re PR libfortran/77393 (Revision r237735 changed the behavior of F0.0)
[gcc.git] / libgfortran / io / write.c
1 /* Copyright (C) 2002-2016 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist output contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 #include "io.h"
28 #include "fbuf.h"
29 #include "format.h"
30 #include "unix.h"
31 #include <assert.h>
32 #include <string.h>
33 #include <ctype.h>
34 #include <stdlib.h>
35 #include <errno.h>
36 #define star_fill(p, n) memset(p, '*', n)
37
38 typedef unsigned char uchar;
39
40 /* Helper functions for character(kind=4) internal units. These are needed
41 by write_float.def. */
42
43 static void
44 memcpy4 (gfc_char4_t *dest, const char *source, int k)
45 {
46 int j;
47
48 const char *p = source;
49 for (j = 0; j < k; j++)
50 *dest++ = (gfc_char4_t) *p++;
51 }
52
53 /* This include contains the heart and soul of formatted floating point. */
54 #include "write_float.def"
55
56 /* Write out default char4. */
57
58 static void
59 write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source,
60 int src_len, int w_len)
61 {
62 char *p;
63 int j, k = 0;
64 gfc_char4_t c;
65 uchar d;
66
67 /* Take care of preceding blanks. */
68 if (w_len > src_len)
69 {
70 k = w_len - src_len;
71 p = write_block (dtp, k);
72 if (p == NULL)
73 return;
74 if (is_char4_unit (dtp))
75 {
76 gfc_char4_t *p4 = (gfc_char4_t *) p;
77 memset4 (p4, ' ', k);
78 }
79 else
80 memset (p, ' ', k);
81 }
82
83 /* Get ready to handle delimiters if needed. */
84 switch (dtp->u.p.current_unit->delim_status)
85 {
86 case DELIM_APOSTROPHE:
87 d = '\'';
88 break;
89 case DELIM_QUOTE:
90 d = '"';
91 break;
92 default:
93 d = ' ';
94 break;
95 }
96
97 /* Now process the remaining characters, one at a time. */
98 for (j = 0; j < src_len; j++)
99 {
100 c = source[j];
101 if (is_char4_unit (dtp))
102 {
103 gfc_char4_t *q;
104 /* Handle delimiters if any. */
105 if (c == d && d != ' ')
106 {
107 p = write_block (dtp, 2);
108 if (p == NULL)
109 return;
110 q = (gfc_char4_t *) p;
111 *q++ = c;
112 }
113 else
114 {
115 p = write_block (dtp, 1);
116 if (p == NULL)
117 return;
118 q = (gfc_char4_t *) p;
119 }
120 *q = c;
121 }
122 else
123 {
124 /* Handle delimiters if any. */
125 if (c == d && d != ' ')
126 {
127 p = write_block (dtp, 2);
128 if (p == NULL)
129 return;
130 *p++ = (uchar) c;
131 }
132 else
133 {
134 p = write_block (dtp, 1);
135 if (p == NULL)
136 return;
137 }
138 *p = c > 255 ? '?' : (uchar) c;
139 }
140 }
141 }
142
143
144 /* Write out UTF-8 converted from char4. */
145
146 static void
147 write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
148 int src_len, int w_len)
149 {
150 char *p;
151 int j, k = 0;
152 gfc_char4_t c;
153 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
154 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
155 int nbytes;
156 uchar buf[6], d, *q;
157
158 /* Take care of preceding blanks. */
159 if (w_len > src_len)
160 {
161 k = w_len - src_len;
162 p = write_block (dtp, k);
163 if (p == NULL)
164 return;
165 memset (p, ' ', k);
166 }
167
168 /* Get ready to handle delimiters if needed. */
169 switch (dtp->u.p.current_unit->delim_status)
170 {
171 case DELIM_APOSTROPHE:
172 d = '\'';
173 break;
174 case DELIM_QUOTE:
175 d = '"';
176 break;
177 default:
178 d = ' ';
179 break;
180 }
181
182 /* Now process the remaining characters, one at a time. */
183 for (j = k; j < src_len; j++)
184 {
185 c = source[j];
186 if (c < 0x80)
187 {
188 /* Handle the delimiters if any. */
189 if (c == d && d != ' ')
190 {
191 p = write_block (dtp, 2);
192 if (p == NULL)
193 return;
194 *p++ = (uchar) c;
195 }
196 else
197 {
198 p = write_block (dtp, 1);
199 if (p == NULL)
200 return;
201 }
202 *p = (uchar) c;
203 }
204 else
205 {
206 /* Convert to UTF-8 sequence. */
207 nbytes = 1;
208 q = &buf[6];
209
210 do
211 {
212 *--q = ((c & 0x3F) | 0x80);
213 c >>= 6;
214 nbytes++;
215 }
216 while (c >= 0x3F || (c & limits[nbytes-1]));
217
218 *--q = (c | masks[nbytes-1]);
219
220 p = write_block (dtp, nbytes);
221 if (p == NULL)
222 return;
223
224 while (q < &buf[6])
225 *p++ = *q++;
226 }
227 }
228 }
229
230
231 void
232 write_a (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
233 {
234 int wlen;
235 char *p;
236
237 wlen = f->u.string.length < 0
238 || (f->format == FMT_G && f->u.string.length == 0)
239 ? len : f->u.string.length;
240
241 #ifdef HAVE_CRLF
242 /* If this is formatted STREAM IO convert any embedded line feed characters
243 to CR_LF on systems that use that sequence for newlines. See F2003
244 Standard sections 10.6.3 and 9.9 for further information. */
245 if (is_stream_io (dtp))
246 {
247 const char crlf[] = "\r\n";
248 int i, q, bytes;
249 q = bytes = 0;
250
251 /* Write out any padding if needed. */
252 if (len < wlen)
253 {
254 p = write_block (dtp, wlen - len);
255 if (p == NULL)
256 return;
257 memset (p, ' ', wlen - len);
258 }
259
260 /* Scan the source string looking for '\n' and convert it if found. */
261 for (i = 0; i < wlen; i++)
262 {
263 if (source[i] == '\n')
264 {
265 /* Write out the previously scanned characters in the string. */
266 if (bytes > 0)
267 {
268 p = write_block (dtp, bytes);
269 if (p == NULL)
270 return;
271 memcpy (p, &source[q], bytes);
272 q += bytes;
273 bytes = 0;
274 }
275
276 /* Write out the CR_LF sequence. */
277 q++;
278 p = write_block (dtp, 2);
279 if (p == NULL)
280 return;
281 memcpy (p, crlf, 2);
282 }
283 else
284 bytes++;
285 }
286
287 /* Write out any remaining bytes if no LF was found. */
288 if (bytes > 0)
289 {
290 p = write_block (dtp, bytes);
291 if (p == NULL)
292 return;
293 memcpy (p, &source[q], bytes);
294 }
295 }
296 else
297 {
298 #endif
299 p = write_block (dtp, wlen);
300 if (p == NULL)
301 return;
302
303 if (unlikely (is_char4_unit (dtp)))
304 {
305 gfc_char4_t *p4 = (gfc_char4_t *) p;
306 if (wlen < len)
307 memcpy4 (p4, source, wlen);
308 else
309 {
310 memset4 (p4, ' ', wlen - len);
311 memcpy4 (p4 + wlen - len, source, len);
312 }
313 return;
314 }
315
316 if (wlen < len)
317 memcpy (p, source, wlen);
318 else
319 {
320 memset (p, ' ', wlen - len);
321 memcpy (p + wlen - len, source, len);
322 }
323 #ifdef HAVE_CRLF
324 }
325 #endif
326 }
327
328
329 /* The primary difference between write_a_char4 and write_a is that we have to
330 deal with writing from the first byte of the 4-byte character and pay
331 attention to the most significant bytes. For ENCODING="default" write the
332 lowest significant byte. If the 3 most significant bytes contain
333 non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value
334 to the UTF-8 encoded string before writing out. */
335
336 void
337 write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
338 {
339 int wlen;
340 gfc_char4_t *q;
341
342 wlen = f->u.string.length < 0
343 || (f->format == FMT_G && f->u.string.length == 0)
344 ? len : f->u.string.length;
345
346 q = (gfc_char4_t *) source;
347 #ifdef HAVE_CRLF
