VMClassLoader.java (loadClass): Now native.
[gcc.git] / libjava / prims.cc
1 // prims.cc - Code for core of runtime environment.
2
3 /* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation
4
5 This file is part of libgcj.
6
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
10
11 #include <config.h>
12 #include <platform.h>
13
14 #include <stdlib.h>
15 #include <stdarg.h>
16 #include <stdio.h>
17 #include <string.h>
18 #include <signal.h>
19
20 #ifdef HAVE_UNISTD_H
21 #include <unistd.h>
22 #endif
23
24 #include <gcj/cni.h>
25 #include <jvm.h>
26 #include <java-signal.h>
27 #include <java-threads.h>
28
29 #ifdef ENABLE_JVMPI
30 #include <jvmpi.h>
31 #include <java/lang/ThreadGroup.h>
32 #endif
33
34 #ifndef DISABLE_GETENV_PROPERTIES
35 #include <ctype.h>
36 #include <java-props.h>
37 #define PROCESS_GCJ_PROPERTIES process_gcj_properties()
38 #else
39 #define PROCESS_GCJ_PROPERTIES
40 #endif // DISABLE_GETENV_PROPERTIES
41
42 #include <java/lang/Class.h>
43 #include <java/lang/ClassLoader.h>
44 #include <java/lang/Runtime.h>
45 #include <java/lang/String.h>
46 #include <java/lang/Thread.h>
47 #include <java/lang/ThreadGroup.h>
48 #include <java/lang/ArrayIndexOutOfBoundsException.h>
49 #include <java/lang/ArithmeticException.h>
50 #include <java/lang/ClassFormatError.h>
51 #include <java/lang/InternalError.h>
52 #include <java/lang/NegativeArraySizeException.h>
53 #include <java/lang/NullPointerException.h>
54 #include <java/lang/OutOfMemoryError.h>
55 #include <java/lang/System.h>
56 #include <java/lang/VMThrowable.h>
57 #include <java/lang/reflect/Modifier.h>
58 #include <java/io/PrintStream.h>
59 #include <java/lang/UnsatisfiedLinkError.h>
60 #include <java/lang/VirtualMachineError.h>
61 #include <gnu/gcj/runtime/VMClassLoader.h>
62 #include <gnu/gcj/runtime/FinalizerThread.h>
63 #include <gnu/gcj/runtime/FirstThread.h>
64
65 #ifdef USE_LTDL
66 #include <ltdl.h>
67 #endif
68
69 // We allocate a single OutOfMemoryError exception which we keep
70 // around for use if we run out of memory.
71 static java::lang::OutOfMemoryError *no_memory;
72
73 // Largest representable size_t.
74 #define SIZE_T_MAX ((size_t) (~ (size_t) 0))
75
76 static const char *no_properties[] = { NULL };
77
78 // Properties set at compile time.
79 const char **_Jv_Compiler_Properties = no_properties;
80
81 // The JAR file to add to the beginning of java.class.path.
82 const char *_Jv_Jar_Class_Path;
83
84 #ifndef DISABLE_GETENV_PROPERTIES
85 // Property key/value pairs.
86 property_pair *_Jv_Environment_Properties;
87 #endif
88
89 // Stash the argv pointer to benefit native libraries that need it.
90 const char **_Jv_argv;
91 int _Jv_argc;
92
93 // Argument support.
94 int
95 _Jv_GetNbArgs (void)
96 {
97 // _Jv_argc is 0 if not explicitly initialized.
98 return _Jv_argc;
99 }
100
101 const char *
102 _Jv_GetSafeArg (int index)
103 {
104 if (index >=0 && index < _Jv_GetNbArgs ())
105 return _Jv_argv[index];
106 else
107 return "";
108 }
109
110 void
111 _Jv_SetArgs (int argc, const char **argv)
112 {
113 _Jv_argc = argc;
114 _Jv_argv = argv;
115 }
116
117 #ifdef ENABLE_JVMPI
118 // Pointer to JVMPI notification functions.
