ipa-polymorphic-call.c (possible_placement_new): Fix condition on size.
[gcc.git] / libstdc++-v3 / include / bits / hashtable.h
1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40
41 template<typename _Tp, typename _Hash>
42 using __cache_default
43 = __not_<__and_<// Do not cache for fast hasher.
44 __is_fast_hash<_Hash>,
45 // Mandatory to have erase not throwing.
46 __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47
48 /**
49 * Primary class template _Hashtable.
50 *
51 * @ingroup hashtable-detail
52 *
53 * @tparam _Value CopyConstructible type.
54 *
55 * @tparam _Key CopyConstructible type.
56 *
57 * @tparam _Alloc An allocator type
58 * ([lib.allocator.requirements]) whose _Alloc::value_type is
59 * _Value. As a conforming extension, we allow for
60 * _Alloc::value_type != _Value.
61 *
62 * @tparam _ExtractKey Function object that takes an object of type
63 * _Value and returns a value of type _Key.
64 *
65 * @tparam _Equal Function object that takes two objects of type k
66 * and returns a bool-like value that is true if the two objects
67 * are considered equal.
68 *
69 * @tparam _H1 The hash function. A unary function object with
70 * argument type _Key and result type size_t. Return values should
71 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72 *
73 * @tparam _H2 The range-hashing function (in the terminology of
74 * Tavori and Dreizin). A binary function object whose argument
75 * types and result type are all size_t. Given arguments r and N,
76 * the return value is in the range [0, N).
77 *
78 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79 * binary function whose argument types are _Key and size_t and
80 * whose result type is size_t. Given arguments k and N, the
81 * return value is in the range [0, N). Default: hash(k, N) =
82 * h2(h1(k), N). If _Hash is anything other than the default, _H1
83 * and _H2 are ignored.
84 *
85 * @tparam _RehashPolicy Policy class with three members, all of
86 * which govern the bucket count. _M_next_bkt(n) returns a bucket
87 * count no smaller than n. _M_bkt_for_elements(n) returns a
88 * bucket count appropriate for an element count of n.
89 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90 * current bucket count is n_bkt and the current element count is
91 * n_elt, we need to increase the bucket count. If so, returns
92 * make_pair(true, n), where n is the new bucket count. If not,
93 * returns make_pair(false, <anything>)
94 *
95 * @tparam _Traits Compile-time class with three boolean
96 * std::integral_constant members: __cache_hash_code, __constant_iterators,
97 * __unique_keys.
98 *
99 * Each _Hashtable data structure has:
100 *
101 * - _Bucket[] _M_buckets
102 * - _Hash_node_base _M_before_begin
103 * - size_type _M_bucket_count
104 * - size_type _M_element_count
105 *
106 * with _Bucket being _Hash_node* and _Hash_node containing:
107 *
108 * - _Hash_node* _M_next
109 * - Tp _M_value
110 * - size_t _M_hash_code if cache_hash_code is true
111 *
112 * In terms of Standard containers the hashtable is like the aggregation of:
113 *
114 * - std::forward_list<_Node> containing the elements
115 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116 *
117 * The non-empty buckets contain the node before the first node in the
118 * bucket. This design makes it possible to implement something like a
119 * std::forward_list::insert_after on container insertion and
120 * std::forward_list::erase_after on container erase
121 * calls. _M_before_begin is equivalent to
122 * std::forward_list::before_begin. Empty buckets contain
123 * nullptr. Note that one of the non-empty buckets contains
124 * &_M_before_begin which is not a dereferenceable node so the
125 * node pointer in a bucket shall never be dereferenced, only its
126 * next node can be.
127 *
128 * Walking through a bucket's nodes requires a check on the hash code to
129 * see if each node is still in the bucket. Such a design assumes a
130 * quite efficient hash functor and is one of the reasons it is
131 * highly advisable to set __cache_hash_code to true.
132 *
133 * The container iterators are simply built from nodes. This way
134 * incrementing the iterator is perfectly efficient independent of
135 * how many empty buckets there are in the container.
136 *
137 * On insert we compute the element's hash code and use it to find the
138 * bucket index. If the element must be inserted in an empty bucket
139 * we add it at the beginning of the singly linked list and make the
140 * bucket point to _M_before_begin. The bucket that used to point to
141 * _M_before_begin, if any, is updated to point to its new before
142 * begin node.
143 *
144 * On erase, the simple iterator design requires using the hash
145 * functor to get the index of the bucket to update. For this
146 * reason, when __cache_hash_code is set to false the hash functor must
147 * not throw and this is enforced by a static assertion.
148 *
149 * Functionality is implemented by decomposition into base classes,
150 * where the derived _Hashtable class is used in _Map_base,
151 * _Insert, _Rehash_base, and _Equality base classes to access the
152 * "this" pointer. _Hashtable_base is used in the base classes as a
153 * non-recursive, fully-completed-type so that detailed nested type
154 * information, such as iterator type and node type, can be
155 * used. This is similar to the "Curiously Recurring Template
156 * Pattern" (CRTP) technique, but uses a reconstructed, not
157 * explicitly passed, template pattern.
158 *
159 * Base class templates are:
160 * - __detail::_Hashtable_base
161 * - __detail::_Map_base
162 * - __detail::_Insert
163 * - __detail::_Rehash_base
164 * - __detail::_Equality
165 */
166 template<typename _Key, typename _Value, typename _Alloc,
167 typename _ExtractKey, typename _Equal,
168 typename _H1, typename _H2, typename _Hash,
169 typename _RehashPolicy, typename _Traits>
170 class _Hashtable
171 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 _H1, _H2, _Hash, _Traits>,
173 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181 private __detail::_Hashtable_alloc<
182 typename __alloctr_rebind<_Alloc,
183 __detail::_Hash_node<_Value,
184 _Traits::__hash_cached::value> >::__type>
185 {
186 using __traits_type = _Traits;
187 using __hash_cached = typename __traits_type::__hash_cached;
188 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189 using __node_alloc_type =
190 typename __alloctr_rebind<_Alloc, __node_type>::__type;
191
192 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193
194 using __value_alloc_traits =
195 typename __hashtable_alloc::__value_alloc_traits;
196 using __node_alloc_traits =
197 typename __hashtable_alloc::__node_alloc_traits;
198 using __node_base = typename __hashtable_alloc::__node_base;
199 using __bucket_type = typename __hashtable_alloc::__bucket_type;
200
201 public:
202 typedef _Key key_type;
203 typedef _Value value_type;
204 typedef _Alloc allocator_type;
205 typedef _Equal key_equal;
206
207 // mapped_type, if present, comes from _Map_base.
208 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209 typedef typename __value_alloc_traits::pointer pointer;
210 typedef typename __value_alloc_traits::const_pointer const_pointer;
211 typedef value_type& reference;
212 typedef const value_type& const_reference;
213
214 private:
215 using __rehash_type = _RehashPolicy;
216 using __rehash_state = typename __rehash_type::_State;
217
218 using __constant_iterators = typename __traits_type::__constant_iterators;
219 using __unique_keys = typename __traits_type::__unique_keys;
220
221 using __key_extract = typename std::conditional<
222 __constant_iterators::value,
223 __detail::_Identity,
224 __detail::_Select1st>::type;
225
226 using __hashtable_base = __detail::
227 _Hashtable_base<_Key, _Value, _ExtractKey,
228 _Equal, _H1, _H2, _Hash, _Traits>;
229
230 using __hash_code_base = typename __hashtable_base::__hash_code_base;
231 using __hash_code = typename __hashtable_base::__hash_code;
232 using __ireturn_type = typename __hashtable_base::__ireturn_type;
233
234 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235 _Equal, _H1, _H2, _Hash,
236 _RehashPolicy, _Traits>;
237
238 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239 _ExtractKey, _Equal,
240 _H1, _H2, _Hash,
241 _RehashPolicy, _Traits>;
242
243 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244 _Equal, _H1, _H2, _Hash,
245 _RehashPolicy, _Traits>;
246
247 using __reuse_or_alloc_node_type =
248 __detail::_ReuseOrAllocNode<__node_alloc_type>;
249
250 // Metaprogramming for picking apart hash caching.
251 template<typename _Cond>
252 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253
254 template<typename _Cond>
255 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256
257 // Compile-time diagnostics.
