re PR libfortran/48852 (Invalid spaces in list-directed output of complex constants)
[gcc.git] / libgfortran / io / write.c
1 /* Copyright (C) 2002-2016 Free Software Foundation, Inc.
2 Contributed by Andy Vaught
3 Namelist output contributed by Paul Thomas
4 F2003 I/O support contributed by Jerry DeLisle
5
6 This file is part of the GNU Fortran runtime library (libgfortran).
7
8 Libgfortran is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 Libgfortran is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 #include "io.h"
28 #include "fbuf.h"
29 #include "format.h"
30 #include "unix.h"
31 #include <assert.h>
32 #include <string.h>
33 #include <ctype.h>
34 #include <stdlib.h>
35 #include <errno.h>
36 #define star_fill(p, n) memset(p, '*', n)
37
38 typedef unsigned char uchar;
39
40 /* Helper functions for character(kind=4) internal units. These are needed
41 by write_float.def. */
42
43 static void
44 memcpy4 (gfc_char4_t *dest, const char *source, int k)
45 {
46 int j;
47
48 const char *p = source;
49 for (j = 0; j < k; j++)
50 *dest++ = (gfc_char4_t) *p++;
51 }
52
53 /* This include contains the heart and soul of formatted floating point. */
54 #include "write_float.def"
55
56 /* Write out default char4. */
57
58 static void
59 write_default_char4 (st_parameter_dt *dtp, const gfc_char4_t *source,
60 int src_len, int w_len)
61 {
62 char *p;
63 int j, k = 0;
64 gfc_char4_t c;
65 uchar d;
66
67 /* Take care of preceding blanks. */
68 if (w_len > src_len)
69 {
70 k = w_len - src_len;
71 p = write_block (dtp, k);
72 if (p == NULL)
73 return;
74 if (is_char4_unit (dtp))
75 {
76 gfc_char4_t *p4 = (gfc_char4_t *) p;
77 memset4 (p4, ' ', k);
78 }
79 else
80 memset (p, ' ', k);
81 }
82
83 /* Get ready to handle delimiters if needed. */
84 switch (dtp->u.p.current_unit->delim_status)
85 {
86 case DELIM_APOSTROPHE:
87 d = '\'';
88 break;
89 case DELIM_QUOTE:
90 d = '"';
91 break;
92 default:
93 d = ' ';
94 break;
95 }
96
97 /* Now process the remaining characters, one at a time. */
98 for (j = 0; j < src_len; j++)
99 {
100 c = source[j];
101 if (is_char4_unit (dtp))
102 {
103 gfc_char4_t *q;
104 /* Handle delimiters if any. */
105 if (c == d && d != ' ')
106 {
107 p = write_block (dtp, 2);
108 if (p == NULL)
109 return;
110 q = (gfc_char4_t *) p;
111 *q++ = c;
112 }
113 else
114 {
115 p = write_block (dtp, 1);
116 if (p == NULL)
117 return;
118 q = (gfc_char4_t *) p;
119 }
120 *q = c;
121 }
122 else
123 {
124 /* Handle delimiters if any. */
125 if (c == d && d != ' ')
126 {
127 p = write_block (dtp, 2);
128 if (p == NULL)
129 return;
130 *p++ = (uchar) c;
131 }
132 else
133 {
134 p = write_block (dtp, 1);
135 if (p == NULL)
136 return;
137 }
138 *p = c > 255 ? '?' : (uchar) c;
139 }
140 }
141 }
142
143
144 /* Write out UTF-8 converted from char4. */
145
146 static void
147 write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
148 int src_len, int w_len)
149 {
150 char *p;
151 int j, k = 0;
152 gfc_char4_t c;
153 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
154 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
155 int nbytes;
156 uchar buf[6], d, *q;
157
158 /* Take care of preceding blanks. */
159 if (w_len > src_len)
160 {
161 k = w_len - src_len;
162 p = write_block (dtp, k);
163 if (p == NULL)
164 return;
165 memset (p, ' ', k);
166 }
167
168 /* Get ready to handle delimiters if needed. */
169 switch (dtp->u.p.current_unit->delim_status)
170 {
171 case DELIM_APOSTROPHE:
172 d = '\'';
173 break;
174 case DELIM_QUOTE:
175 d = '"';
176 break;
177 default:
178 d = ' ';
179 break;
180 }
181
182 /* Now process the remaining characters, one at a time. */
183 for (j = k; j < src_len; j++)
184 {
185 c = source[j];
186 if (c < 0x80)
187 {
188 /* Handle the delimiters if any. */
189 if (c == d && d != ' ')
190 {
191 p = write_block (dtp, 2);
192 if (p == NULL)
193 return;
194 *p++ = (uchar) c;
195 }
196 else
197 {
198 p = write_block (dtp, 1);
199 if (p == NULL)
200 return;
201 }
202 *p = (uchar) c;
203 }
204 else
205 {
206 /* Convert to UTF-8 sequence. */
207 nbytes = 1;
208 q = &buf[6];
209
210 do
211 {
212 *--q = ((c & 0x3F) | 0x80);
213 c >>= 6;
214 nbytes++;
215 }
216 while (c >= 0x3F || (c & limits[nbytes-1]));
217
218 *--q = (c | masks[nbytes-1]);
219
220 p = write_block (dtp, nbytes);
221 if (p == NULL)
222 return;
223
224 while (q < &buf[6])
225 *p++ = *q++;
226 }
227 }
228 }
229
230
231 void
232 write_a (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
233 {
234 int wlen;
235 char *p;
236
237 wlen = f->u.string.length < 0
238 || (f->format == FMT_G && f->u.string.length == 0)
239 ? len : f->u.string.length;
240
241 #ifdef HAVE_CRLF
242 /* If this is formatted STREAM IO convert any embedded line feed characters
243 to CR_LF on systems that use that sequence for newlines. See F2003
244 Standard sections 10.6.3 and 9.9 for further information. */
245 if (is_stream_io (dtp))
246 {
247 const char crlf[] = "\r\n";
248 int i, q, bytes;
249 q = bytes = 0;
250
251 /* Write out any padding if needed. */
252 if (len < wlen)
253 {
254 p = write_block (dtp, wlen - len);
255 if (p == NULL)
256 return;
257 memset (p, ' ', wlen - len);
258 }
259
260 /* Scan the source string looking for '\n' and convert it if found. */
261 for (i = 0; i < wlen; i++)
262 {
263 if (source[i] == '\n')
264 {
265 /* Write out the previously scanned characters in the string. */
266 if (bytes > 0)
267 {
268 p = write_block (dtp, bytes);
269 if (p == NULL)
270 return;
271 memcpy (p, &source[q], bytes);
272 q += bytes;
273 bytes = 0;
274 }
275
276 /* Write out the CR_LF sequence. */
277 q++;
278 p = write_block (dtp, 2);
279 if (p == NULL)
280 return;
281 memcpy (p, crlf, 2);
282 }
283 else
284 bytes++;
285 }
286
287 /* Write out any remaining bytes if no LF was found. */
288 if (bytes > 0)
289 {
290 p = write_block (dtp, bytes);
291 if (p == NULL)
292 return;
293 memcpy (p, &source[q], bytes);
294 }
295 }
296 else
297 {
298 #endif
299 p = write_block (dtp, wlen);
