old_locale_lock);
3628 if (!--old_locale_ctr)
3629 {
3630 setlocale (LC_NUMERIC, old_locale);
3631 old_locale = NULL;
3632 }
3633 __gthread_mutex_unlock (&old_locale_lock);
3634 #endif
3635 }
3636
3637 /* Transfer function for IOLENGTH. It doesn't actually do any
3638 data transfer, it just updates the length counter. */
3639
3640 static void
3641 iolength_transfer (st_parameter_dt *dtp, bt type __attribute__((unused)),
3642 void *dest __attribute__ ((unused)),
3643 int kind __attribute__((unused)),
3644 size_t size, size_t nelems)
3645 {
3646 if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
3647 *dtp->iolength += (GFC_IO_INT) (size * nelems);
3648 }
3649
3650
3651 /* Initialize the IOLENGTH data transfer. This function is in essence
3652 a very much simplified version of data_transfer_init(), because it
3653 doesn't have to deal with units at all. */
3654
3655 static void
3656 iolength_transfer_init (st_parameter_dt *dtp)
3657 {
3658 if ((dtp->common.flags & IOPARM_DT_HAS_IOLENGTH) != 0)
3659 *dtp->iolength = 0;
3660
3661 memset (&dtp->u.p, 0, sizeof (dtp->u.p));
3662
3663 /* Set up the subroutine that will handle the transfers. */
3664
3665 dtp->u.p.transfer = iolength_transfer;
3666 }
3667
3668
3669 /* Library entry point for the IOLENGTH form of the INQUIRE
3670 statement. The IOLENGTH form requires no I/O to be performed, but
3671 it must still be a runtime library call so that we can determine
3672 the iolength for dynamic arrays and such. */
3673
3674 extern void st_iolength (st_parameter_dt *);
3675 export_proto(st_iolength);
3676
3677 void
3678 st_iolength (st_parameter_dt *dtp)
3679 {
3680 library_start (&dtp->common);
3681 iolength_transfer_init (dtp);
3682 }
3683
3684 extern void st_iolength_done (st_parameter_dt *);
3685 export_proto(st_iolength_done);
3686
3687 void
3688 st_iolength_done (st_parameter_dt *dtp __attribute__((unused)))
3689 {
3690 free_ionml (dtp);
3691 library_end ();
3692 }
3693
3694
3695 /* The READ statement. */
3696
3697 extern void st_read (st_parameter_dt *);
3698 export_proto(st_read);
3699
3700 void
3701 st_read (st_parameter_dt *dtp)
3702 {
3703 library_start (&dtp->common);
3704
3705 data_transfer_init (dtp, 1);
3706 }
3707
3708 extern void st_read_done (st_parameter_dt *);
3709 export_proto(st_read_done);
3710
3711 void
3712 st_read_done (st_parameter_dt *dtp)
3713 {
3714 finalize_transfer (dtp);
3715 if (is_internal_unit (dtp) || dtp->u.p.format_not_saved)
3716 free_format_data (dtp->u.p.fmt);
3717 free_ionml (dtp);
3718 if (dtp->u.p.current_unit != NULL)
3719 unlock_unit (dtp->u.p.current_unit);
3720
3721 free_internal_unit (dtp);
3722
3723 library_end ();
3724 }
3725
3726 extern void st_write (st_parameter_dt *);
3727 export_proto(st_write);
3728
3729 void
3730 st_write (st_parameter_dt *dtp)
3731 {
3732 library_start (&dtp->common);
3733 data_transfer_init (dtp, 0);
3734 }
3735
3736 extern void st_write_done (st_parameter_dt *);
3737 export_proto(st_write_done);
3738
3739 void
3740 st_write_done (st_parameter_dt *dtp)
3741 {
3742 finalize_transfer (dtp);
3743
3744 /* Deal with endfile conditions associated with sequential files. */
3745
3746 if (dtp->u.p.current_unit != NULL
3747 && dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
3748 switch (dtp->u.p.current_unit->endfile)
3749 {
3750 case AT_ENDFILE: /* Remain at the endfile record. */
3751 break;
3752
3753 case AFTER_ENDFILE:
3754 dtp->u.p.current_unit->endfile = AT_ENDFILE; /* Just at it now. */
3755 break;
3756
3757 case NO_ENDFILE:
3758 /* Get rid of whatever is after this record. */
3759 if (!is_internal_unit (dtp))
3760 unit_truncate (dtp->u.p.current_unit,
3761 stell (dtp->u.p.current_unit->s),
3762 &dtp->common);
3763 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3764 break;
3765 }
3766
3767 if (is_internal_unit (dtp) || dtp->u.p.format_not_saved)
3768 free_format_data (dtp->u.p.fmt);
3769 free_ionml (dtp);
3770 if (dtp->u.p.current_unit != NULL)
3771 unlock_unit (dtp->u.p.current_unit);
3772