348 /* If this is formatted STREAM IO convert any embedded line feed characters
349 to CR_LF on systems that use that sequence for newlines. See F2003
350 Standard sections 10.6.3 and 9.9 for further information. */
351 if (is_stream_io (dtp))
352 {
353 const gfc_char4_t crlf[] = {0x000d,0x000a};
354 int i, bytes;
355 gfc_char4_t *qq;
356 bytes = 0;
357
358 /* Write out any padding if needed. */
359 if (len < wlen)
360 {
361 char *p;
362 p = write_block (dtp, wlen - len);
363 if (p == NULL)
364 return;
365 memset (p, ' ', wlen - len);
366 }
367
368 /* Scan the source string looking for '\n' and convert it if found. */
369 qq = (gfc_char4_t *) source;
370 for (i = 0; i < wlen; i++)
371 {
372 if (qq[i] == '\n')
373 {
374 /* Write out the previously scanned characters in the string. */
375 if (bytes > 0)
376 {
377 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
378 write_utf8_char4 (dtp, q, bytes, 0);
379 else
380 write_default_char4 (dtp, q, bytes, 0);
381 bytes = 0;
382 }
383
384 /* Write out the CR_LF sequence. */
385 write_default_char4 (dtp, crlf, 2, 0);
386 }
387 else
388 bytes++;
389 }
390
391 /* Write out any remaining bytes if no LF was found. */
392 if (bytes > 0)
393 {
394 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
395 write_utf8_char4 (dtp, q, bytes, 0);
396 else
397 write_default_char4 (dtp, q, bytes, 0);
398 }
399 }
400 else
401 {
402 #endif
403 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
404 write_utf8_char4 (dtp, q, len, wlen);
405 else
406 write_default_char4 (dtp, q, len, wlen);
407 #ifdef HAVE_CRLF
408 }
409 #endif
410 }
411
412
413 static GFC_INTEGER_LARGEST
414 extract_int (const void *p, int len)
415 {
416 GFC_INTEGER_LARGEST i = 0;
417
418 if (p == NULL)
419 return i;
420
421 switch (len)
422 {
423 case 1:
424 {
425 GFC_INTEGER_1 tmp;
426 memcpy ((void *) &tmp, p, len);
427 i = tmp;
428 }
429 break;
430 case 2:
431 {
432 GFC_INTEGER_2 tmp;
433 memcpy ((void *) &tmp, p, len);
434 i = tmp;
435 }
436 break;
437 case 4:
438 {
439 GFC_INTEGER_4 tmp;
440 memcpy ((void *) &tmp, p, len);
441 i = tmp;
442 }
443 break;
444 case 8:
445 {
446 GFC_INTEGER_8 tmp;
447 memcpy ((void *) &tmp, p, len);
448 i = tmp;
449 }
450 break;
451 #ifdef HAVE_GFC_INTEGER_16
452 case 16:
453 {
454 GFC_INTEGER_16 tmp;
455 memcpy ((void *) &tmp, p, len);
456 i = tmp;
457 }
458 break;
459 #endif
460 default:
461 internal_error (NULL, "bad integer kind");
462 }
463
464 return i;
465 }
466
467 static GFC_UINTEGER_LARGEST
468 extract_uint (const void *p, int len)
469 {
470 GFC_UINTEGER_LARGEST i = 0;
471
472 if (p == NULL)
473 return i;
474
475 switch (len)
476 {
477 case 1:
478 {
479 GFC_INTEGER_1 tmp;
480 memcpy ((void *) &tmp, p, len);
481 i = (GFC_UINTEGER_1) tmp;
482 }
483 break;
484 case 2:
485 {
486 GFC_INTEGER_2 tmp;
487 memcpy ((void *) &tmp, p, len);
488 i = (GFC_UINTEGER_2) tmp;
489 }
490 break;
491 case 4:
492 {
493 GFC_INTEGER_4 tmp;
494 memcpy ((void *) &tmp, p, len);
495 i = (GFC_UINTEGER_4) tmp;
496 }
497 break;
498 case 8:
499 {
500 GFC_INTEGER_8 tmp;
501 memcpy ((void *) &tmp, p, len);
502 i = (GFC_UINTEGER_8) tmp;
503 }
504 break;
505 #ifdef HAVE_GFC_INTEGER_16
506 case 10:
507 case 16:
508 {
509 GFC_INTEGER_16 tmp = 0;
510 memcpy ((void *) &tmp, p, len);
511 i = (GFC_UINTEGER_16) tmp;
512 }
513 break;
514 #endif
515 default:
516 internal_error (NULL, "bad integer kind");
517 }
518
519 return i;
520 }
521
522
523 void
524 write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
525 {
526 char *p;
527 int wlen;
528 GFC_INTEGER_LARGEST n;
529
530 wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
531
532 p = write_block (dtp, wlen);
533 if (p == NULL)
534 return;
535
536 n = extract_int (source, len);
537
538 if (unlikely (is_char4_unit (dtp)))
539 {
540 gfc_char4_t *p4 = (gfc_char4_t *) p;
541 memset4 (p4, ' ', wlen -1);
542 p4[wlen - 1] = (n) ? 'T' : 'F';
543 return;
544 }
545
546 memset (p, ' ', wlen -1);
547 p[wlen - 1] = (n) ? 'T' : 'F';
548 }
549
550
551 static void
552 write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n)
553 {
554 int w, m, digits, nzero, nblank;
555 char *p;
556
557 w = f->u.integer.w;
558 m = f->u.integer.m;
559
560 /* Special case: */
561
562 if (m == 0 && n == 0)
563 {
564 if (w == 0)
565 w = 1;
566
567 p = write_block (dtp, w);
568 if (p == NULL)
569 return;
570 if (unlikely (is_char4_unit (dtp)))
571 {
572 gfc_char4_t *p4 = (gfc_char4_t *) p;
573 memset4 (p4, ' ', w);
574 }
575 else
576 memset (p, ' ', w);
577 goto done;
578 }
579
580 digits = strlen (q);
581
582 /* Select a width if none was specified. The idea here is to always
583 print something. */
584
585 if (w == 0)
586 w = ((digits < m) ? m : digits);
587
588 p = write_block (dtp, w);
589 if (p == NULL)
590 return;
591
592 nzero = 0;
593 if (digits < m)
594 nzero = m - digits;
595
596 /* See if things will work. */
597
598 nblank = w - (nzero + digits);
599
600 if (unlikely (is_char4_unit (dtp)))
601 {
602 gfc_char4_t *p4 = (gfc_char4_t *) p;
603 if (nblank < 0)
604 {
605 memset4 (p4, '*', w);
606 return;
607 }
608
609 if (!dtp->u.p.no_leading_blank)
610 {
611 memset4 (p4, ' ', nblank);
612 q += nblank;
613 memset4 (p4, '0', nzero);
614 q += nzero;
615 memcpy4 (p4, q, digits);
616 }
617 else
618 {
619 memset4 (p4, '0', nzero);
620 q += nzero;
621 memcpy4 (p4, q, digits);
622 q += digits;
623 memset4 (p4, ' ', nblank);
624 dtp->u.p.no_leading_blank = 0;
625 }
626 return;
627 }
628
629 if (nblank < 0)
630 {
631 star_fill (p, w);
632 goto done;
633 }
634
635 if (!dtp->u.p.no_leading_blank)
636 {
637 memset (p, ' ', nblank);
638 p += nblank;
639 memset (p, '0', nzero);
640 p += nzero;
641 memcpy (p, q, digits);
642 }
643 else
644 {
645 memset (p, '0', nzero);
646 p += nzero;
647 memcpy (p, q, digits);
648 p += digits;
649 memset (p, ' ', nblank);
650 dtp->u.p.no_leading_blank = 0;
651 }
652
653 done:
654 return;
655 }
656
657 static void
658 write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
659 int len,
660 const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
661 {
662 GFC_INTEGER_LARGEST n = 0;
663 int w, m, digits, nsign, nzero, nblank;
664 char *p;
665 const char *q;
666 sign_t sign;
667 char itoa_buf[GFC_BTOA_BUF_SIZE];
668
669 w = f->u.integer.w;
670 m = f->format == FMT_G ? -1 : f->u.integer.m;
671
672 n = extract_int (source, len);
673
674 /* Special case: */
675 if (m == 0 && n == 0)
676 {
677 if (w == 0)
678 w = 1;
679
680 p = write_block (dtp, w);
681 if (p == NULL)
682 return;
683 if (unlikely (is_char4_unit (dtp)))
684 {
685 gfc_char4_t *p4 = (gfc_char4_t *) p;
686 memset4 (p4, ' ', w);
687 }
688 else
689 memset (p, ' ', w);
690 goto done;
691 }
692
693 sign = calculate_sign (dtp, n < 0);
694 if (n < 0)
695 n = -n;
696 nsign = sign == S_NONE ? 0 : 1;
697
698 /* conv calls itoa which sets the negative sign needed
699 by write_integer. The sign '+' or '-' is set below based on sign
700 calculated above, so we just point past the sign in the string
701 before proceeding to avoid double signs in corner cases.
