sem_ch4.adb (Analyze_Concatenation_Rest): New procedure.
[gcc.git] / libjava / posix-threads.cc
1 // posix-threads.cc - interface between libjava and POSIX threads.
2
3 /* Copyright (C) 1998, 1999, 2000, 2001, 2004, 2006 Free Software Foundation
4
5 This file is part of libgcj.
6
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
10
11 // TO DO:
12 // * Document signal handling limitations
13
14 #include <config.h>
15
16 #include "posix.h"
17 #include "posix-threads.h"
18
19 // If we're using the Boehm GC, then we need to override some of the
20 // thread primitives. This is fairly gross.
21 #ifdef HAVE_BOEHM_GC
22 #include <gc.h>
23 #endif /* HAVE_BOEHM_GC */
24
25 #include <stdlib.h>
26 #include <time.h>
27 #include <signal.h>
28 #include <errno.h>
29 #include <limits.h>
30 #ifdef HAVE_UNISTD_H
31 #include <unistd.h> // To test for _POSIX_THREAD_PRIORITY_SCHEDULING
32 #endif
33
34 #include <gcj/cni.h>
35 #include <jvm.h>
36 #include <java/lang/Thread.h>
37 #include <java/lang/System.h>
38 #include <java/lang/Long.h>
39 #include <java/lang/OutOfMemoryError.h>
40 #include <java/lang/InternalError.h>
41
42 // This is used to implement thread startup.
43 struct starter
44 {
45 _Jv_ThreadStartFunc *method;
46 _Jv_Thread_t *data;
47 };
48
49 // This is the key used to map from the POSIX thread value back to the
50 // Java object representing the thread. The key is global to all
51 // threads, so it is ok to make it a global here.
52 pthread_key_t _Jv_ThreadKey;
53
54 // This is the key used to map from the POSIX thread value back to the
55 // _Jv_Thread_t* representing the thread.
56 pthread_key_t _Jv_ThreadDataKey;
57
58 // We keep a count of all non-daemon threads which are running. When
59 // this reaches zero, _Jv_ThreadWait returns.
60 static pthread_mutex_t daemon_mutex;
61 static pthread_cond_t daemon_cond;
62 static int non_daemon_count;
63
64 // The signal to use when interrupting a thread.
65 #if defined(LINUX_THREADS) || defined(FREEBSD_THREADS)
66 // LinuxThreads (prior to glibc 2.1) usurps both SIGUSR1 and SIGUSR2.
67 // GC on FreeBSD uses both SIGUSR1 and SIGUSR2.
68 # define INTR SIGHUP
69 #else /* LINUX_THREADS */
70 # define INTR SIGUSR2
71 #endif /* LINUX_THREADS */
72
73 //
74 // These are the flags that can appear in _Jv_Thread_t.
75 //
76
77 // Thread started.
78 #define FLAG_START 0x01
79 // Thread is daemon.
80 #define FLAG_DAEMON 0x02
81
82 \f
83
84 int
85 _Jv_MutexLock (_Jv_Mutex_t *mu)
86 {
87 pthread_t self = pthread_self ();
88 if (mu->owner == self)
89 {
90 mu->count++;
91 }
92 else
93 {
94 JvSetThreadState holder (_Jv_ThreadCurrent(), JV_BLOCKED);
95
96 # ifdef LOCK_DEBUG
97 int result = pthread_mutex_lock (&mu->mutex);
98 if (0 != result)
99 {
100 fprintf(stderr, "Pthread_mutex_lock returned %d\n", result);
101 for (;;) {}
102 }
103 # else
104 pthread_mutex_lock (&mu->mutex);
105 # endif
106 mu->count = 1;
107 mu->owner = self;
108 }
109 return 0;
110 }
111
112 // Wait for the condition variable "CV" to be notified.
113 // Return values:
114 // 0: the condition was notified, or the timeout expired.
115 // _JV_NOT_OWNER: the thread does not own the mutex "MU".
