tree-ssa-mathopts: Use proper poly_int64 comparison with param_avoid_fma_max_bits...
[gcc.git] / libgfortran / m4 / matmull.m4
1 `/* Implementation of the MATMUL intrinsic
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <assert.h>'
28
29 include(iparm.m4)dnl
30
31 `#if defined (HAVE_'rtype_name`)
32
33 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
34 Either a or b can be rank 1. In this case x or y is 1. */
35
36 extern void matmul_'rtype_code` ('rtype` * const restrict,
37 gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
38 export_proto(matmul_'rtype_code`);
39
40 void
41 matmul_'rtype_code` ('rtype` * const restrict retarray,
42 gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
43 {
44 const GFC_LOGICAL_1 * restrict abase;
45 const GFC_LOGICAL_1 * restrict bbase;
46 'rtype_name` * restrict dest;
47 index_type rxstride;
48 index_type rystride;
49 index_type xcount;
50 index_type ycount;
51 index_type xstride;
52 index_type ystride;
53 index_type x;
54 index_type y;
55 int a_kind;
56 int b_kind;
57
58 const GFC_LOGICAL_1 * restrict pa;
59 const GFC_LOGICAL_1 * restrict pb;
60 index_type astride;
61 index_type bstride;
62 index_type count;
63 index_type n;
64
65 assert (GFC_DESCRIPTOR_RANK (a) == 2
66 || GFC_DESCRIPTOR_RANK (b) == 2);
67
68 if (retarray->base_addr == NULL)
69 {
70 if (GFC_DESCRIPTOR_RANK (a) == 1)
71 {
72 GFC_DIMENSION_SET(retarray->dim[0], 0,
73 GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
74 }
75 else if (GFC_DESCRIPTOR_RANK (b) == 1)
76 {
77 GFC_DIMENSION_SET(retarray->dim[0], 0,
78 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
79 }
80 else
81 {
82 GFC_DIMENSION_SET(retarray->dim[0], 0,
83 GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
84
85 GFC_DIMENSION_SET(retarray->dim[1], 0,
86 GFC_DESCRIPTOR_EXTENT(b,1) - 1,
87 GFC_DESCRIPTOR_EXTENT(retarray,0));
88 }
89
90 retarray->base_addr
91 = xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`));
92 retarray->offset = 0;
93 }
94 else if (unlikely (compile_options.bounds_check))
95 {
96 index_type ret_extent, arg_extent;
97
98 if (GFC_DESCRIPTOR_RANK (a) == 1)
99 {
100 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
101 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
102 if (arg_extent != ret_extent)
103 runtime_error ("Incorrect extent in return array in"
104 " MATMUL intrinsic: is %ld, should be %ld",
105 (long int) ret_extent, (long int) arg_extent);
106 }
107 else if (GFC_DESCRIPTOR_RANK (b) == 1)
108 {
109 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
110 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
111 if (arg_extent != ret_extent)
112 runtime_error ("Incorrect extent in return array in"
113 " MATMUL intrinsic: is %ld, should be %ld",
114 (long int) ret_extent, (long int) arg_extent);
115 }
116 else
117 {
118 arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
119 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
120 if (arg_extent != ret_extent)
121 runtime_error ("Incorrect extent in return array in"
122 " MATMUL intrinsic for dimension 1:"
123 " is %ld, should be %ld",
124 (long int) ret_extent, (long int) arg_extent);
125
126 arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
127 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
128 if (arg_extent != ret_extent)
129 runtime_error ("Incorrect extent in return array in"
130 " MATMUL intrinsic for dimension 2:"
131 " is %ld, should be %ld",
132 (long int) ret_extent, (long int) arg_extent);
133 }
134 }
135
136 abase = a->base_addr;
137 a_kind = GFC_DESCRIPTOR_SIZE (a);
138
139 if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
140 #ifdef HAVE_GFC_LOGICAL_16
141 || a_kind == 16
142 #endif
143 )
144 abase = GFOR_POINTER_TO_L1 (abase, a_kind);
145 else
146 internal_error (NULL, "Funny sized logical array");
147
148 bbase = b->base_addr;
149 b_kind = GFC_DESCRIPTOR_SIZE (b);
150
151 if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
152 #ifdef HAVE_GFC_LOGICAL_16
153 || b_kind == 16
154 #endif
155 )
156 bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
157 else
158 internal_error (NULL, "Funny sized logical array");
159
160 dest = retarray->base_addr;
161 '
162 sinclude(`matmul_asm_'rtype_code`.m4')dnl
163 `
164 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
165 {
166 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
167 rystride = rxstride;
168 }
169 else
170 {
171 rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
172 rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
173 }
174
175 /* If we have rank 1 parameters, zero the absent stride, and set the size to
176 one. */
177 if (GFC_DESCRIPTOR_RANK (a) == 1)
178 {
179 astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
180 count = GFC_DESCRIPTOR_EXTENT(a,0);
181 xstride = 0;
182 rxstride = 0;
183 xcount = 1;
184 }
185 else
186 {
187 astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
188 count = GFC_DESCRIPTOR_EXTENT(a,1);
189 xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
190 xcount = GFC_DESCRIPTOR_EXTENT(a,0);
191 }
192 if (GFC_DESCRIPTOR_RANK (b) == 1)
193 {
194 bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
195 assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
196 ystride = 0;
197 rystride = 0;
198 ycount = 1;
199 }
200 else
201 {
202 bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
203 assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
204 ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
205 ycount = GFC_DESCRIPTOR_EXTENT(b,1);
206 }
207
208 for (y = 0; y < ycount; y++)
209 {
210 for (x = 0; x < xcount; x++)
211 {
212 /* Do the summation for this element. For real and integer types
213 this is the same as DOT_PRODUCT. For complex types we use do
214 a*b, not conjg(a)*b. */
215 pa = abase;
216 pb = bbase;
217 *dest = 0;
218
219 for (n = 0; n < count; n++)
220 {
221 if (*pa && *pb)
222 {
223 *dest = 1;
224 break;
225 }
226 pa += astride;
227 pb += bstride;
228 }
229
230 dest += rxstride;
231 abase += xstride;
232 }
233 abase -= xstride * xcount;
234 bbase += ystride;
235 dest += rystride - (rxstride * xcount);
236 }
237 }
238
239 #endif
240 '