119 void (*_Jv_JVMPI_Notify_OBJECT_ALLOC) (JVMPI_Event *event);
120 void (*_Jv_JVMPI_Notify_THREAD_START) (JVMPI_Event *event);
121 void (*_Jv_JVMPI_Notify_THREAD_END) (JVMPI_Event *event);
122 #endif
123 \f
124
125 /* Unblock a signal. Unless we do this, the signal may only be sent
126 once. */
127 static void
128 unblock_signal (int signum)
129 {
130 #ifdef _POSIX_VERSION
131 sigset_t sigs;
132
133 sigemptyset (&sigs);
134 sigaddset (&sigs, signum);
135 sigprocmask (SIG_UNBLOCK, &sigs, NULL);
136 #endif
137 }
138
139 #ifdef HANDLE_SEGV
140 SIGNAL_HANDLER (catch_segv)
141 {
142 java::lang::NullPointerException *nullp
143 = new java::lang::NullPointerException;
144 unblock_signal (SIGSEGV);
145 MAKE_THROW_FRAME (nullp);
146 throw nullp;
147 }
148 #endif
149
150 #ifdef HANDLE_FPE
151 SIGNAL_HANDLER (catch_fpe)
152 {
153 java::lang::ArithmeticException *arithexception
154 = new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
155 unblock_signal (SIGFPE);
156 #ifdef HANDLE_DIVIDE_OVERFLOW
157 HANDLE_DIVIDE_OVERFLOW;
158 #else
159 MAKE_THROW_FRAME (arithexception);
160 #endif
161 throw arithexception;
162 }
163 #endif
164
165 \f
166
167 jboolean
168 _Jv_equalUtf8Consts (const Utf8Const* a, const Utf8Const *b)
169 {
170 int len;
171 const _Jv_ushort *aptr, *bptr;
172 if (a == b)
173 return true;
174 if (a->hash != b->hash)
175 return false;
176 len = a->length;
177 if (b->length != len)
178 return false;
179 aptr = (const _Jv_ushort *)a->data;
180 bptr = (const _Jv_ushort *)b->data;
181 len = (len + 1) >> 1;
182 while (--len >= 0)
183 if (*aptr++ != *bptr++)
184 return false;
185 return true;
186 }
187
188 /* True iff A is equal to STR.
189 HASH is STR->hashCode().
190 */
191
192 jboolean
193 _Jv_equal (Utf8Const* a, jstring str, jint hash)
194 {
195 if (a->hash != (_Jv_ushort) hash)
196 return false;
197 jint len = str->length();
198 jint i = 0;
199 jchar *sptr = _Jv_GetStringChars (str);
200 unsigned char* ptr = (unsigned char*) a->data;
201 unsigned char* limit = ptr + a->length;
202 for (;; i++, sptr++)
203 {
204 int ch = UTF8_GET (ptr, limit);
205 if (i == len)
206 return ch < 0;
207 if (ch != *sptr)
208 return false;
209 }
210 return true;
211 }
212
213 /* Like _Jv_equal, but stop after N characters. */
214 jboolean
215 _Jv_equaln (Utf8Const *a, jstring str, jint n)
216 {
217 jint len = str->length();
218 jint i = 0;
219 jchar *sptr = _Jv_GetStringChars (str);
220 unsigned char* ptr = (unsigned char*) a->data;
221 unsigned char* limit = ptr + a->length;
222 for (; n-- > 0; i++, sptr++)
223 {
224 int ch = UTF8_GET (ptr, limit);
225 if (i == len)
226 return ch < 0;
227 if (ch != *sptr)
228 return false;
229 }
230 return true;
231 }
232
233 /* Count the number of Unicode chars encoded in a given Ut8 string. */
234 int
235 _Jv_strLengthUtf8(char* str, int len)
236 {
237 unsigned char* ptr;
238 unsigned char* limit;
239 int str_length;
240
241 ptr = (unsigned char*) str;
242 limit = ptr + len;
243 str_length = 0;
244 for (; ptr < limit; str_length++)
245 {
246 if (UTF8_GET (ptr, limit) < 0)
247 return (-1);
248 }
249 return (str_length);
250 }
251
252 /* Calculate a hash value for a string encoded in Utf8 format.
253 * This returns the same hash value as specified or java.lang.String.hashCode.
254 */
255 static jint
256 hashUtf8String (char* str, int len)
257 {
258 unsigned char* ptr = (unsigned char*) str;
259 unsigned char* limit = ptr + len;
260 jint hash = 0;
261
262 for (; ptr < limit;)
263 {
264 int ch = UTF8_GET (ptr, limit);
265 /* Updated specification from
266 http://www.javasoft.com/docs/books/jls/clarify.html. */
267 hash = (31 * hash) + ch;
268 }
269 return hash;
270 }
271
272 _Jv_Utf8Const *
273 _Jv_makeUtf8Const (char* s, int len)
274 {
275 if (len < 0)
276 len = strlen (s);
277 Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
278 memcpy (m->data, s, len);
279 m->data[len] = 0;
280 m->length = len;
281 m->hash = hashUtf8String (s, len) & 0xFFFF;
282 return (m);
283 }
284
285 _Jv_Utf8Const *
286 _Jv_makeUtf8Const (jstring string)
287 {
288 jint hash = string->hashCode ();
289 jint len = _Jv_GetStringUTFLength (string);
290
291 Utf8Const* m = (Utf8Const*)
292 _Jv_AllocBytes (sizeof(Utf8Const) + len + 1);
293
294 m->hash = hash;
295 m->length = len;
296
297 _Jv_GetStringUTFRegion (string, 0, string->length (), m->data);
298 m->data[len] = 0;
299
300 return m;
301 }
302
303 \f
304
305 #ifdef DEBUG
306 void
307 _Jv_Abort (const char *function, const char *file, int line,
308 const char *message)
309 #else
310 void
311 _Jv_Abort (const char *, const char *, int, const char *message)
312 #endif
313 {
314 #ifdef DEBUG
315 fprintf (stderr,
316 "libgcj failure: %s\n in function %s, file %s, line %d\n",
317 message, function, file, line);
318 #else
319 fprintf (stderr, "libgcj failure: %s\n", message);
320 #endif
321 abort ();
322 }
323
324 static void
325 fail_on_finalization (jobject)
326 {
327 JvFail ("object was finalized");
328 }
329
330 void
331 _Jv_GCWatch (jobject obj)
332 {
333 _Jv_RegisterFinalizer (obj, fail_on_finalization);
334 }
335
336 void
337 _Jv_ThrowBadArrayIndex(jint bad_index)
338 {
339 throw new java::lang::ArrayIndexOutOfBoundsException
340 (java::lang::String::valueOf (bad_index));
341 }
342
343 void
344 _Jv_ThrowNullPointerException ()
345 {
346 throw new java::lang::NullPointerException;
347 }
348
349 // Explicitly throw a no memory exception.