258
259 // _Hash_code_base has everything protected, so use this derived type to
260 // access it.
261 struct __hash_code_base_access : __hash_code_base
262 { using __hash_code_base::_M_bucket_index; };
263
264 // Getting a bucket index from a node shall not throw because it is used
265 // in methods (erase, swap...) that shall not throw.
266 static_assert(noexcept(declval<const __hash_code_base_access&>()
267 ._M_bucket_index((const __node_type*)nullptr,
268 (std::size_t)0)),
269 "Cache the hash code or qualify your functors involved"
270 " in hash code and bucket index computation with noexcept");
271
272 // Following two static assertions are necessary to guarantee
273 // that local_iterator will be default constructible.
274
275 // When hash codes are cached local iterator inherits from H2 functor
276 // which must then be default constructible.
277 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278 "Functor used to map hash code to bucket index"
279 " must be default constructible");
280
281 template<typename _Keya, typename _Valuea, typename _Alloca,
282 typename _ExtractKeya, typename _Equala,
283 typename _H1a, typename _H2a, typename _Hasha,
284 typename _RehashPolicya, typename _Traitsa,
285 bool _Unique_keysa>
286 friend struct __detail::_Map_base;
287
288 template<typename _Keya, typename _Valuea, typename _Alloca,
289 typename _ExtractKeya, typename _Equala,
290 typename _H1a, typename _H2a, typename _Hasha,
291 typename _RehashPolicya, typename _Traitsa>
292 friend struct __detail::_Insert_base;
293
294 template<typename _Keya, typename _Valuea, typename _Alloca,
295 typename _ExtractKeya, typename _Equala,
296 typename _H1a, typename _H2a, typename _Hasha,
297 typename _RehashPolicya, typename _Traitsa,
298 bool _Constant_iteratorsa, bool _Unique_keysa>
299 friend struct __detail::_Insert;
300
301 public:
302 using size_type = typename __hashtable_base::size_type;
303 using difference_type = typename __hashtable_base::difference_type;
304
305 using iterator = typename __hashtable_base::iterator;
306 using const_iterator = typename __hashtable_base::const_iterator;
307
308 using local_iterator = typename __hashtable_base::local_iterator;
309 using const_local_iterator = typename __hashtable_base::
310 const_local_iterator;
311
312 private:
313 __bucket_type* _M_buckets = &_M_single_bucket;
314 size_type _M_bucket_count = 1;
315 __node_base _M_before_begin;
316 size_type _M_element_count = 0;
317 _RehashPolicy _M_rehash_policy;
318
319 // A single bucket used when only need for 1 bucket. Especially
320 // interesting in move semantic to leave hashtable with only 1 buckets
321 // which is not allocated so that we can have those operations noexcept
322 // qualified.
323 // Note that we can't leave hashtable with 0 bucket without adding
324 // numerous checks in the code to avoid 0 modulus.
325 __bucket_type _M_single_bucket = nullptr;
326
327 bool
328 _M_uses_single_bucket(__bucket_type* __bkts) const
329 { return __builtin_expect(_M_buckets == &_M_single_bucket, false); }
330
331 bool
332 _M_uses_single_bucket() const
333 { return _M_uses_single_bucket(_M_buckets); }
334
335 __hashtable_alloc&
336 _M_base_alloc() { return *this; }
337
338 __bucket_type*
339 _M_allocate_buckets(size_type __n)
340 {
341 if (__builtin_expect(__n == 1, false))
342 {
343 _M_single_bucket = nullptr;
344 return &_M_single_bucket;
345 }
346
347 return __hashtable_alloc::_M_allocate_buckets(__n);
348 }
349
350 void
351 _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352 {
353 if (_M_uses_single_bucket(__bkts))
354 return;
355
356 __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357 }
358
359 void
360 _M_deallocate_buckets()
361 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362
363 // Gets bucket begin, deals with the fact that non-empty buckets contain
364 // their before begin node.
365 __node_type*
366 _M_bucket_begin(size_type __bkt) const;
367
368 __node_type*
369 _M_begin() const
370 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371
372 template<typename _NodeGenerator>
373 void
374 _M_assign(const _Hashtable&, const _NodeGenerator&);
375
376 void
377 _M_move_assign(_Hashtable&&, std::true_type);
378
379 void
380 _M_move_assign(_Hashtable&&, std::false_type);
381
382 void
383 _M_reset() noexcept;
384
385 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
386 const _Equal& __eq, const _ExtractKey& __exk,
387 const allocator_type& __a)
388 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
389 __hashtable_alloc(__node_alloc_type(__a))
390 { }
391
392 public:
393 // Constructor, destructor, assignment, swap
394 _Hashtable() = default;
395 _Hashtable(size_type __bucket_hint,
396 const _H1&, const _H2&, const _Hash&,
397 const _Equal&, const _ExtractKey&,
398 const allocator_type&);
399
400 template<typename _InputIterator>
401 _Hashtable(_InputIterator __first, _InputIterator __last,
402 size_type __bucket_hint,
403 const _H1&, const _H2&, const _Hash&,
404 const _Equal&, const _ExtractKey&,
405 const allocator_type&);
406
407 _Hashtable(const _Hashtable&);
408
409 _Hashtable(_Hashtable&&) noexcept;
410
411 _Hashtable(const _Hashtable&, const allocator_type&);
412
413 _Hashtable(_Hashtable&&, const allocator_type&);
414
415 // Use delegating constructors.
416 explicit
417 _Hashtable(const allocator_type& __a)
418 : __hashtable_alloc(__node_alloc_type(__a))
419 { }
420
421 explicit
422 _Hashtable(size_type __n,
423 const _H1& __hf = _H1(),
424 const key_equal& __eql = key_equal(),
425 const allocator_type& __a = allocator_type())
426 : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
427 __key_extract(), __a)
428 { }
429
430 template<typename _InputIterator>
431 _Hashtable(_InputIterator __f, _InputIterator __l,
432 size_type __n = 0,
433 const _H1& __hf = _H1(),
434 const key_equal& __eql = key_equal(),
435 const allocator_type& __a = allocator_type())
436 : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
437 __key_extract(), __a)
438 { }
439
440 _Hashtable(initializer_list<value_type> __l,
441 size_type __n = 0,
442 const _H1& __hf = _H1(),
443 const key_equal& __eql = key_equal(),
444 const allocator_type& __a = allocator_type())
445 : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
446 __key_extract(), __a)
447 { }
448
449 _Hashtable&
450 operator=(const _Hashtable& __ht);
451
452 _Hashtable&
453 operator=(_Hashtable&& __ht)
454 noexcept(__node_alloc_traits::_S_nothrow_move())
455 {
456 constexpr bool __move_storage =
457 __node_alloc_traits::_S_propagate_on_move_assign()
458 || __node_alloc_traits::_S_always_equal();
459 _M_move_assign(std::move(__ht),
460 integral_constant<bool, __move_storage>());
461 return *this;
462 }
463
464 _Hashtable&
465 operator=(initializer_list<value_type> __l)
466 {
467 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468 _M_before_begin._M_nxt = nullptr;
469 clear();
470 this->_M_insert_range(__l.begin(), __l.end(), __roan);
471 return *this;
472 }
473
474 ~_Hashtable() noexcept;
475
476 void
477 swap(_Hashtable&)
478 noexcept(__node_alloc_traits::_S_nothrow_swap());
479
480 // Basic container operations
481 iterator
482 begin() noexcept
483 { return iterator(_M_begin()); }
484
485 const_iterator
486 begin() const noexcept
487 { return const_iterator(_M_begin()); }
488
489 iterator
490 end() noexcept
491 { return iterator(nullptr); }
492
493 const_iterator
494 end() const noexcept
495 { return const_iterator(nullptr); }
496
497 const_iterator
498 cbegin() const noexcept
499 { return const_iterator(_M_begin()); }
500
501 const_iterator
502 cend() const noexcept
503 { return const_iterator(nullptr); }
504
505 size_type
506 size() const noexcept
507 { return _M_element_count; }
508
509 bool
510 empty() const noexcept
511 { return size() == 0; }
512
513 allocator_type
514 get_allocator() const noexcept
515 { return allocator_type(this->_M_node_allocator()); }
516
517 size_type
518 max_size() const noexcept
519 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
520
521 // Observers
522 key_equal
523 key_eq() const
524 { return this->_M_eq(); }
525
526 // hash_function, if present, comes from _Hash_code_base.