300 if (p == NULL)
301 return;
302
303 if (unlikely (is_char4_unit (dtp)))
304 {
305 gfc_char4_t *p4 = (gfc_char4_t *) p;
306 if (wlen < len)
307 memcpy4 (p4, source, wlen);
308 else
309 {
310 memset4 (p4, ' ', wlen - len);
311 memcpy4 (p4 + wlen - len, source, len);
312 }
313 return;
314 }
315
316 if (wlen < len)
317 memcpy (p, source, wlen);
318 else
319 {
320 memset (p, ' ', wlen - len);
321 memcpy (p + wlen - len, source, len);
322 }
323 #ifdef HAVE_CRLF
324 }
325 #endif
326 }
327
328
329 /* The primary difference between write_a_char4 and write_a is that we have to
330 deal with writing from the first byte of the 4-byte character and pay
331 attention to the most significant bytes. For ENCODING="default" write the
332 lowest significant byte. If the 3 most significant bytes contain
333 non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value
334 to the UTF-8 encoded string before writing out. */
335
336 void
337 write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
338 {
339 int wlen;
340 gfc_char4_t *q;
341
342 wlen = f->u.string.length < 0
343 || (f->format == FMT_G && f->u.string.length == 0)
344 ? len : f->u.string.length;
345
346 q = (gfc_char4_t *) source;
347 #ifdef HAVE_CRLF
348 /* If this is formatted STREAM IO convert any embedded line feed characters
349 to CR_LF on systems that use that sequence for newlines. See F2003
350 Standard sections 10.6.3 and 9.9 for further information. */
351 if (is_stream_io (dtp))
352 {
353 const gfc_char4_t crlf[] = {0x000d,0x000a};
354 int i, bytes;
355 gfc_char4_t *qq;
356 bytes = 0;
357
358 /* Write out any padding if needed. */
359 if (len < wlen)
360 {
361 char *p;
362 p = write_block (dtp, wlen - len);
363 if (p == NULL)
364 return;
365 memset (p, ' ', wlen - len);
366 }
367
368 /* Scan the source string looking for '\n' and convert it if found. */
369 qq = (gfc_char4_t *) source;
370 for (i = 0; i < wlen; i++)
371 {
372 if (qq[i] == '\n')
373 {
374 /* Write out the previously scanned characters in the string. */
375 if (bytes > 0)
376 {
377 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
378 write_utf8_char4 (dtp, q, bytes, 0);
379 else
380 write_default_char4 (dtp, q, bytes, 0);
381 bytes = 0;
382 }
383
384 /* Write out the CR_LF sequence. */
385 write_default_char4 (dtp, crlf, 2, 0);
386 }
387 else
388 bytes++;
389 }
390
391 /* Write out any remaining bytes if no LF was found. */
392 if (bytes > 0)
393 {
394 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
395 write_utf8_char4 (dtp, q, bytes, 0);
396 else
397 write_default_char4 (dtp, q, bytes, 0);
398 }
399 }
400 else
401 {
402 #endif
403 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
404 write_utf8_char4 (dtp, q, len, wlen);
405 else
406 write_default_char4 (dtp, q, len, wlen);
407 #ifdef HAVE_CRLF
408 }
409 #endif
410 }
411
412
413 static GFC_INTEGER_LARGEST
414 extract_int (const void *p, int len)
415 {
416 GFC_INTEGER_LARGEST i = 0;
417
418 if (p == NULL)
419 return i;
420
421 switch (len)
422 {
423 case 1:
424 {
425 GFC_INTEGER_1 tmp;
426 memcpy ((void *) &tmp, p, len);
427 i = tmp;
428 }
429 break;
430 case 2:
431 {
432 GFC_INTEGER_2 tmp;
433 memcpy ((void *) &tmp, p, len);
434 i = tmp;
435 }
436 break;
437 case 4:
438 {
439 GFC_INTEGER_4 tmp;
440 memcpy ((void *) &tmp, p, len);
441 i = tmp;
442 }
443 break;
444 case 8:
445 {
446 GFC_INTEGER_8 tmp;
447 memcpy ((void *) &tmp, p, len);
448 i = tmp;
449 }
450 break;
451 #ifdef HAVE_GFC_INTEGER_16
452 case 16:
453 {
454 GFC_INTEGER_16 tmp;
455 memcpy ((void *) &tmp, p, len);
456 i = tmp;
457 }
458 break;
459 #endif
460 default:
461 internal_error (NULL, "bad integer kind");
462 }
463
464 return i;
465 }
466
467 static GFC_UINTEGER_LARGEST
468 extract_uint (const void *p, int len)
469 {
470 GFC_UINTEGER_LARGEST i = 0;
471
472 if (p == NULL)
473 return i;
474
475 switch (len)
476 {
477 case 1:
478 {
479 GFC_INTEGER_1 tmp;
480 memcpy ((void *) &tmp, p, len);
481 i = (GFC_UINTEGER_1) tmp;
482 }
483 break;
484 case 2:
485 {
486 GFC_INTEGER_2 tmp;
487 memcpy ((void *) &tmp, p, len);
488 i = (GFC_UINTEGER_2) tmp;
489 }
490 break;
491 case 4:
492 {
493 GFC_INTEGER_4 tmp;
494 memcpy ((void *) &tmp, p, len);
495 i = (GFC_UINTEGER_4) tmp;
496 }
497 break;
498 case 8:
499 {
500 GFC_INTEGER_8 tmp;
501 memcpy ((void *) &tmp, p, len);
502 i = (GFC_UINTEGER_8) tmp;
503 }
504 break;
505 #ifdef HAVE_GFC_INTEGER_16
506 case 10:
507 case 16:
508 {
509 GFC_INTEGER_16 tmp = 0;
510 memcpy ((void *) &tmp, p, len);
511 i = (GFC_UINTEGER_16) tmp;
512 }
513 break;
514 #endif
515 default:
516 internal_error (NULL, "bad integer kind");
517 }
518
519 return i;
520 }
521
522
523 void
524 write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
525 {
526 char *p;
527 int wlen;
528 GFC_INTEGER_LARGEST n;
529
530 wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
531
532 p = write_block (dtp, wlen);
533 if (p == NULL)
534 return;
535
536 n = extract_int (source, len);
537
538 if (unlikely (is_char4_unit (dtp)))
539 {
540 gfc_char4_t *p4 = (gfc_char4_t *) p;
541 memset4 (p4, ' ', wlen -1);
542 p4[wlen - 1] = (n) ? 'T' : 'F';
543 return;
544 }
545
546 memset (p, ' ', wlen -1);
547 p[wlen - 1] = (n) ? 'T' : 'F';
548 }
549
550
551 static void
552 write_boz (st_parameter_dt *dtp, const fnode *f, const char *q, int n)
553 {
554 int w, m, digits, nzero, nblank;
555 char *p;
556
557 w = f->u.integer.w;
558 m = f->u.integer.m;
559
560 /* Special case: */
561
562 if (m == 0 && n == 0)
563 {
564 if (w == 0)
565 w = 1;
566
567 p = write_block (dtp, w);
568 if (p == NULL)
569 return;
570 if (unlikely (is_char4_unit (dtp)))
571 {
572 gfc_char4_t *p4 = (gfc_char4_t *) p;
573 memset4 (p4, ' ', w);
574 }
575 else
576 memset (p, ' ', w);
577 goto done;
578 }
579
580 digits = strlen (q);
581
582 /* Select a width if none was specified. The idea here is to always
583 print something. */
584
585 if (w == 0)
586 w = ((digits < m) ? m : digits);
587
588 p = write_block (dtp, w);
