Initial revision
[gcc.git] / libjava / prims.cc
1 // prims.cc - Code for core of runtime environment.
2
3 /* Copyright (C) 1998, 1999 Cygnus Solutions
4
5 This file is part of libgcj.
6
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
10
11 #include <config.h>
12
13 #include <stdlib.h>
14 #include <stdarg.h>
15 #include <stdio.h>
16 #include <string.h>
17 #ifdef HANDLE_SEGV
18 #include <signal.h>
19 #endif
20
21 #pragma implementation "java-array.h"
22
23 #include <cni.h>
24 #include <jvm.h>
25
26 #include <java/lang/Class.h>
27 #include <java/lang/Runtime.h>
28 #include <java/lang/String.h>
29 #include <java/lang/Thread.h>
30 #include <java/lang/ThreadGroup.h>
31 #include <java/lang/FirstThread.h>
32 #include <java/lang/ArrayIndexOutOfBoundsException.h>
33 #include <java/lang/ClassFormatError.h>
34 #include <java/lang/ClassCastException.h>
35 #include <java/lang/NegativeArraySizeException.h>
36 #include <java/lang/NullPointerException.h>
37 #include <java/lang/OutOfMemoryError.h>
38 #include <java/lang/ArrayStoreException.h>
39 #include <java/lang/System.h>
40 #include <java/lang/reflect/Modifier.h>
41 #include <java/io/PrintStream.h>
42
43 #define ObjectClass _CL_Q34java4lang6Object
44 extern java::lang::Class ObjectClass;
45
46 // We allocate a single OutOfMemoryError exception which we keep
47 // around for use if we run out of memory.
48 static java::lang::OutOfMemoryError *no_memory;
49
50 // Largest representable size_t.
51 #define SIZE_T_MAX ((size_t) (~ (size_t) 0))
52
53 \f
54
55 jboolean
56 _Jv_equalUtf8Consts (Utf8Const* a, Utf8Const *b)
57 {
58 register int len;
59 register _Jv_ushort *aptr, *bptr;
60 if (a == b)
61 return true;
62 if (a->hash != b->hash)
63 return false;
64 len = a->length;
65 if (b->length != len)
66 return false;
67 aptr = (_Jv_ushort *)a->data;
68 bptr = (_Jv_ushort *)b->data;
69 len = (len + 1) >> 1;
70 while (--len >= 0)
71 if (*aptr++ != *bptr++)
72 return false;
73 return true;
74 }
75
76 /* True iff A is equal to STR.
77 HASH is STR->hashCode().
78 */
79
80 jboolean
81 _Jv_equal (Utf8Const* a, jstring str, jint hash)
82 {
83 if (a->hash != (_Jv_ushort) hash)
84 return false;
85 jint len = str->length();
86 jint i = 0;
87 jchar *sptr = _Jv_GetStringChars (str);
88 register unsigned char* ptr = (unsigned char*) a->data;
89 register unsigned char* limit = ptr + a->length;
90 for (;; i++, sptr++)
91 {
92 int ch = UTF8_GET (ptr, limit);
93 if (i == len)
94 return ch < 0;
95 if (ch != *sptr)
96 return false;
97 }
98 return true;
99 }
100
101 /* Count the number of Unicode chars encoded in a given Ut8 string. */
102 int
103 _Jv_strLengthUtf8(char* str, int len)
104 {
105 register unsigned char* ptr;
106 register unsigned char* limit;
107 int str_length;
108
109 ptr = (unsigned char*) str;
110 limit = ptr + len;
111 str_length = 0;
112 for (; ptr < limit; str_length++) {
113 if (UTF8_GET (ptr, limit) < 0) {
114 return (-1);
115 }
116 }
117 return (str_length);
118 }
119
120 /* Calculate a hash value for a string encoded in Utf8 format.
121 * This returns the same hash value as specified or java.lang.String.hashCode.
