runtime: correct facilities names in s390 CPU support
[gcc.git] / libgo / go / net / ip.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // IP address manipulations
6 //
7 // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
8 // An IPv4 address can be converted to an IPv6 address by
9 // adding a canonical prefix (10 zeros, 2 0xFFs).
10 // This library accepts either size of byte slice but always
11 // returns 16-byte addresses.
12
13 package net
14
15 import "internal/bytealg"
16
17 // IP address lengths (bytes).
18 const (
19 IPv4len = 4
20 IPv6len = 16
21 )
22
23 // An IP is a single IP address, a slice of bytes.
24 // Functions in this package accept either 4-byte (IPv4)
25 // or 16-byte (IPv6) slices as input.
26 //
27 // Note that in this documentation, referring to an
28 // IP address as an IPv4 address or an IPv6 address
29 // is a semantic property of the address, not just the
30 // length of the byte slice: a 16-byte slice can still
31 // be an IPv4 address.
32 type IP []byte
33
34 // An IP mask is an IP address.
35 type IPMask []byte
36
37 // An IPNet represents an IP network.
38 type IPNet struct {
39 IP IP // network number
40 Mask IPMask // network mask
41 }
42
43 // IPv4 returns the IP address (in 16-byte form) of the
44 // IPv4 address a.b.c.d.
45 func IPv4(a, b, c, d byte) IP {
46 p := make(IP, IPv6len)
47 copy(p, v4InV6Prefix)
48 p[12] = a
49 p[13] = b
50 p[14] = c
51 p[15] = d
52 return p
53 }
54
55 var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
56
57 // IPv4Mask returns the IP mask (in 4-byte form) of the
58 // IPv4 mask a.b.c.d.
59 func IPv4Mask(a, b, c, d byte) IPMask {
60 p := make(IPMask, IPv4len)
61 p[0] = a
62 p[1] = b
63 p[2] = c
64 p[3] = d
65 return p
66 }
67
68 // CIDRMask returns an IPMask consisting of `ones' 1 bits
69 // followed by 0s up to a total length of `bits' bits.
70 // For a mask of this form, CIDRMask is the inverse of IPMask.Size.
71 func CIDRMask(ones, bits int) IPMask {
72 if bits != 8*IPv4len && bits != 8*IPv6len {
73 return nil
74 }
75 if ones < 0 || ones > bits {
76 return nil
77 }
78 l := bits / 8
79 m := make(IPMask, l)
80 n := uint(ones)
81 for i := 0; i < l; i++ {
82 if n >= 8 {
83 m[i] = 0xff
84 n -= 8
85 continue
86 }
87 m[i] = ^byte(0xff >> n)
88 n = 0
89 }
90 return m
91 }
92
93 // Well-known IPv4 addresses
94 var (
95 IPv4bcast = IPv4(255, 255, 255, 255) // limited broadcast
96 IPv4allsys = IPv4(224, 0, 0, 1) // all systems
97 IPv4allrouter = IPv4(224, 0, 0, 2) // all routers
98 IPv4zero = IPv4(0, 0, 0, 0) // all zeros
99 )
100
101 // Well-known IPv6 addresses
102 var (
103 IPv6zero = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
104 IPv6unspecified = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
105 IPv6loopback = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
106 IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
107 IPv6linklocalallnodes = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
108 IPv6linklocalallrouters = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
109 )
110
111 // IsUnspecified reports whether ip is an unspecified address, either
112 // the IPv4 address "0.0.0.0" or the IPv6 address "::".
113 func (ip IP) IsUnspecified() bool {
114 return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
115 }
116
117 // IsLoopback reports whether ip is a loopback address.
118 func (ip IP) IsLoopback() bool {
119 if ip4 := ip.To4(); ip4 != nil {
120 return ip4[0] == 127
121 }
122 return ip.Equal(IPv6loopback)
123 }
124
125 // IsMulticast reports whether ip is a multicast address.
126 func (ip IP) IsMulticast() bool {
127 if ip4 := ip.To4(); ip4 != nil {
128 return ip4[0]&0xf0 == 0xe0
129 }
130 return len(ip) == IPv6len && ip[0] == 0xff
131 }
132
133 // IsInterfaceLocalMulticast reports whether ip is
134 // an interface-local multicast address.