702 (see PR38504) */
703 q = conv (n, itoa_buf, sizeof (itoa_buf));
704 if (*q == '-')
705 q++;
706
707 digits = strlen (q);
708
709 /* Select a width if none was specified. The idea here is to always
710 print something. */
711
712 if (w == 0)
713 w = ((digits < m) ? m : digits) + nsign;
714
715 p = write_block (dtp, w);
716 if (p == NULL)
717 return;
718
719 nzero = 0;
720 if (digits < m)
721 nzero = m - digits;
722
723 /* See if things will work. */
724
725 nblank = w - (nsign + nzero + digits);
726
727 if (unlikely (is_char4_unit (dtp)))
728 {
729 gfc_char4_t * p4 = (gfc_char4_t *) p;
730 if (nblank < 0)
731 {
732 memset4 (p4, '*', w);
733 goto done;
734 }
735
736 memset4 (p4, ' ', nblank);
737 p4 += nblank;
738
739 switch (sign)
740 {
741 case S_PLUS:
742 *p4++ = '+';
743 break;
744 case S_MINUS:
745 *p4++ = '-';
746 break;
747 case S_NONE:
748 break;
749 }
750
751 memset4 (p4, '0', nzero);
752 p4 += nzero;
753
754 memcpy4 (p4, q, digits);
755 return;
756 }
757
758 if (nblank < 0)
759 {
760 star_fill (p, w);
761 goto done;
762 }
763
764 memset (p, ' ', nblank);
765 p += nblank;
766
767 switch (sign)
768 {
769 case S_PLUS:
770 *p++ = '+';
771 break;
772 case S_MINUS:
773 *p++ = '-';
774 break;
775 case S_NONE:
776 break;
777 }
778
779 memset (p, '0', nzero);
780 p += nzero;
781
782 memcpy (p, q, digits);
783
784 done:
785 return;
786 }
787
788
789 /* Convert unsigned octal to ascii. */
790
791 static const char *
792 otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
793 {
794 char *p;
795
796 assert (len >= GFC_OTOA_BUF_SIZE);
797
798 if (n == 0)
799 return "0";
800
801 p = buffer + GFC_OTOA_BUF_SIZE - 1;
802 *p = '\0';
803
804 while (n != 0)
805 {
806 *--p = '0' + (n & 7);
807 n >>= 3;
808 }
809
810 return p;
811 }
812
813
814 /* Convert unsigned binary to ascii. */
815
816 static const char *
817 btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
818 {
819 char *p;
820
821 assert (len >= GFC_BTOA_BUF_SIZE);
822
823 if (n == 0)
824 return "0";
825
826 p = buffer + GFC_BTOA_BUF_SIZE - 1;
827 *p = '\0';
828
829 while (n != 0)
830 {
831 *--p = '0' + (n & 1);
832 n >>= 1;
833 }
834
835 return p;
836 }
837
838 /* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed
839 to convert large reals with kind sizes that exceed the largest integer type
840 available on certain platforms. In these cases, byte by byte conversion is
841 performed. Endianess is taken into account. */
842
843 /* Conversion to binary. */
844
845 static const char *
846 btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
847 {
848 char *q;
849 int i, j;
850
851 q = buffer;
852 if (big_endian)
853 {
854 const char *p = s;
855 for (i = 0; i < len; i++)
856 {
857 char c = *p;
858
859 /* Test for zero. Needed by write_boz later. */
860 if (*p != 0)
861 *n = 1;
862
863 for (j = 0; j < 8; j++)
864 {
865 *q++ = (c & 128) ? '1' : '0';
866 c <<= 1;
867 }
868 p++;
869 }
870 }
871 else
872 {
873 const char *p = s + len - 1;
874 for (i = 0; i < len; i++)
875 {
876 char c = *p;
877
878 /* Test for zero. Needed by write_boz later. */
879 if (*p != 0)
880 *n = 1;
881
882 for (j = 0; j < 8; j++)
883 {
884 *q++ = (c & 128) ? '1' : '0';
885 c <<= 1;
886 }
887 p--;
888 }
889 }
890
891 *q = '\0';
892
893 if (*n == 0)
894 return "0";
895
896 /* Move past any leading zeros. */
897 while (*buffer == '0')
898 buffer++;
899
900 return buffer;
901
902 }
903
904 /* Conversion to octal. */
905
906 static const char *
907 otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
908 {
909 char *q;
910 int i, j, k;
911 uint8_t octet;
912
913 q = buffer + GFC_OTOA_BUF_SIZE - 1;
914 *q = '\0';
915 i = k = octet = 0;
916
917 if (big_endian)
918 {
919 const char *p = s + len - 1;
920 char c = *p;
921 while (i < len)
922 {
923 /* Test for zero. Needed by write_boz later. */
924 if (*p != 0)
925 *n = 1;
926
927 for (j = 0; j < 3 && i < len; j++)
928 {
929 octet |= (c & 1) << j;
930 c >>= 1;
931 if (++k > 7)
932 {
933 i++;
934 k = 0;
935 c = *--p;
936 }
937 }
938 *--q = '0' + octet;
939 octet = 0;
940 }
941 }
942 else
943 {
944 const char *p = s;
945 char c = *p;
946 while (i < len)
947 {
948 /* Test for zero. Needed by write_boz later. */
949 if (*p != 0)
950 *n = 1;
951
952 for (j = 0; j < 3 && i < len; j++)
953 {
954 octet |= (c & 1) << j;
955 c >>= 1;
956 if (++k > 7)
957 {
958 i++;
959 k = 0;
960 c = *++p;
961 }
962 }
963 *--q = '0' + octet;
964 octet = 0;
965 }
966 }
967
968 if (*n == 0)
969 return "0";
970
971 /* Move past any leading zeros. */
972 while (*q == '0')
973 q++;
974
975 return q;
976 }
977
978 /* Conversion to hexidecimal. */
979
980 static const char *
981 ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
982 {
983 static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
984 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
985
986 char *q;
987 uint8_t h, l;
988 int i;
989
990 q = buffer;
991
992 if (big_endian)
993 {
994 const char *p = s;
995 for (i = 0; i < len; i++)
996 {
997 /* Test for zero. Needed by write_boz later. */
998 if (*p != 0)
999 *n = 1;
1000
1001 h = (*p >> 4) & 0x0F;
1002 l = *p++ & 0x0F;
1003 *q++ = a[h];
1004 *q++ = a[l];
1005 }
1006 }
1007 else
1008 {
1009 const char *p = s + len - 1;
1010 for (i = 0; i < len; i++)
1011 {
1012 /* Test for zero. Needed by write_boz later. */
1013 if (*p != 0)
1014 *n = 1;
1015
1016 h = (*p >> 4) & 0x0F;
1017 l = *p-- & 0x0F;
1018 *q++ = a[h];
1019 *q++ = a[l];
1020 }
1021 }
1022
1023 *q = '\0';
1024
1025 if (*n == 0)
1026 return "0";
1027
1028 /* Move past any leading zeros. */
1029 while (*buffer == '0')
1030 buffer++;
1031
1032 return buffer;
1033 }
1034
1035
1036 void