122 */
123 static jint
124 hashUtf8String (char* str, int len)
125 {
126 register unsigned char* ptr = (unsigned char*) str;
127 register unsigned char* limit = ptr + len;
128 jint hash = 0;
129
130 for (; ptr < limit;)
131 {
132 int ch = UTF8_GET (ptr, limit);
133 /* Updated specification from
134 http://www.javasoft.com/docs/books/jls/clarify.html. */
135 hash = (31 * hash) + ch;
136 }
137 return hash;
138 }
139
140 _Jv_Utf8Const *
141 _Jv_makeUtf8Const (char* s, int len)
142 {
143 if (len < 0)
144 len = strlen (s);
145 Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
146 if (! m)
147 JvThrow (no_memory);
148 memcpy (m->data, s, len);
149 m->data[len] = 0;
150 m->length = len;
151 m->hash = hashUtf8String (s, len) & 0xFFFF;
152 return (m);
153 }
154
155 \f
156
157 #ifdef DEBUG
158 void
159 _Jv_Abort (const char *function, const char *file, int line,
160 const char *message)
161 #else
162 void
163 _Jv_Abort (const char *, const char *, int, const char *message)
164 #endif
165 {
166 #ifdef DEBUG
167 fprintf (stderr,
168 "libgcj failure: %s\n in function %s, file %s, line %d\n",
169 message, function, file, line);
170 #else
171 java::io::PrintStream *err = java::lang::System::err;
172 err->print(JvNewStringLatin1 ("libgcj failure: "));
173 err->println(JvNewStringLatin1 (message));
174 err->flush();
175 #endif
176 abort ();
177 }
178
179 static void
180 fail_on_finalization (jobject)
181 {
182 JvFail ("object was finalized");
183 }
184
185 void
186 _Jv_GCWatch (jobject obj)
187 {
188 _Jv_RegisterFinalizer (obj, fail_on_finalization);
189 }
190
191 void
192 _Jv_ThrowBadArrayIndex(jint bad_index)
193 {
194 JvThrow (new java::lang::ArrayIndexOutOfBoundsException
195 (java::lang::String::valueOf(bad_index)));
196 }
197
198 void*
199 _Jv_CheckCast (jclass c, jobject obj)
200 {
201 if (obj != NULL && ! c->isAssignableFrom(obj->getClass()))
202 JvThrow (new java::lang::ClassCastException);
203 return obj;
204 }
205
206 void
207 _Jv_CheckArrayStore (jobject arr, jobject obj)
208 {
209 if (obj)
210 {
211 JvAssert (arr != NULL);
212 jclass arr_class = arr->getClass();
213 JvAssert (arr_class->isArray());
214 jclass elt_class = arr_class->getComponentType();
215 jclass obj_class = obj->getClass();
216 if (! elt_class->isAssignableFrom(obj_class))
217 JvThrow (new java::lang::ArrayStoreException);
218 }
219 }
220
221 \f
222
223 // Allocate some unscanned memory and throw an exception if no memory.
224 void *
225 _Jv_AllocBytesChecked (jsize size)
226 {
227 void *r = _Jv_AllocBytes (size);
228 if (! r)
229 _Jv_Throw (no_memory);
230 return r;
231 }
232
233 // Allocate a new object of class C. SIZE is the size of the object
234 // to allocate. You might think this is redundant, but it isn't; some
235 // classes, such as String, aren't of fixed size.
236 jobject
237 _Jv_AllocObject (jclass c, jint size)
238 {
239 _Jv_InitClass (c);
240
241 jobject obj = (jobject) _Jv_AllocObj (size);
242 if (! obj)
243 JvThrow (no_memory);
244 *((_Jv_VTable **) obj) = c->vtable;
245
246 // If this class has inherited finalize from Object, then don't
247 // bother registering a finalizer. We know that finalize() is the
248 // very first method after the dummy entry. If this turns out to be
249 // unreliable, a more robust implementation can be written. Such an
250 // implementation would look for Object.finalize in Object's method
251 // table at startup, and then use that information to find the
252 // appropriate index in the method vector.