135 func (ip IP) IsInterfaceLocalMulticast() bool {
136 return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
137 }
138
139 // IsLinkLocalMulticast reports whether ip is a link-local
140 // multicast address.
141 func (ip IP) IsLinkLocalMulticast() bool {
142 if ip4 := ip.To4(); ip4 != nil {
143 return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
144 }
145 return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
146 }
147
148 // IsLinkLocalUnicast reports whether ip is a link-local
149 // unicast address.
150 func (ip IP) IsLinkLocalUnicast() bool {
151 if ip4 := ip.To4(); ip4 != nil {
152 return ip4[0] == 169 && ip4[1] == 254
153 }
154 return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
155 }
156
157 // IsGlobalUnicast reports whether ip is a global unicast
158 // address.
159 //
160 // The identification of global unicast addresses uses address type
161 // identification as defined in RFC 1122, RFC 4632 and RFC 4291 with
162 // the exception of IPv4 directed broadcast addresses.
163 // It returns true even if ip is in IPv4 private address space or
164 // local IPv6 unicast address space.
165 func (ip IP) IsGlobalUnicast() bool {
166 return (len(ip) == IPv4len || len(ip) == IPv6len) &&
167 !ip.Equal(IPv4bcast) &&
168 !ip.IsUnspecified() &&
169 !ip.IsLoopback() &&
170 !ip.IsMulticast() &&
171 !ip.IsLinkLocalUnicast()
172 }
173
174 // Is p all zeros?
175 func isZeros(p IP) bool {
176 for i := 0; i < len(p); i++ {
177 if p[i] != 0 {
178 return false
179 }
180 }
181 return true
182 }
183
184 // To4 converts the IPv4 address ip to a 4-byte representation.
185 // If ip is not an IPv4 address, To4 returns nil.
186 func (ip IP) To4() IP {
187 if len(ip) == IPv4len {
188 return ip
189 }
190 if len(ip) == IPv6len &&
191 isZeros(ip[0:10]) &&
192 ip[10] == 0xff &&
193 ip[11] == 0xff {
194 return ip[12:16]
195 }
196 return nil
197 }
198
199 // To16 converts the IP address ip to a 16-byte representation.
200 // If ip is not an IP address (it is the wrong length), To16 returns nil.
201 func (ip IP) To16() IP {
202 if len(ip) == IPv4len {
203 return IPv4(ip[0], ip[1], ip[2], ip[3])
204 }
205 if len(ip) == IPv6len {
206 return ip
207 }
208 return nil
209 }
210
211 // Default route masks for IPv4.
212 var (
213 classAMask = IPv4Mask(0xff, 0, 0, 0)
214 classBMask = IPv4Mask(0xff, 0xff, 0, 0)
215 classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
216 )
217
218 // DefaultMask returns the default IP mask for the IP address ip.
219 // Only IPv4 addresses have default masks; DefaultMask returns
220 // nil if ip is not a valid IPv4 address.
221 func (ip IP) DefaultMask() IPMask {
222 if ip = ip.To4(); ip == nil {
223 return nil
224 }
225 switch {
226 case ip[0] < 0x80:
227 return classAMask
228 case ip[0] < 0xC0:
229 return classBMask
230 default:
231 return classCMask
232 }
233 }
234
235 func allFF(b []byte) bool {
236 for _, c := range b {
237 if c != 0xff {
238 return false
239 }
240 }
241 return true
242 }
243
244 // Mask returns the result of masking the IP address ip with mask.
245 func (ip IP) Mask(mask IPMask) IP {
246 if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
247 mask = mask[12:]
248 }
249 if len(mask) == IPv4len && len(ip) == IPv6len && bytealg.Equal(ip[:12], v4InV6Prefix) {
250 ip = ip[12:]
251 }
252 n := len(ip)
253 if n != len(mask) {
254 return nil
255 }
256 out := make(IP, n)
257 for i := 0; i < n; i++ {
258 out[i] = ip[i] & mask[i]
259 }
260 return out
261 }
262
263 // ubtoa encodes the string form of the integer v to dst[start:] and
264 // returns the number of bytes written to dst. The caller must ensure
265 // that dst has sufficient length.
266 func ubtoa(dst []byte, start int, v byte) int {
267 if v < 10 {
268 dst[start] = v + '0'
269 return 1
270 } else if v < 100 {
271 dst[start+1] = v%10 + '0'
272 dst[start] = v/10 + '0'
273 return 2
274 }
275
276 dst[start+2] = v%10 + '0'
277 dst[start+1] = (v/10)%10 + '0'
278 dst[start] = v/100 + '0'
279 return 3
280 }
281
282 // String returns the string form of the IP address ip.