1037 write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1038 {
1039 write_decimal (dtp, f, p, len, (void *) gfc_itoa);
1040 }
1041
1042
1043 void
1044 write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1045 {
1046 const char *p;
1047 char itoa_buf[GFC_BTOA_BUF_SIZE];
1048 GFC_UINTEGER_LARGEST n = 0;
1049
1050 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1051 {
1052 p = btoa_big (source, itoa_buf, len, &n);
1053 write_boz (dtp, f, p, n);
1054 }
1055 else
1056 {
1057 n = extract_uint (source, len);
1058 p = btoa (n, itoa_buf, sizeof (itoa_buf));
1059 write_boz (dtp, f, p, n);
1060 }
1061 }
1062
1063
1064 void
1065 write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1066 {
1067 const char *p;
1068 char itoa_buf[GFC_OTOA_BUF_SIZE];
1069 GFC_UINTEGER_LARGEST n = 0;
1070
1071 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1072 {
1073 p = otoa_big (source, itoa_buf, len, &n);
1074 write_boz (dtp, f, p, n);
1075 }
1076 else
1077 {
1078 n = extract_uint (source, len);
1079 p = otoa (n, itoa_buf, sizeof (itoa_buf));
1080 write_boz (dtp, f, p, n);
1081 }
1082 }
1083
1084 void
1085 write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1086 {
1087 const char *p;
1088 char itoa_buf[GFC_XTOA_BUF_SIZE];
1089 GFC_UINTEGER_LARGEST n = 0;
1090
1091 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1092 {
1093 p = ztoa_big (source, itoa_buf, len, &n);
1094 write_boz (dtp, f, p, n);
1095 }
1096 else
1097 {
1098 n = extract_uint (source, len);
1099 p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf));
1100 write_boz (dtp, f, p, n);
1101 }
1102 }
1103
1104 /* Take care of the X/TR descriptor. */
1105
1106 void
1107 write_x (st_parameter_dt *dtp, int len, int nspaces)
1108 {
1109 char *p;
1110
1111 p = write_block (dtp, len);
1112 if (p == NULL)
1113 return;
1114 if (nspaces > 0 && len - nspaces >= 0)
1115 {
1116 if (unlikely (is_char4_unit (dtp)))
1117 {
1118 gfc_char4_t *p4 = (gfc_char4_t *) p;
1119 memset4 (&p4[len - nspaces], ' ', nspaces);
1120 }
1121 else
1122 memset (&p[len - nspaces], ' ', nspaces);
1123 }
1124 }
1125
1126
1127 /* List-directed writing. */
1128
1129
1130 /* Write a single character to the output. Returns nonzero if
1131 something goes wrong. */
1132
1133 static int
1134 write_char (st_parameter_dt *dtp, int c)
1135 {
1136 char *p;
1137
1138 p = write_block (dtp, 1);
1139 if (p == NULL)
1140 return 1;
1141 if (unlikely (is_char4_unit (dtp)))
1142 {
1143 gfc_char4_t *p4 = (gfc_char4_t *) p;
1144 *p4 = c;
1145 return 0;
1146 }
1147
1148 *p = (uchar) c;
1149
1150 return 0;
1151 }
1152
1153
1154 /* Write a list-directed logical value. */
1155
1156 static void
1157 write_logical (st_parameter_dt *dtp, const char *source, int length)
1158 {
1159 write_char (dtp, extract_int (source, length) ? 'T' : 'F');
1160 }
1161
1162
1163 /* Write a list-directed integer value. */
1164
1165 static void
1166 write_integer (st_parameter_dt *dtp, const char *source, int length)
1167 {
1168 char *p;
1169 const char *q;
1170 int digits;
1171 int width;
1172 char itoa_buf[GFC_ITOA_BUF_SIZE];
1173
1174 q = gfc_itoa (extract_int (source, length), itoa_buf, sizeof (itoa_buf));
1175
1176 switch (length)
1177 {
1178 case 1:
1179 width = 4;
1180 break;
1181
1182 case 2:
1183 width = 6;
1184 break;
1185
1186 case 4:
1187 width = 11;
1188 break;
1189
1190 case 8:
1191 width = 20;
1192 break;
1193
1194 default:
1195 width = 0;
1196 break;
1197 }
1198
1199 digits = strlen (q);
1200
1201 if (width < digits)
1202 width = digits;
1203 p = write_block (dtp, width);
1204 if (p == NULL)
1205 return;
1206
1207 if (unlikely (is_char4_unit (dtp)))
1208 {
1209 gfc_char4_t *p4 = (gfc_char4_t *) p;
1210 if (dtp->u.p.no_leading_blank)
1211 {
1212 memcpy4 (p4, q, digits);
1213 memset4 (p4 + digits, ' ', width - digits);
1214 }
1215 else
1216 {
1217 memset4 (p4, ' ', width - digits);
1218 memcpy4 (p4 + width - digits, q, digits);
1219 }
1220 return;
1221 }
1222
1223 if (dtp->u.p.no_leading_blank)
1224 {
1225 memcpy (p, q, digits);
1226 memset (p + digits, ' ', width - digits);
1227 }
1228 else
1229 {
1230 memset (p, ' ', width - digits);
1231 memcpy (p + width - digits, q, digits);
1232 }
1233 }
1234
1235
1236 /* Write a list-directed string. We have to worry about delimiting
1237 the strings if the file has been opened in that mode. */
1238
1239 #define DELIM 1
1240 #define NODELIM 0
1241
1242 static void
1243 write_character (st_parameter_dt *dtp, const char *source, int kind, int length, int mode)
1244 {
1245 int i, extra;
1246 char *p, d;
1247
1248 if (mode == DELIM)
1249 {
1250 switch (dtp->u.p.current_unit->delim_status)
1251 {
1252 case DELIM_APOSTROPHE:
1253 d = '\'';
1254 break;
1255 case DELIM_QUOTE:
1256 d = '"';
1257 break;
1258 default:
1259 d = ' ';
1260 break;
1261 }
1262 }
1263 else
1264 d = ' ';
1265
1266 if (kind == 1)
1267 {
1268 if (d == ' ')
1269 extra = 0;
1270 else
1271 {
1272 extra = 2;
1273
1274 for (i = 0; i < length; i++)
1275 if (source[i] == d)
1276 extra++;
1277 }
1278
1279 p = write_block (dtp, length + extra);
1280 if (p == NULL)
1281 return;
1282
1283 if (unlikely (is_char4_unit (dtp)))
1284 {
1285 gfc_char4_t d4 = (gfc_char4_t) d;
1286 gfc_char4_t *p4 = (gfc_char4_t *) p;
1287
1288 if (d4 == ' ')
1289 memcpy4 (p4, source, length);
1290 else
1291 {
1292 *p4++ = d4;
1293
1294 for (i = 0; i < length; i++)
1295 {
1296 *p4++ = (gfc_char4_t) source[i];
1297 if (source[i] == d)
1298 *p4++ = d4;
1299 }
1300
1301 *p4 = d4;
1302 }
1303 return;
1304 }
1305
1306 if (d == ' ')
1307 memcpy (p, source, length);
1308 else
1309 {
1310 *p++ = d;
1311
1312 for (i = 0; i < length; i++)
1313 {
1314 *p++ = source[i];
1315 if (source[i] == d)
1316 *p++ = d;
