re PR libstdc++/65420 (Enumerators in std::regex_constants should be constexpr variab...
[gcc.git] / libstdc++-v3 / include / bits / hashtable.h
1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40
41 template<typename _Tp, typename _Hash>
42 using __cache_default
43 = __not_<__and_<// Do not cache for fast hasher.
44 __is_fast_hash<_Hash>,
45 // Mandatory to have erase not throwing.
46 __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47
48 /**
49 * Primary class template _Hashtable.
50 *
51 * @ingroup hashtable-detail
52 *
53 * @tparam _Value CopyConstructible type.
54 *
55 * @tparam _Key CopyConstructible type.
56 *
57 * @tparam _Alloc An allocator type
58 * ([lib.allocator.requirements]) whose _Alloc::value_type is
59 * _Value. As a conforming extension, we allow for
60 * _Alloc::value_type != _Value.
61 *
62 * @tparam _ExtractKey Function object that takes an object of type
63 * _Value and returns a value of type _Key.
64 *
65 * @tparam _Equal Function object that takes two objects of type k
66 * and returns a bool-like value that is true if the two objects
67 * are considered equal.
68 *
69 * @tparam _H1 The hash function. A unary function object with
70 * argument type _Key and result type size_t. Return values should
71 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72 *
73 * @tparam _H2 The range-hashing function (in the terminology of
74 * Tavori and Dreizin). A binary function object whose argument
75 * types and result type are all size_t. Given arguments r and N,
76 * the return value is in the range [0, N).
77 *
78 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79 * binary function whose argument types are _Key and size_t and
80 * whose result type is size_t. Given arguments k and N, the
81 * return value is in the range [0, N). Default: hash(k, N) =
82 * h2(h1(k), N). If _Hash is anything other than the default, _H1
83 * and _H2 are ignored.
84 *
85 * @tparam _RehashPolicy Policy class with three members, all of
86 * which govern the bucket count. _M_next_bkt(n) returns a bucket
87 * count no smaller than n. _M_bkt_for_elements(n) returns a
88 * bucket count appropriate for an element count of n.
89 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90 * current bucket count is n_bkt and the current element count is
91 * n_elt, we need to increase the bucket count. If so, returns
92 * make_pair(true, n), where n is the new bucket count. If not,
93 * returns make_pair(false, <anything>)
94 *
95 * @tparam _Traits Compile-time class with three boolean
96 * std::integral_constant members: __cache_hash_code, __constant_iterators,
97 * __unique_keys.
98 *
99 * Each _Hashtable data structure has:
100 *
101 * - _Bucket[] _M_buckets
102 * - _Hash_node_base _M_before_begin
103 * - size_type _M_bucket_count
104 * - size_type _M_element_count
105 *
106 * with _Bucket being _Hash_node* and _Hash_node containing:
107 *
108 * - _Hash_node* _M_next
109 * - Tp _M_value
110 * - size_t _M_hash_code if cache_hash_code is true
111 *
112 * In terms of Standard containers the hashtable is like the aggregation of:
113 *
114 * - std::forward_list<_Node> containing the elements
115 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116 *
117 * The non-empty buckets contain the node before the first node in the
118 * bucket. This design makes it possible to implement something like a
119 * std::forward_list::insert_after on container insertion and
120 * std::forward_list::erase_after on container erase
121 * calls. _M_before_begin is equivalent to
122 * std::forward_list::before_begin. Empty buckets contain
123 * nullptr. Note that one of the non-empty buckets contains
124 * &_M_before_begin which is not a dereferenceable node so the
125 * node pointer in a bucket shall never be dereferenced, only its
126 * next node can be.
127 *
128 * Walking through a bucket's nodes requires a check on the hash code to
129 * see if each node is still in the bucket. Such a design assumes a
130 * quite efficient hash functor and is one of the reasons it is
131 * highly advisable to set __cache_hash_code to true.
132 *
133 * The container iterators are simply built from nodes. This way
134 * incrementing the iterator is perfectly efficient independent of
135 * how many empty buckets there are in the container.
136 *
137 * On insert we compute the element's hash code and use it to find the
138 * bucket index. If the element must be inserted in an empty bucket
139 * we add it at the beginning of the singly linked list and make the
140 * bucket point to _M_before_begin. The bucket that used to point to
141 * _M_before_begin, if any, is updated to point to its new before
142 * begin node.
143 *
144 * On erase, the simple iterator design requires using the hash
145 * functor to get the index of the bucket to update. For this
146 * reason, when __cache_hash_code is set to false the hash functor must
147 * not throw and this is enforced by a static assertion.
148 *
149 * Functionality is implemented by decomposition into base classes,
150 * where the derived _Hashtable class is used in _Map_base,
151 * _Insert, _Rehash_base, and _Equality base classes to access the
152 * "this" pointer. _Hashtable_base is used in the base classes as a
153 * non-recursive, fully-completed-type so that detailed nested type
154 * information, such as iterator type and node type, can be
155 * used. This is similar to the "Curiously Recurring Template
156 * Pattern" (CRTP) technique, but uses a reconstructed, not
157 * explicitly passed, template pattern.
158 *
159 * Base class templates are:
160 * - __detail::_Hashtable_base
161 * - __detail::_Map_base
162 * - __detail::_Insert
163 * - __detail::_Rehash_base
164 * - __detail::_Equality
165 */
166 template<typename _Key, typename _Value, typename _Alloc,
167 typename _ExtractKey, typename _Equal,
168 typename _H1, typename _H2, typename _Hash,
169 typename _RehashPolicy, typename _Traits>
170 class _Hashtable
171 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 _H1, _H2, _Hash, _Traits>,
173 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181 private __detail::_Hashtable_alloc<
182 typename __alloctr_rebind<_Alloc,
183 __detail::_Hash_node<_Value,
184 _Traits::__hash_cached::value> >::__type>
185 {
186 using __traits_type = _Traits;
187 using __hash_cached = typename __traits_type::__hash_cached;
188 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189 using __node_alloc_type =
190 typename __alloctr_rebind<_Alloc, __node_type>::__type;
191
192 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193
194 using __value_alloc_traits =
195 typename __hashtable_alloc::__value_alloc_traits;
196 using __node_alloc_traits =
197 typename __hashtable_alloc::__node_alloc_traits;
198 using __node_base = typename __hashtable_alloc::__node_base;
199 using __bucket_type = typename __hashtable_alloc::__bucket_type;
200
201 public:
202 typedef _Key key_type;
203 typedef _Value value_type;
204 typedef _Alloc allocator_type;
205 typedef _Equal key_equal;
206
207 // mapped_type, if present, comes from _Map_base.
208 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209 typedef typename __value_alloc_traits::pointer pointer;
210 typedef typename __value_alloc_traits::const_pointer const_pointer;
211 typedef value_type& reference;
212 typedef const value_type& const_reference;
213
214 private:
215 using __rehash_type = _RehashPolicy;
216 using __rehash_state = typename __rehash_type::_State;
217
218 using __constant_iterators = typename __traits_type::__constant_iterators;
219 using __unique_keys = typename __traits_type::__unique_keys;
220
221 using __key_extract = typename std::conditional<
222 __constant_iterators::value,
223 __detail::_Identity,
224 __detail::_Select1st>::type;
225
226 using __hashtable_base = __detail::
227 _Hashtable_base<_Key, _Value, _ExtractKey,
228 _Equal, _H1, _H2, _Hash, _Traits>;
229
230 using __hash_code_base = typename __hashtable_base::__hash_code_base;
231 using __hash_code = typename __hashtable_base::__hash_code;
232 using __ireturn_type = typename __hashtable_base::__ireturn_type;
233
234 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235 _Equal, _H1, _H2, _Hash,
236 _RehashPolicy, _Traits>;
237
238 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239 _ExtractKey, _Equal,
240 _H1, _H2, _Hash,
241 _RehashPolicy, _Traits>;
242
243 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244 _Equal, _H1, _H2, _Hash,
245 _RehashPolicy, _Traits>;
246
247 using __reuse_or_alloc_node_type =
248 __detail::_ReuseOrAllocNode<__node_alloc_type>;
249
250 // Metaprogramming for picking apart hash caching.