3773 free_internal_unit (dtp);
3774
3775 library_end ();
3776 }
3777
3778
3779 /* F2003: This is a stub for the runtime portion of the WAIT statement. */
3780 void
3781 st_wait (st_parameter_wait *wtp __attribute__((unused)))
3782 {
3783 }
3784
3785
3786 /* Receives the scalar information for namelist objects and stores it
3787 in a linked list of namelist_info types. */
3788
3789 extern void st_set_nml_var (st_parameter_dt *dtp, void *, char *,
3790 GFC_INTEGER_4, gfc_charlen_type, GFC_INTEGER_4);
3791 export_proto(st_set_nml_var);
3792
3793
3794 void
3795 st_set_nml_var (st_parameter_dt *dtp, void * var_addr, char * var_name,
3796 GFC_INTEGER_4 len, gfc_charlen_type string_length,
3797 GFC_INTEGER_4 dtype)
3798 {
3799 namelist_info *t1 = NULL;
3800 namelist_info *nml;
3801 size_t var_name_len = strlen (var_name);
3802
3803 nml = (namelist_info*) xmalloc (sizeof (namelist_info));
3804
3805 nml->mem_pos = var_addr;
3806
3807 nml->var_name = (char*) xmalloc (var_name_len + 1);
3808 memcpy (nml->var_name, var_name, var_name_len);
3809 nml->var_name[var_name_len] = '\0';
3810
3811 nml->len = (int) len;
3812 nml->string_length = (index_type) string_length;
3813
3814 nml->var_rank = (int) (dtype & GFC_DTYPE_RANK_MASK);
3815 nml->size = (index_type) (dtype >> GFC_DTYPE_SIZE_SHIFT);
3816 nml->type = (bt) ((dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT);
3817
3818 if (nml->var_rank > 0)
3819 {
3820 nml->dim = (descriptor_dimension*)
3821 xmallocarray (nml->var_rank, sizeof (descriptor_dimension));
3822 nml->ls = (array_loop_spec*)
3823 xmallocarray (nml->var_rank, sizeof (array_loop_spec));
3824 }
3825 else
3826 {
3827 nml->dim = NULL;
3828 nml->ls = NULL;
3829 }
3830
3831 nml->next = NULL;
3832
3833 if ((dtp->common.flags & IOPARM_DT_IONML_SET) == 0)
3834 {
3835 dtp->common.flags |= IOPARM_DT_IONML_SET;
3836 dtp->u.p.ionml = nml;
3837 }
3838 else
3839 {
3840 for (t1 = dtp->u.p.ionml; t1->next; t1 = t1->next);
3841 t1->next = nml;
3842 }
3843 }
3844
3845 /* Store the dimensional information for the namelist object. */
3846 extern void st_set_nml_var_dim (st_parameter_dt *, GFC_INTEGER_4,
3847 index_type, index_type,
3848 index_type);
3849 export_proto(st_set_nml_var_dim);
3850
3851 void
3852 st_set_nml_var_dim (st_parameter_dt *dtp, GFC_INTEGER_4 n_dim,
3853 index_type stride, index_type lbound,
3854 index_type ubound)
3855 {
3856 namelist_info * nml;
3857 int n;
3858
3859 n = (int)n_dim;
3860
3861 for (nml = dtp->u.p.ionml; nml->next; nml = nml->next);
3862
3863 GFC_DIMENSION_SET(nml->dim[n],lbound,ubound,stride);
3864 }
3865
3866
3867 /* Once upon a time, a poor innocent Fortran program was reading a
3868 file, when suddenly it hit the end-of-file (EOF). Unfortunately
3869 the OS doesn't tell whether we're at the EOF or whether we already
3870 went past it. Luckily our hero, libgfortran, keeps track of this.
3871 Call this function when you detect an EOF condition. See Section
3872 9.10.2 in F2003. */
3873
3874 void
3875 hit_eof (st_parameter_dt * dtp)
3876 {
3877 dtp->u.p.current_unit->flags.position = POSITION_APPEND;
3878
3879 if (dtp->u.p.current_unit->flags.access == ACCESS_SEQUENTIAL)
3880 switch (dtp->u.p.current_unit->endfile)
3881 {
3882 case NO_ENDFILE:
3883 case AT_ENDFILE:
3884 generate_error (&dtp->common, LIBERROR_END, NULL);
3885 if (!is_internal_unit (dtp) && !dtp->u.p.namelist_mode)
3886 {
3887 dtp->u.p.current_unit->endfile = AFTER_ENDFILE;
3888 dtp->u.p.current_unit->current_record = 0;
3889 }
3890 else
3891 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3892 break;
3893
3894 case AFTER_ENDFILE:
3895 generate_error (&dtp->common, LIBERROR_ENDFILE, NULL);
3896 dtp->u.p.current_unit->current_record = 0;
3897 break;
3898 }
3899 else
3900 {
3901 /* Non-sequential files don't have an ENDFILE record, so we
3902 can't be at AFTER_ENDFILE. */
3903 dtp->u.p.current_unit->endfile = AT_ENDFILE;
3904 generate_error (&dtp->common, LIBERROR_END, NULL);
3905 dtp->u.p.current_unit->current_record = 0;
3906 }
3907 }