1317 }
1318
1319 *p = d;
1320 }
1321 }
1322 else
1323 {
1324 if (d == ' ')
1325 {
1326 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1327 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1328 else
1329 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1330 }
1331 else
1332 {
1333 p = write_block (dtp, 1);
1334 *p = d;
1335
1336 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1337 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1338 else
1339 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1340
1341 p = write_block (dtp, 1);
1342 *p = d;
1343 }
1344 }
1345 }
1346
1347 /* Floating point helper functions. */
1348
1349 #define BUF_STACK_SZ 256
1350
1351 static int
1352 get_precision (st_parameter_dt *dtp, const fnode *f, const char *source, int kind)
1353 {
1354 if (f->format != FMT_EN)
1355 return determine_precision (dtp, f, kind);
1356 else
1357 return determine_en_precision (dtp, f, source, kind);
1358 }
1359
1360 /* 4932 is the maximum exponent of long double and quad precision, 3
1361 extra characters for the sign, the decimal point, and the
1362 trailing null. Extra digits are added by the calling functions for
1363 requested precision. Likewise for float and double. F0 editing produces
1364 full precision output. */
1365 static int
1366 size_from_kind (st_parameter_dt *dtp, const fnode *f, int kind)
1367 {
1368 int size;
1369
1370 if (f->format == FMT_F && f->u.real.w == 0)
1371 {
1372 switch (kind)
1373 {
1374 case 4:
1375 size = 38 + 3; /* These constants shown for clarity. */
1376 break;
1377 case 8:
1378 size = 308 + 3;
1379 break;
1380 case 10:
1381 size = 4932 + 3;
1382 break;
1383 case 16:
1384 size = 4932 + 3;
1385 break;
1386 default:
1387 internal_error (&dtp->common, "bad real kind");
1388 break;
1389 }
1390 }
1391 else
1392 size = f->u.real.w + 1; /* One byte for a NULL character. */
1393
1394 return size;
1395 }
1396
1397 static char *
1398 select_buffer (st_parameter_dt *dtp, const fnode *f, int precision,
1399 char *buf, size_t *size, int kind)
1400 {
1401 char *result;
1402
1403 /* The buffer needs at least one more byte to allow room for normalizing. */
1404 *size = size_from_kind (dtp, f, kind) + precision + 1;
1405
1406 if (*size > BUF_STACK_SZ)
1407 result = xmalloc (*size);
1408 else
1409 result = buf;
1410 return result;
1411 }
1412
1413 static char *
1414 select_string (st_parameter_dt *dtp, const fnode *f, char *buf, size_t *size,
1415 int kind)
1416 {
1417 char *result;
1418 *size = size_from_kind (dtp, f, kind) + f->u.real.d;
1419 if (*size > BUF_STACK_SZ)
1420 result = xmalloc (*size);
1421 else
1422 result = buf;
1423 return result;
1424 }
1425
1426 static void
1427 write_float_string (st_parameter_dt *dtp, char *fstr, size_t len)
1428 {
1429 char *p = write_block (dtp, len);
1430 if (p == NULL)
1431 return;
1432
1433 if (unlikely (is_char4_unit (dtp)))
1434 {
1435 gfc_char4_t *p4 = (gfc_char4_t *) p;
1436 memcpy4 (p4, fstr, len);
1437 return;
1438 }
1439 memcpy (p, fstr, len);
1440 }
1441
1442
1443 static void
1444 write_float_0 (st_parameter_dt *dtp, const fnode *f, const char *source, int kind)
1445 {
1446 char buf_stack[BUF_STACK_SZ];
1447 char str_buf[BUF_STACK_SZ];
1448 char *buffer, *result;
1449 size_t buf_size, res_len;
1450
1451 /* Precision for snprintf call. */
1452 int precision = get_precision (dtp, f, source, kind);
1453
1454 /* String buffer to hold final result. */
1455 result = select_string (dtp, f, str_buf, &res_len, kind);
1456
1457 buffer = select_buffer (dtp, f, precision, buf_stack, &buf_size, kind);
1458
1459 get_float_string (dtp, f, source , kind, 0, buffer,
1460 precision, buf_size, result, &res_len);
1461 write_float_string (dtp, result, res_len);
1462
1463 if (buf_size > BUF_STACK_SZ)
1464 free (buffer);
1465 if (res_len > BUF_STACK_SZ)
1466 free (result);
1467 }
1468
1469 void
1470 write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1471 {
1472 write_float_0 (dtp, f, p, len);
1473 }
1474
1475
1476 void
1477 write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1478 {
1479 write_float_0 (dtp, f, p, len);
1480 }
1481
1482
1483 void
1484 write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1485 {
1486 write_float_0 (dtp, f, p, len);
1487 }
1488
1489
1490 void
1491 write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1492 {
1493 write_float_0 (dtp, f, p, len);
1494 }
1495
1496
1497 void
1498 write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1499 {
1500 write_float_0 (dtp, f, p, len);
1501 }
1502
1503
1504 /* Set an fnode to default format. */
1505
1506 static void
1507 set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
1508 {
1509 f->format = FMT_G;
1510 switch (length)
1511 {
1512 case 4:
1513 f->u.real.w = 16;
1514 f->u.real.d = 9;
1515 f->u.real.e = 2;
1516 break;
1517 case 8:
1518 f->u.real.w = 25;
1519 f->u.real.d = 17;
1520 f->u.real.e = 3;
1521 break;
1522 case 10:
1523 f->u.real.w = 30;
1524 f->u.real.d = 21;
1525 f->u.real.e = 4;
1526 break;
1527 case 16:
1528 /* Adjust decimal precision depending on binary precision, 106 or 113. */
1529 #if GFC_REAL_16_DIGITS == 113
1530 f->u.real.w = 45;
1531 f->u.real.d = 36;
1532 f->u.real.e = 4;
1533 #else
1534 f->u.real.w = 41;
1535 f->u.real.d = 32;
1536 f->u.real.e = 4;
1537 #endif
1538 break;
1539 default:
1540 internal_error (&dtp->common, "bad real kind");
1541 break;
1542 }
1543 }
1544
1545 /* Output a real number with default format.
1546 To guarantee that a binary -> decimal -> binary roundtrip conversion
1547 recovers the original value, IEEE 754-2008 requires 9, 17, 21 and 36
1548 significant digits for REAL kinds 4, 8, 10, and 16, respectively.