251 template<typename _Cond>
252 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253
254 template<typename _Cond>
255 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256
257 // Compile-time diagnostics.
258
259 // _Hash_code_base has everything protected, so use this derived type to
260 // access it.
261 struct __hash_code_base_access : __hash_code_base
262 { using __hash_code_base::_M_bucket_index; };
263
264 // Getting a bucket index from a node shall not throw because it is used
265 // in methods (erase, swap...) that shall not throw.
266 static_assert(noexcept(declval<const __hash_code_base_access&>()
267 ._M_bucket_index((const __node_type*)nullptr,
268 (std::size_t)0)),
269 "Cache the hash code or qualify your functors involved"
270 " in hash code and bucket index computation with noexcept");
271
272 // Following two static assertions are necessary to guarantee
273 // that local_iterator will be default constructible.
274
275 // When hash codes are cached local iterator inherits from H2 functor
276 // which must then be default constructible.
277 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278 "Functor used to map hash code to bucket index"
279 " must be default constructible");
280
281 template<typename _Keya, typename _Valuea, typename _Alloca,
282 typename _ExtractKeya, typename _Equala,
283 typename _H1a, typename _H2a, typename _Hasha,
284 typename _RehashPolicya, typename _Traitsa,
285 bool _Unique_keysa>
286 friend struct __detail::_Map_base;
287
288 template<typename _Keya, typename _Valuea, typename _Alloca,
289 typename _ExtractKeya, typename _Equala,
290 typename _H1a, typename _H2a, typename _Hasha,
291 typename _RehashPolicya, typename _Traitsa>
292 friend struct __detail::_Insert_base;
293
294 template<typename _Keya, typename _Valuea, typename _Alloca,
295 typename _ExtractKeya, typename _Equala,
296 typename _H1a, typename _H2a, typename _Hasha,
297 typename _RehashPolicya, typename _Traitsa,
298 bool _Constant_iteratorsa, bool _Unique_keysa>
299 friend struct __detail::_Insert;
300
301 public:
302 using size_type = typename __hashtable_base::size_type;
303 using difference_type = typename __hashtable_base::difference_type;
304
305 using iterator = typename __hashtable_base::iterator;
306 using const_iterator = typename __hashtable_base::const_iterator;
307
308 using local_iterator = typename __hashtable_base::local_iterator;
309 using const_local_iterator = typename __hashtable_base::
310 const_local_iterator;
311
312 private:
313 __bucket_type* _M_buckets = &_M_single_bucket;
314 size_type _M_bucket_count = 1;
315 __node_base _M_before_begin;
316 size_type _M_element_count = 0;
317 _RehashPolicy _M_rehash_policy;
318
319 // A single bucket used when only need for 1 bucket. Especially
320 // interesting in move semantic to leave hashtable with only 1 buckets
321 // which is not allocated so that we can have those operations noexcept
322 // qualified.
323 // Note that we can't leave hashtable with 0 bucket without adding
324 // numerous checks in the code to avoid 0 modulus.
325 __bucket_type _M_single_bucket = nullptr;
326
327 bool
328 _M_uses_single_bucket(__bucket_type* __bkts) const
329 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330
331 bool
332 _M_uses_single_bucket() const
333 { return _M_uses_single_bucket(_M_buckets); }
334
335 __hashtable_alloc&
336 _M_base_alloc() { return *this; }
337
338 __bucket_type*
339 _M_allocate_buckets(size_type __n)
340 {
341 if (__builtin_expect(__n == 1, false))
342 {
343 _M_single_bucket = nullptr;
344 return &_M_single_bucket;
345 }
346
347 return __hashtable_alloc::_M_allocate_buckets(__n);
348 }
349
350 void
351 _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352 {
353 if (_M_uses_single_bucket(__bkts))
354 return;
355
356 __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357 }
358
359 void
360 _M_deallocate_buckets()
361 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362
363 // Gets bucket begin, deals with the fact that non-empty buckets contain
364 // their before begin node.
365 __node_type*
366 _M_bucket_begin(size_type __bkt) const;
367
368 __node_type*
369 _M_begin() const
370 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371
372 template<typename _NodeGenerator>
373 void
374 _M_assign(const _Hashtable&, const _NodeGenerator&);
375
376 void
377 _M_move_assign(_Hashtable&&, std::true_type);
378
379 void
380 _M_move_assign(_Hashtable&&, std::false_type);
381
382 void
383 _M_reset() noexcept;
384
385 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
386 const _Equal& __eq, const _ExtractKey& __exk,
387 const allocator_type& __a)
388 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
389 __hashtable_alloc(__node_alloc_type(__a))
390 { }
391
392 public:
393 // Constructor, destructor, assignment, swap
394 _Hashtable() = default;
395 _Hashtable(size_type __bucket_hint,
396 const _H1&, const _H2&, const _Hash&,
397 const _Equal&, const _ExtractKey&,
398 const allocator_type&);
399
400 template<typename _InputIterator>
401 _Hashtable(_InputIterator __first, _InputIterator __last,
402 size_type __bucket_hint,
403 const _H1&, const _H2&, const _Hash&,
404 const _Equal&, const _ExtractKey&,
405 const allocator_type&);
406
407 _Hashtable(const _Hashtable&);
408
409 _Hashtable(_Hashtable&&) noexcept;
410
411 _Hashtable(const _Hashtable&, const allocator_type&);
412
413 _Hashtable(_Hashtable&&, const allocator_type&);
414
415 // Use delegating constructors.
416 explicit
417 _Hashtable(const allocator_type& __a)
418 : __hashtable_alloc(__node_alloc_type(__a))
419 { }
420
421 explicit
422 _Hashtable(size_type __n,
423 const _H1& __hf = _H1(),
424 const key_equal& __eql = key_equal(),
425 const allocator_type& __a = allocator_type())
426 : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
427 __key_extract(), __a)
428 { }
429
430 template<typename _InputIterator>
431 _Hashtable(_InputIterator __f, _InputIterator __l,
432 size_type __n = 0,
433 const _H1& __hf = _H1(),
434 const key_equal& __eql = key_equal(),
435 const allocator_type& __a = allocator_type())
436 : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
437 __key_extract(), __a)
438 { }
439
440 _Hashtable(initializer_list<value_type> __l,
441 size_type __n = 0,
442 const _H1& __hf = _H1(),
443 const key_equal& __eql = key_equal(),
444 const allocator_type& __a = allocator_type())
445 : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
446 __key_extract(), __a)
447 { }
448
449 _Hashtable&
450 operator=(const _Hashtable& __ht);
451
452 _Hashtable&
453 operator=(_Hashtable&& __ht)
454 noexcept(__node_alloc_traits::_S_nothrow_move())
455 {
456 constexpr bool __move_storage =
457 __node_alloc_traits::_S_propagate_on_move_assign()
458 || __node_alloc_traits::_S_always_equal();
459 _M_move_assign(std::move(__ht),
460 integral_constant<bool, __move_storage>());
461 return *this;
462 }
463
464 _Hashtable&
465 operator=(initializer_list<value_type> __l)
466 {
467 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468 _M_before_begin._M_nxt = nullptr;
469 clear();
470 this->_M_insert_range(__l.begin(), __l.end(), __roan);
471 return *this;
472 }
473
474 ~_Hashtable() noexcept;
475
476 void
477 swap(_Hashtable&)
478 noexcept(__node_alloc_traits::_S_nothrow_swap());
479
480 // Basic container operations
481 iterator
482 begin() noexcept
483 { return iterator(_M_begin()); }
484
485 const_iterator
486 begin() const noexcept
487 { return const_iterator(_M_begin()); }
488
489 iterator
490 end() noexcept
491 { return iterator(nullptr); }
492
493 const_iterator
494 end() const noexcept
495 { return const_iterator(nullptr); }
496
497 const_iterator
498 cbegin() const noexcept
499 { return const_iterator(_M_begin()); }
500
501 const_iterator
502 cend() const noexcept
503 { return const_iterator(nullptr); }
504
505 size_type
506 size() const noexcept
507 { return _M_element_count; }
508
509 bool
510 empty() const noexcept
511 { return size() == 0; }
512
513 allocator_type
514 get_allocator() const noexcept
515 { return allocator_type(this->_M_node_allocator()); }
516
517 size_type
518 max_size() const noexcept
519 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
520
521 // Observers
522 key_equal
523 key_eq() const
524 { return this->_M_eq(); }
525
526 // hash_function, if present, comes from _Hash_code_base.