527
528 // Bucket operations
529 size_type
530 bucket_count() const noexcept
531 { return _M_bucket_count; }
532
533 size_type
534 max_bucket_count() const noexcept
535 { return max_size(); }
536
537 size_type
538 bucket_size(size_type __n) const
539 { return std::distance(begin(__n), end(__n)); }
540
541 size_type
542 bucket(const key_type& __k) const
543 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
544
545 local_iterator
546 begin(size_type __n)
547 {
548 return local_iterator(*this, _M_bucket_begin(__n),
549 __n, _M_bucket_count);
550 }
551
552 local_iterator
553 end(size_type __n)
554 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
555
556 const_local_iterator
557 begin(size_type __n) const
558 {
559 return const_local_iterator(*this, _M_bucket_begin(__n),
560 __n, _M_bucket_count);
561 }
562
563 const_local_iterator
564 end(size_type __n) const
565 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
566
567 // DR 691.
568 const_local_iterator
569 cbegin(size_type __n) const
570 {
571 return const_local_iterator(*this, _M_bucket_begin(__n),
572 __n, _M_bucket_count);
573 }
574
575 const_local_iterator
576 cend(size_type __n) const
577 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
578
579 float
580 load_factor() const noexcept
581 {
582 return static_cast<float>(size()) / static_cast<float>(bucket_count());
583 }
584
585 // max_load_factor, if present, comes from _Rehash_base.
586
587 // Generalization of max_load_factor. Extension, not found in
588 // TR1. Only useful if _RehashPolicy is something other than
589 // the default.
590 const _RehashPolicy&
591 __rehash_policy() const
592 { return _M_rehash_policy; }
593
594 void
595 __rehash_policy(const _RehashPolicy&);
596
597 // Lookup.
598 iterator
599 find(const key_type& __k);
600
601 const_iterator
602 find(const key_type& __k) const;
603
604 size_type
605 count(const key_type& __k) const;
606
607 std::pair<iterator, iterator>
608 equal_range(const key_type& __k);
609
610 std::pair<const_iterator, const_iterator>
611 equal_range(const key_type& __k) const;
612
613 protected:
614 // Bucket index computation helpers.
615 size_type
616 _M_bucket_index(__node_type* __n) const noexcept
617 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
618
619 size_type
620 _M_bucket_index(const key_type& __k, __hash_code __c) const
621 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
622
623 // Find and insert helper functions and types
624 // Find the node before the one matching the criteria.
625 __node_base*
626 _M_find_before_node(size_type, const key_type&, __hash_code) const;
627
628 __node_type*
629 _M_find_node(size_type __bkt, const key_type& __key,
630 __hash_code __c) const
631 {
632 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
633 if (__before_n)
634 return static_cast<__node_type*>(__before_n->_M_nxt);
635 return nullptr;
636 }
637
638 // Insert a node at the beginning of a bucket.
639 void
640 _M_insert_bucket_begin(size_type, __node_type*);
641
642 // Remove the bucket first node
643 void
644 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
645 size_type __next_bkt);
646
647 // Get the node before __n in the bucket __bkt
648 __node_base*
649 _M_get_previous_node(size_type __bkt, __node_base* __n);
650
651 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
652 // no element with its key already present). Take ownership of the node,
653 // deallocate it on exception.
654 iterator
655 _M_insert_unique_node(size_type __bkt, __hash_code __code,
656 __node_type* __n);
657
658 // Insert node with hash code __code. Take ownership of the node,
659 // deallocate it on exception.
660 iterator
661 _M_insert_multi_node(__node_type* __hint,
662 __hash_code __code, __node_type* __n);
663
664 template<typename... _Args>
665 std::pair<iterator, bool>
666 _M_emplace(std::true_type, _Args&&... __args);
667
668 template<typename... _Args>
669 iterator
670 _M_emplace(std::false_type __uk, _Args&&... __args)
671 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
672
673 // Emplace with hint, useless when keys are unique.
674 template<typename... _Args>
675 iterator
676 _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
677 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
678
679 template<typename... _Args>
680 iterator
681 _M_emplace(const_iterator, std::false_type, _Args&&... __args);
682
683 template<typename _Arg, typename _NodeGenerator>
684 std::pair<iterator, bool>
685 _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
686
687 template<typename _Arg, typename _NodeGenerator>
688 iterator
689 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
690 std::false_type __uk)
691 {
692 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
693 __uk);
694 }
695
696 // Insert with hint, not used when keys are unique.
697 template<typename _Arg, typename _NodeGenerator>
698 iterator
699 _M_insert(const_iterator, _Arg&& __arg, const _NodeGenerator& __node_gen,
700 std::true_type __uk)
701 {
702 return
703 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
704 }
705
706 // Insert with hint when keys are not unique.
707 template<typename _Arg, typename _NodeGenerator>
708 iterator
709 _M_insert(const_iterator, _Arg&&, const _NodeGenerator&, std::false_type);
710
711 size_type
712 _M_erase(std::true_type, const key_type&);
713
714 size_type
715 _M_erase(std::false_type, const key_type&);
716
717 iterator
718 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
719
720 public:
721 // Emplace
722 template<typename... _Args>
723 __ireturn_type
724 emplace(_Args&&... __args)
725 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
726
727 template<typename... _Args>
728 iterator
729 emplace_hint(const_iterator __hint, _Args&&... __args)
730 {
731 return _M_emplace(__hint, __unique_keys(),
732 std::forward<_Args>(__args)...);
733 }
734
735 // Insert member functions via inheritance.
736
737 // Erase
738 iterator
739 erase(const_iterator);
740
741 // LWG 2059.
742 iterator
743 erase(iterator __it)
744 { return erase(const_iterator(__it)); }
745
746 size_type
747 erase(const key_type& __k)
748 { return _M_erase(__unique_keys(), __k); }
749
750 iterator
751 erase(const_iterator, const_iterator);
752
753 void
754 clear() noexcept;
755
756 // Set number of buckets to be appropriate for container of n element.
757 void rehash(size_type __n);
758
759 // DR 1189.
760 // reserve, if present, comes from _Rehash_base.
761
762 private:
763 // Helper rehash method used when keys are unique.
764 void _M_rehash_aux(size_type __n, std::true_type);
765
766 // Helper rehash method used when keys can be non-unique.
767 void _M_rehash_aux(size_type __n, std::false_type);
768
769 // Unconditionally change size of bucket array to n, restore
770 // hash policy state to __state on exception.
771 void _M_rehash(size_type __n, const __rehash_state& __state);
772 };
773
774
775 // Definitions of class template _Hashtable's out-of-line member functions.
776 template<typename _Key, typename _Value,
777 typename _Alloc, typename _ExtractKey, typename _Equal,
778 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
779 typename _Traits>
780 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
781 _Equal, _H1, _H2, _Hash, _RehashPolicy,
782 _Traits>::__node_type*
783 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
784 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
785 _M_bucket_begin(size_type __bkt) const
786 {
787 __node_base* __n = _M_buckets[__bkt];
788 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
789 }
790
791 template<typename _Key, typename _Value,
792 typename _Alloc, typename _ExtractKey, typename _Equal,
793 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
794 typename _Traits>
795 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
796 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
797 _Hashtable(size_type __bucket_hint,
798 const _H1& __h1, const _H2& __h2, const _Hash& __h,
799 const _Equal& __eq, const _ExtractKey& __exk,
800 const allocator_type& __a)
801 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
802 {
803 auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
804 if (__bkt > _M_bucket_count)
805 {
806 _M_buckets = _M_allocate_buckets(__bkt);
807 _M_bucket_count = __bkt;
808 }
809 }
810
811 template<typename _Key, typename _Value,
812 typename _Alloc, typename _ExtractKey, typename _Equal,
813 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
814 typename _Traits>
815 template<typename _InputIterator>
816 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818 _Hashtable(_InputIterator __f, _InputIterator __l,
819 size_type __bucket_hint,
820 const _H1& __h1, const _H2& __h2, const _Hash& __h,
821 const _Equal& __eq, const _ExtractKey& __exk,
822 const allocator_type& __a)
823 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
824 {
825 auto __nb_elems = __detail::__distance_fw(__f, __l);
826 auto __bkt_count =
827 _M_rehash_policy._M_next_bkt(
828 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
829 __bucket_hint));
830
831 if (__bkt_count > _M_bucket_count)
832 {
833 _M_buckets = _M_allocate_buckets(__bkt_count);
834 _M_bucket_count = __bkt_count;
835 }
836
837 __try
838 {
839 for (; __f != __l; ++__f)
840 this->insert(*__f);
841 }
842 __catch(...)
