natFinalizerThread.cc: New file.
[gcc.git] / libjava / boehm.cc
1 // boehm.cc - interface between libjava and Boehm GC.
2
3 /* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation
4
5 This file is part of libgcj.
6
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
10
11 #include <config.h>
12
13 #include <stdio.h>
14
15 #include <jvm.h>
16 #include <gcj/cni.h>
17
18 #include <java/lang/Class.h>
19 #include <java/lang/reflect/Modifier.h>
20 #include <java-interp.h>
21
22 // More nastiness: the GC wants to define TRUE and FALSE. We don't
23 // need the Java definitions (themselves a hack), so we undefine them.
24 #undef TRUE
25 #undef FALSE
26
27 extern "C"
28 {
29 #include <private/gc_priv.h>
30 #include <private/gc_pmark.h>
31 #include <gc_gcj.h>
32
33 #ifdef THREAD_LOCAL_ALLOC
34 # define GC_REDIRECT_TO_LOCAL
35 # include <gc_local_alloc.h>
36 #endif
37
38 // These aren't declared in any Boehm GC header.
39 void GC_finalize_all (void);
40 ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
41 };
42
43 // We must check for plausibility ourselves.
44 #define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
45 Top=GC_MARK_AND_PUSH((GC_PTR)Obj, Top, Limit, (GC_PTR *)Source)
46
47 \f
48
49 // Nonzero if this module has been initialized.
50 static int initialized = 0;
51
52 #if 0
53 // `kind' index used when allocating Java objects.
54 static int obj_kind_x;
55
56 // Freelist used for Java objects.
57 static ptr_t *obj_free_list;
58 #endif /* 0 */
59
60 // `kind' index used when allocating Java arrays.
61 static int array_kind_x;
62
63 // Freelist used for Java arrays.
64 static ptr_t *array_free_list;
65
66 // Lock used to protect access to Boehm's GC_enable/GC_disable functions.
67 static _Jv_Mutex_t disable_gc_mutex;
68
69 \f
70
71 // This is called by the GC during the mark phase. It marks a Java
72 // object. We use `void *' arguments and return, and not what the
73 // Boehm GC wants, to avoid pollution in our headers.
74 void *
75 _Jv_MarkObj (void *addr, void *msp, void *msl, void * /* env */)
76 {
77 mse *mark_stack_ptr = (mse *) msp;
78 mse *mark_stack_limit = (mse *) msl;
79 jobject obj = (jobject) addr;
80
81 // FIXME: if env is 1, this object was allocated through the debug
82 // interface, and addr points to the beginning of the debug header.
83 // In that case, we should really add the size of the header to addr.
84
85 _Jv_VTable *dt = *(_Jv_VTable **) addr;
86 // The object might not yet have its vtable set, or it might
87 // really be an object on the freelist. In either case, the vtable slot
88 // will either be 0, or it will point to a cleared object.
89 // This assumes Java objects have size at least 3 words,
90 // including the header. But this should remain true, since this
91 // should only be used with debugging allocation or with large objects.
92 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
93 return mark_stack_ptr;
94 jclass klass = dt->clas;
95 ptr_t p;
96
97 # ifndef JV_HASH_SYNCHRONIZATION
98 // Every object has a sync_info pointer.
99 p = (ptr_t) obj->sync_info;
100 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o1label);
101 # endif
102 // Mark the object's class.
103 p = (ptr_t) klass;
104 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
105
106 if (__builtin_expect (klass == &java::lang::Class::class$, false))
107 {
108 // Currently we allocate some of the memory referenced from class objects
109 // as pointerfree memory, and then mark it more intelligently here.
110 // We ensure that the ClassClass mark descriptor forces invocation of
111 // this procedure.
112 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
113 // collector, we need to make sure that the class object is written whenever
114 // any of the subobjects are altered and may need rescanning. This may be tricky
115 // during construction, and this may not be the right way to do this with
116 // incremental collection.
117 // If we overflow the mark stack, we will rescan the class object, so we should
118 // be OK. The same applies if we redo the mark phase because win32 unmapped part
119 // of our root set. - HB
120 jclass c = (jclass) addr;
121
122 p = (ptr_t) c->name;
123 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c3label);
124 p = (ptr_t) c->superclass;
125 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c4label);
126 for (int i = 0; i < c->constants.size; ++i)
127 {
128 /* FIXME: We could make this more precise by using the tags -KKT */
129 p = (ptr_t) c->constants.data[i].p;
130 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5label);
131 }
132
133 #ifdef INTERPRETER
134 if (_Jv_IsInterpretedClass (c))
135 {
136 p = (ptr_t) c->constants.tags;
137 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5alabel);
138 p = (ptr_t) c->constants.data;
139 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5blabel);
140 p = (ptr_t) c->vtable;
141 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5clabel);
142 }
143 #endif
144
145 // If the class is an array, then the methods field holds a
146 // pointer to the element class. If the class is primitive,
147 // then the methods field holds a pointer to the array class.