527
528 // Bucket operations
529 size_type
530 bucket_count() const noexcept
531 { return _M_bucket_count; }
532
533 size_type
534 max_bucket_count() const noexcept
535 { return max_size(); }
536
537 size_type
538 bucket_size(size_type __n) const
539 { return std::distance(begin(__n), end(__n)); }
540
541 size_type
542 bucket(const key_type& __k) const
543 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
544
545 local_iterator
546 begin(size_type __n)
547 {
548 return local_iterator(*this, _M_bucket_begin(__n),
549 __n, _M_bucket_count);
550 }
551
552 local_iterator
553 end(size_type __n)
554 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
555
556 const_local_iterator
557 begin(size_type __n) const
558 {
559 return const_local_iterator(*this, _M_bucket_begin(__n),
560 __n, _M_bucket_count);
561 }
562
563 const_local_iterator
564 end(size_type __n) const
565 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
566
567 // DR 691.
568 const_local_iterator
569 cbegin(size_type __n) const
570 {
571 return const_local_iterator(*this, _M_bucket_begin(__n),
572 __n, _M_bucket_count);
573 }
574
575 const_local_iterator
576 cend(size_type __n) const
577 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
578
579 float
580 load_factor() const noexcept
581 {
582 return static_cast<float>(size()) / static_cast<float>(bucket_count());
583 }
584
585 // max_load_factor, if present, comes from _Rehash_base.
586
587 // Generalization of max_load_factor. Extension, not found in
588 // TR1. Only useful if _RehashPolicy is something other than
589 // the default.
590 const _RehashPolicy&
591 __rehash_policy() const
592 { return _M_rehash_policy; }
593
594 void
595 __rehash_policy(const _RehashPolicy&);
596
597 // Lookup.
598 iterator
599 find(const key_type& __k);
600
601 const_iterator
602 find(const key_type& __k) const;
603
604 size_type
605 count(const key_type& __k) const;
606
607 std::pair<iterator, iterator>
608 equal_range(const key_type& __k);
609
610 std::pair<const_iterator, const_iterator>
611 equal_range(const key_type& __k) const;
612
613 protected:
614 // Bucket index computation helpers.
615 size_type
616 _M_bucket_index(__node_type* __n) const noexcept
617 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
618
619 size_type
620 _M_bucket_index(const key_type& __k, __hash_code __c) const
621 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
622
623 // Find and insert helper functions and types
624 // Find the node before the one matching the criteria.
625 __node_base*
626 _M_find_before_node(size_type, const key_type&, __hash_code) const;
627
628 __node_type*
629 _M_find_node(size_type __bkt, const key_type& __key,
630 __hash_code __c) const
631 {
632 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
633 if (__before_n)
634 return static_cast<__node_type*>(__before_n->_M_nxt);
635 return nullptr;
636 }
637
638 // Insert a node at the beginning of a bucket.
639 void
640 _M_insert_bucket_begin(size_type, __node_type*);
641
642 // Remove the bucket first node
643 void
644 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
645 size_type __next_bkt);
646
647 // Get the node before __n in the bucket __bkt
648 __node_base*
649 _M_get_previous_node(size_type __bkt, __node_base* __n);
650
651 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
652 // no element with its key already present). Take ownership of the node,
653 // deallocate it on exception.
654 iterator
655 _M_insert_unique_node(size_type __bkt, __hash_code __code,
656 __node_type* __n);
657
658 // Insert node with hash code __code. Take ownership of the node,
659 // deallocate it on exception.
660 iterator
661 _M_insert_multi_node(__node_type* __hint,
662 __hash_code __code, __node_type* __n);
663
664 template<typename... _Args>
665 std::pair<iterator, bool>
666 _M_emplace(std::true_type, _Args&&... __args);
667
668 template<typename... _Args>
669 iterator
670 _M_emplace(std::false_type __uk, _Args&&... __args)
671 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
672
673 // Emplace with hint, useless when keys are unique.
674 template<typename... _Args>
675 iterator
676 _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
677 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
678
679 template<typename... _Args>
680 iterator
681 _M_emplace(const_iterator, std::false_type, _Args&&... __args);
682
683 template<typename _Arg, typename _NodeGenerator>
684 std::pair<iterator, bool>
685 _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
686
687 template<typename _Arg, typename _NodeGenerator>
688 iterator
689 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
690 std::false_type __uk)
691 {
692 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
693 __uk);
694 }
695
696 // Insert with hint, not used when keys are unique.
697 template<typename _Arg, typename _NodeGenerator>
698 iterator
699 _M_insert(const_iterator, _Arg&& __arg,
700 const _NodeGenerator& __node_gen, std::true_type __uk)
701 {
702 return
703 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
704 }
705
706 // Insert with hint when keys are not unique.
707 template<typename _Arg, typename _NodeGenerator>
708 iterator
709 _M_insert(const_iterator, _Arg&&,
710 const _NodeGenerator&, std::false_type);
711
712 size_type
713 _M_erase(std::true_type, const key_type&);
714
715 size_type
716 _M_erase(std::false_type, const key_type&);
717
718 iterator
719 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
720
721 public:
722 // Emplace
723 template<typename... _Args>
724 __ireturn_type
725 emplace(_Args&&... __args)
726 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
727
728 template<typename... _Args>
729 iterator
730 emplace_hint(const_iterator __hint, _Args&&... __args)
731 {
732 return _M_emplace(__hint, __unique_keys(),
733 std::forward<_Args>(__args)...);
734 }
735
736 // Insert member functions via inheritance.
737
738 // Erase
739 iterator
740 erase(const_iterator);
741
742 // LWG 2059.
743 iterator
744 erase(iterator __it)
745 { return erase(const_iterator(__it)); }
746
747 size_type
748 erase(const key_type& __k)
749 { return _M_erase(__unique_keys(), __k); }
750
751 iterator
752 erase(const_iterator, const_iterator);
753
754 void
755 clear() noexcept;
756
757 // Set number of buckets to be appropriate for container of n element.
758 void rehash(size_type __n);
759
760 // DR 1189.
761 // reserve, if present, comes from _Rehash_base.
762
763 private:
764 // Helper rehash method used when keys are unique.
765 void _M_rehash_aux(size_type __n, std::true_type);
766
767 // Helper rehash method used when keys can be non-unique.
768 void _M_rehash_aux(size_type __n, std::false_type);
769
770 // Unconditionally change size of bucket array to n, restore
771 // hash policy state to __state on exception.
772 void _M_rehash(size_type __n, const __rehash_state& __state);
773 };
774
775
776 // Definitions of class template _Hashtable's out-of-line member functions.