253 if (c->vtable->method[1] != ObjectClass.vtable->method[1])
254 _Jv_RegisterFinalizer (obj, _Jv_FinalizeObject);
255
256 return obj;
257 }
258
259 // Allocate a new array of Java objects. Each object is of type
260 // `elementClass'. `init' is used to initialize each slot in the
261 // array.
262 jobjectArray
263 _Jv_NewObjectArray (jsize count, jclass elementClass, jobject init)
264 {
265 if (count < 0)
266 JvThrow (new java::lang::NegativeArraySizeException);
267
268 // Check for overflow.
269 if ((size_t) count > (SIZE_T_MAX - sizeof (__JArray)) / sizeof (jobject))
270 JvThrow (no_memory);
271
272 size_t size = count * sizeof (jobject) + sizeof (__JArray);
273 jclass clas = _Jv_FindArrayClass (elementClass);
274 jobjectArray obj = (jobjectArray) _Jv_AllocArray (size);
275 if (! obj)
276 JvThrow (no_memory);
277 obj->length = count;
278 jobject* ptr = elements(obj);
279 // We know the allocator returns zeroed memory. So don't bother
280 // zeroing it again.
281 if (init)
282 {
283 while (--count >= 0)
284 *ptr++ = init;
285 }
286 // Set the vtbl last to avoid problems if the GC happens during the
287 // window in this function between the allocation and this
288 // assignment.
289 *((_Jv_VTable **) obj) = clas->vtable;
290 return obj;
291 }
292
293 // Allocate a new array of primitives. ELTYPE is the type of the
294 // element, COUNT is the size of the array.
295 jobject
296 _Jv_NewPrimArray (jclass eltype, jint count)
297 {
298 int elsize = eltype->size();
299 if (count < 0)
300 JvThrow (new java::lang::NegativeArraySizeException ());
301
302 // Check for overflow.
303 if ((size_t) count > (SIZE_T_MAX - sizeof (__JArray)) / elsize)
304 JvThrow (no_memory);
305
306 __JArray *arr = (__JArray*) _Jv_AllocObj (sizeof (__JArray)
307 + elsize * count);
308 if (! arr)
309 JvThrow (no_memory);
310 arr->length = count;
311 // Note that we assume we are given zeroed memory by the allocator.
312
313 jclass klass = _Jv_FindArrayClass (eltype);
314 // Set the vtbl last to avoid problems if the GC happens during the
315 // window in this function between the allocation and this
316 // assignment.
317 *((_Jv_VTable **) arr) = klass->vtable;
318 return arr;
319 }
320
321 jcharArray
322 JvNewCharArray (jint length)
323 {
324 return (jcharArray) _Jv_NewPrimArray (JvPrimClass (char), length);
325 }
326
327 jbooleanArray
328 JvNewBooleanArray (jint length)
329 {
330 return (jbooleanArray) _Jv_NewPrimArray (JvPrimClass (boolean), length);
331 }
332
333 jbyteArray
334 JvNewByteArray (jint length)
335 {
336 return (jbyteArray) _Jv_NewPrimArray (JvPrimClass (byte), length);
337 }
338
339 jshortArray
340 JvNewShortArray (jint length)
341 {
342 return (jshortArray) _Jv_NewPrimArray (JvPrimClass (short), length);
343 }
344
345 jintArray
346 JvNewIntArray (jint length)
347 {
348 return (jintArray) _Jv_NewPrimArray (JvPrimClass (int), length);
349 }
350
351 jlongArray
352 JvNewLongArray (jint length)
353 {
354 return (jlongArray) _Jv_NewPrimArray (JvPrimClass (long), length);
355 }
356
357 jfloatArray
358 JvNewFloatArray (jint length)
359 {
360 return (jfloatArray) _Jv_NewPrimArray (JvPrimClass (float), length);
361 }
362
363 jdoubleArray
364 JvNewDoubleArray (jint length)
365 {
366 return (jdoubleArray) _Jv_NewPrimArray (JvPrimClass (double), length);
367 }
368
369 jobject
370 _Jv_NewArray (jint type, jint size)
371 {
372 switch (type)
373 {
374 case 4: return JvNewBooleanArray (size);
375 case 5: return JvNewCharArray (size);
376 case 6: return JvNewFloatArray (size);
377 case 7: return JvNewDoubleArray (size);
378 case 8: return JvNewByteArray (size);
379 case 9: return JvNewShortArray (size);
380 case 10: return JvNewIntArray (size);
381 case 11: return JvNewLongArray (size);
382 }
383 JvFail ("newarray - bad type code");
384 return NULL; // Placate compiler.