116 // _JV_INTERRUPTED: the thread was interrupted. Its interrupted flag is set.
117 int
118 _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
119 jlong millis, jint nanos)
120 {
121 pthread_t self = pthread_self();
122 if (mu->owner != self)
123 return _JV_NOT_OWNER;
124
125 struct timespec ts;
126
127 JvThreadState new_state = JV_WAITING;
128 if (millis > 0 || nanos > 0)
129 {
130 // Calculate the abstime corresponding to the timeout.
131 unsigned long long seconds;
132 unsigned long usec;
133
134 // For better accuracy, should use pthread_condattr_setclock
135 // and clock_gettime.
136 #ifdef HAVE_GETTIMEOFDAY
137 timeval tv;
138 gettimeofday (&tv, NULL);
139 usec = tv.tv_usec;
140 seconds = tv.tv_sec;
141 #else
142 unsigned long long startTime = java::lang::System::currentTimeMillis();
143 seconds = startTime / 1000;
144 /* Assume we're about half-way through this millisecond. */
145 usec = (startTime % 1000) * 1000 + 500;
146 #endif
147 /* These next two statements cannot overflow. */
148 usec += nanos / 1000;
149 usec += (millis % 1000) * 1000;
150 /* These two statements could overflow only if tv.tv_sec was
151 insanely large. */
152 seconds += millis / 1000;
153 seconds += usec / 1000000;
154
155 ts.tv_sec = seconds;
156 if (ts.tv_sec < 0 || (unsigned long long)ts.tv_sec != seconds)
157 {
158 // We treat a timeout that won't fit into a struct timespec
159 // as a wait forever.
160 millis = nanos = 0;
161 }
162 else
163 /* This next statement also cannot overflow. */
164 ts.tv_nsec = (usec % 1000000) * 1000 + (nanos % 1000);
165 }
166
167 _Jv_Thread_t *current = _Jv_ThreadCurrentData ();
168 java::lang::Thread *current_obj = _Jv_ThreadCurrent ();
169
170 pthread_mutex_lock (&current->wait_mutex);
171
172 // Now that we hold the wait mutex, check if this thread has been
173 // interrupted already.
174 if (current_obj->interrupt_flag)
175 {
176 pthread_mutex_unlock (&current->wait_mutex);
177 return _JV_INTERRUPTED;
178 }
179
180 // Set the thread's state.
181 JvSetThreadState holder (current_obj, new_state);
182
183 // Add this thread to the cv's wait set.
184 current->next = NULL;
185
186 if (cv->first == NULL)
187 cv->first = current;
188 else
189 for (_Jv_Thread_t *t = cv->first;; t = t->next)
190 {
191 if (t->next == NULL)
192 {
193 t->next = current;
194 break;
195 }
196 }
197
198 // Record the current lock depth, so it can be restored when we re-aquire it.
199 int count = mu->count;
200
201 // Release the monitor mutex.
202 mu->count = 0;
203 mu->owner = 0;
204 pthread_mutex_unlock (&mu->mutex);
205
206 int r = 0;
207 bool done_sleeping = false;
208
209 while (! done_sleeping)
210 {
211 if (millis == 0 && nanos == 0)
212 r = pthread_cond_wait (&current->wait_cond, &current->wait_mutex);
213 else
214 r = pthread_cond_timedwait (&current->wait_cond, &current->wait_mutex,
215 &ts);
216
217 // In older glibc's (prior to 2.1.3), the cond_wait functions may
218 // spuriously wake up on a signal. Catch that here.
219 if (r != EINTR)
220 done_sleeping = true;
221 }
222
223 // Check for an interrupt *before* releasing the wait mutex.
224 jboolean interrupted = current_obj->interrupt_flag;
225
226 pthread_mutex_unlock (&current->wait_mutex);
227
228 // Reaquire the monitor mutex, and restore the lock count.