350 // The collector calls this when it encounters an out-of-memory condition.
351 void _Jv_ThrowNoMemory()
352 {
353 throw no_memory;
354 }
355
356 #ifdef ENABLE_JVMPI
357 static void
358 jvmpi_notify_alloc(jclass klass, jint size, jobject obj)
359 {
360 // Service JVMPI allocation request.
361 if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
362 {
363 JVMPI_Event event;
364
365 event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
366 event.env_id = NULL;
367 event.u.obj_alloc.arena_id = 0;
368 event.u.obj_alloc.class_id = (jobjectID) klass;
369 event.u.obj_alloc.is_array = 0;
370 event.u.obj_alloc.size = size;
371 event.u.obj_alloc.obj_id = (jobjectID) obj;
372
373 // FIXME: This doesn't look right for the Boehm GC. A GC may
374 // already be in progress. _Jv_DisableGC () doesn't wait for it.
375 // More importantly, I don't see the need for disabling GC, since we
376 // blatantly have a pointer to obj on our stack, ensuring that the
377 // object can't be collected. Even for a nonconservative collector,
378 // it appears to me that this must be true, since we are about to
379 // return obj. Isn't this whole approach way too intrusive for
380 // a useful profiling interface? - HB
381 _Jv_DisableGC ();
382 (*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
383 _Jv_EnableGC ();
384 }
385 }
386 #else /* !ENABLE_JVMPI */
387 # define jvmpi_notify_alloc(klass,size,obj) /* do nothing */
388 #endif
389
390 // Allocate a new object of class KLASS. SIZE is the size of the object
391 // to allocate. You might think this is redundant, but it isn't; some
392 // classes, such as String, aren't of fixed size.
393 // First a version that assumes that we have no finalizer, and that
394 // the class is already initialized.
395 // If we know that JVMPI is disabled, this can be replaced by a direct call
396 // to the allocator for the appropriate GC.
397 jobject
398 _Jv_AllocObjectNoInitNoFinalizer (jclass klass, jint size)
399 {
400 jobject obj = (jobject) _Jv_AllocObj (size, klass);
401 jvmpi_notify_alloc (klass, size, obj);
402 return obj;
403 }
404
405 // And now a version that initializes if necessary.
406 jobject
407 _Jv_AllocObjectNoFinalizer (jclass klass, jint size)
408 {
409 _Jv_InitClass (klass);
410 jobject obj = (jobject) _Jv_AllocObj (size, klass);
411 jvmpi_notify_alloc (klass, size, obj);
412 return obj;
413 }
414
415 // And now the general version that registers a finalizer if necessary.
416 jobject
417 _Jv_AllocObject (jclass klass, jint size)
418 {
419 jobject obj = _Jv_AllocObjectNoFinalizer (klass, size);
420
421 // We assume that the compiler only generates calls to this routine
422 // if there really is an interesting finalizer.
423 // Unfortunately, we still have to the dynamic test, since there may
424 // be cni calls to this routine.
425 // Note that on IA64 get_finalizer() returns the starting address of the
426 // function, not a function pointer. Thus this still works.
427 if (klass->vtable->get_finalizer ()
428 != java::lang::Object::class$.vtable->get_finalizer ())
429 _Jv_RegisterFinalizer (obj, _Jv_FinalizeObject);
430 return obj;
431 }
432
433 // A version of the above that assumes the object contains no pointers,
434 // and requires no finalization. This can't happen if we need pointers
435 // to locks.
436 #ifdef JV_HASH_SYNCHRONIZATION
437 jobject
438 _Jv_AllocPtrFreeObject (jclass klass, jint size)
439 {
440 _Jv_InitClass (klass);
441
442 jobject obj = (jobject) _Jv_AllocPtrFreeObj (size, klass);
443
444 #ifdef ENABLE_JVMPI
445 // Service JVMPI request.