148 p = (ptr_t) c->methods;
149 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c6label);
150
151
152 if (! c->isArray() && ! c->isPrimitive())
153 {
154 // Scan each method in the cases where `methods' really
155 // points to a methods structure.
156 for (int i = 0; i < c->method_count; ++i)
157 {
158 p = (ptr_t) c->methods[i].name;
159 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
160 cm1label);
161 p = (ptr_t) c->methods[i].signature;
162 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
163 cm2label);
164
165 // FIXME: `ncode' entry?
166
167 #ifdef INTERPRETER
168 // The interpreter installs a heap-allocated
169 // trampoline here, so we'll mark it.
170 if (_Jv_IsInterpretedClass (c))
171 {
172 p = (ptr_t) c->methods[i].ncode;
173 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
174 cm3label);
175 }
176 #endif
177 }
178 }
179
180 // Mark all the fields.
181 p = (ptr_t) c->fields;
182 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8label);
183 for (int i = 0; i < c->field_count; ++i)
184 {
185 _Jv_Field* field = &c->fields[i];
186
187 #ifndef COMPACT_FIELDS
188 p = (ptr_t) field->name;
189 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8alabel);
190 #endif
191 p = (ptr_t) field->type;
192 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8blabel);
193
194 // For the interpreter, we also need to mark the memory
195 // containing static members
196 if ((field->flags & java::lang::reflect::Modifier::STATIC))
197 {
198 p = (ptr_t) field->u.addr;
199 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8clabel);
200
201 // also, if the static member is a reference,
202 // mark also the value pointed to. We check for isResolved
203 // since marking can happen before memory is allocated for
204 // static members.
205 if (JvFieldIsRef (field) && field->isResolved())
206 {
207 jobject val = *(jobject*) field->u.addr;
208 p = (ptr_t) val;
209 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
210 c, c8elabel);
211 }
212 }
213 }
214
215 p = (ptr_t) c->vtable;
216 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c9label);
217 p = (ptr_t) c->interfaces;
218 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cAlabel);
219 for (int i = 0; i < c->interface_count; ++i)
220 {
221 p = (ptr_t) c->interfaces[i];
222 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cClabel);
223 }
224 p = (ptr_t) c->loader;
225 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cBlabel);
226 p = (ptr_t) c->arrayclass;
227 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cDlabel);
228
229 #ifdef INTERPRETER
230 if (_Jv_IsInterpretedClass (c))
231 {
232 _Jv_InterpClass* ic = (_Jv_InterpClass*)c;
233
234 p = (ptr_t) ic->interpreted_methods;
235 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cElabel);
236
237 for (int i = 0; i < c->method_count; i++)
238 {
239 p = (ptr_t) ic->interpreted_methods[i];
240 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
241 cFlabel);
242 }
243
244 p = (ptr_t) ic->field_initializers;
245 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
246
247 }
248 #endif
249
250 }
251 else
252 {
253 // NOTE: each class only holds information about the class
254 // itself. So we must do the marking for the entire inheritance
255 // tree in order to mark all fields. FIXME: what about
256 // interfaces? We skip Object here, because Object only has a
257 // sync_info, and we handled that earlier.
258 // Note: occasionally `klass' can be null. For instance, this
259 // can happen if a GC occurs between the point where an object
260 // is allocated and where the vtbl slot is set.
261 while (klass && klass != &java::lang::Object::class$)
262 {
263 jfieldID field = JvGetFirstInstanceField (klass);
264 jint max = JvNumInstanceFields (klass);
265
266 for (int i = 0; i < max; ++i)
267 {
268 if (JvFieldIsRef (field))
269 {
270 jobject val = JvGetObjectField (obj, field);
271 p = (ptr_t) val;
272 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
273 obj, elabel);
274 }
275 field = field->getNextField ();
276 }
277 klass = klass->getSuperclass();
278 }
279 }
280
281 return mark_stack_ptr;
282 }
283
284 // This is called by the GC during the mark phase. It marks a Java
285 // array (of objects). We use `void *' arguments and return, and not
286 // what the Boehm GC wants, to avoid pollution in our headers.
287 void *
288 _Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
289 {
290 mse *mark_stack_ptr = (mse *) msp;
291 mse *mark_stack_limit = (mse *) msl;
292 jobjectArray array = (jobjectArray) addr;
293
294 _Jv_VTable *dt = *(_Jv_VTable **) addr;
295 // Assumes size >= 3 words. That's currently true since arrays have
296 // a vtable, sync pointer, and size. If the sync pointer goes away,
297 // we may need to round up the size.