229 pthread_mutex_lock (&mu->mutex);
230 mu->owner = self;
231 mu->count = count;
232
233 // If we were interrupted, or if a timeout occurred, remove ourself from
234 // the cv wait list now. (If we were notified normally, notify() will have
235 // already taken care of this)
236 if (r == ETIMEDOUT || interrupted)
237 {
238 _Jv_Thread_t *prev = NULL;
239 for (_Jv_Thread_t *t = cv->first; t != NULL; t = t->next)
240 {
241 if (t == current)
242 {
243 if (prev != NULL)
244 prev->next = t->next;
245 else
246 cv->first = t->next;
247 t->next = NULL;
248 break;
249 }
250 prev = t;
251 }
252 if (interrupted)
253 return _JV_INTERRUPTED;
254 }
255
256 return 0;
257 }
258
259 int
260 _Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
261 {
262 if (_Jv_MutexCheckMonitor (mu))
263 return _JV_NOT_OWNER;
264
265 _Jv_Thread_t *target;
266 _Jv_Thread_t *prev = NULL;
267
268 for (target = cv->first; target != NULL; target = target->next)
269 {
270 pthread_mutex_lock (&target->wait_mutex);
271
272 if (target->thread_obj->interrupt_flag)
273 {
274 // Don't notify a thread that has already been interrupted.
275 pthread_mutex_unlock (&target->wait_mutex);
276 prev = target;
277 continue;
278 }
279
280 pthread_cond_signal (&target->wait_cond);
281 pthread_mutex_unlock (&target->wait_mutex);
282
283 // Two concurrent notify() calls must not be delivered to the same
284 // thread, so remove the target thread from the cv wait list now.
285 if (prev == NULL)
286 cv->first = target->next;
287 else
288 prev->next = target->next;
289
290 target->next = NULL;
291
292 break;
293 }
294
295 return 0;
296 }
297
298 int
299 _Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
300 {
301 if (_Jv_MutexCheckMonitor (mu))
302 return _JV_NOT_OWNER;
303
304 _Jv_Thread_t *target;
305 _Jv_Thread_t *prev = NULL;
306
307 for (target = cv->first; target != NULL; target = target->next)
308 {
309 pthread_mutex_lock (&target->wait_mutex);
310 pthread_cond_signal (&target->wait_cond);
311 pthread_mutex_unlock (&target->wait_mutex);
312
313 if (prev != NULL)
314 prev->next = NULL;
315 prev = target;
316 }
317 if (prev != NULL)
318 prev->next = NULL;
319
320 cv->first = NULL;
321
322 return 0;
323 }
324
325 void
326 _Jv_ThreadInterrupt (_Jv_Thread_t *data)
327 {
328 pthread_mutex_lock (&data->wait_mutex);
329
330 // Set the thread's interrupted flag *after* aquiring its wait_mutex. This
331 // ensures that there are no races with the interrupt flag being set after
332 // the waiting thread checks it and before pthread_cond_wait is entered.
333 data->thread_obj->interrupt_flag = true;
334
335 // Interrupt blocking system calls using a signal.
336 pthread_kill (data->thread, INTR);
337
338 pthread_cond_signal (&data->wait_cond);
339
340 pthread_mutex_unlock (&data->wait_mutex);
341 }
342
343 /**
344 * Releases the block on a thread created by _Jv_ThreadPark(). This
345 * method can also be used to terminate a blockage caused by a prior
346 * call to park. This operation is unsafe, as the thread must be
347 * guaranteed to be live.
348 *
349 * @param thread the thread to unblock.