283 // It returns one of 4 forms:
284 // - "<nil>", if ip has length 0
285 // - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
286 // - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address
287 // - the hexadecimal form of ip, without punctuation, if no other cases apply
288 func (ip IP) String() string {
289 p := ip
290
291 if len(ip) == 0 {
292 return "<nil>"
293 }
294
295 // If IPv4, use dotted notation.
296 if p4 := p.To4(); len(p4) == IPv4len {
297 const maxIPv4StringLen = len("255.255.255.255")
298 b := make([]byte, maxIPv4StringLen)
299
300 n := ubtoa(b, 0, p4[0])
301 b[n] = '.'
302 n++
303
304 n += ubtoa(b, n, p4[1])
305 b[n] = '.'
306 n++
307
308 n += ubtoa(b, n, p4[2])
309 b[n] = '.'
310 n++
311
312 n += ubtoa(b, n, p4[3])
313 return string(b[:n])
314 }
315 if len(p) != IPv6len {
316 return "?" + hexString(ip)
317 }
318
319 // Find longest run of zeros.
320 e0 := -1
321 e1 := -1
322 for i := 0; i < IPv6len; i += 2 {
323 j := i
324 for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
325 j += 2
326 }
327 if j > i && j-i > e1-e0 {
328 e0 = i
329 e1 = j
330 i = j
331 }
332 }
333 // The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
334 if e1-e0 <= 2 {
335 e0 = -1
336 e1 = -1
337 }
338
339 const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
340 b := make([]byte, 0, maxLen)
341
342 // Print with possible :: in place of run of zeros
343 for i := 0; i < IPv6len; i += 2 {
344 if i == e0 {
345 b = append(b, ':', ':')
346 i = e1
347 if i >= IPv6len {
348 break
349 }
350 } else if i > 0 {
351 b = append(b, ':')
352 }
353 b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
354 }
355 return string(b)
356 }
357
358 func hexString(b []byte) string {
359 s := make([]byte, len(b)*2)
360 for i, tn := range b {
361 s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
362 }
363 return string(s)
364 }
365
366 // ipEmptyString is like ip.String except that it returns
367 // an empty string when ip is unset.
368 func ipEmptyString(ip IP) string {
369 if len(ip) == 0 {
370 return ""
371 }
372 return ip.String()
373 }
374
375 // MarshalText implements the encoding.TextMarshaler interface.
376 // The encoding is the same as returned by String, with one exception:
377 // When len(ip) is zero, it returns an empty slice.
378 func (ip IP) MarshalText() ([]byte, error) {
379 if len(ip) == 0 {
380 return []byte(""), nil
381 }
382 if len(ip) != IPv4len && len(ip) != IPv6len {
383 return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
384 }
385 return []byte(ip.String()), nil
386 }
387
388 // UnmarshalText implements the encoding.TextUnmarshaler interface.
389 // The IP address is expected in a form accepted by ParseIP.
390 func (ip *IP) UnmarshalText(text []byte) error {
391 if len(text) == 0 {
392 *ip = nil
393 return nil
394 }
395 s := string(text)
396 x := ParseIP(s)
397 if x == nil {
398 return &ParseError{Type: "IP address", Text: s}
399 }
400 *ip = x
401 return nil
402 }
403
404 // Equal reports whether ip and x are the same IP address.
405 // An IPv4 address and that same address in IPv6 form are
406 // considered to be equal.
407 func (ip IP) Equal(x IP) bool {
408 if len(ip) == len(x) {
409 return bytealg.Equal(ip, x)
410 }
411 if len(ip) == IPv4len && len(x) == IPv6len {
412 return bytealg.Equal(x[0:12], v4InV6Prefix) && bytealg.Equal(ip, x[12:])
413 }
414 if len(ip) == IPv6len && len(x) == IPv4len {
415 return bytealg.Equal(ip[0:12], v4InV6Prefix) && bytealg.Equal(ip[12:], x)
416 }
417 return false
418 }
419
420 func (ip IP) matchAddrFamily(x IP) bool {
421 return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
422 }
423
424 // If mask is a sequence of 1 bits followed by 0 bits,
425 // return the number of 1 bits.