446
447 if (__builtin_expect (_Jv_JVMPI_Notify_OBJECT_ALLOC != 0, false))
448 {
449 JVMPI_Event event;
450
451 event.event_type = JVMPI_EVENT_OBJECT_ALLOC;
452 event.env_id = NULL;
453 event.u.obj_alloc.arena_id = 0;
454 event.u.obj_alloc.class_id = (jobjectID) klass;
455 event.u.obj_alloc.is_array = 0;
456 event.u.obj_alloc.size = size;
457 event.u.obj_alloc.obj_id = (jobjectID) obj;
458
459 _Jv_DisableGC ();
460 (*_Jv_JVMPI_Notify_OBJECT_ALLOC) (&event);
461 _Jv_EnableGC ();
462 }
463 #endif
464
465 return obj;
466 }
467 #endif /* JV_HASH_SYNCHRONIZATION */
468
469
470 // Allocate a new array of Java objects. Each object is of type
471 // `elementClass'. `init' is used to initialize each slot in the
472 // array.
473 jobjectArray
474 _Jv_NewObjectArray (jsize count, jclass elementClass, jobject init)
475 {
476 if (__builtin_expect (count < 0, false))
477 throw new java::lang::NegativeArraySizeException;
478
479 JvAssert (! elementClass->isPrimitive ());
480
481 // Ensure that elements pointer is properly aligned.
482 jobjectArray obj = NULL;
483 size_t size = (size_t) elements (obj);
484 size += count * sizeof (jobject);
485
486 jclass klass = _Jv_GetArrayClass (elementClass,
487 elementClass->getClassLoaderInternal());
488
489 obj = (jobjectArray) _Jv_AllocArray (size, klass);
490 // Cast away const.
491 jsize *lp = const_cast<jsize *> (&obj->length);
492 *lp = count;
493 // We know the allocator returns zeroed memory. So don't bother
494 // zeroing it again.
495 if (init)
496 {
497 jobject *ptr = elements(obj);
498 while (--count >= 0)
499 *ptr++ = init;
500 }
501 return obj;
502 }
503
504 // Allocate a new array of primitives. ELTYPE is the type of the
505 // element, COUNT is the size of the array.
506 jobject
507 _Jv_NewPrimArray (jclass eltype, jint count)
508 {
509 int elsize = eltype->size();
510 if (__builtin_expect (count < 0, false))
511 throw new java::lang::NegativeArraySizeException;
512
513 JvAssert (eltype->isPrimitive ());
514 jobject dummy = NULL;
515 size_t size = (size_t) _Jv_GetArrayElementFromElementType (dummy, eltype);
516
517 // Check for overflow.
518 if (__builtin_expect ((size_t) count >
519 (SIZE_T_MAX - size) / elsize, false))
520 throw no_memory;
521
522 jclass klass = _Jv_GetArrayClass (eltype, 0);
523
524 # ifdef JV_HASH_SYNCHRONIZATION
525 // Since the vtable is always statically allocated,
526 // these are completely pointerfree! Make sure the GC doesn't touch them.
527 __JArray *arr =
528 (__JArray*) _Jv_AllocPtrFreeObj (size + elsize * count, klass);
529 memset((char *)arr + size, 0, elsize * count);
530 # else
531 __JArray *arr = (__JArray*) _Jv_AllocObj (size + elsize * count, klass);
532 // Note that we assume we are given zeroed memory by the allocator.
533 # endif
534 // Cast away const.
535 jsize *lp = const_cast<jsize *> (&arr->length);
536 *lp = count;
537
538 return arr;
539 }
540
541 jobject
542 _Jv_NewArray (jint type, jint size)
543 {
544 switch (type)
545 {
546 case 4: return JvNewBooleanArray (size);
547 case 5: return JvNewCharArray (size);
548 case 6: return JvNewFloatArray (size);
549 case 7: return JvNewDoubleArray (size);
550 case 8: return JvNewByteArray (size);
551 case 9: return JvNewShortArray (size);
552 case 10: return JvNewIntArray (size);
553 case 11: return JvNewLongArray (size);
554 }
555 throw new java::lang::InternalError
556 (JvNewStringLatin1 ("invalid type code in _Jv_NewArray"));
557 }
558
559 // Allocate a possibly multi-dimensional array but don't check that
560 // any array length is <0.
