Bump version
[yosys.git] / libs / minisat / SimpSolver.h
1 /************************************************************************************[SimpSolver.h]
2 Copyright (c) 2006, Niklas Een, Niklas Sorensson
3 Copyright (c) 2007-2010, Niklas Sorensson
4
5 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
6 associated documentation files (the "Software"), to deal in the Software without restriction,
7 including without limitation the rights to use, copy, modify, merge, publish, distribute,
8 sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
9 furnished to do so, subject to the following conditions:
10
11 The above copyright notice and this permission notice shall be included in all copies or
12 substantial portions of the Software.
13
14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
15 NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
16 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
17 DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
18 OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19 **************************************************************************************************/
20
21 #ifndef Minisat_SimpSolver_h
22 #define Minisat_SimpSolver_h
23
24 #include "Queue.h"
25 #include "Solver.h"
26
27
28 namespace Minisat {
29
30 //=================================================================================================
31
32
33 class SimpSolver : public Solver {
34 public:
35 // Constructor/Destructor:
36 //
37 SimpSolver();
38 ~SimpSolver();
39
40 // Problem specification:
41 //
42 Var newVar (lbool upol = l_Undef, bool dvar = true);
43 void releaseVar(Lit l);
44 bool addClause (const vec<Lit>& ps);
45 bool addEmptyClause(); // Add the empty clause to the solver.
46 bool addClause (Lit p); // Add a unit clause to the solver.
47 bool addClause (Lit p, Lit q); // Add a binary clause to the solver.
48 bool addClause (Lit p, Lit q, Lit r); // Add a ternary clause to the solver.
49 bool addClause (Lit p, Lit q, Lit r, Lit s); // Add a quaternary clause to the solver.
50 bool addClause_( vec<Lit>& ps);
51 bool substitute(Var v, Lit x); // Replace all occurences of v with x (may cause a contradiction).
52
53 // Variable mode:
54 //
55 void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
56 bool isEliminated(Var v) const;
57
58 // Alternative freeze interface (may replace 'setFrozen()'):
59 void freezeVar (Var v); // Freeze one variable so it will not be eliminated.
60 void thaw (); // Thaw all frozen variables.
61
62
63 // Solving:
64 //
65 bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
66 lbool solveLimited(const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
67 bool solve ( bool do_simp = true, bool turn_off_simp = false);
68 bool solve (Lit p , bool do_simp = true, bool turn_off_simp = false);
69 bool solve (Lit p, Lit q, bool do_simp = true, bool turn_off_simp = false);
70 bool solve (Lit p, Lit q, Lit r, bool do_simp = true, bool turn_off_simp = false);
71 bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
72
73 // Memory managment:
74 //
75 virtual void garbageCollect();
76
77
78 // Generate a (possibly simplified) DIMACS file:
79 //
80 #if 0
81 void toDimacs (const char* file, const vec<Lit>& assumps);
82 void toDimacs (const char* file);
83 void toDimacs (const char* file, Lit p);
84 void toDimacs (const char* file, Lit p, Lit q);
85 void toDimacs (const char* file, Lit p, Lit q, Lit r);
86 #endif
87
88 // Mode of operation:
89 //
90 int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
91 int clause_lim; // Variables are not eliminated if it produces a resolvent with a length above this limit.
92 // -1 means no limit.
93 int subsumption_lim; // Do not check if subsumption against a clause larger than this. -1 means no limit.
94 double simp_garbage_frac; // A different limit for when to issue a GC during simplification (Also see 'garbage_frac').
95
96 bool use_asymm; // Shrink clauses by asymmetric branching.
97 bool use_rcheck; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
98 bool use_elim; // Perform variable elimination.
99 bool extend_model; // Flag to indicate whether the user needs to look at the full model.
100
101 // Statistics:
102 //
103 int merges;
104 int asymm_lits;
105 int eliminated_vars;
106
107 protected:
108
109 // Helper structures:
110 //
111 struct ElimLt {
112 const LMap<int>& n_occ;
113 explicit ElimLt(const LMap<int>& no) : n_occ(no) {}
114
115 // TODO: are 64-bit operations here noticably bad on 32-bit platforms? Could use a saturating
116 // 32-bit implementation instead then, but this will have to do for now.
117 uint64_t cost (Var x) const { return (uint64_t)n_occ[mkLit(x)] * (uint64_t)n_occ[~mkLit(x)]; }
118 bool operator()(Var x, Var y) const { return cost(x) < cost(y); }
119
120 // TODO: investigate this order alternative more.