385 }
386
387 jobject
388 _Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes)
389 {
390 JvAssert (type->isArray());
391 jclass element_type = type->getComponentType();
392 jobject result;
393 if (element_type->isPrimitive())
394 result = _Jv_NewPrimArray (element_type, sizes[0]);
395 else
396 result = _Jv_NewObjectArray (sizes[0], element_type, NULL);
397
398 if (dimensions > 1)
399 {
400 JvAssert (! element_type->isPrimitive());
401 JvAssert (element_type->isArray());
402 jobject *contents = elements ((jobjectArray) result);
403 for (int i = 0; i < sizes[0]; ++i)
404 contents[i] = _Jv_NewMultiArray (element_type, dimensions - 1,
405 sizes + 1);
406 }
407
408 return result;
409 }
410
411 jobject
412 _Jv_NewMultiArray (jclass array_type, jint dimensions, ...)
413 {
414 va_list args;
415 jint sizes[dimensions];
416 va_start (args, dimensions);
417 for (int i = 0; i < dimensions; ++i)
418 {
419 jint size = va_arg (args, jint);
420 sizes[i] = size;
421 }
422 va_end (args);
423
424 return _Jv_NewMultiArray (array_type, dimensions, sizes);
425 }
426
427 \f
428
429 #ifdef HANDLE_SEGV
430
431 static java::lang::NullPointerException *nullp;
432
433 static void
434 catch_segv (int)
435 {
436 // Don't run `new' in a signal handler, so we always throw the same
437 // null pointer exception.
438 _Jv_Throw (nullp);
439 }
440
441 #endif /* HANDLE_SEGV */
442
443 class _Jv_PrimClass : public java::lang::Class
444 {
445 public:
446 // FIXME: calling convention is weird. If we use the natural types
447 // then the compiler will complain because they aren't Java types.
448 _Jv_PrimClass (jobject cname, jbyte sig, jint len)
449 {
450 using namespace java::lang::reflect;
451
452 // We must initialize every field of the class. We do this in
453 // the same order they are declared in Class.h.
454 next = NULL;
455 name = _Jv_makeUtf8Const ((char *) cname, -1);
456 accflags = Modifier::PUBLIC | Modifier::FINAL;
457 superclass = NULL;
458 constants.size = 0;
459 constants.tags = NULL;
460 constants.data = NULL;
461 methods = NULL;
462 method_count = sig;
463 vtable_method_count = 0;
464 fields = NULL;
465 size_in_bytes = len;
466 field_count = 0;
467 static_field_count = 0;
468 vtable = JV_PRIMITIVE_VTABLE;
469 interfaces = NULL;
470 loader = NULL;
471 interface_count = 0;
472 state = 0; // FIXME.