1549 Thus, we use 1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4
1550 for REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the
1551 Fortran standard requires outputting an extra digit when the scale
1552 factor is 1 and when the magnitude of the value is such that E
1553 editing is used. However, gfortran compensates for this, and thus
1554 for list formatted the same number of significant digits is
1555 generated both when using F and E editing. */
1556
1557 void
1558 write_real (st_parameter_dt *dtp, const char *source, int kind)
1559 {
1560 fnode f ;
1561 char buf_stack[BUF_STACK_SZ];
1562 char str_buf[BUF_STACK_SZ];
1563 char *buffer, *result;
1564 size_t buf_size, res_len;
1565 int orig_scale = dtp->u.p.scale_factor;
1566 dtp->u.p.scale_factor = 1;
1567 set_fnode_default (dtp, &f, kind);
1568
1569 /* Precision for snprintf call. */
1570 int precision = get_precision (dtp, &f, source, kind);
1571
1572 /* String buffer to hold final result. */
1573 result = select_string (dtp, &f, str_buf, &res_len, kind);
1574
1575 /* Scratch buffer to hold final result. */
1576 buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind);
1577
1578 get_float_string (dtp, &f, source , kind, 1, buffer,
1579 precision, buf_size, result, &res_len);
1580 write_float_string (dtp, result, res_len);
1581
1582 dtp->u.p.scale_factor = orig_scale;
1583 if (buf_size > BUF_STACK_SZ)
1584 free (buffer);
1585 if (res_len > BUF_STACK_SZ)
1586 free (result);
1587 }
1588
1589 /* Similar to list formatted REAL output, for kPG0 where k > 0 we
1590 compensate for the extra digit. */
1591
1592 void
1593 write_real_g0 (st_parameter_dt *dtp, const char *source, int kind, int d)
1594 {
1595 fnode f;
1596 char buf_stack[BUF_STACK_SZ];
1597 char str_buf[BUF_STACK_SZ];
1598 char *buffer, *result;
1599 size_t buf_size, res_len;
1600 int comp_d;
1601 set_fnode_default (dtp, &f, kind);
1602
1603 if (d > 0)
1604 f.u.real.d = d;
1605
1606 /* Compensate for extra digits when using scale factor, d is not
1607 specified, and the magnitude is such that E editing is used. */
1608 if (dtp->u.p.scale_factor > 0 && d == 0)
1609 comp_d = 1;
1610 else
1611 comp_d = 0;
1612 dtp->u.p.g0_no_blanks = 1;
1613
1614 /* Precision for snprintf call. */
1615 int precision = get_precision (dtp, &f, source, kind);
1616
1617 /* String buffer to hold final result. */
1618 result = select_string (dtp, &f, str_buf, &res_len, kind);
1619
1620 buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind);
1621
1622 get_float_string (dtp, &f, source , kind, comp_d, buffer,
1623 precision, buf_size, result, &res_len);
1624 write_float_string (dtp, result, res_len);
1625
1626 dtp->u.p.g0_no_blanks = 0;
1627 if (buf_size > BUF_STACK_SZ)
1628 free (buffer);
1629 if (res_len > BUF_STACK_SZ)
1630 free (result);
1631 }
1632
1633
1634 static void
1635 write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
1636 {
1637 char semi_comma =
1638 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1639
1640 /* Set for no blanks so we get a string result with no leading
1641 blanks. We will pad left later. */
1642 dtp->u.p.g0_no_blanks = 1;
1643
1644 fnode f ;
1645 char buf_stack[BUF_STACK_SZ];
1646 char str1_buf[BUF_STACK_SZ];
1647 char str2_buf[BUF_STACK_SZ];
1648 char *buffer, *result1, *result2;
1649 size_t buf_size, res_len1, res_len2;
1650 int width, lblanks, orig_scale = dtp->u.p.scale_factor;
1651
1652 dtp->u.p.scale_factor = 1;
1653 set_fnode_default (dtp, &f, kind);
1654
1655 /* Set width for two values, parenthesis, and comma. */
1656 width = 2 * f.u.real.w + 3;
1657
1658 /* Set for no blanks so we get a string result with no leading
1659 blanks. We will pad left later. */
1660 dtp->u.p.g0_no_blanks = 1;
1661
1662 /* Precision for snprintf call. */
1663 int precision = get_precision (dtp, &f, source, kind);
1664
1665 /* String buffers to hold final result. */
1666 result1 = select_string (dtp, &f, str1_buf, &res_len1, kind);
1667 result2 = select_string (dtp, &f, str2_buf, &res_len2, kind);
1668
1669 buffer = select_buffer (dtp, &f, precision, buf_stack, &buf_size, kind);
1670
1671 get_float_string (dtp, &f, source , kind, 0, buffer,
1672 precision, buf_size, result1, &res_len1);
1673 get_float_string (dtp, &f, source + size / 2 , kind, 0, buffer,
1674 precision, buf_size, result2, &res_len2);
1675 lblanks = width - res_len1 - res_len2 - 3;
1676
1677 write_x (dtp, lblanks, lblanks);
1678 write_char (dtp, '(');
1679 write_float_string (dtp, result1, res_len1);
1680 write_char (dtp, semi_comma);
1681 write_float_string (dtp, result2, res_len2);
1682 write_char (dtp, ')');
1683
1684 dtp->u.p.scale_factor = orig_scale;
1685 dtp->u.p.g0_no_blanks = 0;
1686 if (buf_size > BUF_STACK_SZ)
1687 free (buffer);
1688 if (res_len1 > BUF_STACK_SZ)
1689 free (result1);
1690 if (res_len2 > BUF_STACK_SZ)
1691 free (result2);
1692 }
1693
1694
1695 /* Write the separator between items. */
1696
1697 static void
1698 write_separator (st_parameter_dt *dtp)
1699 {
1700 char *p;
1701
1702 p = write_block (dtp, options.separator_len);
1703 if (p == NULL)
1704 return;
1705 if (unlikely (is_char4_unit (dtp)))
1706 {
1707 gfc_char4_t *p4 = (gfc_char4_t *) p;
1708 memcpy4 (p4, options.separator, options.separator_len);
1709 }
1710 else
1711 memcpy (p, options.separator, options.separator_len);
1712 }
1713
1714
1715 /* Write an item with list formatting.
1716 TODO: handle skipping to the next record correctly, particularly
1717 with strings. */
1718
1719 static void
1720 list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
1721 size_t size)
1722 {
1723 if (dtp->u.p.current_unit == NULL)
1724 return;
1725
1726 if (dtp->u.p.first_item)
1727 {
1728 dtp->u.p.first_item = 0;
1729 write_char (dtp, ' ');
1730 }
1731 else
1732 {
1733 if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
1734 (dtp->u.p.current_unit->delim_status != DELIM_NONE
1735 && dtp->u.p.current_unit->delim_status != DELIM_UNSPECIFIED))
1736 write_separator (dtp);
1737 }
1738
1739 switch (type)
1740 {
1741 case BT_INTEGER:
1742 write_integer (dtp, p, kind);
1743 break;
1744 case BT_LOGICAL:
1745 write_logical (dtp, p, kind);
1746 break;
1747 case BT_CHARACTER:
1748 write_character (dtp, p, kind, size, DELIM);
1749 break;
1750 case BT_REAL:
1751 write_real (dtp, p, kind);
1752 break;
1753 case BT_COMPLEX:
1754 write_complex (dtp, p, kind, size);
1755 break;
1756 case BT_CLASS:
1757 {
1758 int unit = dtp->u.p.current_unit->unit_number;
1759 char iotype[] = "LISTDIRECTED";
1760 gfc_charlen_type iotype_len = 12;
1761 char tmp_iomsg[IOMSG_LEN] = "";
1762 char *child_iomsg;
1763 gfc_charlen_type child_iomsg_len;
1764 int noiostat;
1765 int *child_iostat = NULL;
1766 gfc_array_i4 vlist;
1767
1768 GFC_DESCRIPTOR_DATA(&vlist) = NULL;
1769 GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0);
1770
1771 /* Set iostat, intent(out). */
1772 noiostat = 0;
1773 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
1774 dtp->common.iostat : &noiostat;
1775
1776 /* Set iomsge, intent(inout). */
1777 if (dtp->common.flags & IOPARM_HAS_IOMSG)
1778 {
1779 child_iomsg = dtp->common.iomsg;
1780 child_iomsg_len = dtp->common.iomsg_len;
1781 }
1782 else
1783 {
1784 child_iomsg = tmp_iomsg;
1785 child_iomsg_len = IOMSG_LEN;
1786 }
1787
1788 /* Call the user defined formatted WRITE procedure. */
1789 dtp->u.p.current_unit->child_dtio++;
1790 dtp->u.p.fdtio_ptr (p, &unit, iotype, &vlist,
1791 child_iostat, child_iomsg,
1792 iotype_len, child_iomsg_len);
1793 dtp->u.p.current_unit->child_dtio--;
1794 }
1795 break;
1796 default:
1797 internal_error (&dtp->common, "list_formatted_write(): Bad type");
1798 }
1799
1800 fbuf_flush_list (dtp->u.p.current_unit, LIST_WRITING);
1801 dtp->u.p.char_flag = (type == BT_CHARACTER);
1802 }
1803
1804
1805 void
1806 list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1807 size_t size, size_t nelems)
1808 {
1809 size_t elem;
1810 char *tmp;
1811 size_t stride = type == BT_CHARACTER ?