121 // bool operator()(Var x, Var y) const {
122 // int c_x = cost(x);
123 // int c_y = cost(y);
124 // return c_x < c_y || c_x == c_y && x < y; }
125 };
126
127 struct ClauseDeleted {
128 const ClauseAllocator& ca;
129 explicit ClauseDeleted(const ClauseAllocator& _ca) : ca(_ca) {}
130 bool operator()(const CRef& cr) const { return ca[cr].mark() == 1; } };
131
132 // Solver state:
133 //
134 int elimorder;
135 bool use_simplification;
136 Var max_simp_var; // Max variable at the point simplification was turned off.
137 vec<uint32_t> elimclauses;
138 VMap<char> touched;
139 OccLists<Var, vec<CRef>, ClauseDeleted>
140 occurs;
141 LMap<int> n_occ;
142 Heap<Var,ElimLt> elim_heap;
143 Queue<CRef> subsumption_queue;
144 VMap<char> frozen;
145 vec<Var> frozen_vars;
146 VMap<char> eliminated;
147 int bwdsub_assigns;
148 int n_touched;
149
150 // Temporaries:
151 //
152 CRef bwdsub_tmpunit;
153
154 // Main internal methods:
155 //
156 lbool solve_ (bool do_simp = true, bool turn_off_simp = false);
157 bool asymm (Var v, CRef cr);
158 bool asymmVar (Var v);
159 void updateElimHeap (Var v);
160 void gatherTouchedClauses ();
161 bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
162 bool merge (const Clause& _ps, const Clause& _qs, Var v, int& size);
163 bool backwardSubsumptionCheck (bool verbose = false);
164 bool eliminateVar (Var v);
165 void extendModel ();
166
167 void removeClause (CRef cr);
168 bool strengthenClause (CRef cr, Lit l);
169 bool implied (const vec<Lit>& c);
170 void relocAll (ClauseAllocator& to);
171 };
172
173
174 //=================================================================================================
175 // Implementation of inline methods:
176
177
178 inline bool SimpSolver::isEliminated (Var v) const { return eliminated[v]; }
179 inline void SimpSolver::updateElimHeap(Var v) {
180 assert(use_simplification);
181 // if (!frozen[v] && !isEliminated(v) && value(v) == l_Undef)
182 if (elim_heap.inHeap(v) || (!frozen[v] && !isEliminated(v) && value(v) == l_Undef))
183 elim_heap.update(v); }
184
185
186 inline bool SimpSolver::addClause (const vec<Lit>& ps) { ps.copyTo(add_tmp); return addClause_(add_tmp); }
187 inline bool SimpSolver::addEmptyClause() { add_tmp.clear(); return addClause_(add_tmp); }
188 inline bool SimpSolver::addClause (Lit p) { add_tmp.clear(); add_tmp.push(p); return addClause_(add_tmp); }
189 inline bool SimpSolver::addClause (Lit p, Lit q) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); return addClause_(add_tmp); }
190 inline bool SimpSolver::addClause (Lit p, Lit q, Lit r) { add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); return addClause_(add_tmp); }
191 inline bool SimpSolver::addClause (Lit p, Lit q, Lit r, Lit s){ add_tmp.clear(); add_tmp.push(p); add_tmp.push(q); add_tmp.push(r); add_tmp.push(s); return addClause_(add_tmp); }
192 inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (use_simplification && !b) { updateElimHeap(v); } }
193
194 inline void SimpSolver::freezeVar(Var v){
195 if (!frozen[v]){
196 frozen[v] = 1;
197 frozen_vars.push(v);
198 } }
199
200 inline void SimpSolver::thaw(){
201 for (int i = 0; i < frozen_vars.size(); i++){
202 Var v = frozen_vars[i];
203 frozen[v] = 0;
204 if (use_simplification)
205 updateElimHeap(v);
206 }
207 frozen_vars.clear(); }
208
209 inline bool SimpSolver::solve ( bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); return solve_(do_simp, turn_off_simp) == l_True; }
210 inline bool SimpSolver::solve (Lit p , bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); return solve_(do_simp, turn_off_simp) == l_True; }
211 inline bool SimpSolver::solve (Lit p, Lit q, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); return solve_(do_simp, turn_off_simp) == l_True; }
212 inline bool SimpSolver::solve (Lit p, Lit q, Lit r, bool do_simp, bool turn_off_simp) { budgetOff(); assumptions.clear(); assumptions.push(p); assumptions.push(q); assumptions.push(r); return solve_(do_simp, turn_off_simp) == l_True; }
213 inline bool SimpSolver::solve (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
214 budgetOff(); assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp) == l_True; }
215
216 inline lbool SimpSolver::solveLimited (const vec<Lit>& assumps, bool do_simp, bool turn_off_simp){
217 assumps.copyTo(assumptions); return solve_(do_simp, turn_off_simp); }
218
219 //=================================================================================================
220 }
221
222 #endif