843 {
844 clear();
845 _M_deallocate_buckets();
846 __throw_exception_again;
847 }
848 }
849
850 template<typename _Key, typename _Value,
851 typename _Alloc, typename _ExtractKey, typename _Equal,
852 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
853 typename _Traits>
854 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
855 _H1, _H2, _Hash, _RehashPolicy, _Traits>&
856 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
857 _H1, _H2, _Hash, _RehashPolicy, _Traits>::operator=(
858 const _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
859 _H1, _H2, _Hash, _RehashPolicy, _Traits>& __ht)
860 {
861 if (&__ht == this)
862 return *this;
863
864 if (__node_alloc_traits::_S_propagate_on_copy_assign())
865 {
866 auto& __this_alloc = this->_M_node_allocator();
867 auto& __that_alloc = __ht._M_node_allocator();
868 if (!__node_alloc_traits::_S_always_equal()
869 && __this_alloc != __that_alloc)
870 {
871 // Replacement allocator cannot free existing storage.
872 this->_M_deallocate_nodes(_M_begin());
873 _M_before_begin._M_nxt = nullptr;
874 _M_deallocate_buckets();
875 _M_buckets = nullptr;
876 std::__alloc_on_copy(__this_alloc, __that_alloc);
877 __hashtable_base::operator=(__ht);
878 _M_bucket_count = __ht._M_bucket_count;
879 _M_element_count = __ht._M_element_count;
880 _M_rehash_policy = __ht._M_rehash_policy;
881 __try
882 {
883 _M_assign(__ht,
884 [this](const __node_type* __n)
885 { return this->_M_allocate_node(__n->_M_v()); });
886 }
887 __catch(...)
888 {
889 // _M_assign took care of deallocating all memory. Now we
890 // must make sure this instance remains in a usable state.
891 _M_reset();
892 __throw_exception_again;
893 }
894 return *this;
895 }
896 std::__alloc_on_copy(__this_alloc, __that_alloc);
897 }
898
899 // Reuse allocated buckets and nodes.
900 __bucket_type* __former_buckets = nullptr;
901 std::size_t __former_bucket_count = _M_bucket_count;
902 const __rehash_state& __former_state = _M_rehash_policy._M_state();
903
904 if (_M_bucket_count != __ht._M_bucket_count)
905 {
906 __former_buckets = _M_buckets;
907 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
908 _M_bucket_count = __ht._M_bucket_count;
909 }
910 else
911 __builtin_memset(_M_buckets, 0,
912 _M_bucket_count * sizeof(__bucket_type));
913
914 __try
915 {
916 __hashtable_base::operator=(__ht);
917 _M_element_count = __ht._M_element_count;
918 _M_rehash_policy = __ht._M_rehash_policy;
919 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
920 _M_before_begin._M_nxt = nullptr;
921 _M_assign(__ht,
922 [&__roan](const __node_type* __n)
923 { return __roan(__n->_M_v()); });
924 if (__former_buckets)
925 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
926 }
927 __catch(...)
928 {
929 if (__former_buckets)
930 {
931 // Restore previous buckets.
932 _M_deallocate_buckets();
933 _M_rehash_policy._M_reset(__former_state);
934 _M_buckets = __former_buckets;
935 _M_bucket_count = __former_bucket_count;
936 }
937 __builtin_memset(_M_buckets, 0,
938 _M_bucket_count * sizeof(__bucket_type));
939 __throw_exception_again;
940 }
941 return *this;
942 }
943
944 template<typename _Key, typename _Value,
945 typename _Alloc, typename _ExtractKey, typename _Equal,
946 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
947 typename _Traits>
948 template<typename _NodeGenerator>
949 void
950 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
951 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
952 _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
953 {
954 __bucket_type* __buckets = nullptr;
955 if (!_M_buckets)
956 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
957
958 __try
959 {
960 if (!__ht._M_before_begin._M_nxt)
961 return;
962
963 // First deal with the special first node pointed to by
964 // _M_before_begin.
965 __node_type* __ht_n = __ht._M_begin();
966 __node_type* __this_n = __node_gen(__ht_n);
967 this->_M_copy_code(__this_n, __ht_n);
968 _M_before_begin._M_nxt = __this_n;
969 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
970
971 // Then deal with other nodes.
972 __node_base* __prev_n = __this_n;
973 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
974 {
975 __this_n = __node_gen(__ht_n);
976 __prev_n->_M_nxt = __this_n;
977 this->_M_copy_code(__this_n, __ht_n);
978 size_type __bkt = _M_bucket_index(__this_n);
979 if (!_M_buckets[__bkt])
980 _M_buckets[__bkt] = __prev_n;
981 __prev_n = __this_n;
982 }
983 }
984 __catch(...)
985 {
986 clear();
987 if (__buckets)
988 _M_deallocate_buckets();
989 __throw_exception_again;
990 }
991 }
992
993 template<typename _Key, typename _Value,
994 typename _Alloc, typename _ExtractKey, typename _Equal,
995 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
996 typename _Traits>
997 void
998 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
999 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1000 _M_reset() noexcept
1001 {
1002 _M_rehash_policy._M_reset();
1003 _M_bucket_count = 1;
1004 _M_single_bucket = nullptr;
1005 _M_buckets = &_M_single_bucket;
1006 _M_before_begin._M_nxt = nullptr;
1007 _M_element_count = 0;
1008 }
1009
1010 template<typename _Key, typename _Value,
1011 typename _Alloc, typename _ExtractKey, typename _Equal,
1012 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1013 typename _Traits>
1014 void
1015 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1016 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1017 _M_move_assign(_Hashtable&& __ht, std::true_type)
1018 {
1019 this->_M_deallocate_nodes(_M_begin());
1020 _M_deallocate_buckets();
1021 __hashtable_base::operator=(std::move(__ht));
1022 _M_rehash_policy = __ht._M_rehash_policy;
1023 if (!__ht._M_uses_single_bucket())
1024 _M_buckets = __ht._M_buckets;
1025 else
1026 {
1027 _M_buckets = &_M_single_bucket;
1028 _M_single_bucket = __ht._M_single_bucket;
1029 }
1030 _M_bucket_count = __ht._M_bucket_count;
1031 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1032 _M_element_count = __ht._M_element_count;
1033 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1034
1035 // Fix buckets containing the _M_before_begin pointers that can't be
1036 // moved.
1037 if (_M_begin())
1038 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1039 __ht._M_reset();
1040 }
1041
1042 template<typename _Key, typename _Value,
1043 typename _Alloc, typename _ExtractKey, typename _Equal,
1044 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1045 typename _Traits>
1046 void
1047 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1048 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1049 _M_move_assign(_Hashtable&& __ht, std::false_type)
1050 {
1051 if (__ht._M_node_allocator() == this->_M_node_allocator())
1052 _M_move_assign(std::move(__ht), std::true_type());
1053 else
1054 {
1055 // Can't move memory, move elements then.
1056 __bucket_type* __former_buckets = nullptr;
1057 size_type __former_bucket_count = _M_bucket_count;
1058 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1059
1060 if (_M_bucket_count != __ht._M_bucket_count)
1061 {
1062 __former_buckets = _M_buckets;
1063 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1064 _M_bucket_count = __ht._M_bucket_count;
1065 }
1066 else
1067 __builtin_memset(_M_buckets, 0,
1068 _M_bucket_count * sizeof(__bucket_type));
1069
1070 __try
1071 {
1072 __hashtable_base::operator=(std::move(__ht));
1073 _M_element_count = __ht._M_element_count;
1074 _M_rehash_policy = __ht._M_rehash_policy;
1075 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1076 _M_before_begin._M_nxt = nullptr;
1077 _M_assign(__ht,
1078 [&__roan](__node_type* __n)
1079 { return __roan(std::move_if_noexcept(__n->_M_v())); });
1080 __ht.clear();
1081 }
1082 __catch(...)