777 template<typename _Key, typename _Value,
778 typename _Alloc, typename _ExtractKey, typename _Equal,
779 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
780 typename _Traits>
781 auto
782 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
783 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
784 _M_bucket_begin(size_type __bkt) const
785 -> __node_type*
786 {
787 __node_base* __n = _M_buckets[__bkt];
788 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
789 }
790
791 template<typename _Key, typename _Value,
792 typename _Alloc, typename _ExtractKey, typename _Equal,
793 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
794 typename _Traits>
795 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
796 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
797 _Hashtable(size_type __bucket_hint,
798 const _H1& __h1, const _H2& __h2, const _Hash& __h,
799 const _Equal& __eq, const _ExtractKey& __exk,
800 const allocator_type& __a)
801 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
802 {
803 auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
804 if (__bkt > _M_bucket_count)
805 {
806 _M_buckets = _M_allocate_buckets(__bkt);
807 _M_bucket_count = __bkt;
808 }
809 }
810
811 template<typename _Key, typename _Value,
812 typename _Alloc, typename _ExtractKey, typename _Equal,
813 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
814 typename _Traits>
815 template<typename _InputIterator>
816 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818 _Hashtable(_InputIterator __f, _InputIterator __l,
819 size_type __bucket_hint,
820 const _H1& __h1, const _H2& __h2, const _Hash& __h,
821 const _Equal& __eq, const _ExtractKey& __exk,
822 const allocator_type& __a)
823 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
824 {
825 auto __nb_elems = __detail::__distance_fw(__f, __l);
826 auto __bkt_count =
827 _M_rehash_policy._M_next_bkt(
828 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
829 __bucket_hint));
830
831 if (__bkt_count > _M_bucket_count)
832 {
833 _M_buckets = _M_allocate_buckets(__bkt_count);
834 _M_bucket_count = __bkt_count;
835 }
836
837 __try
838 {
839 for (; __f != __l; ++__f)
840 this->insert(*__f);
841 }
842 __catch(...)
843 {
844 clear();
845 _M_deallocate_buckets();
846 __throw_exception_again;
847 }
848 }
849
850 template<typename _Key, typename _Value,
851 typename _Alloc, typename _ExtractKey, typename _Equal,
852 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
853 typename _Traits>
854 auto
855 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
856 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
857 operator=(const _Hashtable& __ht)
858 -> _Hashtable&
859 {
860 if (&__ht == this)
861 return *this;
862
863 if (__node_alloc_traits::_S_propagate_on_copy_assign())
864 {
865 auto& __this_alloc = this->_M_node_allocator();
866 auto& __that_alloc = __ht._M_node_allocator();
867 if (!__node_alloc_traits::_S_always_equal()
868 && __this_alloc != __that_alloc)
869 {
870 // Replacement allocator cannot free existing storage.
871 this->_M_deallocate_nodes(_M_begin());
872 _M_before_begin._M_nxt = nullptr;
873 _M_deallocate_buckets();
874 _M_buckets = nullptr;
875 std::__alloc_on_copy(__this_alloc, __that_alloc);
876 __hashtable_base::operator=(__ht);
877 _M_bucket_count = __ht._M_bucket_count;
878 _M_element_count = __ht._M_element_count;
879 _M_rehash_policy = __ht._M_rehash_policy;
880 __try
881 {
882 _M_assign(__ht,
883 [this](const __node_type* __n)
884 { return this->_M_allocate_node(__n->_M_v()); });
885 }
886 __catch(...)
887 {
888 // _M_assign took care of deallocating all memory. Now we
889 // must make sure this instance remains in a usable state.
890 _M_reset();
891 __throw_exception_again;
892 }
893 return *this;
894 }
895 std::__alloc_on_copy(__this_alloc, __that_alloc);
896 }
897
898 // Reuse allocated buckets and nodes.
899 __bucket_type* __former_buckets = nullptr;
900 std::size_t __former_bucket_count = _M_bucket_count;
901 const __rehash_state& __former_state = _M_rehash_policy._M_state();
902
903 if (_M_bucket_count != __ht._M_bucket_count)
904 {
905 __former_buckets = _M_buckets;
906 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
907 _M_bucket_count = __ht._M_bucket_count;
908 }
909 else
910 __builtin_memset(_M_buckets, 0,
911 _M_bucket_count * sizeof(__bucket_type));
912
913 __try
914 {
915 __hashtable_base::operator=(__ht);
916 _M_element_count = __ht._M_element_count;
917 _M_rehash_policy = __ht._M_rehash_policy;
918 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
919 _M_before_begin._M_nxt = nullptr;
920 _M_assign(__ht,
921 [&__roan](const __node_type* __n)
922 { return __roan(__n->_M_v()); });
923 if (__former_buckets)
924 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
925 }
926 __catch(...)
927 {
928 if (__former_buckets)
929 {
930 // Restore previous buckets.
931 _M_deallocate_buckets();
932 _M_rehash_policy._M_reset(__former_state);
933 _M_buckets = __former_buckets;
934 _M_bucket_count = __former_bucket_count;
935 }
936 __builtin_memset(_M_buckets, 0,
937 _M_bucket_count * sizeof(__bucket_type));
938 __throw_exception_again;
939 }
940 return *this;
941 }
942
943 template<typename _Key, typename _Value,
944 typename _Alloc, typename _ExtractKey, typename _Equal,
945 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
946 typename _Traits>
947 template<typename _NodeGenerator>
948 void
949 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
950 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
951 _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
952 {
953 __bucket_type* __buckets = nullptr;
954 if (!_M_buckets)
955 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
956
957 __try
958 {
959 if (!__ht._M_before_begin._M_nxt)
960 return;
961
962 // First deal with the special first node pointed to by
963 // _M_before_begin.
964 __node_type* __ht_n = __ht._M_begin();
965 __node_type* __this_n = __node_gen(__ht_n);
966 this->_M_copy_code(__this_n, __ht_n);
967 _M_before_begin._M_nxt = __this_n;
968 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
969
970 // Then deal with other nodes.
971 __node_base* __prev_n = __this_n;
972 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
973 {
974 __this_n = __node_gen(__ht_n);
975 __prev_n->_M_nxt = __this_n;
976 this->_M_copy_code(__this_n, __ht_n);
977 size_type __bkt = _M_bucket_index(__this_n);
978 if (!_M_buckets[__bkt])
979 _M_buckets[__bkt] = __prev_n;
980 __prev_n = __this_n;
981 }
982 }
983 __catch(...)
984 {
985 clear();
986 if (__buckets)
987 _M_deallocate_buckets();
988 __throw_exception_again;
989 }
990 }
991
992 template<typename _Key, typename _Value,
993 typename _Alloc, typename _ExtractKey, typename _Equal,
994 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
995 typename _Traits>
996 void
997 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
998 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
999 _M_reset() noexcept
1000 {
1001 _M_rehash_policy._M_reset();
1002 _M_bucket_count = 1;
1003 _M_single_bucket = nullptr;
1004 _M_buckets = &_M_single_bucket;
1005 _M_before_begin._M_nxt = nullptr;
1006 _M_element_count = 0;
1007 }
1008
1009 template<typename _Key, typename _Value,
1010 typename _Alloc, typename _ExtractKey, typename _Equal,
1011 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1012 typename _Traits>
1013 void
1014 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1015 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1016 _M_move_assign(_Hashtable&& __ht, std::true_type)
1017 {
1018 this->_M_deallocate_nodes(_M_begin());
1019 _M_deallocate_buckets();
1020 __hashtable_base::operator=(std::move(__ht));
1021 _M_rehash_policy = __ht._M_rehash_policy;
1022 if (!__ht._M_uses_single_bucket())
1023 _M_buckets = __ht._M_buckets;
1024 else
1025 {
1026 _M_buckets = &_M_single_bucket;
1027 _M_single_bucket = __ht._M_single_bucket;
1028 }
1029 _M_bucket_count = __ht._M_bucket_count;
1030 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1031 _M_element_count = __ht._M_element_count;
1032 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1033
1034 // Fix buckets containing the _M_before_begin pointers that can't be
1035 // moved.
1036 if (_M_begin())
1037 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1038 __ht._M_reset();
1039 }
1040
1041 template<typename _Key, typename _Value,
1042 typename _Alloc, typename _ExtractKey, typename _Equal,
1043 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1044 typename _Traits>
1045 void
1046 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1047 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1048 _M_move_assign(_Hashtable&& __ht, std::false_type)
1049 {
1050 if (__ht._M_node_allocator() == this->_M_node_allocator())
1051 _M_move_assign(std::move(__ht), std::true_type());
1052 else
1053 {
1054 // Can't move memory, move elements then.