589 if (p == NULL)
590 return;
591
592 nzero = 0;
593 if (digits < m)
594 nzero = m - digits;
595
596 /* See if things will work. */
597
598 nblank = w - (nzero + digits);
599
600 if (unlikely (is_char4_unit (dtp)))
601 {
602 gfc_char4_t *p4 = (gfc_char4_t *) p;
603 if (nblank < 0)
604 {
605 memset4 (p4, '*', w);
606 return;
607 }
608
609 if (!dtp->u.p.no_leading_blank)
610 {
611 memset4 (p4, ' ', nblank);
612 q += nblank;
613 memset4 (p4, '0', nzero);
614 q += nzero;
615 memcpy4 (p4, q, digits);
616 }
617 else
618 {
619 memset4 (p4, '0', nzero);
620 q += nzero;
621 memcpy4 (p4, q, digits);
622 q += digits;
623 memset4 (p4, ' ', nblank);
624 dtp->u.p.no_leading_blank = 0;
625 }
626 return;
627 }
628
629 if (nblank < 0)
630 {
631 star_fill (p, w);
632 goto done;
633 }
634
635 if (!dtp->u.p.no_leading_blank)
636 {
637 memset (p, ' ', nblank);
638 p += nblank;
639 memset (p, '0', nzero);
640 p += nzero;
641 memcpy (p, q, digits);
642 }
643 else
644 {
645 memset (p, '0', nzero);
646 p += nzero;
647 memcpy (p, q, digits);
648 p += digits;
649 memset (p, ' ', nblank);
650 dtp->u.p.no_leading_blank = 0;
651 }
652
653 done:
654 return;
655 }
656
657 static void
658 write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
659 int len,
660 const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
661 {
662 GFC_INTEGER_LARGEST n = 0;
663 int w, m, digits, nsign, nzero, nblank;
664 char *p;
665 const char *q;
666 sign_t sign;
667 char itoa_buf[GFC_BTOA_BUF_SIZE];
668
669 w = f->u.integer.w;
670 m = f->format == FMT_G ? -1 : f->u.integer.m;
671
672 n = extract_int (source, len);
673
674 /* Special case: */
675 if (m == 0 && n == 0)
676 {
677 if (w == 0)
678 w = 1;
679
680 p = write_block (dtp, w);
681 if (p == NULL)
682 return;
683 if (unlikely (is_char4_unit (dtp)))
684 {
685 gfc_char4_t *p4 = (gfc_char4_t *) p;
686 memset4 (p4, ' ', w);
687 }
688 else
689 memset (p, ' ', w);
690 goto done;
691 }
692
693 sign = calculate_sign (dtp, n < 0);
694 if (n < 0)
695 n = -n;
696 nsign = sign == S_NONE ? 0 : 1;
697
698 /* conv calls itoa which sets the negative sign needed
699 by write_integer. The sign '+' or '-' is set below based on sign
700 calculated above, so we just point past the sign in the string
701 before proceeding to avoid double signs in corner cases.
702 (see PR38504) */
703 q = conv (n, itoa_buf, sizeof (itoa_buf));
704 if (*q == '-')
705 q++;
706
707 digits = strlen (q);
708
709 /* Select a width if none was specified. The idea here is to always
710 print something. */
711
712 if (w == 0)
713 w = ((digits < m) ? m : digits) + nsign;
714
715 p = write_block (dtp, w);
716 if (p == NULL)
717 return;
718
719 nzero = 0;
720 if (digits < m)
721 nzero = m - digits;
722
723 /* See if things will work. */
724
725 nblank = w - (nsign + nzero + digits);
726
727 if (unlikely (is_char4_unit (dtp)))
728 {
729 gfc_char4_t * p4 = (gfc_char4_t *) p;
730 if (nblank < 0)
731 {
732 memset4 (p4, '*', w);
733 goto done;
734 }
735
736 memset4 (p4, ' ', nblank);
737 p4 += nblank;
738
739 switch (sign)
740 {
741 case S_PLUS:
742 *p4++ = '+';
743 break;
744 case S_MINUS:
745 *p4++ = '-';
746 break;
747 case S_NONE:
748 break;
749 }
750
751 memset4 (p4, '0', nzero);
752 p4 += nzero;
753
754 memcpy4 (p4, q, digits);
755 return;
756 }
757
758 if (nblank < 0)
759 {
760 star_fill (p, w);
761 goto done;
762 }
763
764 memset (p, ' ', nblank);
765 p += nblank;
766
767 switch (sign)
768 {
769 case S_PLUS:
770 *p++ = '+';
771 break;
772 case S_MINUS:
773 *p++ = '-';
774 break;
775 case S_NONE:
776 break;
777 }
778
779 memset (p, '0', nzero);
780 p += nzero;
781
782 memcpy (p, q, digits);
783
784 done:
785 return;
786 }
787
788
789 /* Convert unsigned octal to ascii. */
790
791 static const char *
792 otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
793 {
794 char *p;
795
796 assert (len >= GFC_OTOA_BUF_SIZE);
797
798 if (n == 0)
799 return "0";
800
801 p = buffer + GFC_OTOA_BUF_SIZE - 1;
802 *p = '\0';
803
804 while (n != 0)
805 {
806 *--p = '0' + (n & 7);
807 n >>= 3;
808 }
809
810 return p;
811 }
812
813
814 /* Convert unsigned binary to ascii. */
815
816 static const char *
817 btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
818 {
819 char *p;
820
821 assert (len >= GFC_BTOA_BUF_SIZE);
822
823 if (n == 0)
824 return "0";
825
826 p = buffer + GFC_BTOA_BUF_SIZE - 1;
827 *p = '\0';
828
829 while (n != 0)
830 {
831 *--p = '0' + (n & 1);
832 n >>= 1;
833 }
834
835 return p;
836 }
837
838 /* The following three functions, btoa_big, otoa_big, and ztoa_big, are needed
839 to convert large reals with kind sizes that exceed the largest integer type
840 available on certain platforms. In these cases, byte by byte conversion is
841 performed. Endianess is taken into account. */
842
843 /* Conversion to binary. */
844
845 static const char *
846 btoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
847 {
848 char *q;
849 int i, j;
850
851 q = buffer;
852 if (big_endian)
853 {
854 const char *p = s;
855 for (i = 0; i < len; i++)
856 {
857 char c = *p;
858
859 /* Test for zero. Needed by write_boz later. */
860 if (*p != 0)
861 *n = 1;
862
863 for (j = 0; j < 8; j++)
864 {
865 *q++ = (c & 128) ? '1' : '0';
866 c <<= 1;
867 }
868 p++;
869 }
870 }
871 else
872 {
873 const char *p = s + len - 1;
874 for (i = 0; i < len; i++)
875 {
876 char c = *p;
877
878 /* Test for zero. Needed by write_boz later. */
879 if (*p != 0)
880 *n = 1;
881
882 for (j = 0; j < 8; j++)
883 {
884 *q++ = (c & 128) ? '1' : '0';
885 c <<= 1;
886 }
887 p--;
888 }
889 }
890
891 *q = '\0';
892
893 if (*n == 0)
894 return "0";
895
896 /* Move past any leading zeros. */
897 while (*buffer == '0')
898 buffer++;
899
900 return buffer;
901
902 }
903
904 /* Conversion to octal. */
905
906 static const char *
907 otoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
908 {
909 char *q;
910 int i, j, k;
911 uint8_t octet;
912
913 q = buffer + GFC_OTOA_BUF_SIZE - 1;
914 *q = '\0';
915 i = k = octet = 0;