561 static jobject
562 _Jv_NewMultiArrayUnchecked (jclass type, jint dimensions, jint *sizes)
563 {
564 JvAssert (type->isArray());
565 jclass element_type = type->getComponentType();
566 jobject result;
567 if (element_type->isPrimitive())
568 result = _Jv_NewPrimArray (element_type, sizes[0]);
569 else
570 result = _Jv_NewObjectArray (sizes[0], element_type, NULL);
571
572 if (dimensions > 1)
573 {
574 JvAssert (! element_type->isPrimitive());
575 JvAssert (element_type->isArray());
576 jobject *contents = elements ((jobjectArray) result);
577 for (int i = 0; i < sizes[0]; ++i)
578 contents[i] = _Jv_NewMultiArrayUnchecked (element_type, dimensions - 1,
579 sizes + 1);
580 }
581
582 return result;
583 }
584
585 jobject
586 _Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes)
587 {
588 for (int i = 0; i < dimensions; ++i)
589 if (sizes[i] < 0)
590 throw new java::lang::NegativeArraySizeException;
591
592 return _Jv_NewMultiArrayUnchecked (type, dimensions, sizes);
593 }
594
595 jobject
596 _Jv_NewMultiArray (jclass array_type, jint dimensions, ...)
597 {
598 va_list args;
599 jint sizes[dimensions];
600 va_start (args, dimensions);
601 for (int i = 0; i < dimensions; ++i)
602 {
603 jint size = va_arg (args, jint);
604 if (size < 0)
605 throw new java::lang::NegativeArraySizeException;
606 sizes[i] = size;
607 }
608 va_end (args);
609
610 return _Jv_NewMultiArrayUnchecked (array_type, dimensions, sizes);
611 }
612
613 \f
614
615 // Ensure 8-byte alignment, for hash synchronization.
616 #define DECLARE_PRIM_TYPE(NAME) \
617 _Jv_ArrayVTable _Jv_##NAME##VTable; \
618 java::lang::Class _Jv_##NAME##Class __attribute__ ((aligned (8)));
619
620 DECLARE_PRIM_TYPE(byte)
621 DECLARE_PRIM_TYPE(short)
622 DECLARE_PRIM_TYPE(int)
623 DECLARE_PRIM_TYPE(long)
624 DECLARE_PRIM_TYPE(boolean)
625 DECLARE_PRIM_TYPE(char)
626 DECLARE_PRIM_TYPE(float)
627 DECLARE_PRIM_TYPE(double)
628 DECLARE_PRIM_TYPE(void)
629
630 void
631 _Jv_InitPrimClass (jclass cl, char *cname, char sig, int len,
632 _Jv_ArrayVTable *array_vtable)
633 {
634 using namespace java::lang::reflect;
635
636 _Jv_InitNewClassFields (cl);
637
638 // We must set the vtable for the class; the Java constructor
639 // doesn't do this.
640 (*(_Jv_VTable **) cl) = java::lang::Class::class$.vtable;
641
642 // Initialize the fields we care about. We do this in the same
643 // order they are declared in Class.h.
644 cl->name = _Jv_makeUtf8Const ((char *) cname, -1);
645 cl->accflags = Modifier::PUBLIC | Modifier::FINAL | Modifier::ABSTRACT;
646 cl->method_count = sig;
647 cl->size_in_bytes = len;
648 cl->vtable = JV_PRIMITIVE_VTABLE;
649 cl->state = JV_STATE_DONE;
650 cl->depth = -1;
651 if (sig != 'V')
652 _Jv_NewArrayClass (cl, NULL, (_Jv_VTable *) array_vtable);
653 }
654
655 jclass
656 _Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader)
657 {
658 switch (*sig)
659 {
660 case 'B':
661 return JvPrimClass (byte);
662 case 'S':
663 return JvPrimClass (short);
664 case 'I':
665 return JvPrimClass (int);
666 case 'J':
667 return JvPrimClass (long);
668 case 'Z':
669 return JvPrimClass (boolean);
670 case 'C':
671 return JvPrimClass (char);
672 case 'F':
673 return JvPrimClass (float);
674 case 'D':
675 return JvPrimClass (double);
676 case 'V':
677 return JvPrimClass (void);
678 case 'L':
679 {
680 int i;
681 for (i = 1; sig[i] && sig[i] != ';'; ++i)
682 ;
683 _Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1);
684 return _Jv_FindClass (name, loader);
685 }
686 case '[':
687 {
688 jclass klass = _Jv_FindClassFromSignature (&sig[1], loader);
689 if (! klass)
690 return NULL;
691 return _Jv_GetArrayClass (klass, loader);
692 }
693 }
694
695 return NULL; // Placate compiler.
696 }
697
698 \f
699
700 JArray<jstring> *
701 JvConvertArgv (int argc, const char **argv)
702 {
703 if (argc < 0)
704 argc = 0;
705 jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL);
706 jobject *ptr = elements(ar);
707 jbyteArray bytes = NULL;
708 for (int i = 0; i < argc; i++)
709 {
710 const char *arg = argv[i];
711 int len = strlen (arg);
712 if (bytes == NULL || bytes->length < len)
713 bytes = JvNewByteArray (len);
714 jbyte *bytePtr = elements (bytes);
715 // We assume jbyte == char.