298 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
299 return mark_stack_ptr;
300 jclass klass = dt->clas;
301 ptr_t p;
302
303 # ifndef JV_HASH_SYNCHRONIZATION
304 // Every object has a sync_info pointer.
305 p = (ptr_t) array->sync_info;
306 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e1label);
307 # endif
308 // Mark the object's class.
309 p = (ptr_t) klass;
310 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, &(dt -> clas), o2label);
311
312 for (int i = 0; i < JvGetArrayLength (array); ++i)
313 {
314 jobject obj = elements (array)[i];
315 p = (ptr_t) obj;
316 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e2label);
317 }
318
319 return mark_stack_ptr;
320 }
321
322 // Return GC descriptor for interpreted class
323 #ifdef INTERPRETER
324
325 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
326 // since another one could be registered first. But the compiler also
327 // knows this, so in that case everything else will break, too.
328 #define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
329 void *
330 _Jv_BuildGCDescr(jclass)
331 {
332 /* FIXME: We should really look at the class and build the descriptor. */
333 return (void *)(GCJ_DEFAULT_DESCR);
334 }
335 #endif
336
337 // Allocate some space that is known to be pointer-free.
338 void *
339 _Jv_AllocBytes (jsize size)
340 {
341 void *r = GC_MALLOC_ATOMIC (size);
342 // We have to explicitly zero memory here, as the GC doesn't
343 // guarantee that PTRFREE allocations are zeroed. Note that we
344 // don't have to do this for other allocation types because we set
345 // the `ok_init' flag in the type descriptor.
346 memset (r, 0, size);
347 return r;
348 }
349
350 // Allocate space for a new Java array.
351 // Used only for arrays of objects.
352 void *
353 _Jv_AllocArray (jsize size, jclass klass)
354 {
355 void *obj;
356 const jsize min_heap_addr = 16*1024;
357 // A heuristic. If size is less than this value, the size
358 // stored in the array can't possibly be misinterpreted as
359 // a pointer. Thus we lose nothing by scanning the object
360 // completely conservatively, since no misidentification can
361 // take place.
362
363 #ifdef GC_DEBUG
364 // There isn't much to lose by scanning this conservatively.
365 // If we didn't, the mark proc would have to understand that
366 // it needed to skip the header.
367 obj = GC_MALLOC(size);
368 #else
369 if (size < min_heap_addr)
370 obj = GC_MALLOC(size);
371 else
372 obj = GC_generic_malloc (size, array_kind_x);
373 #endif
374 *((_Jv_VTable **) obj) = klass->vtable;
375 return obj;
376 }
377
378 /* Allocate space for a new non-Java object, which does not have the usual
379 Java object header but may contain pointers to other GC'ed objects. */
380 void *
381 _Jv_AllocRawObj (jsize size)
382 {
383 return (void *) GC_MALLOC (size);
384 }
385
386 static void
387 call_finalizer (GC_PTR obj, GC_PTR client_data)
388 {
389 _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
390 jobject jobj = (jobject) obj;
391
392 (*fn) (jobj);
393 }
394
395 void
396 _Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
397 {
398 GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
399 NULL, NULL);
400 }
401
402 void
403 _Jv_RunFinalizers (void)
404 {
405 GC_invoke_finalizers ();
406 }
407
408 void
409 _Jv_RunAllFinalizers (void)
410 {
411 GC_finalize_all ();
412 }
413
414 void
415 _Jv_RunGC (void)
416 {
417 GC_gcollect ();
418 }
419
420 long
421 _Jv_GCTotalMemory (void)
422 {
423 return GC_get_heap_size ();
424 }
425
426 long
427 _Jv_GCFreeMemory (void)
428 {
429 return GC_get_free_bytes ();
430 }
431
432 void
433 _Jv_GCSetInitialHeapSize (size_t size)
434 {
435 size_t current = GC_get_heap_size ();
436 if (size > current)
437 GC_expand_hp (size - current);
438 }
439
440 void
441 _Jv_GCSetMaximumHeapSize (size_t size)
442 {
443 GC_set_max_heap_size ((GC_word) size);
444 }
445
446 // From boehm's misc.c
447 extern "C" void GC_enable();
448 extern "C" void GC_disable();
449
450 void
451 _Jv_DisableGC (void)
452 {
453 _Jv_MutexLock (&disable_gc_mutex);
454 GC_disable();
455 _Jv_MutexUnlock (&disable_gc_mutex);
456 }
457
458 void
459 _Jv_EnableGC (void)
460 {
461 _Jv_MutexLock (&disable_gc_mutex);
462 GC_enable();
463 _Jv_MutexUnlock (&disable_gc_mutex);
464 }
465
466 static void * handle_out_of_memory(size_t)
467 {
468 _Jv_ThrowNoMemory();
469 }
470
471 void
472 _Jv_InitGC (void)
473 {
474 int proc;
475 DCL_LOCK_STATE;
476
477 DISABLE_SIGNALS ();
478 LOCK ();
479
480 if (initialized)
481 {
482 UNLOCK ();
483 ENABLE_SIGNALS ();
484 return;
485 }
486 initialized = 1;
487 UNLOCK ();
488
489 // Configure the collector to use the bitmap marking descriptors that we
490 // stash in the class vtable.