916
917 if (big_endian)
918 {
919 const char *p = s + len - 1;
920 char c = *p;
921 while (i < len)
922 {
923 /* Test for zero. Needed by write_boz later. */
924 if (*p != 0)
925 *n = 1;
926
927 for (j = 0; j < 3 && i < len; j++)
928 {
929 octet |= (c & 1) << j;
930 c >>= 1;
931 if (++k > 7)
932 {
933 i++;
934 k = 0;
935 c = *--p;
936 }
937 }
938 *--q = '0' + octet;
939 octet = 0;
940 }
941 }
942 else
943 {
944 const char *p = s;
945 char c = *p;
946 while (i < len)
947 {
948 /* Test for zero. Needed by write_boz later. */
949 if (*p != 0)
950 *n = 1;
951
952 for (j = 0; j < 3 && i < len; j++)
953 {
954 octet |= (c & 1) << j;
955 c >>= 1;
956 if (++k > 7)
957 {
958 i++;
959 k = 0;
960 c = *++p;
961 }
962 }
963 *--q = '0' + octet;
964 octet = 0;
965 }
966 }
967
968 if (*n == 0)
969 return "0";
970
971 /* Move past any leading zeros. */
972 while (*q == '0')
973 q++;
974
975 return q;
976 }
977
978 /* Conversion to hexidecimal. */
979
980 static const char *
981 ztoa_big (const char *s, char *buffer, int len, GFC_UINTEGER_LARGEST *n)
982 {
983 static char a[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
984 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
985
986 char *q;
987 uint8_t h, l;
988 int i;
989
990 q = buffer;
991
992 if (big_endian)
993 {
994 const char *p = s;
995 for (i = 0; i < len; i++)
996 {
997 /* Test for zero. Needed by write_boz later. */
998 if (*p != 0)
999 *n = 1;
1000
1001 h = (*p >> 4) & 0x0F;
1002 l = *p++ & 0x0F;
1003 *q++ = a[h];
1004 *q++ = a[l];
1005 }
1006 }
1007 else
1008 {
1009 const char *p = s + len - 1;
1010 for (i = 0; i < len; i++)
1011 {
1012 /* Test for zero. Needed by write_boz later. */
1013 if (*p != 0)
1014 *n = 1;
1015
1016 h = (*p >> 4) & 0x0F;
1017 l = *p-- & 0x0F;
1018 *q++ = a[h];
1019 *q++ = a[l];
1020 }
1021 }
1022
1023 *q = '\0';
1024
1025 if (*n == 0)
1026 return "0";
1027
1028 /* Move past any leading zeros. */
1029 while (*buffer == '0')
1030 buffer++;
1031
1032 return buffer;
1033 }
1034
1035
1036 void
1037 write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1038 {
1039 write_decimal (dtp, f, p, len, (void *) gfc_itoa);
1040 }
1041
1042
1043 void
1044 write_b (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1045 {
1046 const char *p;
1047 char itoa_buf[GFC_BTOA_BUF_SIZE];
1048 GFC_UINTEGER_LARGEST n = 0;
1049
1050 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1051 {
1052 p = btoa_big (source, itoa_buf, len, &n);
1053 write_boz (dtp, f, p, n);
1054 }
1055 else
1056 {
1057 n = extract_uint (source, len);
1058 p = btoa (n, itoa_buf, sizeof (itoa_buf));
1059 write_boz (dtp, f, p, n);
1060 }
1061 }
1062
1063
1064 void
1065 write_o (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1066 {
1067 const char *p;
1068 char itoa_buf[GFC_OTOA_BUF_SIZE];
1069 GFC_UINTEGER_LARGEST n = 0;
1070
1071 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1072 {
1073 p = otoa_big (source, itoa_buf, len, &n);
1074 write_boz (dtp, f, p, n);
1075 }
1076 else
1077 {
1078 n = extract_uint (source, len);
1079 p = otoa (n, itoa_buf, sizeof (itoa_buf));
1080 write_boz (dtp, f, p, n);
1081 }
1082 }
1083
1084 void
1085 write_z (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
1086 {
1087 const char *p;
1088 char itoa_buf[GFC_XTOA_BUF_SIZE];
1089 GFC_UINTEGER_LARGEST n = 0;
1090
1091 if (len > (int) sizeof (GFC_UINTEGER_LARGEST))
1092 {
1093 p = ztoa_big (source, itoa_buf, len, &n);
1094 write_boz (dtp, f, p, n);
1095 }
1096 else
1097 {
1098 n = extract_uint (source, len);
1099 p = gfc_xtoa (n, itoa_buf, sizeof (itoa_buf));
1100 write_boz (dtp, f, p, n);
1101 }
1102 }
1103
1104 /* Take care of the X/TR descriptor. */
1105
1106 void
1107 write_x (st_parameter_dt *dtp, int len, int nspaces)
1108 {
1109 char *p;
1110
1111 p = write_block (dtp, len);
1112 if (p == NULL)
1113 return;
1114 if (nspaces > 0 && len - nspaces >= 0)
1115 {
1116 if (unlikely (is_char4_unit (dtp)))
1117 {
1118 gfc_char4_t *p4 = (gfc_char4_t *) p;
1119 memset4 (&p4[len - nspaces], ' ', nspaces);
1120 }
1121 else
1122 memset (&p[len - nspaces], ' ', nspaces);
1123 }
1124 }
1125
1126
1127 /* List-directed writing. */
1128
1129
1130 /* Write a single character to the output. Returns nonzero if
1131 something goes wrong. */
1132
1133 static int
1134 write_char (st_parameter_dt *dtp, int c)
1135 {
1136 char *p;
1137
1138 p = write_block (dtp, 1);
1139 if (p == NULL)
1140 return 1;
1141 if (unlikely (is_char4_unit (dtp)))
1142 {
1143 gfc_char4_t *p4 = (gfc_char4_t *) p;
1144 *p4 = c;
1145 return 0;
1146 }
1147
1148 *p = (uchar) c;
1149
1150 return 0;
1151 }
1152
1153
1154 /* Write a list-directed logical value. */
1155
1156 static void
1157 write_logical (st_parameter_dt *dtp, const char *source, int length)
1158 {
1159 write_char (dtp, extract_int (source, length) ? 'T' : 'F');
1160 }
1161
1162
1163 /* Write a list-directed integer value. */
1164
1165 static void
1166 write_integer (st_parameter_dt *dtp, const char *source, int length)
1167 {
1168 char *p;
1169 const char *q;
1170 int digits;
1171 int width;
1172 char itoa_buf[GFC_ITOA_BUF_SIZE];
1173
1174 q = gfc_itoa (extract_int (source, length), itoa_buf, sizeof (itoa_buf));
1175
1176 switch (length)
1177 {
1178 case 1:
1179 width = 4;
1180 break;
1181
1182 case 2:
1183 width = 6;
1184 break;
1185
1186 case 4:
1187 width = 11;
1188 break;
1189
1190 case 8:
1191 width = 20;
1192 break;
1193
1194 default:
1195 width = 0;
1196 break;
1197 }
1198
1199 digits = strlen (q);
1200
1201 if (width < digits)
1202 width = digits;
1203 p = write_block (dtp, width);
1204 if (p == NULL)
1205 return;
1206
1207 if (unlikely (is_char4_unit (dtp)))
1208 {
1209 gfc_char4_t *p4 = (gfc_char4_t *) p;
1210 if (dtp->u.p.no_leading_blank)
1211 {
1212 memcpy4 (p4, q, digits);
1213 memset4 (p4 + digits, ' ', width - digits);
1214 }
1215 else
1216 {
1217 memset4 (p4, ' ', width - digits);
1218 memcpy4 (p4 + width - digits, q, digits);
1219 }
1220 return;
1221 }
1222