350 */
351 void
352 ParkHelper::unpark ()
353 {
354 using namespace ::java::lang;
355 volatile obj_addr_t *ptr = &permit;
356
357 /* If this thread is in state RUNNING, give it a permit and return
358 immediately. */
359 if (compare_and_swap
360 (ptr, Thread::THREAD_PARK_RUNNING, Thread::THREAD_PARK_PERMIT))
361 return;
362
363 /* If this thread is parked, put it into state RUNNING and send it a
364 signal. */
365 if (compare_and_swap
366 (ptr, Thread::THREAD_PARK_PARKED, Thread::THREAD_PARK_RUNNING))
367 {
368 pthread_mutex_lock (&mutex);
369 pthread_cond_signal (&cond);
370 pthread_mutex_unlock (&mutex);
371 }
372 }
373
374 /**
375 * Sets our state to dead.
376 */
377 void
378 ParkHelper::deactivate ()
379 {
380 permit = ::java::lang::Thread::THREAD_PARK_DEAD;
381 }
382
383 /**
384 * Blocks the thread until a matching _Jv_ThreadUnpark() occurs, the
385 * thread is interrupted or the optional timeout expires. If an
386 * unpark call has already occurred, this also counts. A timeout
387 * value of zero is defined as no timeout. When isAbsolute is true,
388 * the timeout is in milliseconds relative to the epoch. Otherwise,
389 * the value is the number of nanoseconds which must occur before
390 * timeout. This call may also return spuriously (i.e. for no
391 * apparent reason).
392 *
393 * @param isAbsolute true if the timeout is specified in milliseconds from
394 * the epoch.
395 * @param time either the number of nanoseconds to wait, or a time in
396 * milliseconds from the epoch to wait for.
397 */
398 void
399 ParkHelper::park (jboolean isAbsolute, jlong time)
400 {
401 using namespace ::java::lang;
402 volatile obj_addr_t *ptr = &permit;
403
404 /* If we have a permit, return immediately. */
405 if (compare_and_swap
406 (ptr, Thread::THREAD_PARK_PERMIT, Thread::THREAD_PARK_RUNNING))
407 return;
408
409 struct timespec ts;
410 jlong millis = 0, nanos = 0;
411
412 if (time)
413 {
414 if (isAbsolute)
415 {
416 millis = time;
417 nanos = 0;
418 }
419 else
420 {
421 millis = java::lang::System::currentTimeMillis();
422 nanos = time;
423 }
424
425 if (millis > 0 || nanos > 0)
426 {
427 // Calculate the abstime corresponding to the timeout.
428 // Everything is in milliseconds.
429 //
430 // We use `unsigned long long' rather than jlong because our
431 // caller may pass up to Long.MAX_VALUE millis. This would
432 // overflow the range of a timespec.
433
434 unsigned long long m = (unsigned long long)millis;
435 unsigned long long seconds = m / 1000;
436
437 ts.tv_sec = seconds;
438 if (ts.tv_sec < 0 || (unsigned long long)ts.tv_sec != seconds)
439 {
440 // We treat a timeout that won't fit into a struct timespec
441 // as a wait forever.
442 millis = nanos = 0;
443 }
444 else
445 {
446 m %= 1000;
447 ts.tv_nsec = m * 1000000 + (unsigned long long)nanos;
448 }
449 }
450 }
451
452 if (compare_and_swap
453 (ptr, Thread::THREAD_PARK_RUNNING, Thread::THREAD_PARK_PARKED))
454 {
455 pthread_mutex_lock (&mutex);
456 if (millis == 0 && nanos == 0)
457 pthread_cond_wait (&cond, &mutex);
458 else
459 pthread_cond_timedwait (&cond, &mutex, &ts);
460 pthread_mutex_unlock (&mutex);
461
462 /* If we were unparked by some other thread, this will already
463 be in state THREAD_PARK_RUNNING. If we timed out, we have to
464 do it ourself. */
465 compare_and_swap
466 (ptr, Thread::THREAD_PARK_PARKED, Thread::THREAD_PARK_RUNNING);
467 }
468 }
469
470 static void
471 handle_intr (int)
472 {
473 // Do nothing.