1812 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1813
1814 tmp = (char *) p;
1815
1816 /* Big loop over all the elements. */
1817 for (elem = 0; elem < nelems; elem++)
1818 {
1819 dtp->u.p.item_count++;
1820 list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
1821 }
1822 }
1823
1824 /* NAMELIST OUTPUT
1825
1826 nml_write_obj writes a namelist object to the output stream. It is called
1827 recursively for derived type components:
1828 obj = is the namelist_info for the current object.
1829 offset = the offset relative to the address held by the object for
1830 derived type arrays.
1831 base = is the namelist_info of the derived type, when obj is a
1832 component.
1833 base_name = the full name for a derived type, including qualifiers
1834 if any.
1835 The returned value is a pointer to the object beyond the last one
1836 accessed, including nested derived types. Notice that the namelist is
1837 a linear linked list of objects, including derived types and their
1838 components. A tree, of sorts, is implied by the compound names of
1839 the derived type components and this is how this function recurses through
1840 the list. */
1841
1842 /* A generous estimate of the number of characters needed to print
1843 repeat counts and indices, including commas, asterices and brackets. */
1844
1845 #define NML_DIGITS 20
1846
1847 static void
1848 namelist_write_newline (st_parameter_dt *dtp)
1849 {
1850 if (!is_internal_unit (dtp))
1851 {
1852 #ifdef HAVE_CRLF
1853 write_character (dtp, "\r\n", 1, 2, NODELIM);
1854 #else
1855 write_character (dtp, "\n", 1, 1, NODELIM);
1856 #endif
1857 return;
1858 }
1859
1860 if (is_array_io (dtp))
1861 {
1862 gfc_offset record;
1863 int finished;
1864 char *p;
1865 int length = dtp->u.p.current_unit->bytes_left;
1866
1867 p = write_block (dtp, length);
1868 if (p == NULL)
1869 return;
1870
1871 if (unlikely (is_char4_unit (dtp)))
1872 {
1873 gfc_char4_t *p4 = (gfc_char4_t *) p;
1874 memset4 (p4, ' ', length);
1875 }
1876 else
1877 memset (p, ' ', length);
1878
1879 /* Now that the current record has been padded out,
1880 determine where the next record in the array is. */
1881 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
1882 &finished);
1883 if (finished)
1884 dtp->u.p.current_unit->endfile = AT_ENDFILE;
1885 else
1886 {
1887 /* Now seek to this record */
1888 record = record * dtp->u.p.current_unit->recl;
1889
1890 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
1891 {
1892 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
1893 return;
1894 }
1895
1896 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
1897 }
1898 }
1899 else
1900 write_character (dtp, " ", 1, 1, NODELIM);
1901 }
1902
1903
1904 static namelist_info *
1905 nml_write_obj (st_parameter_dt *dtp, namelist_info * obj, index_type offset,
1906 namelist_info * base, char * base_name)
1907 {
1908 int rep_ctr;
1909 int num;
1910 int nml_carry;
1911 int len;
1912 index_type obj_size;
1913 index_type nelem;
1914 size_t dim_i;
1915 size_t clen;
1916 index_type elem_ctr;
1917 size_t obj_name_len;
1918 void * p;
1919 char cup;
1920 char * obj_name;
1921 char * ext_name;
1922 char * q;
1923 size_t ext_name_len;
1924 char rep_buff[NML_DIGITS];
1925 namelist_info * cmp;
1926 namelist_info * retval = obj->next;
1927 size_t base_name_len;
1928 size_t base_var_name_len;
1929 size_t tot_len;
1930
1931 /* Set the character to be used to separate values
1932 to a comma or semi-colon. */
1933
1934 char semi_comma =
1935 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1936
1937 /* Write namelist variable names in upper case. If a derived type,
1938 nothing is output. If a component, base and base_name are set. */
1939
1940 if (obj->type != BT_DERIVED)
1941 {
1942 namelist_write_newline (dtp);
1943 write_character (dtp, " ", 1, 1, NODELIM);
1944
1945 len = 0;
1946 if (base)
1947 {
1948 len = strlen (base->var_name);
1949 base_name_len = strlen (base_name);
1950 for (dim_i = 0; dim_i < base_name_len; dim_i++)
1951 {
1952 cup = toupper ((int) base_name[dim_i]);
1953 write_character (dtp, &cup, 1, 1, NODELIM);
1954 }
1955 }
1956 clen = strlen (obj->var_name);
1957 for (dim_i = len; dim_i < clen; dim_i++)
1958 {
1959 cup = toupper ((int) obj->var_name[dim_i]);
1960 if (cup == '+')
1961 cup = '%';
1962 write_character (dtp, &cup, 1, 1, NODELIM);
1963 }
1964 write_character (dtp, "=", 1, 1, NODELIM);
1965 }
1966
1967 /* Counts the number of data output on a line, including names. */
1968
1969 num = 1;
1970
1971 len = obj->len;
1972
1973 switch (obj->type)
1974 {
1975
1976 case BT_REAL:
1977 obj_size = size_from_real_kind (len);
1978 break;
1979
1980 case BT_COMPLEX:
1981 obj_size = size_from_complex_kind (len);
1982 break;
1983
1984 case BT_CHARACTER:
1985 obj_size = obj->string_length;
1986 break;
1987
1988 default:
1989 obj_size = len;
1990 }
1991
1992 if (obj->var_rank)
1993 obj_size = obj->size;
1994
1995 /* Set the index vector and count the number of elements. */
1996
1997 nelem = 1;
1998 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
1999 {
2000 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i);
2001 nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i);
2002 }
2003
2004 /* Main loop to output the data held in the object. */
2005
2006 rep_ctr = 1;
2007 for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
2008 {
2009
2010 /* Build the pointer to the data value. The offset is passed by
2011 recursive calls to this function for arrays of derived types.
2012 Is NULL otherwise. */
2013
2014 p = (void *)(obj->mem_pos + elem_ctr * obj_size);
2015 p += offset;
2016
2017 /* Check for repeat counts of intrinsic types. */
2018
2019 if ((elem_ctr < (nelem - 1)) &&
2020 (obj->type != BT_DERIVED) &&
2021 !memcmp (p, (void*)(p + obj_size ), obj_size ))
2022 {
2023 rep_ctr++;
2024 }
2025
2026 /* Execute a repeated output. Note the flag no_leading_blank that
2027 is used in the functions used to output the intrinsic types. */
2028
2029 else
2030 {
2031 if (rep_ctr > 1)
2032 {
2033 snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr);
2034 write_character (dtp, rep_buff, 1, strlen (rep_buff), NODELIM);
2035 dtp->u.p.no_leading_blank = 1;
2036 }
2037 num++;
2038
2039 /* Output the data, if an intrinsic type, or recurse into this
2040 routine to treat derived types. */
2041
2042 switch (obj->type)
2043 {
2044
2045 case BT_INTEGER:
2046 write_integer (dtp, p, len);
2047 break;
2048
2049 case BT_LOGICAL:
2050 write_logical (dtp, p, len);
2051 break;
2052
2053 case BT_CHARACTER:
2054 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
2055 write_character (dtp, p, 4, obj->string_length, DELIM);
2056 else
2057 write_character (dtp, p, 1, obj->string_length, DELIM);
2058 break;
2059
2060 case BT_REAL:
2061 write_real (dtp, p, len);
2062 break;
2063
2064 case BT_COMPLEX:
2065 dtp->u.p.no_leading_blank = 0;
2066 num++;
2067 write_complex (dtp, p, len, obj_size);
2068 break;
2069
2070 case BT_DERIVED:
2071 case BT_CLASS:
2072 /* To treat a derived type, we need to build two strings:
2073 ext_name = the name, including qualifiers that prepends
2074 component names in the output - passed to
2075 nml_write_obj.