1223 if (dtp->u.p.no_leading_blank)
1224 {
1225 memcpy (p, q, digits);
1226 memset (p + digits, ' ', width - digits);
1227 }
1228 else
1229 {
1230 memset (p, ' ', width - digits);
1231 memcpy (p + width - digits, q, digits);
1232 }
1233 }
1234
1235
1236 /* Write a list-directed string. We have to worry about delimiting
1237 the strings if the file has been opened in that mode. */
1238
1239 #define DELIM 1
1240 #define NODELIM 0
1241
1242 static void
1243 write_character (st_parameter_dt *dtp, const char *source, int kind, int length, int mode)
1244 {
1245 int i, extra;
1246 char *p, d;
1247
1248 if (mode == DELIM)
1249 {
1250 switch (dtp->u.p.current_unit->delim_status)
1251 {
1252 case DELIM_APOSTROPHE:
1253 d = '\'';
1254 break;
1255 case DELIM_QUOTE:
1256 d = '"';
1257 break;
1258 default:
1259 d = ' ';
1260 break;
1261 }
1262 }
1263 else
1264 d = ' ';
1265
1266 if (kind == 1)
1267 {
1268 if (d == ' ')
1269 extra = 0;
1270 else
1271 {
1272 extra = 2;
1273
1274 for (i = 0; i < length; i++)
1275 if (source[i] == d)
1276 extra++;
1277 }
1278
1279 p = write_block (dtp, length + extra);
1280 if (p == NULL)
1281 return;
1282
1283 if (unlikely (is_char4_unit (dtp)))
1284 {
1285 gfc_char4_t d4 = (gfc_char4_t) d;
1286 gfc_char4_t *p4 = (gfc_char4_t *) p;
1287
1288 if (d4 == ' ')
1289 memcpy4 (p4, source, length);
1290 else
1291 {
1292 *p4++ = d4;
1293
1294 for (i = 0; i < length; i++)
1295 {
1296 *p4++ = (gfc_char4_t) source[i];
1297 if (source[i] == d)
1298 *p4++ = d4;
1299 }
1300
1301 *p4 = d4;
1302 }
1303 return;
1304 }
1305
1306 if (d == ' ')
1307 memcpy (p, source, length);
1308 else
1309 {
1310 *p++ = d;
1311
1312 for (i = 0; i < length; i++)
1313 {
1314 *p++ = source[i];
1315 if (source[i] == d)
1316 *p++ = d;
1317 }
1318
1319 *p = d;
1320 }
1321 }
1322 else
1323 {
1324 if (d == ' ')
1325 {
1326 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1327 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1328 else
1329 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1330 }
1331 else
1332 {
1333 p = write_block (dtp, 1);
1334 *p = d;
1335
1336 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1337 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
1338 else
1339 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
1340
1341 p = write_block (dtp, 1);
1342 *p = d;
1343 }
1344 }
1345 }
1346
1347 /* Floating point helper functions. */
1348
1349 #define BUF_STACK_SZ 256
1350
1351 static int
1352 get_precision (st_parameter_dt *dtp, const fnode *f, const char *source, int kind)
1353 {
1354 if (f->format != FMT_EN)
1355 return determine_precision (dtp, f, kind);
1356 else
1357 return determine_en_precision (dtp, f, source, kind);
1358 }
1359
1360 static char *
1361 select_buffer (int precision, char *buf, size_t *size)
1362 {
1363 char *result;
1364 *size = BUF_STACK_SZ / 2 + precision;
1365 if (*size > BUF_STACK_SZ)
1366 result = xmalloc (*size);
1367 else
1368 result = buf;
1369 return result;
1370 }
1371
1372 static char *
1373 select_string (const fnode *f, char *buf, size_t *size)
1374 {
1375 char *result;
1376 *size = f->u.real.w + 1;
1377 if (*size > BUF_STACK_SZ)
1378 result = xmalloc (*size);
1379 else
1380 result = buf;
1381 return result;
1382 }
1383
1384 static void
1385 write_float_string (st_parameter_dt *dtp, char *fstr, size_t len)
1386 {
1387 char *p = write_block (dtp, len);
1388 if (p == NULL)
1389 return;
1390
1391 if (unlikely (is_char4_unit (dtp)))
1392 {
1393 gfc_char4_t *p4 = (gfc_char4_t *) p;
1394 memcpy4 (p4, fstr, len);
1395 return;
1396 }
1397 memcpy (p, fstr, len);
1398 }
1399
1400 static void
1401 write_float_0 (st_parameter_dt *dtp, const fnode *f, const char *source, int kind)
1402 {
1403 char buf_stack[BUF_STACK_SZ];
1404 char str_buf[BUF_STACK_SZ];
1405 char *buffer, *result;
1406 size_t buf_size, res_len;
1407
1408 /* Precision for snprintf call. */
1409 int precision = get_precision (dtp, f, source, kind);
1410
1411 /* String buffer to hold final result. */
1412 result = select_string (f, str_buf, &res_len);
1413
1414 buffer = select_buffer (precision, buf_stack, &buf_size);
1415
1416 get_float_string (dtp, f, source , kind, 0, buffer,
1417 precision, buf_size, result, &res_len);
1418 write_float_string (dtp, result, res_len);
1419
1420 if (buf_size > BUF_STACK_SZ)
1421 free (buffer);
1422 if (res_len > BUF_STACK_SZ)
1423 free (result);
1424 }
1425
1426 void
1427 write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1428 {
1429 write_float_0 (dtp, f, p, len);
1430 }
1431
1432
1433 void
1434 write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1435 {
1436 write_float_0 (dtp, f, p, len);
1437 }
1438
1439
1440 void
1441 write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1442 {
1443 write_float_0 (dtp, f, p, len);
1444 }
1445
1446
1447 void
1448 write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1449 {
1450 write_float_0 (dtp, f, p, len);
1451 }
1452
1453
1454 void
1455 write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
1456 {
1457 write_float_0 (dtp, f, p, len);
1458 }
1459
1460
1461 /* Set an fnode to default format. */
1462
1463 static void
1464 set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
1465 {
1466 f->format = FMT_G;
1467 switch (length)
1468 {
1469 case 4:
1470 f->u.real.w = 16;
1471 f->u.real.d = 9;
1472 f->u.real.e = 2;
1473 break;
1474 case 8:
1475 f->u.real.w = 25;
1476 f->u.real.d = 17;
1477 f->u.real.e = 3;
1478 break;
1479 case 10:
1480 f->u.real.w = 30;
1481 f->u.real.d = 21;
1482 f->u.real.e = 4;
1483 break;
1484 case 16:
1485 /* Adjust decimal precision depending on binary precision, 106 or 113. */
1486 #if GFC_REAL_16_DIGITS == 113
1487 f->u.real.w = 45;
1488 f->u.real.d = 36;
1489 f->u.real.e = 4;
1490 #else
1491 f->u.real.w = 41;
1492 f->u.real.d = 32;
1493 f->u.real.e = 4;
1494 #endif
1495 break;
1496 default:
1497 internal_error (&dtp->common, "bad real kind");
1498 break;
1499 }
1500 }
1501
1502 /* Output a real number with default format.