1083 {
1084 if (__former_buckets)
1085 {
1086 _M_deallocate_buckets();
1087 _M_rehash_policy._M_reset(__former_state);
1088 _M_buckets = __former_buckets;
1089 _M_bucket_count = __former_bucket_count;
1090 }
1091 __builtin_memset(_M_buckets, 0,
1092 _M_bucket_count * sizeof(__bucket_type));
1093 __throw_exception_again;
1094 }
1095 }
1096 }
1097
1098 template<typename _Key, typename _Value,
1099 typename _Alloc, typename _ExtractKey, typename _Equal,
1100 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1101 typename _Traits>
1102 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1103 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1104 _Hashtable(const _Hashtable& __ht)
1105 : __hashtable_base(__ht),
1106 __map_base(__ht),
1107 __rehash_base(__ht),
1108 __hashtable_alloc(
1109 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1110 _M_buckets(nullptr),
1111 _M_bucket_count(__ht._M_bucket_count),
1112 _M_element_count(__ht._M_element_count),
1113 _M_rehash_policy(__ht._M_rehash_policy)
1114 {
1115 _M_assign(__ht,
1116 [this](const __node_type* __n)
1117 { return this->_M_allocate_node(__n->_M_v()); });
1118 }
1119
1120 template<typename _Key, typename _Value,
1121 typename _Alloc, typename _ExtractKey, typename _Equal,
1122 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1123 typename _Traits>
1124 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1125 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1126 _Hashtable(_Hashtable&& __ht) noexcept
1127 : __hashtable_base(__ht),
1128 __map_base(__ht),
1129 __rehash_base(__ht),
1130 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1131 _M_buckets(__ht._M_buckets),
1132 _M_bucket_count(__ht._M_bucket_count),
1133 _M_before_begin(__ht._M_before_begin._M_nxt),
1134 _M_element_count(__ht._M_element_count),
1135 _M_rehash_policy(__ht._M_rehash_policy)
1136 {
1137 // Update, if necessary, buckets if __ht is using its single bucket.
1138 if (__ht._M_uses_single_bucket())
1139 {
1140 _M_buckets = &_M_single_bucket;
1141 _M_single_bucket = __ht._M_single_bucket;
1142 }
1143
1144 // Update, if necessary, bucket pointing to before begin that hasn't
1145 // moved.
1146 if (_M_begin())
1147 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1148
1149 __ht._M_reset();
1150 }
1151
1152 template<typename _Key, typename _Value,
1153 typename _Alloc, typename _ExtractKey, typename _Equal,
1154 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1155 typename _Traits>
1156 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1157 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1158 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1159 : __hashtable_base(__ht),
1160 __map_base(__ht),
1161 __rehash_base(__ht),
1162 __hashtable_alloc(__node_alloc_type(__a)),
1163 _M_buckets(),
1164 _M_bucket_count(__ht._M_bucket_count),
1165 _M_element_count(__ht._M_element_count),
1166 _M_rehash_policy(__ht._M_rehash_policy)
1167 {
1168 _M_assign(__ht,
1169 [this](const __node_type* __n)
1170 { return this->_M_allocate_node(__n->_M_v()); });
1171 }
1172
1173 template<typename _Key, typename _Value,
1174 typename _Alloc, typename _ExtractKey, typename _Equal,
1175 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1176 typename _Traits>
1177 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1178 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1179 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1180 : __hashtable_base(__ht),
1181 __map_base(__ht),
1182 __rehash_base(__ht),
1183 __hashtable_alloc(__node_alloc_type(__a)),
1184 _M_buckets(nullptr),
1185 _M_bucket_count(__ht._M_bucket_count),
1186 _M_element_count(__ht._M_element_count),
1187 _M_rehash_policy(__ht._M_rehash_policy)
1188 {
1189 if (__ht._M_node_allocator() == this->_M_node_allocator())
1190 {
1191 if (__ht._M_uses_single_bucket())
1192 {
1193 _M_buckets = &_M_single_bucket;
1194 _M_single_bucket = __ht._M_single_bucket;
1195 }
1196 else
1197 _M_buckets = __ht._M_buckets;
1198
1199 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1200 // Update, if necessary, bucket pointing to before begin that hasn't
1201 // moved.
1202 if (_M_begin())
1203 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1204 __ht._M_reset();
1205 }
1206 else
1207 {
1208 _M_assign(__ht,
1209 [this](__node_type* __n)
1210 {
1211 return this->_M_allocate_node(
1212 std::move_if_noexcept(__n->_M_v()));
1213 });
1214 __ht.clear();
1215 }
1216 }
1217
1218 template<typename _Key, typename _Value,
1219 typename _Alloc, typename _ExtractKey, typename _Equal,
1220 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1221 typename _Traits>
1222 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1223 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1224 ~_Hashtable() noexcept
1225 {
1226 clear();
1227 _M_deallocate_buckets();
1228 }
1229
1230 template<typename _Key, typename _Value,
1231 typename _Alloc, typename _ExtractKey, typename _Equal,
1232 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1233 typename _Traits>
1234 void
1235 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1236 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1237 swap(_Hashtable& __x)
1238 noexcept(__node_alloc_traits::_S_nothrow_swap())
1239 {
1240 // The only base class with member variables is hash_code_base.
1241 // We define _Hash_code_base::_M_swap because different
1242 // specializations have different members.
1243 this->_M_swap(__x);
1244
1245 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1246 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1247
1248 // Deal properly with potentially moved instances.
1249 if (this->_M_uses_single_bucket())
1250 {
1251 if (!__x._M_uses_single_bucket())
1252 {
1253 _M_buckets = __x._M_buckets;
1254 __x._M_buckets = &__x._M_single_bucket;
1255 }
1256 }
1257 else if (__x._M_uses_single_bucket())
1258 {
1259 __x._M_buckets = _M_buckets;
1260 _M_buckets = &_M_single_bucket;
1261 }
1262 else
1263 std::swap(_M_buckets, __x._M_buckets);
1264
1265 std::swap(_M_bucket_count, __x._M_bucket_count);
1266 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1267 std::swap(_M_element_count, __x._M_element_count);
1268 std::swap(_M_single_bucket, __x._M_single_bucket);
1269
1270 // Fix buckets containing the _M_before_begin pointers that can't be
1271 // swapped.
1272 if (_M_begin())
1273 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1274
1275 if (__x._M_begin())
1276 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1277 = &__x._M_before_begin;
1278 }
1279
1280 template<typename _Key, typename _Value,
1281 typename _Alloc, typename _ExtractKey, typename _Equal,
1282 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1283 typename _Traits>
1284 void
1285 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1286 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1287 __rehash_policy(const _RehashPolicy& __pol)
1288 {
1289 auto __do_rehash =
1290 __pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1291 if (__do_rehash.first)
1292 _M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1293 _M_rehash_policy = __pol;
1294 }
1295
1296 template<typename _Key, typename _Value,
1297 typename _Alloc, typename _ExtractKey, typename _Equal,
1298 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1299 typename _Traits>
1300 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1301 _H1, _H2, _Hash, _RehashPolicy,
1302 _Traits>::iterator
1303 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1304 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1305 find(const key_type& __k)
1306 {
1307 __hash_code __code = this->_M_hash_code(__k);
1308 std::size_t __n = _M_bucket_index(__k, __code);
1309 __node_type* __p = _M_find_node(__n, __k, __code);
1310 return __p ? iterator(__p) : end();
1311 }
1312
1313 template<typename _Key, typename _Value,
1314 typename _Alloc, typename _ExtractKey, typename _Equal,
1315 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1316 typename _Traits>
1317 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1318 _H1, _H2, _Hash, _RehashPolicy,
1319 _Traits>::const_iterator
1320 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1321 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1322 find(const key_type& __k) const
1323 {
1324 __hash_code __code = this->_M_hash_code(__k);
1325 std::size_t __n = _M_bucket_index(__k, __code);
1326 __node_type* __p = _M_find_node(__n, __k, __code);
1327 return __p ? const_iterator(__p) : end();
1328 }
1329
1330 template<typename _Key, typename _Value,
1331 typename _Alloc, typename _ExtractKey, typename _Equal,
1332 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1333 typename _Traits>
1334 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1335 _H1, _H2, _Hash, _RehashPolicy,
1336 _Traits>::size_type
1337 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1338 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1339 count(const key_type& __k) const
1340 {
1341 __hash_code __code = this->_M_hash_code(__k);
1342 std::size_t __n = _M_bucket_index(__k, __code);
1343 __node_type* __p = _M_bucket_begin(__n);
1344 if (!__p)
1345 return 0;
1346
1347 std::size_t __result = 0;
1348 for (;; __p = __p->_M_next())
1349 {
1350 if (this->_M_equals(__k, __code, __p))
1351 ++__result;
1352 else if (__result)
1353 // All equivalent values are next to each other, if we
1354 // found a non-equivalent value after an equivalent one it
1355 // means that we won't find any new equivalent value.