473 thread = NULL;
474 }
475 };
476
477 #define DECLARE_PRIM_TYPE(NAME, SIG, LEN) \
478 _Jv_PrimClass _Jv_##NAME##Class((jobject) #NAME, (jbyte) SIG, (jint) LEN)
479
480 DECLARE_PRIM_TYPE(byte, 'B', 1);
481 DECLARE_PRIM_TYPE(short, 'S', 2);
482 DECLARE_PRIM_TYPE(int, 'I', 4);
483 DECLARE_PRIM_TYPE(long, 'J', 8);
484 DECLARE_PRIM_TYPE(boolean, 'Z', 1);
485 DECLARE_PRIM_TYPE(char, 'C', 2);
486 DECLARE_PRIM_TYPE(float, 'F', 4);
487 DECLARE_PRIM_TYPE(double, 'D', 8);
488 DECLARE_PRIM_TYPE(void, 'V', 0);
489
490 jclass
491 _Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader)
492 {
493 switch (*sig)
494 {
495 case 'B':
496 return JvPrimClass (byte);
497 case 'S':
498 return JvPrimClass (short);
499 case 'I':
500 return JvPrimClass (int);
501 case 'J':
502 return JvPrimClass (long);
503 case 'Z':
504 return JvPrimClass (boolean);
505 case 'C':
506 return JvPrimClass (char);
507 case 'F':
508 return JvPrimClass (float);
509 case 'D':
510 return JvPrimClass (double);
511 case 'V':
512 return JvPrimClass (void);
513 case 'L':
514 {
515 int i;
516 for (i = 1; sig[i] && sig[i] != ';'; ++i)
517 ;
518 _Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1);
519 return _Jv_FindClass (name, loader);
520 }
521 case '[':
522 return _Jv_FindArrayClass (_Jv_FindClassFromSignature (&sig[1], loader));
523 }
524 JvFail ("couldn't understand class signature");
525 return NULL; // Placate compiler.
526 }
527
528 \f
529
530 JArray<jstring> *
531 JvConvertArgv (int argc, const char **argv)
532 {
533 if (argc < 0)
534 argc = 0;
535 jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL);
536 jobject* ptr = elements(ar);
537 for (int i = 0; i < argc; i++)
538 {
539 const char *arg = argv[i];
540 // FIXME - should probably use JvNewStringUTF.
541 *ptr++ = JvNewStringLatin1(arg, strlen(arg));
542 }
543 return (JArray<jstring>*) ar;
544 }
545
546 // FIXME: These variables are static so that they will be
547 // automatically scanned by the Boehm collector. This is needed
548 // because with qthreads the collector won't scan the initial stack --
549 // it will only scan the qthreads stacks.
550
551 // Command line arguments.
552 static jobject arg_vec;
553
554 // The primary threadgroup.
555 static java::lang::ThreadGroup *main_group;
556
557 // The primary thread.
558 static java::lang::Thread *main_thread;
559
560 void
561 JvRunMain (jclass klass, int argc, const char **argv)
562 {
563 #ifdef HANDLE_SEGV
564 nullp = new java::lang::NullPointerException ();
565
566 struct sigaction act;
567 act.sa_handler = catch_segv;
568 sigemptyset (&act.sa_mask);
569 act.sa_flags = 0;
570 sigaction (SIGSEGV, &act, NULL);
571 #endif
572
573 no_memory = new java::lang::OutOfMemoryError;
574
575 arg_vec = JvConvertArgv (argc - 1, argv + 1);
576 main_group = new java::lang::ThreadGroup (23);
577 main_thread = new java::lang::FirstThread (main_group, klass, arg_vec);
578
579 main_thread->start();
580 _Jv_ThreadWait ();
581
582 java::lang::Runtime::getRuntime ()->exit (0);
583 }
584
585 \f
586
587 void *
588 _Jv_Malloc (jsize size)
589 {
590 if (size == 0)
591 size = 1;
592 void *ptr = malloc ((size_t) size);
593 if (ptr == NULL)
594 JvThrow (no_memory);
595 return ptr;
596 }
597
598 void
599 _Jv_Free (void* ptr)
600 {
601 return free (ptr);
602 }