1503 To guarantee that a binary -> decimal -> binary roundtrip conversion
1504 recovers the original value, IEEE 754-2008 requires 9, 17, 21 and 36
1505 significant digits for REAL kinds 4, 8, 10, and 16, respectively.
1506 Thus, we use 1PG16.9E2 for REAL(4), 1PG25.17E3 for REAL(8), 1PG30.21E4
1507 for REAL(10) and 1PG45.36E4 for REAL(16). The exception is that the
1508 Fortran standard requires outputting an extra digit when the scale
1509 factor is 1 and when the magnitude of the value is such that E
1510 editing is used. However, gfortran compensates for this, and thus
1511 for list formatted the same number of significant digits is
1512 generated both when using F and E editing. */
1513
1514 void
1515 write_real (st_parameter_dt *dtp, const char *source, int kind)
1516 {
1517 fnode f ;
1518 char buf_stack[BUF_STACK_SZ];
1519 char str_buf[BUF_STACK_SZ];
1520 char *buffer, *result;
1521 size_t buf_size, res_len;
1522 int orig_scale = dtp->u.p.scale_factor;
1523 dtp->u.p.scale_factor = 1;
1524 set_fnode_default (dtp, &f, kind);
1525
1526 /* Precision for snprintf call. */
1527 int precision = get_precision (dtp, &f, source, kind);
1528
1529 /* String buffer to hold final result. */
1530 result = select_string (&f, str_buf, &res_len);
1531
1532 /* scratch buffer to hold final result. */
1533 buffer = select_buffer (precision, buf_stack, &buf_size);
1534
1535 get_float_string (dtp, &f, source , kind, 1, buffer,
1536 precision, buf_size, result, &res_len);
1537 write_float_string (dtp, result, res_len);
1538
1539 dtp->u.p.scale_factor = orig_scale;
1540 if (buf_size > BUF_STACK_SZ)
1541 free (buffer);
1542 if (res_len > BUF_STACK_SZ)
1543 free (result);
1544 }
1545
1546 /* Similar to list formatted REAL output, for kPG0 where k > 0 we
1547 compensate for the extra digit. */
1548
1549 void
1550 write_real_g0 (st_parameter_dt *dtp, const char *source, int kind, int d)
1551 {
1552 fnode f;
1553 char buf_stack[BUF_STACK_SZ];
1554 char str_buf[BUF_STACK_SZ];
1555 char *buffer, *result;
1556 size_t buf_size, res_len;
1557 int comp_d;
1558 set_fnode_default (dtp, &f, kind);
1559
1560 if (d > 0)
1561 f.u.real.d = d;
1562
1563 /* Compensate for extra digits when using scale factor, d is not
1564 specified, and the magnitude is such that E editing is used. */
1565 if (dtp->u.p.scale_factor > 0 && d == 0)
1566 comp_d = 1;
1567 else
1568 comp_d = 0;
1569 dtp->u.p.g0_no_blanks = 1;
1570
1571 /* Precision for snprintf call. */
1572 int precision = get_precision (dtp, &f, source, kind);
1573
1574 /* String buffer to hold final result. */
1575 result = select_string (&f, str_buf, &res_len);
1576
1577 buffer = select_buffer (precision, buf_stack, &buf_size);
1578
1579 get_float_string (dtp, &f, source , kind, comp_d, buffer,
1580 precision, buf_size, result, &res_len);
1581 write_float_string (dtp, result, res_len);
1582
1583 dtp->u.p.g0_no_blanks = 0;
1584 if (buf_size > BUF_STACK_SZ)
1585 free (buffer);
1586 if (res_len > BUF_STACK_SZ)
1587 free (result);
1588 }
1589
1590
1591 static void
1592 write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
1593 {
1594 char semi_comma =
1595 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1596
1597 /* Set for no blanks so we get a string result with no leading
1598 blanks. We will pad left later. */
1599 dtp->u.p.g0_no_blanks = 1;
1600
1601 fnode f ;
1602 char buf_stack[BUF_STACK_SZ];
1603 char str1_buf[BUF_STACK_SZ];
1604 char str2_buf[BUF_STACK_SZ];
1605 char *buffer, *result1, *result2;
1606 size_t buf_size, res_len1, res_len2;
1607 int width, lblanks, orig_scale = dtp->u.p.scale_factor;
1608
1609 dtp->u.p.scale_factor = 1;
1610 set_fnode_default (dtp, &f, kind);
1611
1612 /* Set width for two values, parenthesis, and comma. */
1613 width = 2 * f.u.real.w + 3;
1614
1615 /* Set for no blanks so we get a string result with no leading
1616 blanks. We will pad left later. */
1617 dtp->u.p.g0_no_blanks = 1;
1618
1619 /* Precision for snprintf call. */
1620 int precision = get_precision (dtp, &f, source, kind);
1621
1622 /* String buffers to hold final result. */
1623 result1 = select_string (&f, str1_buf, &res_len1);
1624 result2 = select_string (&f, str2_buf, &res_len2);
1625
1626 buffer = select_buffer (precision, buf_stack, &buf_size);
1627
1628 get_float_string (dtp, &f, source , kind, 0, buffer,
1629 precision, buf_size, result1, &res_len1);
1630 get_float_string (dtp, &f, source + size / 2 , kind, 0, buffer,
1631 precision, buf_size, result2, &res_len2);
1632 lblanks = width - res_len1 - res_len2 - 3;
1633
1634 write_x (dtp, lblanks, lblanks);
1635 write_char (dtp, '(');
1636 write_float_string (dtp, result1, res_len1);
1637 write_char (dtp, semi_comma);
1638 write_float_string (dtp, result2, res_len2);
1639 write_char (dtp, ')');
1640
1641 dtp->u.p.scale_factor = orig_scale;
1642 dtp->u.p.g0_no_blanks = 0;
1643 if (buf_size > BUF_STACK_SZ)
1644 free (buffer);
1645 if (res_len1 > BUF_STACK_SZ)
1646 free (result1);
1647 if (res_len2 > BUF_STACK_SZ)
1648 free (result2);
1649 }
1650
1651
1652 /* Write the separator between items. */
1653
1654 static void
1655 write_separator (st_parameter_dt *dtp)
1656 {
1657 char *p;
1658
1659 p = write_block (dtp, options.separator_len);
1660 if (p == NULL)
1661 return;
1662 if (unlikely (is_char4_unit (dtp)))
1663 {
1664 gfc_char4_t *p4 = (gfc_char4_t *) p;
1665 memcpy4 (p4, options.separator, options.separator_len);
1666 }
1667 else
1668 memcpy (p, options.separator, options.separator_len);
1669 }
1670
1671
1672 /* Write an item with list formatting.
