posix-threads.cc (_Jv_CondNotify,_Jv_CondNotifyAll): Rename _Jv_PthreadCheckMonitor...
[gcc.git] / libjava / posix-threads.cc
1 // posix-threads.cc - interface between libjava and POSIX threads.
2
3 /* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation
4
5 This file is part of libgcj.
6
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
10
11 // TO DO:
12 // * Document signal handling limitations
13
14 #include <config.h>
15
16 // If we're using the Boehm GC, then we need to override some of the
17 // thread primitives. This is fairly gross.
18 #ifdef HAVE_BOEHM_GC
19 #include <gc.h>
20 #endif /* HAVE_BOEHM_GC */
21
22 #include <stdlib.h>
23 #include <time.h>
24 #include <signal.h>
25 #include <errno.h>
26 #include <limits.h>
27 #ifdef HAVE_UNISTD_H
28 #include <unistd.h> // To test for _POSIX_THREAD_PRIORITY_SCHEDULING
29 #endif
30
31 #include <gcj/cni.h>
32 #include <jvm.h>
33 #include <java/lang/Thread.h>
34 #include <java/lang/System.h>
35 #include <java/lang/Long.h>
36 #include <java/lang/OutOfMemoryError.h>
37
38 // This is used to implement thread startup.
39 struct starter
40 {
41 _Jv_ThreadStartFunc *method;
42 _Jv_Thread_t *data;
43 };
44
45 // This is the key used to map from the POSIX thread value back to the
46 // Java object representing the thread. The key is global to all
47 // threads, so it is ok to make it a global here.
48 pthread_key_t _Jv_ThreadKey;
49
50 // This is the key used to map from the POSIX thread value back to the
51 // _Jv_Thread_t* representing the thread.
52 pthread_key_t _Jv_ThreadDataKey;
53
54 // We keep a count of all non-daemon threads which are running. When
55 // this reaches zero, _Jv_ThreadWait returns.
56 static pthread_mutex_t daemon_mutex;
57 static pthread_cond_t daemon_cond;
58 static int non_daemon_count;
59
60 // The signal to use when interrupting a thread.
61 #if defined(LINUX_THREADS) || defined(FREEBSD_THREADS)
62 // LinuxThreads (prior to glibc 2.1) usurps both SIGUSR1 and SIGUSR2.
63 // GC on FreeBSD uses both SIGUSR1 and SIGUSR2.
64 # define INTR SIGHUP
65 #else /* LINUX_THREADS */
66 # define INTR SIGUSR2
67 #endif /* LINUX_THREADS */
68
69 //
70 // These are the flags that can appear in _Jv_Thread_t.
71 //
72
73 // Thread started.
74 #define FLAG_START 0x01
75 // Thread is daemon.
76 #define FLAG_DAEMON 0x02
77
78 \f
79
80 // Wait for the condition variable "CV" to be notified.
81 // Return values:
82 // 0: the condition was notified, or the timeout expired.
83 // _JV_NOT_OWNER: the thread does not own the mutex "MU".
84 // _JV_INTERRUPTED: the thread was interrupted. Its interrupted flag is set.
85 int
86 _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
87 jlong millis, jint nanos)
88 {
89 pthread_t self = pthread_self();
90 if (mu->owner != self)
91 return _JV_NOT_OWNER;
92
93 struct timespec ts;
94 jlong m, startTime;
95
96 if (millis > 0 || nanos > 0)
97 {
98 startTime = java::lang::System::currentTimeMillis();
99 m = millis + startTime;
100 ts.tv_sec = m / 1000;
101 ts.tv_nsec = ((m % 1000) * 1000000) + nanos;
102 }
103
104 _Jv_Thread_t *current = _Jv_ThreadCurrentData ();
105 java::lang::Thread *current_obj = _Jv_ThreadCurrent ();
106
107 pthread_mutex_lock (&current->wait_mutex);
108
109 // Now that we hold the wait mutex, check if this thread has been
110 // interrupted already.
111 if (current_obj->interrupt_flag)
112 {
113 pthread_mutex_unlock (&current->wait_mutex);
114 return _JV_INTERRUPTED;
115 }
116
117 // Add this thread to the cv's wait set.
118 current->next = NULL;
119
120 if (cv->first == NULL)
121 cv->first = current;
122 else
123 for (_Jv_Thread_t *t = cv->first;; t = t->next)
124 {
125 if (t->next == NULL)
126 {
127 t->next = current;
128 break;
129 }
130 }
131
132 // Record the current lock depth, so it can be restored when we re-aquire it.
133 int count = mu->count;
134
135 // Release the monitor mutex.
136 mu->count = 0;
137 mu->owner = 0;
138 pthread_mutex_unlock (&mu->mutex);
139
140 int r = 0;
141 bool done_sleeping = false;
142
143 while (! done_sleeping)
144 {
145 if (millis == 0 && nanos == 0)
146 r = pthread_cond_wait (&current->wait_cond, &current->wait_mutex);
147 else
148 r = pthread_cond_timedwait (&current->wait_cond, &current->wait_mutex,
149 &ts);
150
151 // In older glibc's (prior to 2.1.3), the cond_wait functions may
152 // spuriously wake up on a signal. Catch that here.