716 memcpy (bytePtr, arg, len);
717
718 // Now convert using the default encoding.
719 *ptr++ = new java::lang::String (bytes, 0, len);
720 }
721 return (JArray<jstring>*) ar;
722 }
723
724 // FIXME: These variables are static so that they will be
725 // automatically scanned by the Boehm collector. This is needed
726 // because with qthreads the collector won't scan the initial stack --
727 // it will only scan the qthreads stacks.
728
729 // Command line arguments.
730 static JArray<jstring> *arg_vec;
731
732 // The primary thread.
733 static java::lang::Thread *main_thread;
734
735 #ifndef DISABLE_GETENV_PROPERTIES
736
737 static char *
738 next_property_key (char *s, size_t *length)
739 {
740 size_t l = 0;
741
742 JvAssert (s);
743
744 // Skip over whitespace
745 while (isspace (*s))
746 s++;
747
748 // If we've reached the end, return NULL. Also return NULL if for
749 // some reason we've come across a malformed property string.
750 if (*s == 0
751 || *s == ':'
752 || *s == '=')
753 return NULL;
754
755 // Determine the length of the property key.
756 while (s[l] != 0
757 && ! isspace (s[l])
758 && s[l] != ':'
759 && s[l] != '=')
760 {
761 if (s[l] == '\\'
762 && s[l+1] != 0)
763 l++;
764 l++;
765 }
766
767 *length = l;
768
769 return s;
770 }
771
772 static char *
773 next_property_value (char *s, size_t *length)
774 {
775 size_t l = 0;
776
777 JvAssert (s);
778
779 while (isspace (*s))
780 s++;
781
782 if (*s == ':'
783 || *s == '=')
784 s++;
785
786 while (isspace (*s))
787 s++;
788
789 // If we've reached the end, return NULL.
790 if (*s == 0)
791 return NULL;
792
793 // Determine the length of the property value.
794 while (s[l] != 0
795 && ! isspace (s[l])
796 && s[l] != ':'
797 && s[l] != '=')
798 {
799 if (s[l] == '\\'
800 && s[l+1] != 0)
801 l += 2;
802 else
803 l++;
804 }
805
806 *length = l;
807
808 return s;
809 }
810
811 static void
812 process_gcj_properties ()
813 {
814 char *props = getenv("GCJ_PROPERTIES");
815 char *p = props;
816 size_t length;
817 size_t property_count = 0;
818
819 if (NULL == props)
820 return;
821
822 // Whip through props quickly in order to count the number of
823 // property values.
824 while (p && (p = next_property_key (p, &length)))
825 {
826 // Skip to the end of the key
827 p += length;
828
829 p = next_property_value (p, &length);
830 if (p)
831 p += length;
832
833 property_count++;
834 }
835
836 // Allocate an array of property value/key pairs.
837 _Jv_Environment_Properties =
838 (property_pair *) malloc (sizeof(property_pair)
839 * (property_count + 1));
840
841 // Go through the properties again, initializing _Jv_Properties
842 // along the way.
843 p = props;
844 property_count = 0;
845 while (p && (p = next_property_key (p, &length)))
846 {
847 _Jv_Environment_Properties[property_count].key = p;
848 _Jv_Environment_Properties[property_count].key_length = length;
849
850 // Skip to the end of the key
851 p += length;
852
853 p = next_property_value (p, &length);
854
855 _Jv_Environment_Properties[property_count].value = p;
856 _Jv_Environment_Properties[property_count].value_length = length;
857
858 if (p)
859 p += length;
860
861 property_count++;
862 }
863 memset ((void *) &_Jv_Environment_Properties[property_count],
864 0, sizeof (property_pair));
865 {
866 size_t i = 0;
867
868 // Null terminate the strings.