474 }
475
476 void
477 _Jv_BlockSigchld()
478 {
479 sigset_t mask;
480 sigemptyset (&mask);
481 sigaddset (&mask, SIGCHLD);
482 int c = pthread_sigmask (SIG_BLOCK, &mask, NULL);
483 if (c != 0)
484 JvFail (strerror (c));
485 }
486
487 void
488 _Jv_UnBlockSigchld()
489 {
490 sigset_t mask;
491 sigemptyset (&mask);
492 sigaddset (&mask, SIGCHLD);
493 int c = pthread_sigmask (SIG_UNBLOCK, &mask, NULL);
494 if (c != 0)
495 JvFail (strerror (c));
496 }
497
498 void
499 _Jv_InitThreads (void)
500 {
501 pthread_key_create (&_Jv_ThreadKey, NULL);
502 pthread_key_create (&_Jv_ThreadDataKey, NULL);
503 pthread_mutex_init (&daemon_mutex, NULL);
504 pthread_cond_init (&daemon_cond, 0);
505 non_daemon_count = 0;
506
507 // Arrange for the interrupt signal to interrupt system calls.
508 struct sigaction act;
509 act.sa_handler = handle_intr;
510 sigemptyset (&act.sa_mask);
511 act.sa_flags = 0;
512 sigaction (INTR, &act, NULL);
513
514 // Block SIGCHLD here to ensure that any non-Java threads inherit the new
515 // signal mask.
516 _Jv_BlockSigchld();
517
518 // Check/set the thread stack size.
519 size_t min_ss = 32 * 1024;
520
521 if (sizeof (void *) == 8)
522 // Bigger default on 64-bit systems.
523 min_ss *= 2;
524
525 #ifdef PTHREAD_STACK_MIN
526 if (min_ss < PTHREAD_STACK_MIN)
527 min_ss = PTHREAD_STACK_MIN;
528 #endif
529
530 if (gcj::stack_size > 0 && gcj::stack_size < min_ss)
531 gcj::stack_size = min_ss;
532 }
533
534 _Jv_Thread_t *
535 _Jv_ThreadInitData (java::lang::Thread *obj)
536 {
537 _Jv_Thread_t *data = (_Jv_Thread_t *) _Jv_Malloc (sizeof (_Jv_Thread_t));
538 data->flags = 0;
539 data->thread_obj = obj;
540
541 pthread_mutex_init (&data->wait_mutex, NULL);
542 pthread_cond_init (&data->wait_cond, NULL);
543
544 return data;
545 }
546
547 void
548 _Jv_ThreadDestroyData (_Jv_Thread_t *data)
549 {
550 pthread_mutex_destroy (&data->wait_mutex);
551 pthread_cond_destroy (&data->wait_cond);
552 _Jv_Free ((void *)data);
553 }
554
555 void
556 _Jv_ThreadSetPriority (_Jv_Thread_t *data, jint prio)
557 {
558 #ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
559 if (data->flags & FLAG_START)
560 {
561 struct sched_param param;
562
563 param.sched_priority = prio;
564 pthread_setschedparam (data->thread, SCHED_OTHER, &param);
565 }
566 #endif
567 }
568
569 void
570 _Jv_ThreadRegister (_Jv_Thread_t *data)
571 {
572 pthread_setspecific (_Jv_ThreadKey, data->thread_obj);
573 pthread_setspecific (_Jv_ThreadDataKey, data);
574
575 // glibc 2.1.3 doesn't set the value of `thread' until after start_routine
576 // is called. Since it may need to be accessed from the new thread, work
577 // around the potential race here by explicitly setting it again.
578 data->thread = pthread_self ();
579
580 # ifdef SLOW_PTHREAD_SELF
581 // Clear all self cache slots that might be needed by this thread.