2076 obj_name = the derived type name with no qualifiers but %
2077 appended. This is used to identify the
2078 components. */
2079
2080 /* First ext_name => get length of all possible components */
2081 if (obj->dtio_sub != NULL)
2082 {
2083 int unit = dtp->u.p.current_unit->unit_number;
2084 char iotype[] = "NAMELIST";
2085 gfc_charlen_type iotype_len = 8;
2086 char tmp_iomsg[IOMSG_LEN] = "";
2087 char *child_iomsg;
2088 gfc_charlen_type child_iomsg_len;
2089 int noiostat;
2090 int *child_iostat = NULL;
2091 gfc_array_i4 vlist;
2092 gfc_class list_obj;
2093 formatted_dtio dtio_ptr = (formatted_dtio)obj->dtio_sub;
2094
2095 GFC_DIMENSION_SET(vlist.dim[0],1, 0, 0);
2096
2097 list_obj.data = p;
2098 list_obj.vptr = obj->vtable;
2099 list_obj.len = 0;
2100
2101 /* Set iostat, intent(out). */
2102 noiostat = 0;
2103 child_iostat = (dtp->common.flags & IOPARM_HAS_IOSTAT) ?
2104 dtp->common.iostat : &noiostat;
2105
2106 /* Set iomsg, intent(inout). */
2107 if (dtp->common.flags & IOPARM_HAS_IOMSG)
2108 {
2109 child_iomsg = dtp->common.iomsg;
2110 child_iomsg_len = dtp->common.iomsg_len;
2111 }
2112 else
2113 {
2114 child_iomsg = tmp_iomsg;
2115 child_iomsg_len = IOMSG_LEN;
2116 }
2117 namelist_write_newline (dtp);
2118 /* Call the user defined formatted WRITE procedure. */
2119 dtp->u.p.current_unit->child_dtio++;
2120 dtio_ptr ((void *)&list_obj, &unit, iotype, &vlist,
2121 child_iostat, child_iomsg,
2122 iotype_len, child_iomsg_len);
2123 dtp->u.p.current_unit->child_dtio--;
2124
2125 goto obj_loop;
2126 }
2127
2128 base_name_len = base_name ? strlen (base_name) : 0;
2129 base_var_name_len = base ? strlen (base->var_name) : 0;
2130 ext_name_len = base_name_len + base_var_name_len
2131 + strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1;
2132 ext_name = xmalloc (ext_name_len);
2133
2134 if (base_name)
2135 memcpy (ext_name, base_name, base_name_len);
2136 clen = strlen (obj->var_name + base_var_name_len);
2137 memcpy (ext_name + base_name_len,
2138 obj->var_name + base_var_name_len, clen);
2139
2140 /* Append the qualifier. */
2141
2142 tot_len = base_name_len + clen;
2143 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
2144 {
2145 if (!dim_i)
2146 {
2147 ext_name[tot_len] = '(';
2148 tot_len++;
2149 }
2150 snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d",
2151 (int) obj->ls[dim_i].idx);
2152 tot_len += strlen (ext_name + tot_len);
2153 ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ',';
2154 tot_len++;
2155 }
2156
2157 ext_name[tot_len] = '\0';
2158 for (q = ext_name; *q; q++)
2159 if (*q == '+')
2160 *q = '%';
2161
2162 /* Now obj_name. */
2163
2164 obj_name_len = strlen (obj->var_name) + 1;
2165 obj_name = xmalloc (obj_name_len + 1);
2166 memcpy (obj_name, obj->var_name, obj_name_len-1);
2167 memcpy (obj_name + obj_name_len-1, "%", 2);
2168
2169 /* Now loop over the components. Update the component pointer
2170 with the return value from nml_write_obj => this loop jumps
2171 past nested derived types. */
2172
2173 for (cmp = obj->next;
2174 cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
2175 cmp = retval)
2176 {
2177 retval = nml_write_obj (dtp, cmp,
2178 (index_type)(p - obj->mem_pos),
2179 obj, ext_name);
2180 }
2181
2182 free (obj_name);
2183 free (ext_name);
2184 goto obj_loop;
2185
2186 default:
2187 internal_error (&dtp->common, "Bad type for namelist write");
2188 }
2189
2190 /* Reset the leading blank suppression, write a comma (or semi-colon)
2191 and, if 5 values have been output, write a newline and advance
2192 to column 2. Reset the repeat counter. */
2193
2194 dtp->u.p.no_leading_blank = 0;
2195 if (obj->type == BT_CHARACTER)
2196 {
2197 if (dtp->u.p.nml_delim != '\0')
2198 write_character (dtp, &semi_comma, 1, 1, NODELIM);
2199 }
2200 else
2201 write_character (dtp, &semi_comma, 1, 1, NODELIM);
2202 if (num > 5)
2203 {
2204 num = 0;
2205 if (dtp->u.p.nml_delim == '\0')
2206 write_character (dtp, &semi_comma, 1, 1, NODELIM);
2207 namelist_write_newline (dtp);
2208 write_character (dtp, " ", 1, 1, NODELIM);
2209 }
2210 rep_ctr = 1;
2211 }
2212
2213 /* Cycle through and increment the index vector. */
2214
2215 obj_loop:
2216
2217 nml_carry = 1;
2218 for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++)
2219 {
2220 obj->ls[dim_i].idx += nml_carry ;
2221 nml_carry = 0;
2222 if (obj->ls[dim_i].idx > GFC_DESCRIPTOR_UBOUND(obj,dim_i))
2223 {
2224 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i);
2225 nml_carry = 1;
2226 }
2227 }
2228 }
2229
2230 /* Return a pointer beyond the furthest object accessed. */
2231
2232 return retval;
2233 }
2234
2235
2236 /* This is the entry function for namelist writes. It outputs the name
2237 of the namelist and iterates through the namelist by calls to
2238 nml_write_obj. The call below has dummys in the arguments used in
2239 the treatment of derived types. */
2240
2241 void
2242 namelist_write (st_parameter_dt *dtp)
2243 {
2244 namelist_info * t1, *t2, *dummy = NULL;
2245 index_type i;
2246 index_type dummy_offset = 0;
2247 char c;
2248 char * dummy_name = NULL;
2249
2250 /* Set the delimiter for namelist output. */
2251 switch (dtp->u.p.current_unit->delim_status)
2252 {
2253 case DELIM_APOSTROPHE:
2254 dtp->u.p.nml_delim = '\'';
2255 break;
2256 case DELIM_QUOTE:
2257 case DELIM_UNSPECIFIED:
2258 dtp->u.p.nml_delim = '"';
2259 break;
2260 default:
2261 dtp->u.p.nml_delim = '\0';
2262 }
2263
2264 write_character (dtp, "&", 1, 1, NODELIM);
2265
2266 /* Write namelist name in upper case - f95 std. */
2267 for (i = 0 ;i < dtp->namelist_name_len ;i++ )
2268 {
2269 c = toupper ((int) dtp->namelist_name[i]);
2270 write_character (dtp, &c, 1 ,1, NODELIM);
2271 }
2272
2273 if (dtp->u.p.ionml != NULL)
2274 {
2275 t1 = dtp->u.p.ionml;
2276 while (t1 != NULL)
2277 {
2278 t2 = t1;
2279 t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
2280 }
2281 }
2282
2283 namelist_write_newline (dtp);
2284 write_character (dtp, " /", 1, 2, NODELIM);
2285 }
2286
2287 #undef NML_DIGITS