1356 break;
1357 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1358 break;
1359 }
1360 return __result;
1361 }
1362
1363 template<typename _Key, typename _Value,
1364 typename _Alloc, typename _ExtractKey, typename _Equal,
1365 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1366 typename _Traits>
1367 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1368 _ExtractKey, _Equal, _H1,
1369 _H2, _Hash, _RehashPolicy,
1370 _Traits>::iterator,
1371 typename _Hashtable<_Key, _Value, _Alloc,
1372 _ExtractKey, _Equal, _H1,
1373 _H2, _Hash, _RehashPolicy,
1374 _Traits>::iterator>
1375 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1376 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1377 equal_range(const key_type& __k)
1378 {
1379 __hash_code __code = this->_M_hash_code(__k);
1380 std::size_t __n = _M_bucket_index(__k, __code);
1381 __node_type* __p = _M_find_node(__n, __k, __code);
1382
1383 if (__p)
1384 {
1385 __node_type* __p1 = __p->_M_next();
1386 while (__p1 && _M_bucket_index(__p1) == __n
1387 && this->_M_equals(__k, __code, __p1))
1388 __p1 = __p1->_M_next();
1389
1390 return std::make_pair(iterator(__p), iterator(__p1));
1391 }
1392 else
1393 return std::make_pair(end(), end());
1394 }
1395
1396 template<typename _Key, typename _Value,
1397 typename _Alloc, typename _ExtractKey, typename _Equal,
1398 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1399 typename _Traits>
1400 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1401 _ExtractKey, _Equal, _H1,
1402 _H2, _Hash, _RehashPolicy,
1403 _Traits>::const_iterator,
1404 typename _Hashtable<_Key, _Value, _Alloc,
1405 _ExtractKey, _Equal, _H1,
1406 _H2, _Hash, _RehashPolicy,
1407 _Traits>::const_iterator>
1408 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1409 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1410 equal_range(const key_type& __k) const
1411 {
1412 __hash_code __code = this->_M_hash_code(__k);
1413 std::size_t __n = _M_bucket_index(__k, __code);
1414 __node_type* __p = _M_find_node(__n, __k, __code);
1415
1416 if (__p)
1417 {
1418 __node_type* __p1 = __p->_M_next();
1419 while (__p1 && _M_bucket_index(__p1) == __n
1420 && this->_M_equals(__k, __code, __p1))
1421 __p1 = __p1->_M_next();
1422
1423 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1424 }
1425 else
1426 return std::make_pair(end(), end());
1427 }
1428
1429 // Find the node whose key compares equal to k in the bucket n.
1430 // Return nullptr if no node is found.
1431 template<typename _Key, typename _Value,
1432 typename _Alloc, typename _ExtractKey, typename _Equal,
1433 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1434 typename _Traits>
1435 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1436 _Equal, _H1, _H2, _Hash, _RehashPolicy,
1437 _Traits>::__node_base*
1438 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1439 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1440 _M_find_before_node(size_type __n, const key_type& __k,
1441 __hash_code __code) const
1442 {
1443 __node_base* __prev_p = _M_buckets[__n];
1444 if (!__prev_p)
1445 return nullptr;
1446
1447 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1448 __p = __p->_M_next())
1449 {
1450 if (this->_M_equals(__k, __code, __p))
1451 return __prev_p;
1452
1453 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1454 break;
1455 __prev_p = __p;
1456 }
1457 return nullptr;
1458 }
1459
1460 template<typename _Key, typename _Value,
1461 typename _Alloc, typename _ExtractKey, typename _Equal,
1462 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1463 typename _Traits>
1464 void
1465 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1466 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1467 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1468 {
1469 if (_M_buckets[__bkt])
1470 {
1471 // Bucket is not empty, we just need to insert the new node
1472 // after the bucket before begin.
1473 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1474 _M_buckets[__bkt]->_M_nxt = __node;
1475 }
1476 else
1477 {
1478 // The bucket is empty, the new node is inserted at the
1479 // beginning of the singly-linked list and the bucket will
1480 // contain _M_before_begin pointer.
1481 __node->_M_nxt = _M_before_begin._M_nxt;
1482 _M_before_begin._M_nxt = __node;
1483 if (__node->_M_nxt)
1484 // We must update former begin bucket that is pointing to
1485 // _M_before_begin.
1486 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1487 _M_buckets[__bkt] = &_M_before_begin;
1488 }
1489 }
1490
1491 template<typename _Key, typename _Value,
1492 typename _Alloc, typename _ExtractKey, typename _Equal,
1493 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1494 typename _Traits>
1495 void
1496 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1497 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1498 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1499 size_type __next_bkt)
1500 {
1501 if (!__next || __next_bkt != __bkt)
1502 {
1503 // Bucket is now empty
1504 // First update next bucket if any
1505 if (__next)
1506 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1507
1508 // Second update before begin node if necessary
1509 if (&_M_before_begin == _M_buckets[__bkt])
1510 _M_before_begin._M_nxt = __next;
1511 _M_buckets[__bkt] = nullptr;
1512 }
1513 }
1514
1515 template<typename _Key, typename _Value,
1516 typename _Alloc, typename _ExtractKey, typename _Equal,
1517 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1518 typename _Traits>
1519 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1520 _Equal, _H1, _H2, _Hash, _RehashPolicy,
1521 _Traits>::__node_base*
1522 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1523 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1524 _M_get_previous_node(size_type __bkt, __node_base* __n)
1525 {
1526 __node_base* __prev_n = _M_buckets[__bkt];
1527 while (__prev_n->_M_nxt != __n)
1528 __prev_n = __prev_n->_M_nxt;
1529 return __prev_n;
1530 }
1531
1532 template<typename _Key, typename _Value,
1533 typename _Alloc, typename _ExtractKey, typename _Equal,
1534 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1535 typename _Traits>
1536 template<typename... _Args>
1537 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1538 _ExtractKey, _Equal, _H1,
1539 _H2, _Hash, _RehashPolicy,
1540 _Traits>::iterator, bool>
1541 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1542 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1543 _M_emplace(std::true_type, _Args&&... __args)
1544 {
1545 // First build the node to get access to the hash code
1546 __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1547 const key_type& __k = this->_M_extract()(__node->_M_v());
1548 __hash_code __code;
1549 __try
1550 {
1551 __code = this->_M_hash_code(__k);
1552 }
1553 __catch(...)
1554 {
1555 this->_M_deallocate_node(__node);
1556 __throw_exception_again;
1557 }
1558
1559 size_type __bkt = _M_bucket_index(__k, __code);
1560 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1561 {
1562 // There is already an equivalent node, no insertion
1563 this->_M_deallocate_node(__node);
1564 return std::make_pair(iterator(__p), false);
1565 }
1566
1567 // Insert the node
1568 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1569 true);
1570 }
1571
1572 template<typename _Key, typename _Value,
1573 typename _Alloc, typename _ExtractKey, typename _Equal,
1574 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1575 typename _Traits>
1576 template<typename... _Args>
1577 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1578 _H1, _H2, _Hash, _RehashPolicy,
1579 _Traits>::iterator
1580 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1581 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1582 _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1583 {
1584 // First build the node to get its hash code.
1585 __node_type* __node =
1586 this->_M_allocate_node(std::forward<_Args>(__args)...);
1587
1588 __hash_code __code;
1589 __try
1590 {
1591 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1592 }
1593 __catch(...)