153 if (r != EINTR)
154 done_sleeping = true;
155 }
156
157 // Check for an interrupt *before* releasing the wait mutex.
158 jboolean interrupted = current_obj->interrupt_flag;
159
160 pthread_mutex_unlock (&current->wait_mutex);
161
162 // Reaquire the monitor mutex, and restore the lock count.
163 pthread_mutex_lock (&mu->mutex);
164 mu->owner = self;
165 mu->count = count;
166
167 // If we were interrupted, or if a timeout occurred, remove ourself from
168 // the cv wait list now. (If we were notified normally, notify() will have
169 // already taken care of this)
170 if (r == ETIMEDOUT || interrupted)
171 {
172 _Jv_Thread_t *prev = NULL;
173 for (_Jv_Thread_t *t = cv->first; t != NULL; t = t->next)
174 {
175 if (t == current)
176 {
177 if (prev != NULL)
178 prev->next = t->next;
179 else
180 cv->first = t->next;
181 t->next = NULL;
182 break;
183 }
184 prev = t;
185 }
186 if (interrupted)
187 return _JV_INTERRUPTED;
188 }
189
190 return 0;
191 }
192
193 int
194 _Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
195 {
196 if (_Jv_MutexCheckMonitor (mu))
197 return _JV_NOT_OWNER;
198
199 _Jv_Thread_t *target;
200 _Jv_Thread_t *prev = NULL;
201
202 for (target = cv->first; target != NULL; target = target->next)
203 {
204 pthread_mutex_lock (&target->wait_mutex);
205
206 if (target->thread_obj->interrupt_flag)
207 {
208 // Don't notify a thread that has already been interrupted.
209 pthread_mutex_unlock (&target->wait_mutex);
210 prev = target;
211 continue;
212 }
213
214 pthread_cond_signal (&target->wait_cond);
215 pthread_mutex_unlock (&target->wait_mutex);
216
217 // Two concurrent notify() calls must not be delivered to the same
218 // thread, so remove the target thread from the cv wait list now.
219 if (prev == NULL)
220 cv->first = target->next;
221 else
222 prev->next = target->next;
223
224 target->next = NULL;
225
226 break;
227 }
228
229 return 0;
230 }
231
232 int
233 _Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
234 {
235 if (_Jv_MutexCheckMonitor (mu))
236 return _JV_NOT_OWNER;
237
238 _Jv_Thread_t *target;
239 _Jv_Thread_t *prev = NULL;
240
241 for (target = cv->first; target != NULL; target = target->next)
242 {
243 pthread_mutex_lock (&target->wait_mutex);
244 pthread_cond_signal (&target->wait_cond);
245 pthread_mutex_unlock (&target->wait_mutex);
246
247 if (prev != NULL)
248 prev->next = NULL;
249 prev = target;
250 }
251 if (prev != NULL)
252 prev->next = NULL;
253
254 cv->first = NULL;
255
256 return 0;
257 }
258
259 void
260 _Jv_ThreadInterrupt (_Jv_Thread_t *data)
261 {
262 pthread_mutex_lock (&data->wait_mutex);
263
264 // Set the thread's interrupted flag *after* aquiring its wait_mutex. This
265 // ensures that there are no races with the interrupt flag being set after
266 // the waiting thread checks it and before pthread_cond_wait is entered.
267 data->thread_obj->interrupt_flag = true;
268
269 // Interrupt blocking system calls using a signal.
270 pthread_kill (data->thread, INTR);
271
272 pthread_cond_signal (&data->wait_cond);
273
274 pthread_mutex_unlock (&data->wait_mutex);
275 }
276
277 static void
278 handle_intr (int)
279 {
280 // Do nothing.
281 }
282
283 void
284 _Jv_InitThreads (void)
285 {
286 pthread_key_create (&_Jv_ThreadKey, NULL);
287 pthread_key_create (&_Jv_ThreadDataKey, NULL);
288 pthread_mutex_init (&daemon_mutex, NULL);
289 pthread_cond_init (&daemon_cond, 0);
290 non_daemon_count = 0;
291
292 // Arrange for the interrupt signal to interrupt system calls.