426 func simpleMaskLength(mask IPMask) int {
427 var n int
428 for i, v := range mask {
429 if v == 0xff {
430 n += 8
431 continue
432 }
433 // found non-ff byte
434 // count 1 bits
435 for v&0x80 != 0 {
436 n++
437 v <<= 1
438 }
439 // rest must be 0 bits
440 if v != 0 {
441 return -1
442 }
443 for i++; i < len(mask); i++ {
444 if mask[i] != 0 {
445 return -1
446 }
447 }
448 break
449 }
450 return n
451 }
452
453 // Size returns the number of leading ones and total bits in the mask.
454 // If the mask is not in the canonical form--ones followed by zeros--then
455 // Size returns 0, 0.
456 func (m IPMask) Size() (ones, bits int) {
457 ones, bits = simpleMaskLength(m), len(m)*8
458 if ones == -1 {
459 return 0, 0
460 }
461 return
462 }
463
464 // String returns the hexadecimal form of m, with no punctuation.
465 func (m IPMask) String() string {
466 if len(m) == 0 {
467 return "<nil>"
468 }
469 return hexString(m)
470 }
471
472 func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
473 if ip = n.IP.To4(); ip == nil {
474 ip = n.IP
475 if len(ip) != IPv6len {
476 return nil, nil
477 }
478 }
479 m = n.Mask
480 switch len(m) {
481 case IPv4len:
482 if len(ip) != IPv4len {
483 return nil, nil
484 }
485 case IPv6len:
486 if len(ip) == IPv4len {
487 m = m[12:]
488 }
489 default:
490 return nil, nil
491 }
492 return
493 }
494
495 // Contains reports whether the network includes ip.
496 func (n *IPNet) Contains(ip IP) bool {
497 nn, m := networkNumberAndMask(n)
498 if x := ip.To4(); x != nil {
499 ip = x
500 }
501 l := len(ip)
502 if l != len(nn) {
503 return false
504 }
505 for i := 0; i < l; i++ {
506 if nn[i]&m[i] != ip[i]&m[i] {
507 return false
508 }
509 }
510 return true
511 }
512
513 // Network returns the address's network name, "ip+net".
514 func (n *IPNet) Network() string { return "ip+net" }
515
516 // String returns the CIDR notation of n like "192.0.2.0/24"
517 // or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
518 // If the mask is not in the canonical form, it returns the
519 // string which consists of an IP address, followed by a slash
520 // character and a mask expressed as hexadecimal form with no
521 // punctuation like "198.51.100.0/c000ff00".
522 func (n *IPNet) String() string {
523 nn, m := networkNumberAndMask(n)
524 if nn == nil || m == nil {
525 return "<nil>"
526 }
527 l := simpleMaskLength(m)
528 if l == -1 {
529 return nn.String() + "/" + m.String()
530 }
531 return nn.String() + "/" + uitoa(uint(l))
532 }
533
534 // Parse IPv4 address (d.d.d.d).
535 func parseIPv4(s string) IP {
536 var p [IPv4len]byte
537 for i := 0; i < IPv4len; i++ {
538 if len(s) == 0 {
539 // Missing octets.
540 return nil
541 }
542 if i > 0 {
543 if s[0] != '.' {
544 return nil
545 }
546 s = s[1:]
547 }
548 n, c, ok := dtoi(s)
549 if !ok || n > 0xFF {
550 return nil
551 }
552 s = s[c:]
553 p[i] = byte(n)
554 }
555 if len(s) != 0 {
556 return nil
557 }
558 return IPv4(p[0], p[1], p[2], p[3])
559 }
560
561 // parseIPv6Zone parses s as a literal IPv6 address and its associated zone
562 // identifier which is described in RFC 4007.
563 func parseIPv6Zone(s string) (IP, string) {
564 s, zone := splitHostZone(s)
565 return parseIPv6(s), zone
566 }
567
568 // parseIPv6 parses s as a literal IPv6 address described in RFC 4291
569 // and RFC 5952.
570 func parseIPv6(s string) (ip IP) {
571 ip = make(IP, IPv6len)
572 ellipsis := -1 // position of ellipsis in ip
573
574 // Might have leading ellipsis
575 if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
576 ellipsis = 0
577 s = s[2:]
578 // Might be only ellipsis
579 if len(s) == 0 {
580 return ip
581 }
582 }
583
584 // Loop, parsing hex numbers followed by colon.