1673 TODO: handle skipping to the next record correctly, particularly
1674 with strings. */
1675
1676 static void
1677 list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
1678 size_t size)
1679 {
1680 if (dtp->u.p.current_unit == NULL)
1681 return;
1682
1683 if (dtp->u.p.first_item)
1684 {
1685 dtp->u.p.first_item = 0;
1686 write_char (dtp, ' ');
1687 }
1688 else
1689 {
1690 if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
1691 (dtp->u.p.current_unit->delim_status != DELIM_NONE
1692 && dtp->u.p.current_unit->delim_status != DELIM_UNSPECIFIED))
1693 write_separator (dtp);
1694 }
1695
1696 switch (type)
1697 {
1698 case BT_INTEGER:
1699 write_integer (dtp, p, kind);
1700 break;
1701 case BT_LOGICAL:
1702 write_logical (dtp, p, kind);
1703 break;
1704 case BT_CHARACTER:
1705 write_character (dtp, p, kind, size, DELIM);
1706 break;
1707 case BT_REAL:
1708 write_real (dtp, p, kind);
1709 break;
1710 case BT_COMPLEX:
1711 write_complex (dtp, p, kind, size);
1712 break;
1713 default:
1714 internal_error (&dtp->common, "list_formatted_write(): Bad type");
1715 }
1716
1717 fbuf_flush_list (dtp->u.p.current_unit, LIST_WRITING);
1718 dtp->u.p.char_flag = (type == BT_CHARACTER);
1719 }
1720
1721
1722 void
1723 list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1724 size_t size, size_t nelems)
1725 {
1726 size_t elem;
1727 char *tmp;
1728 size_t stride = type == BT_CHARACTER ?
1729 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1730
1731 tmp = (char *) p;
1732
1733 /* Big loop over all the elements. */
1734 for (elem = 0; elem < nelems; elem++)
1735 {
1736 dtp->u.p.item_count++;
1737 list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
1738 }
1739 }
1740
1741 /* NAMELIST OUTPUT
1742
1743 nml_write_obj writes a namelist object to the output stream. It is called
1744 recursively for derived type components:
1745 obj = is the namelist_info for the current object.
1746 offset = the offset relative to the address held by the object for
1747 derived type arrays.
1748 base = is the namelist_info of the derived type, when obj is a
1749 component.
1750 base_name = the full name for a derived type, including qualifiers
1751 if any.
1752 The returned value is a pointer to the object beyond the last one
1753 accessed, including nested derived types. Notice that the namelist is
1754 a linear linked list of objects, including derived types and their
1755 components. A tree, of sorts, is implied by the compound names of
1756 the derived type components and this is how this function recurses through
1757 the list. */
1758
1759 /* A generous estimate of the number of characters needed to print
1760 repeat counts and indices, including commas, asterices and brackets. */
1761
1762 #define NML_DIGITS 20
1763
1764 static void
1765 namelist_write_newline (st_parameter_dt *dtp)
1766 {
1767 if (!is_internal_unit (dtp))
1768 {
1769 #ifdef HAVE_CRLF
1770 write_character (dtp, "\r\n", 1, 2, NODELIM);
1771 #else
1772 write_character (dtp, "\n", 1, 1, NODELIM);
1773 #endif
1774 return;
1775 }
1776
1777 if (is_array_io (dtp))
1778 {
1779 gfc_offset record;
1780 int finished;
1781 char *p;
1782 int length = dtp->u.p.current_unit->bytes_left;
1783
1784 p = write_block (dtp, length);
1785 if (p == NULL)
1786 return;
1787
1788 if (unlikely (is_char4_unit (dtp)))
1789 {
1790 gfc_char4_t *p4 = (gfc_char4_t *) p;
1791 memset4 (p4, ' ', length);
1792 }
1793 else
1794 memset (p, ' ', length);
1795
1796 /* Now that the current record has been padded out,
1797 determine where the next record in the array is. */
1798 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
1799 &finished);
1800 if (finished)
1801 dtp->u.p.current_unit->endfile = AT_ENDFILE;
1802 else
1803 {
1804 /* Now seek to this record */
1805 record = record * dtp->u.p.current_unit->recl;
1806
1807 if (sseek (dtp->u.p.current_unit->s, record, SEEK_SET) < 0)
1808 {
1809 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
1810 return;
1811 }
1812
1813 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
1814 }
1815 }
1816 else
1817 write_character (dtp, " ", 1, 1, NODELIM);
1818 }
1819
1820
1821 static namelist_info *
1822 nml_write_obj (st_parameter_dt *dtp, namelist_info * obj, index_type offset,
1823 namelist_info * base, char * base_name)
1824 {
1825 int rep_ctr;
1826 int num;
1827 int nml_carry;
1828 int len;
1829 index_type obj_size;
1830 index_type nelem;
1831 size_t dim_i;
1832 size_t clen;
1833 index_type elem_ctr;
1834 size_t obj_name_len;
1835 void * p;
1836 char cup;
1837 char * obj_name;
1838 char * ext_name;
1839 char * q;
1840 size_t ext_name_len;
1841 char rep_buff[NML_DIGITS];
1842 namelist_info * cmp;
1843 namelist_info * retval = obj->next;
1844 size_t base_name_len;
1845 size_t base_var_name_len;
1846 size_t tot_len;
1847
1848 /* Set the character to be used to separate values
1849 to a comma or semi-colon. */
1850
1851 char semi_comma =
1852 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1853
1854 /* Write namelist variable names in upper case. If a derived type,
1855 nothing is output. If a component, base and base_name are set. */
1856
1857 if (obj->type != BT_DERIVED)
1858 {
1859 namelist_write_newline (dtp);
1860 write_character (dtp, " ", 1, 1, NODELIM);
1861
1862 len = 0;
1863 if (base)
1864 {
1865 len = strlen (base->var_name);
1866 base_name_len = strlen (base_name);
1867 for (dim_i = 0; dim_i < base_name_len; dim_i++)
1868 {
1869 cup = toupper ((int) base_name[dim_i]);
1870 write_character (dtp, &cup, 1, 1, NODELIM);
1871 }
1872 }
1873 clen = strlen (obj->var_name);
1874 for (dim_i = len; dim_i < clen; dim_i++)
1875 {
1876 cup = toupper ((int) obj->var_name[dim_i]);
1877 if (cup == '+')
1878 cup = '%';
1879 write_character (dtp, &cup, 1, 1, NODELIM);
1880 }
1881 write_character (dtp, "=", 1, 1, NODELIM);
1882 }
1883
1884 /* Counts the number of data output on a line, including names. */
1885
1886 num = 1;
1887
1888 len = obj->len;
1889
1890 switch (obj->type)
1891 {
1892
1893 case BT_REAL:
1894 obj_size = size_from_real_kind (len);
1895 break;
1896
1897 case BT_COMPLEX:
1898 obj_size = size_from_complex_kind (len);
1899 break;
1900
1901 case BT_CHARACTER:
1902 obj_size = obj->string_length;
1903 break;
1904
1905 default:
1906 obj_size = len;
1907 }
1908
1909 if (obj->var_rank)
1910 obj_size = obj->size;
1911
1912 /* Set the index vector and count the number of elements. */
1913
1914 nelem = 1;
1915 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
1916 {
1917 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj, dim_i);
1918 nelem = nelem * GFC_DESCRIPTOR_EXTENT (obj, dim_i);
1919 }
1920
1921 /* Main loop to output the data held in the object. */
1922
1923 rep_ctr = 1;
1924 for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
1925 {
1926
1927 /* Build the pointer to the data value. The offset is passed by
1928 recursive calls to this function for arrays of derived types.