293 struct sigaction act;
294 act.sa_handler = handle_intr;
295 sigemptyset (&act.sa_mask);
296 act.sa_flags = 0;
297 sigaction (INTR, &act, NULL);
298 }
299
300 _Jv_Thread_t *
301 _Jv_ThreadInitData (java::lang::Thread *obj)
302 {
303 _Jv_Thread_t *data = (_Jv_Thread_t *) _Jv_Malloc (sizeof (_Jv_Thread_t));
304 data->flags = 0;
305 data->thread_obj = obj;
306
307 pthread_mutex_init (&data->wait_mutex, NULL);
308 pthread_cond_init (&data->wait_cond, NULL);
309
310 return data;
311 }
312
313 void
314 _Jv_ThreadDestroyData (_Jv_Thread_t *data)
315 {
316 pthread_mutex_destroy (&data->wait_mutex);
317 pthread_cond_destroy (&data->wait_cond);
318 _Jv_Free ((void *)data);
319 }
320
321 void
322 _Jv_ThreadSetPriority (_Jv_Thread_t *data, jint prio)
323 {
324 #ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
325 if (data->flags & FLAG_START)
326 {
327 struct sched_param param;
328
329 param.sched_priority = prio;
330 pthread_setschedparam (data->thread, SCHED_RR, &param);
331 }
332 #endif
333 }
334
335 void
336 _Jv_ThreadRegister (_Jv_Thread_t *data)
337 {
338 pthread_setspecific (_Jv_ThreadKey, data->thread_obj);
339 pthread_setspecific (_Jv_ThreadDataKey, data);
340
341 // glibc 2.1.3 doesn't set the value of `thread' until after start_routine
342 // is called. Since it may need to be accessed from the new thread, work
343 // around the potential race here by explicitly setting it again.
344 data->thread = pthread_self ();
345
346 # ifdef SLOW_PTHREAD_SELF
347 // Clear all self cache slots that might be needed by this thread.
348 int dummy;
349 int low_index = SC_INDEX(&dummy) + SC_CLEAR_MIN;
350 int high_index = SC_INDEX(&dummy) + SC_CLEAR_MAX;
351 for (int i = low_index; i <= high_index; ++i)
352 {
353 int current_index = i;
354 if (current_index < 0)
355 current_index += SELF_CACHE_SIZE;
356 if (current_index >= SELF_CACHE_SIZE)
357 current_index -= SELF_CACHE_SIZE;
358 _Jv_self_cache[current_index].high_sp_bits = BAD_HIGH_SP_VALUE;
359 }
360 # endif
361 }
362
363 void
364 _Jv_ThreadUnRegister ()
365 {
366 pthread_setspecific (_Jv_ThreadKey, NULL);
367 pthread_setspecific (_Jv_ThreadDataKey, NULL);
368 }
369
370 // This function is called when a thread is started. We don't arrange
371 // to call the `run' method directly, because this function must
372 // return a value.
373 static void *
374 really_start (void *x)
375 {
376 struct starter *info = (struct starter *) x;
377
378 _Jv_ThreadRegister (info->data);
379
380 info->method (info->data->thread_obj);
381
382 if (! (info->data->flags & FLAG_DAEMON))
383 {
384 pthread_mutex_lock (&daemon_mutex);
385 --non_daemon_count;
386 if (! non_daemon_count)
387 pthread_cond_signal (&daemon_cond);
388 pthread_mutex_unlock (&daemon_mutex);
389 }
390
391 return NULL;
392 }
393
394 void
395 _Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
396 _Jv_ThreadStartFunc *meth)
397 {
398 struct sched_param param;
399 pthread_attr_t attr;
400 struct starter *info;
401
402 if (data->flags & FLAG_START)
403 return;
404 data->flags |= FLAG_START;
405
406 param.sched_priority = thread->getPriority();
407
408 pthread_attr_init (&attr);
409 pthread_attr_setschedparam (&attr, &param);
410 pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
411
412 info = (struct starter *) _Jv_AllocBytes (sizeof (struct starter));
413 info->method = meth;
414 info->data = data;
415
416 if (! thread->isDaemon())
417 {
418 pthread_mutex_lock (&daemon_mutex);
419 ++non_daemon_count;
420 pthread_mutex_unlock (&daemon_mutex);
421 }
422 else
423 data->flags |= FLAG_DAEMON;
424 int r = pthread_create (&data->thread, &attr, really_start, (void *) info);
425
426 pthread_attr_destroy (&attr);
427
428 if (r)
429 {
430 const char* msg = "Cannot create additional threads";
431 throw new java::lang::OutOfMemoryError (JvNewStringUTF (msg));
432 }
433 }
434
435 void
436 _Jv_ThreadWait (void)
437 {
438 pthread_mutex_lock (&daemon_mutex);
439 if (non_daemon_count)
440 pthread_cond_wait (&daemon_cond, &daemon_mutex);
441 pthread_mutex_unlock (&daemon_mutex);
442 }
443
444 #if defined(SLOW_PTHREAD_SELF)
445
446 #include "sysdep/locks.h"
447
448 // Support for pthread_self() lookup cache.
449 volatile self_cache_entry _Jv_self_cache[SELF_CACHE_SIZE];
450
451 _Jv_ThreadId_t
452 _Jv_ThreadSelf_out_of_line(volatile self_cache_entry *sce, size_t high_sp_bits)
453 {
454 pthread_t self = pthread_self();
455 sce -> high_sp_bits = high_sp_bits;
456 write_barrier();
457 sce -> self = self;
458 return self;
459 }
460
461 #endif /* SLOW_PTHREAD_SELF */