1055 __bucket_type* __former_buckets = nullptr;
1056 size_type __former_bucket_count = _M_bucket_count;
1057 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1058
1059 if (_M_bucket_count != __ht._M_bucket_count)
1060 {
1061 __former_buckets = _M_buckets;
1062 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1063 _M_bucket_count = __ht._M_bucket_count;
1064 }
1065 else
1066 __builtin_memset(_M_buckets, 0,
1067 _M_bucket_count * sizeof(__bucket_type));
1068
1069 __try
1070 {
1071 __hashtable_base::operator=(std::move(__ht));
1072 _M_element_count = __ht._M_element_count;
1073 _M_rehash_policy = __ht._M_rehash_policy;
1074 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1075 _M_before_begin._M_nxt = nullptr;
1076 _M_assign(__ht,
1077 [&__roan](__node_type* __n)
1078 { return __roan(std::move_if_noexcept(__n->_M_v())); });
1079 __ht.clear();
1080 }
1081 __catch(...)
1082 {
1083 if (__former_buckets)
1084 {
1085 _M_deallocate_buckets();
1086 _M_rehash_policy._M_reset(__former_state);
1087 _M_buckets = __former_buckets;
1088 _M_bucket_count = __former_bucket_count;
1089 }
1090 __builtin_memset(_M_buckets, 0,
1091 _M_bucket_count * sizeof(__bucket_type));
1092 __throw_exception_again;
1093 }
1094 }
1095 }
1096
1097 template<typename _Key, typename _Value,
1098 typename _Alloc, typename _ExtractKey, typename _Equal,
1099 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1100 typename _Traits>
1101 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1102 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1103 _Hashtable(const _Hashtable& __ht)
1104 : __hashtable_base(__ht),
1105 __map_base(__ht),
1106 __rehash_base(__ht),
1107 __hashtable_alloc(
1108 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1109 _M_buckets(nullptr),
1110 _M_bucket_count(__ht._M_bucket_count),
1111 _M_element_count(__ht._M_element_count),
1112 _M_rehash_policy(__ht._M_rehash_policy)
1113 {
1114 _M_assign(__ht,
1115 [this](const __node_type* __n)
1116 { return this->_M_allocate_node(__n->_M_v()); });
1117 }
1118
1119 template<typename _Key, typename _Value,
1120 typename _Alloc, typename _ExtractKey, typename _Equal,
1121 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1122 typename _Traits>
1123 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1124 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1125 _Hashtable(_Hashtable&& __ht) noexcept
1126 : __hashtable_base(__ht),
1127 __map_base(__ht),
1128 __rehash_base(__ht),
1129 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1130 _M_buckets(__ht._M_buckets),
1131 _M_bucket_count(__ht._M_bucket_count),
1132 _M_before_begin(__ht._M_before_begin._M_nxt),
1133 _M_element_count(__ht._M_element_count),
1134 _M_rehash_policy(__ht._M_rehash_policy)
1135 {
1136 // Update, if necessary, buckets if __ht is using its single bucket.
1137 if (__ht._M_uses_single_bucket())
1138 {
1139 _M_buckets = &_M_single_bucket;
1140 _M_single_bucket = __ht._M_single_bucket;
1141 }
1142
1143 // Update, if necessary, bucket pointing to before begin that hasn't
1144 // moved.
1145 if (_M_begin())
1146 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1147
1148 __ht._M_reset();
1149 }
1150
1151 template<typename _Key, typename _Value,
1152 typename _Alloc, typename _ExtractKey, typename _Equal,
1153 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1154 typename _Traits>
1155 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1156 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1157 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1158 : __hashtable_base(__ht),
1159 __map_base(__ht),
1160 __rehash_base(__ht),
1161 __hashtable_alloc(__node_alloc_type(__a)),
1162 _M_buckets(),
1163 _M_bucket_count(__ht._M_bucket_count),
1164 _M_element_count(__ht._M_element_count),
1165 _M_rehash_policy(__ht._M_rehash_policy)
1166 {
1167 _M_assign(__ht,
1168 [this](const __node_type* __n)
1169 { return this->_M_allocate_node(__n->_M_v()); });
1170 }
1171
1172 template<typename _Key, typename _Value,
1173 typename _Alloc, typename _ExtractKey, typename _Equal,
1174 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1175 typename _Traits>
1176 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1177 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1178 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1179 : __hashtable_base(__ht),
1180 __map_base(__ht),
1181 __rehash_base(__ht),
1182 __hashtable_alloc(__node_alloc_type(__a)),
1183 _M_buckets(nullptr),
1184 _M_bucket_count(__ht._M_bucket_count),
1185 _M_element_count(__ht._M_element_count),
1186 _M_rehash_policy(__ht._M_rehash_policy)
1187 {
1188 if (__ht._M_node_allocator() == this->_M_node_allocator())
1189 {
1190 if (__ht._M_uses_single_bucket())
1191 {
1192 _M_buckets = &_M_single_bucket;
1193 _M_single_bucket = __ht._M_single_bucket;
1194 }
1195 else
1196 _M_buckets = __ht._M_buckets;
1197
1198 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1199 // Update, if necessary, bucket pointing to before begin that hasn't
1200 // moved.
1201 if (_M_begin())
1202 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1203 __ht._M_reset();
1204 }
1205 else
1206 {
1207 _M_assign(__ht,
1208 [this](__node_type* __n)
1209 {
1210 return this->_M_allocate_node(
1211 std::move_if_noexcept(__n->_M_v()));
1212 });
1213 __ht.clear();
1214 }
1215 }
1216
1217 template<typename _Key, typename _Value,
1218 typename _Alloc, typename _ExtractKey, typename _Equal,
1219 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1220 typename _Traits>
1221 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1222 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1223 ~_Hashtable() noexcept
1224 {
1225 clear();
1226 _M_deallocate_buckets();
1227 }
1228
1229 template<typename _Key, typename _Value,
1230 typename _Alloc, typename _ExtractKey, typename _Equal,
1231 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232 typename _Traits>
1233 void
1234 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1235 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1236 swap(_Hashtable& __x)
1237 noexcept(__node_alloc_traits::_S_nothrow_swap())
1238 {
1239 // The only base class with member variables is hash_code_base.
1240 // We define _Hash_code_base::_M_swap because different
1241 // specializations have different members.
1242 this->_M_swap(__x);
1243
1244 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1245 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1246
1247 // Deal properly with potentially moved instances.
1248 if (this->_M_uses_single_bucket())
1249 {
1250 if (!__x._M_uses_single_bucket())
1251 {
1252 _M_buckets = __x._M_buckets;
1253 __x._M_buckets = &__x._M_single_bucket;
1254 }
1255 }
1256 else if (__x._M_uses_single_bucket())
1257 {
1258 __x._M_buckets = _M_buckets;
1259 _M_buckets = &_M_single_bucket;
1260 }
1261 else
1262 std::swap(_M_buckets, __x._M_buckets);
1263
1264 std::swap(_M_bucket_count, __x._M_bucket_count);
1265 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1266 std::swap(_M_element_count, __x._M_element_count);
1267 std::swap(_M_single_bucket, __x._M_single_bucket);
1268
1269 // Fix buckets containing the _M_before_begin pointers that can't be
1270 // swapped.