869 while (_Jv_Environment_Properties[i].key)
870 {
871 _Jv_Environment_Properties[i].key[_Jv_Environment_Properties[i].key_length] = 0;
872 _Jv_Environment_Properties[i++].value[_Jv_Environment_Properties[i].value_length] = 0;
873 }
874 }
875 }
876 #endif // DISABLE_GETENV_PROPERTIES
877
878 namespace gcj
879 {
880 _Jv_Utf8Const *void_signature;
881 _Jv_Utf8Const *clinit_name;
882 _Jv_Utf8Const *init_name;
883 _Jv_Utf8Const *finit_name;
884
885 bool runtimeInitialized = false;
886 }
887
888 jint
889 _Jv_CreateJavaVM (void* /*vm_args*/)
890 {
891 using namespace gcj;
892
893 if (runtimeInitialized)
894 return -1;
895
896 runtimeInitialized = true;
897
898 PROCESS_GCJ_PROPERTIES;
899
900 _Jv_InitThreads ();
901 _Jv_InitGC ();
902 _Jv_InitializeSyncMutex ();
903
904 /* Initialize Utf8 constants declared in jvm.h. */
905 void_signature = _Jv_makeUtf8Const ("()V", 3);
906 clinit_name = _Jv_makeUtf8Const ("<clinit>", 8);
907 init_name = _Jv_makeUtf8Const ("<init>", 6);
908 finit_name = _Jv_makeUtf8Const ("finit$", 6);
909
910 /* Initialize built-in classes to represent primitive TYPEs. */
911 _Jv_InitPrimClass (&_Jv_byteClass, "byte", 'B', 1, &_Jv_byteVTable);
912 _Jv_InitPrimClass (&_Jv_shortClass, "short", 'S', 2, &_Jv_shortVTable);
913 _Jv_InitPrimClass (&_Jv_intClass, "int", 'I', 4, &_Jv_intVTable);
914 _Jv_InitPrimClass (&_Jv_longClass, "long", 'J', 8, &_Jv_longVTable);
915 _Jv_InitPrimClass (&_Jv_booleanClass, "boolean", 'Z', 1, &_Jv_booleanVTable);
916 _Jv_InitPrimClass (&_Jv_charClass, "char", 'C', 2, &_Jv_charVTable);
917 _Jv_InitPrimClass (&_Jv_floatClass, "float", 'F', 4, &_Jv_floatVTable);
918 _Jv_InitPrimClass (&_Jv_doubleClass, "double", 'D', 8, &_Jv_doubleVTable);
919 _Jv_InitPrimClass (&_Jv_voidClass, "void", 'V', 0, &_Jv_voidVTable);
920
921 // Turn stack trace generation off while creating exception objects.
922 _Jv_InitClass (&java::lang::VMThrowable::class$);
923 java::lang::VMThrowable::trace_enabled = 0;
924
925 INIT_SEGV;
926 #ifdef HANDLE_FPE
927 INIT_FPE;
928 #endif
929
930 no_memory = new java::lang::OutOfMemoryError;
931
932 java::lang::VMThrowable::trace_enabled = 1;
933
934 #ifdef USE_LTDL
935 LTDL_SET_PRELOADED_SYMBOLS ();
936 #endif
937
938 _Jv_platform_initialize ();
939
940 _Jv_JNI_Init ();
941
942 _Jv_GCInitializeFinalizers (&::gnu::gcj::runtime::FinalizerThread::finalizerReady);
943
944 // Start the GC finalizer thread. A VirtualMachineError can be
945 // thrown by the runtime if, say, threads aren't available. In this
946 // case finalizers simply won't run.
947 try
948 {
949 using namespace gnu::gcj::runtime;
950 FinalizerThread *ft = new FinalizerThread ();
951 ft->start ();
952 }
953 catch (java::lang::VirtualMachineError *ignore)
954 {
955 }
956
957 return 0;
958 }
959
960 void
961 _Jv_RunMain (jclass klass, const char *name, int argc, const char **argv,
962 bool is_jar)
963 {
964 _Jv_SetArgs (argc, argv);
965
966 java::lang::Runtime *runtime = NULL;
967
968 try
969 {
970 // Set this very early so that it is seen when java.lang.System
971 // is initialized.
972 if (is_jar)
973 _Jv_Jar_Class_Path = strdup (name);
974 _Jv_CreateJavaVM (NULL);
975
976 // Get the Runtime here. We want to initialize it before searching
977 // for `main'; that way it will be set up if `main' is a JNI method.
978 runtime = java::lang::Runtime::getRuntime ();
979
980 #ifdef DISABLE_MAIN_ARGS
981 arg_vec = JvConvertArgv (0, 0);
982 #else
983 arg_vec = JvConvertArgv (argc - 1, argv + 1);
984 #endif
985
986 // We have to initialize this fairly early, to avoid circular
987 // class initialization. In particular we want to start the
988 // initialization of ClassLoader before we start the
989 // initialization of VMClassLoader.
990 _Jv_InitClass (&java::lang::ClassLoader::class$);
991
992 using namespace gnu::gcj::runtime;
993 if (klass)
994 main_thread = new FirstThread (klass, arg_vec);
995 else
996 main_thread = new FirstThread (JvNewStringLatin1 (name),
997 arg_vec, is_jar);
998 }
999 catch (java::lang::Throwable *t)
1000 {
1001 java::lang::System::err->println (JvNewStringLatin1
1002 ("Exception during runtime initialization"));
1003 t->printStackTrace();
1004 runtime->exit (1);
1005 }
1006
1007 _Jv_AttachCurrentThread (main_thread);
1008 _Jv_ThreadRun (main_thread);
1009 _Jv_ThreadWait ();
1010
1011 int status = (int) java::lang::ThreadGroup::had_uncaught_exception;
1012 runtime->exit (status);
1013 }
1014
1015 void
1016 JvRunMain (jclass klass, int argc, const char **argv)
1017 {
1018 _Jv_RunMain (klass, NULL, argc, argv, false);
1019 }
1020
1021 \f
1022
1023 // Parse a string and return a heap size.
