runtime: abort stack scan in cases that we cannot unwind the stack
[gcc.git] / libgo / go / math / trig_reduce.go
1 // Copyright 2018 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package math
6
7 import (
8 "math/bits"
9 )
10
11 // reduceThreshold is the maximum value where the reduction using Pi/4
12 // in 3 float64 parts still gives accurate results. Above this
13 // threshold Payne-Hanek range reduction must be used.
14 const reduceThreshold = (1 << 52) / (4 / Pi)
15
16 // trigReduce implements Payne-Hanek range reduction by Pi/4
17 // for x > 0. It returns the integer part mod 8 (j) and
18 // the fractional part (z) of x / (Pi/4).
19 // The implementation is based on:
20 // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
21 // K. C. Ng et al, March 24, 1992
22 // The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic.
23 func trigReduce(x float64) (j uint64, z float64) {
24 const PI4 = Pi / 4
25 if x < PI4 {
26 return 0, x
27 }
28 // Extract out the integer and exponent such that,
29 // x = ix * 2 ** exp.
30 ix := Float64bits(x)
31 exp := int(ix>>shift&mask) - bias - shift
32 ix &^= mask << shift
33 ix |= 1 << shift
34 // Use the exponent to extract the 3 appropriate uint64 digits from mPi4,
35 // B ~ (z0, z1, z2), such that the product leading digit has the exponent -61.
36 // Note, exp >= -53 since x >= PI4 and exp < 971 for maximum float64.
37 digit, bitshift := uint(exp+61)/64, uint(exp+61)%64
38 z0 := (mPi4[digit] << bitshift) | (mPi4[digit+1] >> (64 - bitshift))
39 z1 := (mPi4[digit+1] << bitshift) | (mPi4[digit+2] >> (64 - bitshift))
40 z2 := (mPi4[digit+2] << bitshift) | (mPi4[digit+3] >> (64 - bitshift))
41 // Multiply mantissa by the digits and extract the upper two digits (hi, lo).
42 z2hi, _ := bits.Mul64(z2, ix)
43 z1hi, z1lo := bits.Mul64(z1, ix)
44 z0lo := z0 * ix
45 lo, c := bits.Add64(z1lo, z2hi, 0)
46 hi, _ := bits.Add64(z0lo, z1hi, c)
47 // The top 3 bits are j.
48 j = hi >> 61
49 // Extract the fraction and find its magnitude.
50 hi = hi<<3 | lo>>61
51 lz := uint(bits.LeadingZeros64(hi))
52 e := uint64(bias - (lz + 1))
53 // Clear implicit mantissa bit and shift into place.
54 hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
55 hi >>= 64 - shift
56 // Include the exponent and convert to a float.
57 hi |= e << shift
58 z = Float64frombits(hi)
59 // Map zeros to origin.
60 if j&1 == 1 {
61 j++
62 j &= 7
63 z--
64 }
65 // Multiply the fractional part by pi/4.
66 return j, z * PI4
67 }
68
69 // mPi4 is the binary digits of 4/pi as a uint64 array,
70 // that is, 4/pi = Sum mPi4[i]*2^(-64*i)
71 // 19 64-bit digits and the leading one bit give 1217 bits
72 // of precision to handle the largest possible float64 exponent.
73 var mPi4 = [...]uint64{
74 0x0000000000000001,
75 0x45f306dc9c882a53,
76 0xf84eafa3ea69bb81,
77 0xb6c52b3278872083,
78 0xfca2c757bd778ac3,
79 0x6e48dc74849ba5c0,
80 0x0c925dd413a32439,
81 0xfc3bd63962534e7d,
82 0xd1046bea5d768909,
83 0xd338e04d68befc82,
84 0x7323ac7306a673e9,
85 0x3908bf177bf25076,
86 0x3ff12fffbc0b301f,
87 0xde5e2316b414da3e,
88 0xda6cfd9e4f96136e,
89 0x9e8c7ecd3cbfd45a,
90 0xea4f758fd7cbe2f6,
91 0x7a0e73ef14a525d4,
92 0xd7f6bf623f1aba10,
93 0xac06608df8f6d757,
94 }