1271 if (_M_begin())
1272 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1273
1274 if (__x._M_begin())
1275 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1276 = &__x._M_before_begin;
1277 }
1278
1279 template<typename _Key, typename _Value,
1280 typename _Alloc, typename _ExtractKey, typename _Equal,
1281 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1282 typename _Traits>
1283 void
1284 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1285 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1286 __rehash_policy(const _RehashPolicy& __pol)
1287 {
1288 auto __do_rehash =
1289 __pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1290 if (__do_rehash.first)
1291 _M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1292 _M_rehash_policy = __pol;
1293 }
1294
1295 template<typename _Key, typename _Value,
1296 typename _Alloc, typename _ExtractKey, typename _Equal,
1297 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1298 typename _Traits>
1299 auto
1300 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1301 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1302 find(const key_type& __k)
1303 -> iterator
1304 {
1305 __hash_code __code = this->_M_hash_code(__k);
1306 std::size_t __n = _M_bucket_index(__k, __code);
1307 __node_type* __p = _M_find_node(__n, __k, __code);
1308 return __p ? iterator(__p) : end();
1309 }
1310
1311 template<typename _Key, typename _Value,
1312 typename _Alloc, typename _ExtractKey, typename _Equal,
1313 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1314 typename _Traits>
1315 auto
1316 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1317 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1318 find(const key_type& __k) const
1319 -> const_iterator
1320 {
1321 __hash_code __code = this->_M_hash_code(__k);
1322 std::size_t __n = _M_bucket_index(__k, __code);
1323 __node_type* __p = _M_find_node(__n, __k, __code);
1324 return __p ? const_iterator(__p) : end();
1325 }
1326
1327 template<typename _Key, typename _Value,
1328 typename _Alloc, typename _ExtractKey, typename _Equal,
1329 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1330 typename _Traits>
1331 auto
1332 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1334 count(const key_type& __k) const
1335 -> size_type
1336 {
1337 __hash_code __code = this->_M_hash_code(__k);
1338 std::size_t __n = _M_bucket_index(__k, __code);
1339 __node_type* __p = _M_bucket_begin(__n);
1340 if (!__p)
1341 return 0;
1342
1343 std::size_t __result = 0;
1344 for (;; __p = __p->_M_next())
1345 {
1346 if (this->_M_equals(__k, __code, __p))
1347 ++__result;
1348 else if (__result)
1349 // All equivalent values are next to each other, if we
1350 // found a non-equivalent value after an equivalent one it
1351 // means that we won't find any new equivalent value.
1352 break;
1353 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1354 break;
1355 }
1356 return __result;
1357 }
1358
1359 template<typename _Key, typename _Value,
1360 typename _Alloc, typename _ExtractKey, typename _Equal,
1361 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1362 typename _Traits>
1363 auto
1364 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1365 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1366 equal_range(const key_type& __k)
1367 -> pair<iterator, iterator>
1368 {
1369 __hash_code __code = this->_M_hash_code(__k);
1370 std::size_t __n = _M_bucket_index(__k, __code);
1371 __node_type* __p = _M_find_node(__n, __k, __code);
1372
1373 if (__p)
1374 {
1375 __node_type* __p1 = __p->_M_next();
1376 while (__p1 && _M_bucket_index(__p1) == __n
1377 && this->_M_equals(__k, __code, __p1))
1378 __p1 = __p1->_M_next();
1379
1380 return std::make_pair(iterator(__p), iterator(__p1));
1381 }
1382 else
1383 return std::make_pair(end(), end());
1384 }
1385
1386 template<typename _Key, typename _Value,
1387 typename _Alloc, typename _ExtractKey, typename _Equal,
1388 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1389 typename _Traits>
1390 auto
1391 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1392 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1393 equal_range(const key_type& __k) const
1394 -> pair<const_iterator, const_iterator>
1395 {
1396 __hash_code __code = this->_M_hash_code(__k);
1397 std::size_t __n = _M_bucket_index(__k, __code);
1398 __node_type* __p = _M_find_node(__n, __k, __code);
1399
1400 if (__p)
1401 {
1402 __node_type* __p1 = __p->_M_next();
1403 while (__p1 && _M_bucket_index(__p1) == __n
1404 && this->_M_equals(__k, __code, __p1))
1405 __p1 = __p1->_M_next();
1406
1407 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1408 }
1409 else
1410 return std::make_pair(end(), end());
1411 }
1412
1413 // Find the node whose key compares equal to k in the bucket n.
1414 // Return nullptr if no node is found.
1415 template<typename _Key, typename _Value,
1416 typename _Alloc, typename _ExtractKey, typename _Equal,
1417 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1418 typename _Traits>
1419 auto
1420 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1421 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1422 _M_find_before_node(size_type __n, const key_type& __k,
1423 __hash_code __code) const
1424 -> __node_base*
1425 {
1426 __node_base* __prev_p = _M_buckets[__n];
1427 if (!__prev_p)
1428 return nullptr;
1429
1430 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1431 __p = __p->_M_next())
1432 {
1433 if (this->_M_equals(__k, __code, __p))
1434 return __prev_p;
1435
1436 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1437 break;
1438 __prev_p = __p;
1439 }
1440 return nullptr;
1441 }
1442
1443 template<typename _Key, typename _Value,
1444 typename _Alloc, typename _ExtractKey, typename _Equal,
1445 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1446 typename _Traits>
1447 void
1448 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1449 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1450 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1451 {
1452 if (_M_buckets[__bkt])
1453 {
1454 // Bucket is not empty, we just need to insert the new node
1455 // after the bucket before begin.
1456 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1457 _M_buckets[__bkt]->_M_nxt = __node;
1458 }
1459 else
1460 {
1461 // The bucket is empty, the new node is inserted at the
1462 // beginning of the singly-linked list and the bucket will
1463 // contain _M_before_begin pointer.
1464 __node->_M_nxt = _M_before_begin._M_nxt;
1465 _M_before_begin._M_nxt = __node;
1466 if (__node->_M_nxt)
1467 // We must update former begin bucket that is pointing to
1468 // _M_before_begin.
1469 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1470 _M_buckets[__bkt] = &_M_before_begin;
1471 }
1472 }
1473
1474 template<typename _Key, typename _Value,
1475 typename _Alloc, typename _ExtractKey, typename _Equal,
1476 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1477 typename _Traits>
1478 void
1479 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1480 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1481 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1482 size_type __next_bkt)
1483 {
1484 if (!__next || __next_bkt != __bkt)
1485 {
1486 // Bucket is now empty
1487 // First update next bucket if any
1488 if (__next)
1489 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1490
1491 // Second update before begin node if necessary
1492 if (&_M_before_begin == _M_buckets[__bkt])
1493 _M_before_begin._M_nxt = __next;
1494 _M_buckets[__bkt] = nullptr;
1495 }
1496 }
1497
1498 template<typename _Key, typename _Value,
1499 typename _Alloc, typename _ExtractKey, typename _Equal,
1500 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1501 typename _Traits>
1502 auto
1503 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1504 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1505 _M_get_previous_node(size_type __bkt, __node_base* __n)
1506 -> __node_base*
1507 {
1508 __node_base* __prev_n = _M_buckets[__bkt];
1509 while (__prev_n->_M_nxt != __n)
1510 __prev_n = __prev_n->_M_nxt;
1511 return __prev_n;
1512 }
1513
1514 template<typename _Key, typename _Value,
1515 typename _Alloc, typename _ExtractKey, typename _Equal,
1516 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1517 typename _Traits>
1518 template<typename... _Args>
1519 auto
1520 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1521 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1522 _M_emplace(std::true_type, _Args&&... __args)
1523 -> pair<iterator, bool>
1524 {
1525 // First build the node to get access to the hash code
1526 __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1527 const key_type& __k = this->_M_extract()(__node->_M_v());
1528 __hash_code __code;
1529 __try
1530 {
1531 __code = this->_M_hash_code(__k);
1532 }
1533 __catch(...)
1534 {
1535 this->_M_deallocate_node(__node);
1536 __throw_exception_again;
1537 }
1538
1539 size_type __bkt = _M_bucket_index(__k, __code);
1540 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1541 {
1542 // There is already an equivalent node, no insertion
1543 this->_M_deallocate_node(__node);
1544 return std::make_pair(iterator(__p), false);
1545 }
1546
1547 // Insert the node
1548 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1549 true);
1550 }
1551
1552 template<typename _Key, typename _Value,
1553 typename _Alloc, typename _ExtractKey, typename _Equal,
1554 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1555 typename _Traits>
1556 template<typename... _Args>
1557 auto
1558 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1559 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1560 _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1561 -> iterator
1562 {
1563 // First build the node to get its hash code.
