re PR libfortran/32972 (performance of pack/unpack)
[gcc.git] / libgfortran / runtime / in_pack_generic.c
1 /* Generic helper function for repacking arrays.
2 Copyright 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
30
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <string.h>
35
36 extern void *internal_pack (gfc_array_char *);
37 export_proto(internal_pack);
38
39 void *
40 internal_pack (gfc_array_char * source)
41 {
42 index_type count[GFC_MAX_DIMENSIONS];
43 index_type extent[GFC_MAX_DIMENSIONS];
44 index_type stride[GFC_MAX_DIMENSIONS];
45 index_type stride0;
46 index_type dim;
47 index_type ssize;
48 const char *src;
49 char *dest;
50 void *destptr;
51 int n;
52 int packed;
53 index_type size;
54 int type;
55
56 if (source->dim[0].stride == 0)
57 {
58 source->dim[0].stride = 1;
59 return source->data;
60 }
61
62 type = GFC_DESCRIPTOR_TYPE (source);
63 size = GFC_DESCRIPTOR_SIZE (source);
64 switch (type)
65 {
66 case GFC_DTYPE_INTEGER:
67 case GFC_DTYPE_LOGICAL:
68 switch (size)
69 {
70 case sizeof (GFC_INTEGER_1):
71 return internal_pack_1 ((gfc_array_i1 *) source);
72
73 case sizeof (GFC_INTEGER_2):
74 return internal_pack_2 ((gfc_array_i2 *) source);
75
76 case sizeof (GFC_INTEGER_4):
77 return internal_pack_4 ((gfc_array_i4 *) source);
78
79 case sizeof (GFC_INTEGER_8):
80 return internal_pack_8 ((gfc_array_i8 *) source);
81
82 #if defined(HAVE_GFC_INTEGER_16)
83 case sizeof (GFC_INTEGER_16):
84 return internal_pack_16 (gfc_array_i16 *) source);
85 #endif
86 }
87 break;
88
89 case GFC_DTYPE_REAL:
90 switch (size)
91 {
92 case sizeof (GFC_REAL_4):
93 return internal_pack_r4 ((gfc_array_r4 *) source);
94
95 case sizeof (GFC_REAL_8):
96 return internal_pack_r8 ((gfc_array_r8 *) source);
97
98 #if defined (HAVE_GFC_REAL_10)
99 case sizeof (GFC_REAL_10):
100 return internal_pack_r10 ((gfc_array_r10 *) source);
101 #endif
102
103 #if defined (HAVE_GFC_REAL_16)
104 case sizeof (GFC_REAL_16):
105 return internal_pack_r16 ((gfc_array_r16 *) source);
106 #endif
107 }
108 case GFC_DTYPE_COMPLEX:
109 switch (size)
110 {
111 case sizeof (GFC_COMPLEX_4):
112 return internal_pack_c4 ((gfc_array_c4 *) source);
113
114 case sizeof (GFC_COMPLEX_8):
115 return internal_pack_c8 ((gfc_array_c8 *) source);
116
117 #if defined (HAVE_GFC_COMPLEX_10)
118 case sizeof (GFC_COMPLEX_10):
119 return internal_pack_c10 ((gfc_array_c10 *) source);
120 #endif
121
122 #if defined (HAVE_GFC_COMPLEX_16)
123 case sizeof (GFC_COMPLEX_16):
124 return internal_pack_c16 ((gfc_array_c16 *) source);
125 #endif
126
127 }
128 break;
129
130 default:
131 break;
132 }
133
134 dim = GFC_DESCRIPTOR_RANK (source);
135 ssize = 1;
136 packed = 1;
137 for (n = 0; n < dim; n++)
138 {
139 count[n] = 0;
140 stride[n] = source->dim[n].stride;
141 extent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
142 if (extent[n] <= 0)
143 {
144 /* Do nothing. */
145 packed = 1;
146 break;
147 }
148
149 if (ssize != stride[n])
150 packed = 0;
151
152 ssize *= extent[n];
153 }
154
155 if (packed)
156 return source->data;
157
158 /* Allocate storage for the destination. */
159 destptr = internal_malloc_size (ssize * size);
160 dest = (char *)destptr;
161 src = source->data;
162 stride0 = stride[0] * size;
163
164 while (src)
165 {
166 /* Copy the data. */
167 memcpy(dest, src, size);
168 /* Advance to the next element. */
169 dest += size;
170 src += stride0;
171 count[0]++;
172 /* Advance to the next source element. */
173 n = 0;
174 while (count[n] == extent[n])
175 {
176 /* When we get to the end of a dimension, reset it and increment
177 the next dimension. */
178 count[n] = 0;
179 /* We could precalculate these products, but this is a less
180 frequently used path so probably not worth it. */
181 src -= stride[n] * extent[n] * size;
182 n++;
183 if (n == dim)
184 {
185 src = NULL;
186 break;
187 }
188 else
189 {
190 count[n]++;
191 src += stride[n] * size;
192 }
193 }
194 }
195 return destptr;
196 }