1929 Is NULL otherwise. */
1930
1931 p = (void *)(obj->mem_pos + elem_ctr * obj_size);
1932 p += offset;
1933
1934 /* Check for repeat counts of intrinsic types. */
1935
1936 if ((elem_ctr < (nelem - 1)) &&
1937 (obj->type != BT_DERIVED) &&
1938 !memcmp (p, (void*)(p + obj_size ), obj_size ))
1939 {
1940 rep_ctr++;
1941 }
1942
1943 /* Execute a repeated output. Note the flag no_leading_blank that
1944 is used in the functions used to output the intrinsic types. */
1945
1946 else
1947 {
1948 if (rep_ctr > 1)
1949 {
1950 snprintf(rep_buff, NML_DIGITS, " %d*", rep_ctr);
1951 write_character (dtp, rep_buff, 1, strlen (rep_buff), NODELIM);
1952 dtp->u.p.no_leading_blank = 1;
1953 }
1954 num++;
1955
1956 /* Output the data, if an intrinsic type, or recurse into this
1957 routine to treat derived types. */
1958
1959 switch (obj->type)
1960 {
1961
1962 case BT_INTEGER:
1963 write_integer (dtp, p, len);
1964 break;
1965
1966 case BT_LOGICAL:
1967 write_logical (dtp, p, len);
1968 break;
1969
1970 case BT_CHARACTER:
1971 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
1972 write_character (dtp, p, 4, obj->string_length, DELIM);
1973 else
1974 write_character (dtp, p, 1, obj->string_length, DELIM);
1975 break;
1976
1977 case BT_REAL:
1978 write_real (dtp, p, len);
1979 break;
1980
1981 case BT_COMPLEX:
1982 dtp->u.p.no_leading_blank = 0;
1983 num++;
1984 write_complex (dtp, p, len, obj_size);
1985 break;
1986
1987 case BT_DERIVED:
1988
1989 /* To treat a derived type, we need to build two strings:
1990 ext_name = the name, including qualifiers that prepends
1991 component names in the output - passed to
1992 nml_write_obj.
1993 obj_name = the derived type name with no qualifiers but %
1994 appended. This is used to identify the
1995 components. */
1996
1997 /* First ext_name => get length of all possible components */
1998
1999 base_name_len = base_name ? strlen (base_name) : 0;
2000 base_var_name_len = base ? strlen (base->var_name) : 0;
2001 ext_name_len = base_name_len + base_var_name_len
2002 + strlen (obj->var_name) + obj->var_rank * NML_DIGITS + 1;
2003 ext_name = xmalloc (ext_name_len);
2004
2005 if (base_name)
2006 memcpy (ext_name, base_name, base_name_len);
2007 clen = strlen (obj->var_name + base_var_name_len);
2008 memcpy (ext_name + base_name_len,
2009 obj->var_name + base_var_name_len, clen);
2010
2011 /* Append the qualifier. */
2012
2013 tot_len = base_name_len + clen;
2014 for (dim_i = 0; dim_i < (size_t) obj->var_rank; dim_i++)
2015 {
2016 if (!dim_i)
2017 {
2018 ext_name[tot_len] = '(';
2019 tot_len++;
2020 }
2021 snprintf (ext_name + tot_len, ext_name_len - tot_len, "%d",
2022 (int) obj->ls[dim_i].idx);
2023 tot_len += strlen (ext_name + tot_len);
2024 ext_name[tot_len] = ((int) dim_i == obj->var_rank - 1) ? ')' : ',';
2025 tot_len++;
2026 }
2027
2028 ext_name[tot_len] = '\0';
2029 for (q = ext_name; *q; q++)
2030 if (*q == '+')
2031 *q = '%';
2032
2033 /* Now obj_name. */
2034
2035 obj_name_len = strlen (obj->var_name) + 1;
2036 obj_name = xmalloc (obj_name_len + 1);
2037 memcpy (obj_name, obj->var_name, obj_name_len-1);
2038 memcpy (obj_name + obj_name_len-1, "%", 2);
2039
2040 /* Now loop over the components. Update the component pointer
2041 with the return value from nml_write_obj => this loop jumps
2042 past nested derived types. */
2043
2044 for (cmp = obj->next;
2045 cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
2046 cmp = retval)
2047 {
2048 retval = nml_write_obj (dtp, cmp,
2049 (index_type)(p - obj->mem_pos),
2050 obj, ext_name);
2051 }
2052
2053 free (obj_name);
2054 free (ext_name);
2055 goto obj_loop;
2056
2057 default:
2058 internal_error (&dtp->common, "Bad type for namelist write");
2059 }
2060
2061 /* Reset the leading blank suppression, write a comma (or semi-colon)
2062 and, if 5 values have been output, write a newline and advance
2063 to column 2. Reset the repeat counter. */
2064
2065 dtp->u.p.no_leading_blank = 0;
2066 if (obj->type == BT_CHARACTER)
2067 {
2068 if (dtp->u.p.nml_delim != '\0')
2069 write_character (dtp, &semi_comma, 1, 1, NODELIM);
2070 }
2071 else
2072 write_character (dtp, &semi_comma, 1, 1, NODELIM);
2073 if (num > 5)
2074 {
2075 num = 0;
2076 if (dtp->u.p.nml_delim == '\0')
2077 write_character (dtp, &semi_comma, 1, 1, NODELIM);
2078 namelist_write_newline (dtp);
2079 write_character (dtp, " ", 1, 1, NODELIM);
2080 }
2081 rep_ctr = 1;
2082 }
2083
2084 /* Cycle through and increment the index vector. */
2085
2086 obj_loop:
2087
2088 nml_carry = 1;
2089 for (dim_i = 0; nml_carry && (dim_i < (size_t) obj->var_rank); dim_i++)
2090 {
2091 obj->ls[dim_i].idx += nml_carry ;
2092 nml_carry = 0;
2093 if (obj->ls[dim_i].idx > GFC_DESCRIPTOR_UBOUND(obj,dim_i))
2094 {
2095 obj->ls[dim_i].idx = GFC_DESCRIPTOR_LBOUND(obj,dim_i);
2096 nml_carry = 1;
2097 }
2098 }
2099 }
2100
2101 /* Return a pointer beyond the furthest object accessed. */
2102
2103 return retval;
2104 }
2105
2106
2107 /* This is the entry function for namelist writes. It outputs the name
2108 of the namelist and iterates through the namelist by calls to
2109 nml_write_obj. The call below has dummys in the arguments used in
2110 the treatment of derived types. */
2111
2112 void
2113 namelist_write (st_parameter_dt *dtp)
2114 {
2115 namelist_info * t1, *t2, *dummy = NULL;
2116 index_type i;
2117 index_type dummy_offset = 0;
2118 char c;
2119 char * dummy_name = NULL;
2120
2121 /* Set the delimiter for namelist output. */
2122 switch (dtp->u.p.current_unit->delim_status)
2123 {
2124 case DELIM_APOSTROPHE:
2125 dtp->u.p.nml_delim = '\'';
2126 break;
2127 case DELIM_QUOTE:
2128 case DELIM_UNSPECIFIED:
2129 dtp->u.p.nml_delim = '"';
2130 break;
2131 default:
2132 dtp->u.p.nml_delim = '\0';
2133 }
2134
2135 write_character (dtp, "&", 1, 1, NODELIM);
2136
2137 /* Write namelist name in upper case - f95 std. */
2138 for (i = 0 ;i < dtp->namelist_name_len ;i++ )
2139 {
2140 c = toupper ((int) dtp->namelist_name[i]);
2141 write_character (dtp, &c, 1 ,1, NODELIM);
2142 }
2143
2144 if (dtp->u.p.ionml != NULL)
2145 {
2146 t1 = dtp->u.p.ionml;
2147 while (t1 != NULL)
2148 {
2149 t2 = t1;
2150 t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
2151 }
2152 }
2153
2154 namelist_write_newline (dtp);
2155 write_character (dtp, " /", 1, 2, NODELIM);
2156 }
2157
2158 #undef NML_DIGITS