585 i := 0
586 for i < IPv6len {
587 // Hex number.
588 n, c, ok := xtoi(s)
589 if !ok || n > 0xFFFF {
590 return nil
591 }
592
593 // If followed by dot, might be in trailing IPv4.
594 if c < len(s) && s[c] == '.' {
595 if ellipsis < 0 && i != IPv6len-IPv4len {
596 // Not the right place.
597 return nil
598 }
599 if i+IPv4len > IPv6len {
600 // Not enough room.
601 return nil
602 }
603 ip4 := parseIPv4(s)
604 if ip4 == nil {
605 return nil
606 }
607 ip[i] = ip4[12]
608 ip[i+1] = ip4[13]
609 ip[i+2] = ip4[14]
610 ip[i+3] = ip4[15]
611 s = ""
612 i += IPv4len
613 break
614 }
615
616 // Save this 16-bit chunk.
617 ip[i] = byte(n >> 8)
618 ip[i+1] = byte(n)
619 i += 2
620
621 // Stop at end of string.
622 s = s[c:]
623 if len(s) == 0 {
624 break
625 }
626
627 // Otherwise must be followed by colon and more.
628 if s[0] != ':' || len(s) == 1 {
629 return nil
630 }
631 s = s[1:]
632
633 // Look for ellipsis.
634 if s[0] == ':' {
635 if ellipsis >= 0 { // already have one
636 return nil
637 }
638 ellipsis = i
639 s = s[1:]
640 if len(s) == 0 { // can be at end
641 break
642 }
643 }
644 }
645
646 // Must have used entire string.
647 if len(s) != 0 {
648 return nil
649 }
650
651 // If didn't parse enough, expand ellipsis.
652 if i < IPv6len {
653 if ellipsis < 0 {
654 return nil
655 }
656 n := IPv6len - i
657 for j := i - 1; j >= ellipsis; j-- {
658 ip[j+n] = ip[j]
659 }
660 for j := ellipsis + n - 1; j >= ellipsis; j-- {
661 ip[j] = 0
662 }
663 } else if ellipsis >= 0 {
664 // Ellipsis must represent at least one 0 group.
665 return nil
666 }
667 return ip
668 }
669
670 // ParseIP parses s as an IP address, returning the result.
671 // The string s can be in dotted decimal ("192.0.2.1")
672 // or IPv6 ("2001:db8::68") form.
673 // If s is not a valid textual representation of an IP address,
674 // ParseIP returns nil.
675 func ParseIP(s string) IP {
676 for i := 0; i < len(s); i++ {
677 switch s[i] {
678 case '.':
679 return parseIPv4(s)
680 case ':':
681 return parseIPv6(s)
682 }
683 }
684 return nil
685 }
686
687 // parseIPZone parses s as an IP address, return it and its associated zone
688 // identifier (IPv6 only).
689 func parseIPZone(s string) (IP, string) {
690 for i := 0; i < len(s); i++ {
691 switch s[i] {
692 case '.':
693 return parseIPv4(s), ""
694 case ':':
695 return parseIPv6Zone(s)
696 }
697 }
698 return nil, ""
699 }
700
701 // ParseCIDR parses s as a CIDR notation IP address and prefix length,
702 // like "192.0.2.0/24" or "2001:db8::/32", as defined in
703 // RFC 4632 and RFC 4291.
704 //
705 // It returns the IP address and the network implied by the IP and
706 // prefix length.
707 // For example, ParseCIDR("192.0.2.1/24") returns the IP address
708 // 192.0.2.1 and the network 192.0.2.0/24.
709 func ParseCIDR(s string) (IP, *IPNet, error) {
710 i := bytealg.IndexByteString(s, '/')
711 if i < 0 {
712 return nil, nil, &ParseError{Type: "CIDR address", Text: s}
713 }
714 addr, mask := s[:i], s[i+1:]
715 iplen := IPv4len
716 ip := parseIPv4(addr)
717 if ip == nil {
718 iplen = IPv6len
719 ip = parseIPv6(addr)
720 }
721 n, i, ok := dtoi(mask)
722 if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
723 return nil, nil, &ParseError{Type: "CIDR address", Text: s}
724 }
725 m := CIDRMask(n, 8*iplen)
726 return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
727 }