491 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
492
493 // Cause an out of memory error to be thrown from the allocators,
494 // instead of returning 0. This is cheaper than checking on allocation.
495 GC_oom_fn = handle_out_of_memory;
496
497 LOCK ();
498 GC_java_finalization = 1;
499
500 // We use a different mark procedure for object arrays. This code
501 // configures a different object `kind' for object array allocation and
502 // marking. FIXME: see above.
503 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
504 * sizeof (ptr_t),
505 PTRFREE);
506 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
507
508 proc = GC_n_mark_procs++;
509 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
510
511 array_kind_x = GC_n_kinds++;
512 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
513 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
514 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
515 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
516 GC_obj_kinds[array_kind_x].ok_init = TRUE;
517
518 _Jv_MutexInit (&disable_gc_mutex);
519
520 UNLOCK ();
521 ENABLE_SIGNALS ();
522 }
523
524 #ifdef JV_HASH_SYNCHRONIZATION
525 // Allocate an object with a fake vtable pointer, which causes only
526 // the first field (beyond the fake vtable pointer) to be traced.
527 // Eventually this should probably be generalized.
528
529 static _Jv_VTable trace_one_vtable = {
530 0, // class pointer
531 (void *)(2 * sizeof(void *)),
532 // descriptor; scan 2 words incl. vtable ptr.
533 // Least significant bits must be zero to
534 // identify this as a lenght descriptor
535 {0} // First method
536 };
537
538 void *
539 _Jv_AllocTraceOne (jsize size /* includes vtable slot */)
540 {
541 return GC_GCJ_MALLOC (size, &trace_one_vtable);
542 }
543
544 #endif /* JV_HASH_SYNCHRONIZATION */
545
546 void
547 _Jv_GCInitializeFinalizers (void (*notifier) (void))
548 {
549 GC_finalize_on_demand = 1;
550 GC_finalizer_notifier = notifier;
551 }
552
553 void
554 _Jv_GCRegisterDisappearingLink (jobject *objp)
555 {
556 GC_general_register_disappearing_link ((GC_PTR *) objp, (GC_PTR) *objp);
557 }
558
559 jboolean
560 _Jv_GCCanReclaimSoftReference (jobject obj)
561 {
562 // For now, always reclaim soft references. FIXME.
563 return true;
564 }
565
566 #if 0
567 void
568 _Jv_InitGC (void)
569 {
570 int proc;
571 DCL_LOCK_STATE;
572
573 DISABLE_SIGNALS ();
574 LOCK ();
575
576 if (initialized)
577 {
578 UNLOCK ();
579 ENABLE_SIGNALS ();
580 return;
581 }
582 initialized = 1;
583
584 GC_java_finalization = 1;
585
586 // Set up state for marking and allocation of Java objects.
587 obj_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
588 * sizeof (ptr_t),
589 PTRFREE);
590 memset (obj_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
591
592 proc = GC_n_mark_procs++;
593 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkObj;
594
595 obj_kind_x = GC_n_kinds++;
596 GC_obj_kinds[obj_kind_x].ok_freelist = obj_free_list;
597 GC_obj_kinds[obj_kind_x].ok_reclaim_list = 0;
598 GC_obj_kinds[obj_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
599 GC_obj_kinds[obj_kind_x].ok_relocate_descr = FALSE;
600 GC_obj_kinds[obj_kind_x].ok_init = TRUE;
601
602 // Set up state for marking and allocation of arrays of Java
603 // objects.
604 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
605 * sizeof (ptr_t),
606 PTRFREE);
607 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
608
609 proc = GC_n_mark_procs++;
610 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
611
612 array_kind_x = GC_n_kinds++;
613 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
614 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
615 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
616 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
617 GC_obj_kinds[array_kind_x].ok_init = TRUE;
618
619 _Jv_MutexInit (&disable_gc_mutex);
620
621 UNLOCK ();
622 ENABLE_SIGNALS ();
623 }
624 #endif /* 0 */