1594 {
1595 this->_M_deallocate_node(__node);
1596 __throw_exception_again;
1597 }
1598
1599 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1600 }
1601
1602 template<typename _Key, typename _Value,
1603 typename _Alloc, typename _ExtractKey, typename _Equal,
1604 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1605 typename _Traits>
1606 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1607 _H1, _H2, _Hash, _RehashPolicy,
1608 _Traits>::iterator
1609 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1610 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1611 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1612 __node_type* __node)
1613 {
1614 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1615 std::pair<bool, std::size_t> __do_rehash
1616 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1617
1618 __try
1619 {
1620 if (__do_rehash.first)
1621 {
1622 _M_rehash(__do_rehash.second, __saved_state);
1623 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1624 }
1625
1626 this->_M_store_code(__node, __code);
1627
1628 // Always insert at the beginning of the bucket.
1629 _M_insert_bucket_begin(__bkt, __node);
1630 ++_M_element_count;
1631 return iterator(__node);
1632 }
1633 __catch(...)
1634 {
1635 this->_M_deallocate_node(__node);
1636 __throw_exception_again;
1637 }
1638 }
1639
1640 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1641 // already present). Take ownership of the node, deallocate it on exception.
1642 template<typename _Key, typename _Value,
1643 typename _Alloc, typename _ExtractKey, typename _Equal,
1644 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1645 typename _Traits>
1646 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1647 _H1, _H2, _Hash, _RehashPolicy,
1648 _Traits>::iterator
1649 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1650 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1651 _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1652 __node_type* __node)
1653 {
1654 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1655 std::pair<bool, std::size_t> __do_rehash
1656 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1657
1658 __try
1659 {
1660 if (__do_rehash.first)
1661 _M_rehash(__do_rehash.second, __saved_state);
1662
1663 this->_M_store_code(__node, __code);
1664 const key_type& __k = this->_M_extract()(__node->_M_v());
1665 size_type __bkt = _M_bucket_index(__k, __code);
1666
1667 // Find the node before an equivalent one or use hint if it exists and
1668 // if it is equivalent.
1669 __node_base* __prev
1670 = __builtin_expect(__hint != nullptr, false)
1671 && this->_M_equals(__k, __code, __hint)
1672 ? __hint
1673 : _M_find_before_node(__bkt, __k, __code);
1674 if (__prev)
1675 {
1676 // Insert after the node before the equivalent one.
1677 __node->_M_nxt = __prev->_M_nxt;
1678 __prev->_M_nxt = __node;
1679 if (__builtin_expect(__prev == __hint, false))
1680 // hint might be the last bucket node, in this case we need to
1681 // update next bucket.
1682 if (__node->_M_nxt
1683 && !this->_M_equals(__k, __code, __node->_M_next()))
1684 {
1685 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1686 if (__next_bkt != __bkt)
1687 _M_buckets[__next_bkt] = __node;
1688 }
1689 }
1690 else
1691 // The inserted node has no equivalent in the
1692 // hashtable. We must insert the new node at the
1693 // beginning of the bucket to preserve equivalent
1694 // elements' relative positions.
1695 _M_insert_bucket_begin(__bkt, __node);
1696 ++_M_element_count;
1697 return iterator(__node);
1698 }
1699 __catch(...)
1700 {
1701 this->_M_deallocate_node(__node);
1702 __throw_exception_again;
1703 }
1704 }
1705
1706 // Insert v if no element with its key is already present.
1707 template<typename _Key, typename _Value,
1708 typename _Alloc, typename _ExtractKey, typename _Equal,
1709 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1710 typename _Traits>
1711 template<typename _Arg, typename _NodeGenerator>
1712 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1713 _ExtractKey, _Equal, _H1,
1714 _H2, _Hash, _RehashPolicy,
1715 _Traits>::iterator, bool>
1716 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1717 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1718 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1719 {
1720 const key_type& __k = this->_M_extract()(__v);
1721 __hash_code __code = this->_M_hash_code(__k);
1722 size_type __bkt = _M_bucket_index(__k, __code);
1723
1724 __node_type* __n = _M_find_node(__bkt, __k, __code);
1725 if (__n)
1726 return std::make_pair(iterator(__n), false);
1727
1728 __n = __node_gen(std::forward<_Arg>(__v));
1729 return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1730 }
1731
1732 // Insert v unconditionally.
1733 template<typename _Key, typename _Value,
1734 typename _Alloc, typename _ExtractKey, typename _Equal,
1735 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1736 typename _Traits>
1737 template<typename _Arg, typename _NodeGenerator>
1738 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1739 _H1, _H2, _Hash, _RehashPolicy,
1740 _Traits>::iterator
1741 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1742 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1743 _M_insert(const_iterator __hint, _Arg&& __v,
1744 const _NodeGenerator& __node_gen,
1745 std::false_type)
1746 {
1747 // First compute the hash code so that we don't do anything if it
1748 // throws.
1749 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1750
1751 // Second allocate new node so that we don't rehash if it throws.
1752 __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1753
1754 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1755 }
1756
1757 template<typename _Key, typename _Value,
1758 typename _Alloc, typename _ExtractKey, typename _Equal,
1759 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1760 typename _Traits>
1761 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1762 _H1, _H2, _Hash, _RehashPolicy,
1763 _Traits>::iterator
1764 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1765 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1766 erase(const_iterator __it)
1767 {
1768 __node_type* __n = __it._M_cur;
1769 std::size_t __bkt = _M_bucket_index(__n);
1770
1771 // Look for previous node to unlink it from the erased one, this
1772 // is why we need buckets to contain the before begin to make
1773 // this search fast.
1774 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1775 return _M_erase(__bkt, __prev_n, __n);
1776 }
1777
1778 template<typename _Key, typename _Value,
1779 typename _Alloc, typename _ExtractKey, typename _Equal,
1780 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1781 typename _Traits>
1782 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1783 _H1, _H2, _Hash, _RehashPolicy,
1784 _Traits>::iterator
1785 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1786 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1787 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1788 {
1789 if (__prev_n == _M_buckets[__bkt])
1790 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1791 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1792 else if (__n->_M_nxt)
1793 {
1794 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1795 if (__next_bkt != __bkt)
1796 _M_buckets[__next_bkt] = __prev_n;
1797 }
1798
1799 __prev_n->_M_nxt = __n->_M_nxt;
1800 iterator __result(__n->_M_next());
1801 this->_M_deallocate_node(__n);
1802 --_M_element_count;
1803
1804 return __result;
1805 }
1806
1807 template<typename _Key, typename _Value,
1808 typename _Alloc, typename _ExtractKey, typename _Equal,
1809 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1810 typename _Traits>
1811 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1812 _H1, _H2, _Hash, _RehashPolicy,
1813 _Traits>::size_type
1814 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1815 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1816 _M_erase(std::true_type, const key_type& __k)
1817 {
1818 __hash_code __code = this->_M_hash_code(__k);
1819 std::size_t __bkt = _M_bucket_index(__k, __code);
1820
1821 // Look for the node before the first matching node.
1822 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1823 if (!__prev_n)
1824 return 0;
1825
1826 // We found a matching node, erase it.
1827 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1828 _M_erase(__bkt, __prev_n, __n);
1829 return 1;
1830 }
1831
1832 template<typename _Key, typename _Value,
1833 typename _Alloc, typename _ExtractKey, typename _Equal,
1834 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1835 typename _Traits>
1836 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1837 _H1, _H2, _Hash, _RehashPolicy,
1838 _Traits>::size_type
1839 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1840 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1841 _M_erase(std::false_type, const key_type& __k)
1842 {
1843 __hash_code __code = this->_M_hash_code(__k);
1844 std::size_t __bkt = _M_bucket_index(__k, __code);
1845
1846 // Look for the node before the first matching node.
1847 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1848 if (!__prev_n)
1849 return 0;
1850
1851 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1852 // 526. Is it undefined if a function in the standard changes
1853 // in parameters?
1854 // We use one loop to find all matching nodes and another to deallocate
1855 // them so that the key stays valid during the first loop. It might be
1856 // invalidated indirectly when destroying nodes.