1024 static size_t
1025 parse_heap_size (const char *spec)
1026 {
1027 char *end;
1028 unsigned long val = strtoul (spec, &end, 10);
1029 if (*end == 'k' || *end == 'K')
1030 val *= 1024;
1031 else if (*end == 'm' || *end == 'M')
1032 val *= 1048576;
1033 return (size_t) val;
1034 }
1035
1036 // Set the initial heap size. This might be ignored by the GC layer.
1037 // This must be called before _Jv_RunMain.
1038 void
1039 _Jv_SetInitialHeapSize (const char *arg)
1040 {
1041 size_t size = parse_heap_size (arg);
1042 _Jv_GCSetInitialHeapSize (size);
1043 }
1044
1045 // Set the maximum heap size. This might be ignored by the GC layer.
1046 // This must be called before _Jv_RunMain.
1047 void
1048 _Jv_SetMaximumHeapSize (const char *arg)
1049 {
1050 size_t size = parse_heap_size (arg);
1051 _Jv_GCSetMaximumHeapSize (size);
1052 }
1053
1054 \f
1055
1056 void *
1057 _Jv_Malloc (jsize size)
1058 {
1059 if (__builtin_expect (size == 0, false))
1060 size = 1;
1061 void *ptr = malloc ((size_t) size);
1062 if (__builtin_expect (ptr == NULL, false))
1063 throw no_memory;
1064 return ptr;
1065 }
1066
1067 void *
1068 _Jv_Realloc (void *ptr, jsize size)
1069 {
1070 if (__builtin_expect (size == 0, false))
1071 size = 1;
1072 ptr = realloc (ptr, (size_t) size);
1073 if (__builtin_expect (ptr == NULL, false))
1074 throw no_memory;
1075 return ptr;
1076 }
1077
1078 void *
1079 _Jv_MallocUnchecked (jsize size)
1080 {
1081 if (__builtin_expect (size == 0, false))
1082 size = 1;
1083 return malloc ((size_t) size);
1084 }
1085
1086 void
1087 _Jv_Free (void* ptr)
1088 {
1089 return free (ptr);
1090 }
1091
1092 \f
1093
1094 // In theory, these routines can be #ifdef'd away on machines which
1095 // support divide overflow signals. However, we never know if some
1096 // code might have been compiled with "-fuse-divide-subroutine", so we
1097 // always include them in libgcj.
1098
1099 jint
1100 _Jv_divI (jint dividend, jint divisor)
1101 {
1102 if (__builtin_expect (divisor == 0, false))
1103 {
1104 java::lang::ArithmeticException *arithexception
1105 = new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
1106 throw arithexception;
1107 }
1108
1109 if (dividend == (jint) 0x80000000L && divisor == -1)
1110 return dividend;
1111
1112 return dividend / divisor;
1113 }
1114
1115 jint
1116 _Jv_remI (jint dividend, jint divisor)
1117 {
1118 if (__builtin_expect (divisor == 0, false))
1119 {
1120 java::lang::ArithmeticException *arithexception
1121 = new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
1122 throw arithexception;
1123 }
1124
1125 if (dividend == (jint) 0x80000000L && divisor == -1)
1126 return 0;
1127
1128 return dividend % divisor;
1129 }
1130
1131 jlong
1132 _Jv_divJ (jlong dividend, jlong divisor)
1133 {
1134 if (__builtin_expect (divisor == 0, false))
1135 {
1136 java::lang::ArithmeticException *arithexception
1137 = new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
1138 throw arithexception;
1139 }
1140
1141 if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
1142 return dividend;
1143
1144 return dividend / divisor;
1145 }
1146
1147 jlong
1148 _Jv_remJ (jlong dividend, jlong divisor)
1149 {
1150 if (__builtin_expect (divisor == 0, false))
1151 {
1152 java::lang::ArithmeticException *arithexception
1153 = new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero"));
1154 throw arithexception;
1155 }
1156
1157 if (dividend == (jlong) 0x8000000000000000LL && divisor == -1)
1158 return 0;
1159
1160 return dividend % divisor;
1161 }
1162
1163 \f
1164
1165 // Return true if SELF_KLASS can access a field or method in
1166 // OTHER_KLASS. The field or method's access flags are specified in
1167 // FLAGS.
1168 jboolean
1169 _Jv_CheckAccess (jclass self_klass, jclass other_klass, jint flags)
1170 {
1171 using namespace java::lang::reflect;
1172 return ((self_klass == other_klass)
1173 || ((flags & Modifier::PUBLIC) != 0)
1174 || (((flags & Modifier::PROTECTED) != 0)
1175 && other_klass->isAssignableFrom (self_klass))
1176 || (((flags & Modifier::PRIVATE) == 0)
1177 && _Jv_ClassNameSamePackage (self_klass->name,
1178 other_klass->name)));
1179 }