1564 __node_type* __node =
1565 this->_M_allocate_node(std::forward<_Args>(__args)...);
1566
1567 __hash_code __code;
1568 __try
1569 {
1570 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1571 }
1572 __catch(...)
1573 {
1574 this->_M_deallocate_node(__node);
1575 __throw_exception_again;
1576 }
1577
1578 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1579 }
1580
1581 template<typename _Key, typename _Value,
1582 typename _Alloc, typename _ExtractKey, typename _Equal,
1583 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1584 typename _Traits>
1585 auto
1586 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1587 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1588 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1589 __node_type* __node)
1590 -> iterator
1591 {
1592 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1593 std::pair<bool, std::size_t> __do_rehash
1594 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1595
1596 __try
1597 {
1598 if (__do_rehash.first)
1599 {
1600 _M_rehash(__do_rehash.second, __saved_state);
1601 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1602 }
1603
1604 this->_M_store_code(__node, __code);
1605
1606 // Always insert at the beginning of the bucket.
1607 _M_insert_bucket_begin(__bkt, __node);
1608 ++_M_element_count;
1609 return iterator(__node);
1610 }
1611 __catch(...)
1612 {
1613 this->_M_deallocate_node(__node);
1614 __throw_exception_again;
1615 }
1616 }
1617
1618 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1619 // already present). Take ownership of the node, deallocate it on exception.
1620 template<typename _Key, typename _Value,
1621 typename _Alloc, typename _ExtractKey, typename _Equal,
1622 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1623 typename _Traits>
1624 auto
1625 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1626 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1627 _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1628 __node_type* __node)
1629 -> iterator
1630 {
1631 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1632 std::pair<bool, std::size_t> __do_rehash
1633 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1634
1635 __try
1636 {
1637 if (__do_rehash.first)
1638 _M_rehash(__do_rehash.second, __saved_state);
1639
1640 this->_M_store_code(__node, __code);
1641 const key_type& __k = this->_M_extract()(__node->_M_v());
1642 size_type __bkt = _M_bucket_index(__k, __code);
1643
1644 // Find the node before an equivalent one or use hint if it exists and
1645 // if it is equivalent.
1646 __node_base* __prev
1647 = __builtin_expect(__hint != nullptr, false)
1648 && this->_M_equals(__k, __code, __hint)
1649 ? __hint
1650 : _M_find_before_node(__bkt, __k, __code);
1651 if (__prev)
1652 {
1653 // Insert after the node before the equivalent one.
1654 __node->_M_nxt = __prev->_M_nxt;
1655 __prev->_M_nxt = __node;
1656 if (__builtin_expect(__prev == __hint, false))
1657 // hint might be the last bucket node, in this case we need to
1658 // update next bucket.
1659 if (__node->_M_nxt
1660 && !this->_M_equals(__k, __code, __node->_M_next()))
1661 {
1662 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1663 if (__next_bkt != __bkt)
1664 _M_buckets[__next_bkt] = __node;
1665 }
1666 }
1667 else
1668 // The inserted node has no equivalent in the
1669 // hashtable. We must insert the new node at the
1670 // beginning of the bucket to preserve equivalent
1671 // elements' relative positions.
1672 _M_insert_bucket_begin(__bkt, __node);
1673 ++_M_element_count;
1674 return iterator(__node);
1675 }
1676 __catch(...)
1677 {
1678 this->_M_deallocate_node(__node);
1679 __throw_exception_again;
1680 }
1681 }
1682
1683 // Insert v if no element with its key is already present.
1684 template<typename _Key, typename _Value,
1685 typename _Alloc, typename _ExtractKey, typename _Equal,
1686 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1687 typename _Traits>
1688 template<typename _Arg, typename _NodeGenerator>
1689 auto
1690 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1691 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1692 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1693 -> pair<iterator, bool>
1694 {
1695 const key_type& __k = this->_M_extract()(__v);
1696 __hash_code __code = this->_M_hash_code(__k);
1697 size_type __bkt = _M_bucket_index(__k, __code);
1698
1699 __node_type* __n = _M_find_node(__bkt, __k, __code);
1700 if (__n)
1701 return std::make_pair(iterator(__n), false);
1702
1703 __n = __node_gen(std::forward<_Arg>(__v));
1704 return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1705 }
1706
1707 // Insert v unconditionally.
1708 template<typename _Key, typename _Value,
1709 typename _Alloc, typename _ExtractKey, typename _Equal,
1710 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1711 typename _Traits>
1712 template<typename _Arg, typename _NodeGenerator>
1713 auto
1714 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1715 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1716 _M_insert(const_iterator __hint, _Arg&& __v,
1717 const _NodeGenerator& __node_gen, std::false_type)
1718 -> iterator
1719 {
1720 // First compute the hash code so that we don't do anything if it
1721 // throws.
1722 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1723
1724 // Second allocate new node so that we don't rehash if it throws.
1725 __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1726
1727 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1728 }
1729
1730 template<typename _Key, typename _Value,
1731 typename _Alloc, typename _ExtractKey, typename _Equal,
1732 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1733 typename _Traits>
1734 auto
1735 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1736 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1737 erase(const_iterator __it)
1738 -> iterator
1739 {
1740 __node_type* __n = __it._M_cur;
1741 std::size_t __bkt = _M_bucket_index(__n);
1742
1743 // Look for previous node to unlink it from the erased one, this
1744 // is why we need buckets to contain the before begin to make
1745 // this search fast.
1746 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1747 return _M_erase(__bkt, __prev_n, __n);
1748 }
1749
1750 template<typename _Key, typename _Value,
1751 typename _Alloc, typename _ExtractKey, typename _Equal,
1752 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1753 typename _Traits>
1754 auto
1755 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1756 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1757 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1758 -> iterator
1759 {
1760 if (__prev_n == _M_buckets[__bkt])
1761 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1762 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1763 else if (__n->_M_nxt)
1764 {
1765 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1766 if (__next_bkt != __bkt)
1767 _M_buckets[__next_bkt] = __prev_n;
1768 }
1769
1770 __prev_n->_M_nxt = __n->_M_nxt;
1771 iterator __result(__n->_M_next());
1772 this->_M_deallocate_node(__n);
1773 --_M_element_count;
1774
1775 return __result;
1776 }
1777
1778 template<typename _Key, typename _Value,
1779 typename _Alloc, typename _ExtractKey, typename _Equal,
1780 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1781 typename _Traits>
1782 auto
1783 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1784 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1785 _M_erase(std::true_type, const key_type& __k)
1786 -> size_type
1787 {
1788 __hash_code __code = this->_M_hash_code(__k);
1789 std::size_t __bkt = _M_bucket_index(__k, __code);
1790
1791 // Look for the node before the first matching node.
1792 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1793 if (!__prev_n)
1794 return 0;
1795
1796 // We found a matching node, erase it.
1797 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1798 _M_erase(__bkt, __prev_n, __n);
1799 return 1;
1800 }
1801
1802 template<typename _Key, typename _Value,
1803 typename _Alloc, typename _ExtractKey, typename _Equal,
1804 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805 typename _Traits>
1806 auto
1807 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1808 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1809 _M_erase(std::false_type, const key_type& __k)
1810 -> size_type
1811 {
1812 __hash_code __code = this->_M_hash_code(__k);
1813 std::size_t __bkt = _M_bucket_index(__k, __code);
1814
1815 // Look for the node before the first matching node.
1816 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1817 if (!__prev_n)
1818 return 0;
1819
1820 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1821 // 526. Is it undefined if a function in the standard changes
1822 // in parameters?
1823 // We use one loop to find all matching nodes and another to deallocate
1824 // them so that the key stays valid during the first loop. It might be
1825 // invalidated indirectly when destroying nodes.
1826 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1827 __node_type* __n_last = __n;
1828 std::size_t __n_last_bkt = __bkt;
1829 do
1830 {
1831 __n_last = __n_last->_M_next();
1832 if (!__n_last)
1833 break;
1834 __n_last_bkt = _M_bucket_index(__n_last);
1835 }
1836 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1837
1838 // Deallocate nodes.