1857 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1858 __node_type* __n_last = __n;
1859 std::size_t __n_last_bkt = __bkt;
1860 do
1861 {
1862 __n_last = __n_last->_M_next();
1863 if (!__n_last)
1864 break;
1865 __n_last_bkt = _M_bucket_index(__n_last);
1866 }
1867 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1868
1869 // Deallocate nodes.
1870 size_type __result = 0;
1871 do
1872 {
1873 __node_type* __p = __n->_M_next();
1874 this->_M_deallocate_node(__n);
1875 __n = __p;
1876 ++__result;
1877 --_M_element_count;
1878 }
1879 while (__n != __n_last);
1880
1881 if (__prev_n == _M_buckets[__bkt])
1882 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1883 else if (__n_last && __n_last_bkt != __bkt)
1884 _M_buckets[__n_last_bkt] = __prev_n;
1885 __prev_n->_M_nxt = __n_last;
1886 return __result;
1887 }
1888
1889 template<typename _Key, typename _Value,
1890 typename _Alloc, typename _ExtractKey, typename _Equal,
1891 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1892 typename _Traits>
1893 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1894 _H1, _H2, _Hash, _RehashPolicy,
1895 _Traits>::iterator
1896 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1897 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1898 erase(const_iterator __first, const_iterator __last)
1899 {
1900 __node_type* __n = __first._M_cur;
1901 __node_type* __last_n = __last._M_cur;
1902 if (__n == __last_n)
1903 return iterator(__n);
1904
1905 std::size_t __bkt = _M_bucket_index(__n);
1906
1907 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1908 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1909 std::size_t __n_bkt = __bkt;
1910 for (;;)
1911 {
1912 do
1913 {
1914 __node_type* __tmp = __n;
1915 __n = __n->_M_next();
1916 this->_M_deallocate_node(__tmp);
1917 --_M_element_count;
1918 if (!__n)
1919 break;
1920 __n_bkt = _M_bucket_index(__n);
1921 }
1922 while (__n != __last_n && __n_bkt == __bkt);
1923 if (__is_bucket_begin)
1924 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1925 if (__n == __last_n)
1926 break;
1927 __is_bucket_begin = true;
1928 __bkt = __n_bkt;
1929 }
1930
1931 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1932 _M_buckets[__n_bkt] = __prev_n;
1933 __prev_n->_M_nxt = __n;
1934 return iterator(__n);
1935 }
1936
1937 template<typename _Key, typename _Value,
1938 typename _Alloc, typename _ExtractKey, typename _Equal,
1939 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1940 typename _Traits>
1941 void
1942 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1943 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1944 clear() noexcept
1945 {
1946 this->_M_deallocate_nodes(_M_begin());
1947 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1948 _M_element_count = 0;
1949 _M_before_begin._M_nxt = nullptr;
1950 }
1951
1952 template<typename _Key, typename _Value,
1953 typename _Alloc, typename _ExtractKey, typename _Equal,
1954 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1955 typename _Traits>
1956 void
1957 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1958 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1959 rehash(size_type __n)
1960 {
1961 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1962 std::size_t __buckets
1963 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1964 __n);
1965 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1966
1967 if (__buckets != _M_bucket_count)
1968 _M_rehash(__buckets, __saved_state);
1969 else
1970 // No rehash, restore previous state to keep a consistent state.
1971 _M_rehash_policy._M_reset(__saved_state);
1972 }
1973
1974 template<typename _Key, typename _Value,
1975 typename _Alloc, typename _ExtractKey, typename _Equal,
1976 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1977 typename _Traits>
1978 void
1979 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1980 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1981 _M_rehash(size_type __n, const __rehash_state& __state)
1982 {
1983 __try
1984 {
1985 _M_rehash_aux(__n, __unique_keys());
1986 }
1987 __catch(...)
1988 {
1989 // A failure here means that buckets allocation failed. We only
1990 // have to restore hash policy previous state.
1991 _M_rehash_policy._M_reset(__state);
1992 __throw_exception_again;
1993 }
1994 }
1995
1996 // Rehash when there is no equivalent elements.
1997 template<typename _Key, typename _Value,
1998 typename _Alloc, typename _ExtractKey, typename _Equal,
1999 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2000 typename _Traits>
2001 void
2002 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2003 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2004 _M_rehash_aux(size_type __n, std::true_type)
2005 {
2006 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2007 __node_type* __p = _M_begin();
2008 _M_before_begin._M_nxt = nullptr;
2009 std::size_t __bbegin_bkt = 0;
2010 while (__p)
2011 {
2012 __node_type* __next = __p->_M_next();
2013 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2014 if (!__new_buckets[__bkt])
2015 {
2016 __p->_M_nxt = _M_before_begin._M_nxt;
2017 _M_before_begin._M_nxt = __p;
2018 __new_buckets[__bkt] = &_M_before_begin;
2019 if (__p->_M_nxt)
2020 __new_buckets[__bbegin_bkt] = __p;
2021 __bbegin_bkt = __bkt;
2022 }
2023 else
2024 {
2025 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2026 __new_buckets[__bkt]->_M_nxt = __p;
2027 }
2028 __p = __next;
2029 }
2030
2031 _M_deallocate_buckets();
2032 _M_bucket_count = __n;
2033 _M_buckets = __new_buckets;
2034 }
2035
2036 // Rehash when there can be equivalent elements, preserve their relative
2037 // order.
2038 template<typename _Key, typename _Value,
2039 typename _Alloc, typename _ExtractKey, typename _Equal,
2040 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2041 typename _Traits>
2042 void
2043 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2044 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2045 _M_rehash_aux(size_type __n, std::false_type)
2046 {
2047 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2048
2049 __node_type* __p = _M_begin();
2050 _M_before_begin._M_nxt = nullptr;
2051 std::size_t __bbegin_bkt = 0;
2052 std::size_t __prev_bkt = 0;
2053 __node_type* __prev_p = nullptr;
2054 bool __check_bucket = false;
2055
2056 while (__p)
2057 {
2058 __node_type* __next = __p->_M_next();
2059 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2060
2061 if (__prev_p && __prev_bkt == __bkt)
2062 {
2063 // Previous insert was already in this bucket, we insert after
2064 // the previously inserted one to preserve equivalent elements
2065 // relative order.
2066 __p->_M_nxt = __prev_p->_M_nxt;
2067 __prev_p->_M_nxt = __p;
2068
2069 // Inserting after a node in a bucket require to check that we
2070 // haven't change the bucket last node, in this case next
2071 // bucket containing its before begin node must be updated. We
2072 // schedule a check as soon as we move out of the sequence of
2073 // equivalent nodes to limit the number of checks.
2074 __check_bucket = true;
2075 }
2076 else
2077 {
2078 if (__check_bucket)
2079 {
2080 // Check if we shall update the next bucket because of
2081 // insertions into __prev_bkt bucket.
2082 if (__prev_p->_M_nxt)
2083 {
2084 std::size_t __next_bkt
2085 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2086 __n);
2087 if (__next_bkt != __prev_bkt)
2088 __new_buckets[__next_bkt] = __prev_p;
2089 }
2090 __check_bucket = false;
2091 }
2092
2093 if (!__new_buckets[__bkt])
2094 {
2095 __p->_M_nxt = _M_before_begin._M_nxt;
2096 _M_before_begin._M_nxt = __p;
2097 __new_buckets[__bkt] = &_M_before_begin;
2098 if (__p->_M_nxt)
2099 __new_buckets[__bbegin_bkt] = __p;
2100 __bbegin_bkt = __bkt;
2101 }
2102 else
2103 {
2104 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2105 __new_buckets[__bkt]->_M_nxt = __p;
2106 }
2107 }
2108 __prev_p = __p;
2109 __prev_bkt = __bkt;
2110 __p = __next;
2111 }
2112
2113 if (__check_bucket && __prev_p->_M_nxt)
2114 {
2115 std::size_t __next_bkt
2116 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2117 if (__next_bkt != __prev_bkt)
2118 __new_buckets[__next_bkt] = __prev_p;
2119 }
2120
2121 _M_deallocate_buckets();
2122 _M_bucket_count = __n;
2123 _M_buckets = __new_buckets;
2124 }
2125
2126 _GLIBCXX_END_NAMESPACE_VERSION
2127 } // namespace std
2128
2129 #endif // _HASHTABLE_H