582 int dummy;
583 int low_index = SC_INDEX(&dummy) + SC_CLEAR_MIN;
584 int high_index = SC_INDEX(&dummy) + SC_CLEAR_MAX;
585 for (int i = low_index; i <= high_index; ++i)
586 {
587 int current_index = i;
588 if (current_index < 0)
589 current_index += SELF_CACHE_SIZE;
590 if (current_index >= SELF_CACHE_SIZE)
591 current_index -= SELF_CACHE_SIZE;
592 _Jv_self_cache[current_index].high_sp_bits = BAD_HIGH_SP_VALUE;
593 }
594 # endif
595 // Block SIGCHLD which is used in natPosixProcess.cc.
596 _Jv_BlockSigchld();
597 }
598
599 void
600 _Jv_ThreadUnRegister ()
601 {
602 pthread_setspecific (_Jv_ThreadKey, NULL);
603 pthread_setspecific (_Jv_ThreadDataKey, NULL);
604 }
605
606 // This function is called when a thread is started. We don't arrange
607 // to call the `run' method directly, because this function must
608 // return a value.
609 static void *
610 really_start (void *x)
611 {
612 struct starter *info = (struct starter *) x;
613
614 _Jv_ThreadRegister (info->data);
615
616 info->method (info->data->thread_obj);
617
618 if (! (info->data->flags & FLAG_DAEMON))
619 {
620 pthread_mutex_lock (&daemon_mutex);
621 --non_daemon_count;
622 if (! non_daemon_count)
623 pthread_cond_signal (&daemon_cond);
624 pthread_mutex_unlock (&daemon_mutex);
625 }
626
627 return NULL;
628 }
629
630 void
631 _Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
632 _Jv_ThreadStartFunc *meth)
633 {
634 struct sched_param param;
635 pthread_attr_t attr;
636 struct starter *info;
637
638 if (data->flags & FLAG_START)
639 return;
640 data->flags |= FLAG_START;
641
642 // Block SIGCHLD which is used in natPosixProcess.cc.
643 // The current mask is inherited by the child thread.
644 _Jv_BlockSigchld();
645
646 param.sched_priority = thread->getPriority();
647
648 pthread_attr_init (&attr);
649 pthread_attr_setschedparam (&attr, &param);
650 pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
651
652 // Set stack size if -Xss option was given.
653 if (gcj::stack_size > 0)
654 {
655 int e = pthread_attr_setstacksize (&attr, gcj::stack_size);
656 if (e != 0)
657 JvFail (strerror (e));
658 }
659
660 info = (struct starter *) _Jv_AllocBytes (sizeof (struct starter));
661 info->method = meth;
662 info->data = data;
663
664 if (! thread->isDaemon())
665 {
666 pthread_mutex_lock (&daemon_mutex);
667 ++non_daemon_count;
668 pthread_mutex_unlock (&daemon_mutex);
669 }
670 else
671 data->flags |= FLAG_DAEMON;
672 int r = pthread_create (&data->thread, &attr, really_start, (void *) info);
673
674 pthread_attr_destroy (&attr);
675
676 if (r)
677 {
678 const char* msg = "Cannot create additional threads";
679 throw new java::lang::OutOfMemoryError (JvNewStringUTF (msg));
680 }
681 }
682
683 void
684 _Jv_ThreadWait (void)
685 {
686 pthread_mutex_lock (&daemon_mutex);
687 if (non_daemon_count)
688 pthread_cond_wait (&daemon_cond, &daemon_mutex);
689 pthread_mutex_unlock (&daemon_mutex);
690 }
691
692 #if defined(SLOW_PTHREAD_SELF)
693
694 #include "sysdep/locks.h"
695
696 // Support for pthread_self() lookup cache.
697 volatile self_cache_entry _Jv_self_cache[SELF_CACHE_SIZE];
698
699 _Jv_ThreadId_t
700 _Jv_ThreadSelf_out_of_line(volatile self_cache_entry *sce, size_t high_sp_bits)
701 {
702 pthread_t self = pthread_self();
703 sce -> high_sp_bits = high_sp_bits;
704 write_barrier();
705 sce -> self = self;
706 return self;
707 }
708
709 #endif /* SLOW_PTHREAD_SELF */