1839 size_type __result = 0;
1840 do
1841 {
1842 __node_type* __p = __n->_M_next();
1843 this->_M_deallocate_node(__n);
1844 __n = __p;
1845 ++__result;
1846 --_M_element_count;
1847 }
1848 while (__n != __n_last);
1849
1850 if (__prev_n == _M_buckets[__bkt])
1851 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1852 else if (__n_last && __n_last_bkt != __bkt)
1853 _M_buckets[__n_last_bkt] = __prev_n;
1854 __prev_n->_M_nxt = __n_last;
1855 return __result;
1856 }
1857
1858 template<typename _Key, typename _Value,
1859 typename _Alloc, typename _ExtractKey, typename _Equal,
1860 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1861 typename _Traits>
1862 auto
1863 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1864 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1865 erase(const_iterator __first, const_iterator __last)
1866 -> iterator
1867 {
1868 __node_type* __n = __first._M_cur;
1869 __node_type* __last_n = __last._M_cur;
1870 if (__n == __last_n)
1871 return iterator(__n);
1872
1873 std::size_t __bkt = _M_bucket_index(__n);
1874
1875 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1876 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1877 std::size_t __n_bkt = __bkt;
1878 for (;;)
1879 {
1880 do
1881 {
1882 __node_type* __tmp = __n;
1883 __n = __n->_M_next();
1884 this->_M_deallocate_node(__tmp);
1885 --_M_element_count;
1886 if (!__n)
1887 break;
1888 __n_bkt = _M_bucket_index(__n);
1889 }
1890 while (__n != __last_n && __n_bkt == __bkt);
1891 if (__is_bucket_begin)
1892 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1893 if (__n == __last_n)
1894 break;
1895 __is_bucket_begin = true;
1896 __bkt = __n_bkt;
1897 }
1898
1899 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1900 _M_buckets[__n_bkt] = __prev_n;
1901 __prev_n->_M_nxt = __n;
1902 return iterator(__n);
1903 }
1904
1905 template<typename _Key, typename _Value,
1906 typename _Alloc, typename _ExtractKey, typename _Equal,
1907 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1908 typename _Traits>
1909 void
1910 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1911 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1912 clear() noexcept
1913 {
1914 this->_M_deallocate_nodes(_M_begin());
1915 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1916 _M_element_count = 0;
1917 _M_before_begin._M_nxt = nullptr;
1918 }
1919
1920 template<typename _Key, typename _Value,
1921 typename _Alloc, typename _ExtractKey, typename _Equal,
1922 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1923 typename _Traits>
1924 void
1925 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1926 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1927 rehash(size_type __n)
1928 {
1929 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1930 std::size_t __buckets
1931 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1932 __n);
1933 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1934
1935 if (__buckets != _M_bucket_count)
1936 _M_rehash(__buckets, __saved_state);
1937 else
1938 // No rehash, restore previous state to keep a consistent state.
1939 _M_rehash_policy._M_reset(__saved_state);
1940 }
1941
1942 template<typename _Key, typename _Value,
1943 typename _Alloc, typename _ExtractKey, typename _Equal,
1944 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1945 typename _Traits>
1946 void
1947 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1948 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1949 _M_rehash(size_type __n, const __rehash_state& __state)
1950 {
1951 __try
1952 {
1953 _M_rehash_aux(__n, __unique_keys());
1954 }
1955 __catch(...)
1956 {
1957 // A failure here means that buckets allocation failed. We only
1958 // have to restore hash policy previous state.
1959 _M_rehash_policy._M_reset(__state);
1960 __throw_exception_again;
1961 }
1962 }
1963
1964 // Rehash when there is no equivalent elements.
1965 template<typename _Key, typename _Value,
1966 typename _Alloc, typename _ExtractKey, typename _Equal,
1967 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1968 typename _Traits>
1969 void
1970 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1971 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1972 _M_rehash_aux(size_type __n, std::true_type)
1973 {
1974 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1975 __node_type* __p = _M_begin();
1976 _M_before_begin._M_nxt = nullptr;
1977 std::size_t __bbegin_bkt = 0;
1978 while (__p)
1979 {
1980 __node_type* __next = __p->_M_next();
1981 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1982 if (!__new_buckets[__bkt])
1983 {
1984 __p->_M_nxt = _M_before_begin._M_nxt;
1985 _M_before_begin._M_nxt = __p;
1986 __new_buckets[__bkt] = &_M_before_begin;
1987 if (__p->_M_nxt)
1988 __new_buckets[__bbegin_bkt] = __p;
1989 __bbegin_bkt = __bkt;
1990 }
1991 else
1992 {
1993 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1994 __new_buckets[__bkt]->_M_nxt = __p;
1995 }
1996 __p = __next;
1997 }
1998
1999 _M_deallocate_buckets();
2000 _M_bucket_count = __n;
2001 _M_buckets = __new_buckets;
2002 }
2003
2004 // Rehash when there can be equivalent elements, preserve their relative
2005 // order.
2006 template<typename _Key, typename _Value,
2007 typename _Alloc, typename _ExtractKey, typename _Equal,
2008 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2009 typename _Traits>
2010 void
2011 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2012 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2013 _M_rehash_aux(size_type __n, std::false_type)
2014 {
2015 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2016
2017 __node_type* __p = _M_begin();
2018 _M_before_begin._M_nxt = nullptr;
2019 std::size_t __bbegin_bkt = 0;
2020 std::size_t __prev_bkt = 0;
2021 __node_type* __prev_p = nullptr;
2022 bool __check_bucket = false;
2023
2024 while (__p)
2025 {
2026 __node_type* __next = __p->_M_next();
2027 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2028
2029 if (__prev_p && __prev_bkt == __bkt)
2030 {
2031 // Previous insert was already in this bucket, we insert after
2032 // the previously inserted one to preserve equivalent elements
2033 // relative order.
2034 __p->_M_nxt = __prev_p->_M_nxt;
2035 __prev_p->_M_nxt = __p;
2036
2037 // Inserting after a node in a bucket require to check that we
2038 // haven't change the bucket last node, in this case next
2039 // bucket containing its before begin node must be updated. We
2040 // schedule a check as soon as we move out of the sequence of
2041 // equivalent nodes to limit the number of checks.
2042 __check_bucket = true;
2043 }
2044 else
2045 {
2046 if (__check_bucket)
2047 {
2048 // Check if we shall update the next bucket because of
2049 // insertions into __prev_bkt bucket.
2050 if (__prev_p->_M_nxt)
2051 {
2052 std::size_t __next_bkt
2053 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2054 __n);
2055 if (__next_bkt != __prev_bkt)
2056 __new_buckets[__next_bkt] = __prev_p;
2057 }
2058 __check_bucket = false;
2059 }
2060
2061 if (!__new_buckets[__bkt])
2062 {
2063 __p->_M_nxt = _M_before_begin._M_nxt;
2064 _M_before_begin._M_nxt = __p;
2065 __new_buckets[__bkt] = &_M_before_begin;
2066 if (__p->_M_nxt)
2067 __new_buckets[__bbegin_bkt] = __p;
2068 __bbegin_bkt = __bkt;
2069 }
2070 else
2071 {
2072 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2073 __new_buckets[__bkt]->_M_nxt = __p;
2074 }
2075 }
2076 __prev_p = __p;
2077 __prev_bkt = __bkt;
2078 __p = __next;
2079 }
2080
2081 if (__check_bucket && __prev_p->_M_nxt)
2082 {
2083 std::size_t __next_bkt
2084 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2085 if (__next_bkt != __prev_bkt)
2086 __new_buckets[__next_bkt] = __prev_p;
2087 }
2088
2089 _M_deallocate_buckets();
2090 _M_bucket_count = __n;
2091 _M_buckets = __new_buckets;
2092 }
2093
2094 _GLIBCXX_END_NAMESPACE_VERSION
2095 } // namespace std
2096
2097 #endif // _HASHTABLE_H